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Abstract

One way of predicting nuclear cross sections is to use the Eikonal method, a high en-
ergy (small scattering angle) approximation that depends on the nucleus-nucleus optical
potential. In the position-space representation, the optical potential is a 6-dimensional
integral over projectile and target densities and the nucleon-nucleon transition ampli-
tude. The integration is often performed numerically and is inefficient, especially when
the task is to compute large numbers of nuclear cross sections for various projectile-target
reactions. The aim of the current work is to present two efficient methods for the com-
putation of the Eikonal phase shift function. Analytic formulas of the optical potential
are presented in the position-space representation for nuclei that are well-represented
by harmonic-well nuclear matter densities (A < 20), which reduces the Eikonal phase
factor to an integration over a single dimension. Next, the Eikonal phase function is
presented in the momentum-space representation, which is particularly useful when the
Fourier transform of the position-space optical potential is known. These new methods
increase the computational efficiency by three orders of magnitude and allow for rapid
prediction of elastic differential, total, elastic, and reaction cross sections in the Eikonal
approximation.

Keywords: Eikonal approximation, Elastic differential cross sections

1. Introduction1

The Eikonal approximation is a high energy (small angle) scattering approximation of2

the Lippmann-Schwinger (LS) equation that is used for the prediction of total, elastic, re-3

action, and elastic differential cross sections [1]. It is well-suited for the prediction of cross4

sections for projectile nuclei with kinetic energies in the laboratory frame greater than5

approximately 150 MeV/n, as was shown in recent comparisons to the non-relativistic6

partial wave (PW) decomposition and three-dimensional LS solution methods [2, 3]. All7
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physical observables are computed from the scattering amplitude that is obtained by in-8

tegrating the Eikonal phase function in the scattering plane. The Eikonal phase function9

is related to the optical potential and depends on the model of the nuclear interaction.10

Multiple scattering theory (MST) is the underlying theory upon which the optical11

potential is derived [4]. In the non-relativistic MST, the unperturbed Hamiltonian can12

be separated from the residual interaction that is modeled as individual nucleon-nucleon13

(NN) interactions. Feshbach et al. [5, 6] showed that the transition amplitude, which14

can be used to obtain the physical observables, may be expressed as an equivalent set of15

equations known as the elastic scattering equation and the optical potential. With this16

formalism, the projectile and target remain in the ground state after colliding, and the17

excited states are included through the optical potential, which is then written such that18

the leading term is the sum of Watson-τ operators (pseudo two-body operators). The19

matrix element of the optical potential is found after making several approximations, such20

as the impulse, single scattering, optimum factorization, and on-shell approximations21

[2, 3, 7, 8]. The final result is an optical potential that depends on the projectile and22

target nuclear charge densities and the free NN transition amplitude, which may be23

parameterized to experimental data.24

The NN transition amplitude used in the current work satisfies the optical theorem25

and depends on parameterizations of the total NN cross section, slope parameter, and26

real-to-imaginary ratio [2, 3]. Electron scattering experiments are used to estimate the27

charge density of nuclei. Harmonic-well and Woods-Saxon nuclear charge density mod-28

els are often utilized for the evaluation of the optical potential [9–14]. Harmonic-well29

densities are used for lighter nuclei (A < 20) because of the Gaussian-like decay of the30

nuclear charge density as a function of radial distance. Woods-Saxon densities are better31

suited for heavier nuclei, where the nuclear charge density is relatively constant before32

decreasing to zero at larger radial distances.33

The fundamental particles participating in the interaction must be specified in any34

MST. In this study, nuclei are composite particles whose fundamental constituents are35

nucleons; the quark structure of the nucleons is not considered. It is expected that the36

inner structure of the nucleons would be probed at higher energies, and these effects37

are assumed to be included in the NN parameterizations. The nuclear charge density38

is found by folding the nuclear matter density with the charge density of the proton39

in the position-space representation [10]. The Fourier transform of the position-space40

nuclear charge density can then be written as the product of the momentum-space proton41

charge density and nuclear matter density. The nuclear charge densities were obtained42

in the momentum-space representation, and the nuclear matter densities were found by43

dividing the nuclear charge density by the Gaussian charge distribution of the proton.44

The position-space nuclear matter densities for light nuclei modeled with the harmonic-45

well density were obtained by computing the Fourier transform of the momentum-space46

nuclear matter density.47

In the position-space representation, the optical potential is a 6-dimensional integral48

over the projectile and target nuclear matter densities and the NN transition amplitude49

[10, 13–17]. An additional integral is performed over the z-direction of the scattering50

plane to obtain the Eikonal phase function. In the momentum-space representation,51

the optical potential is the product of the nuclear matter densities and NN transition52

amplitude as a function of momentum transfer [3]. The aim of this work is to present two53

methods for computation of the Eikonal phase function so that the scattering amplitude54
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and nuclear cross sections can