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Abstract

Radiation transport codes require accurate nuclear cross sections to compute particle

fluences inside shielding materials. The Tripathi semi-empirical reaction cross section,

which includes over 60 parameters tuned to nucleon-nucleus (NA) and nucleus-nucleus

(AA) data, has been used in many of the world’s best-known transport codes. Although

this parameterization fits well to reaction cross section data, the predictive capability of

any parameterization is questionable when it is used beyond the range of the data to

which it was tuned. Using uncertainty analysis, it is shown that a relativistic Three-

Dimensional Lippmann-Schwinger (LS3D) equation model based on Multiple Scatter-

ing Theory (MST) that uses 5 parameterizations—3 fundamental parameterizations to

nucleon-nucleon (NN) data and 2 nuclear charge density parameterizations—predicts NA

and AA reaction cross sections as well as the Tripathi cross section parameterization for

reactions in which the kinetic energy of the projectile in the laboratory frame (TLab) is

greater than 220 MeV/n. The relativistic LS3D model has the additional advantage of

being able to predict highly accurate total and elastic cross sections. Consequently, it is

recommended that the relativistic LS3D model be used for space radiation applications

in which TLab > 220 MeV/n.
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Radiation transport codes describe the propagation of particles and secondary par-

ticles produced from their collisions from a specified boundary to a location inside a

shielding material or body to obtain particle flux, which can then be used to estimate

dosimetric quantities. Some of the transport codes employ semi-empirical parameteriza-

tions to the available cross section data to describe physical interactions. The Tripathi

et al. [1] reaction cross section model for nucleon-nucleus (NA) and nucleus-nucleus (AA)

reactions is implemented in many of the world’s state-of-the-art radiation transport codes

[2–6]. This parameterization fits well to the available data [7], but the predictive capa-

bility of any parameterization is suspect beyond the range of the data to which it was

tuned. Therefore, physical models are preferred, provided that the fidelity is acceptable

as compared to available data, since theoretical predictions are expected to be more ac-

curate than parameterizations when used for reactions beyond the range of the fitted

data.

In a recent study focused on space radiation applications (projectile kinetic energies

in the lab frame (TLab) up to 100 GeV/n for nuclei with masses extending up to Nickel),

Werneth et al. [7] used uncertainty quantification (UQ) to compare elastic differential,

elastic, reaction, and total cross section predictions of three models: the Eikonal (Eik)

approximation, the partial wave (PW) solution method of the Lippmann-Schwinger equa-

tion, and the three-dimensional Lippmann-Schwinger (LS3D) equation. The PW and

LS3D solution methods were expressed in the momentum-space representation to allow

for the incorporation of relativistic kinematics, and as expected, the relativistic models

were in better agreement with experimental data. The Tripathi parameterization [1],

however, was shown to be in better agreement with the reaction cross section data than

the Eik, PW, and LS3D models. Based on this study, it was recommended that the

relativistic LS3D model should be used for total, elastic, and elastic differential cross

sections for space radiation applications when the projectile kinetic energy in the labora-

tory frame was greater than 220 MeV/n, whereas the Tripathi parameterization should
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be used for all reaction cross sections. Based on the present analysis it is proposed that

this recommendation be changed.

The Eik, PW, and LS3D models are based on the Multiple Scattering Theory (MST)

of interaction in which the physical observables are computed from the scattering tran-

sition matrix [8, 9],

T (k′,k) = U(k′,k) +

∫
U(k′,k′′)G0(k, k

′′)T (k′′,k)dk′′, (1)

where k (k′) is the incident (final) relative momentum of the projectile-target system

in the center of momentum frame, U(k′,k′′) is the optical potential, and G0(k, k
′′) is

the two-body free propagator. Using the impulse, optimum factorization, and on-shell

approximations, the optical potential may be expressed as [7, 10]

U(k′,k) ≡ U(|q|) = APAT tNN(q)ρP (q)ρT (q), (2)

where A is the number of nucleons in the projectile (P ) and target (T ), ρ(q) is the nuclear

charge density, tNN(q) is the NN transition amplitude, and q = |q| is the momentum

transfer. The transition amplitude is modeled as a Gaussian function of momentum-

transfer and consists to three energy dependent parameters: NN slope parameter, total

NN cross section, and the real-to-imaginary ratio of the NN transition amplitude, which

have been provided explicitly in previous work [7].

Harmonic-Well (HW) nuclear charge densities were used for lighter nuclei (A ≤ 16),

where the charge density profile may be approximated with a Gaussian-like distance fall-

off, and heavier nuclei charge densities were modeled with the two-parameter Fermi (2PF)

profiles. Charge density parameters were extracted from electron-nucleus scattering ex-

periments [11, 12]. When HW charge densities were not provided, an isotopic parameter

average was performed [7]. The 2PF charge density parameters were estimated with the

Nuclear Droplet model [13].

At relativistic energies, it is expected that the internal quark structure of the nucleons
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will be probed. Since the fundamental constituent particles must be specified in any

MST, it is assumed that that individual nucleons are not composite particles and that

any relativistic effects associated with probing the nucleons at these energies have been

absorbed into the parameters. In order to account for this assumption, the nuclear charge

densities must be converted to matter densities. This was accomplished for both the HW

and 2PF models by using the approach described elsewhere [7, 14–16]. In the momentum

space representation the matter density may be obtained by using [16]

ρm(q) = ρc(q)/ρp(q), (3)

where ρm(q) is the matter density, ρc(q) is the charge density, and ρp(q) is the proton

charge density. Although in previous studies, the calculations of the nuclear cross sections

were performed in the position-space representation [14–16], the HW charge density was

transformed to momentum-space in current analysis, and equation (3) was employed to

find the matter density . Next, the HW nuclear matter density was transformed back to

position-space, where the calculation was performed.

In references [14, 15], the 2PF matter density is unfolded in the position space rep-

resentation with a 2 point Gaussian-Hermite quadrature formula, which yields nuclear

matter densities that have the same 2PF profile as the nuclear charge density parameter-

ization but with modified parameters. This approach is convenient, but it will be shown

that a different proton charge density correction evaluated completely in the momentum-

space representation yields significantly better results.

The current work implements a proton charge density of the following form for heavy

ions:

ρp(q) =
1

[1 + (q2a20)]
2
, (4)

which provides an equally good fit to the data as the Gaussian parameterization [17].

There are numerical advantages to using this particular parameterization as compared to

a Gaussian fit. When utilized for the heavy ion nuclear matter density, the Gaussian fit
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of the proton charge density has a tendency to decay rapidly to small values, and approx-

imations are needed to ensure the proper behavior of equation (3) at large momentum

transfer. The parameterization in equation (4) does not exhibit this behavior and leads

to proper convergence without further approximations. The parameter reported by Wolfe

et al. [10, 18] was implemented in the present work: a0 = 1.0/18.77 fm2.

The uncertainty quantification (UQ) metrics described in [19, 20] were used to com-

pare the previous results by Werneth et al. [7] to the new results presented herein. The

UQ analysis treats each experimental datum point as an interval defined by its uncer-

tainty. Since the experimental measurement is represented by an interval, two mea-

surements are defined: (1) the minimum difference between the model and uncertainty

interval and (2) the maximum difference between the model and the uncertainty interval.

The maximum absolute difference represents the worst case, absolute uncertainty (AU)

metric and is useful for applications in which the magnitudes of the differences are im-

portant. Another UQ metric employed in this analysis is the relative uncertainty (RUC),

which is a measure of the relative difference between the model and experiment and is

useful for validation of model predictions. Probability distribution functions (PDFs) are

assembled for both UQ metrics, and the median of the Cumulative Distribution Function

(CDF) is reported herein. See references [7, 19, 20] for more discussion and justification

of the UQ metrics.

In the following figures, the theoretical predictions of the Eik, non-relativistic (NR)

and relativistic (REL) LS3D models, and the Tripathi parameterizations are compared

to experimental data. Eik results are shown in green, LS3D (NR) in blue, LS3D (REL)

in red, Tripathi in pink, and experimental data in black. Smaller medians are indicative

of better agreement of models with experimental data. Figs. 1 and 2 include all total,

elastic, and reaction cross section measurements that are available in the database [7], and

Figs. 3 and 4 include only reaction cross section comparisons. The number of data points

in each each energy bin is given by “npt”. The results of reference [7] are shown with

hashed bars and were generated with the Gauss-Hermite approximation. The current

5



results are shown with solid bars and were produced with the proton charge density given

in equation (4). The energy bins were changed slightly from those previously reported

[7]. Reactions with TLab < 220 MeV/n were excluded since the models are not well-

suited for such low energies without the inclusion of medium effects in the MST. In the

previous study, very little experimental data were available in the 5-10 GeV/n energy

bin, so these measurements have been included in the “>5 GeV/n” energy bin.

Figs. 1-4 show a significant improvement in the agreement of the theoretical models

with experiment as compared to previous efforts [7]. The AU metric in Fig. 1 shows

that predictions are now roughly 50 mb closer to experimental measurements, whereas

Fig. 2. shows that the RUC% has decreased in every energy bin. Figs. 3 and 4

show that the LS3D (REL) model can predict reaction cross sections equally well as the

Tripathi parameterization [1], which uses over 60 parameters that are tuned to NA and

AA data. The differences between the LS3D (REL) and Tripathi results are smaller than

the experimental uncertainty.

The UQ analysis shows that the REL LS3D model predicts reaction cross sections

as well as the Tripathi parameterization, and it also predicts highly accurate total and

elastic cross sections. Consequently, it is recommended that the LS3D (REL) model be

used for space radiation applications for TLab > 220 MeV/n.
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Figure 1: Comparisons of total, elastic, and reaction cross sections utilizing the Eik, PW, and LS3D
models with the median of the absolute uncertainty cumulative distribution function. Smaller medians
indicate better agreement with experimental data [7].
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Figure 2: Comparisons of total, elastic, and reaction cross sections utilizing the Eik, PW, and LS3D
models with the median of the relative uncertainty distribution function. Smaller medians indicate better
agreement with experimental data [7]
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Figure 3: Comparisons of reaction cross sections utilizing the Eik, PW, LS3D, and Tripathi models. The
median of the AU cumulative distribution function has been used as the UQ metric. Smaller medians
indicate better agreement with experimental data [7] .
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Figure 4: Comparisons reaction cross sections utilizing the Eik, PW, and LS3D models with the me-
dian of the relative uncertainty distribution function. Smaller medians indicate better agreement with
experimental data [7].
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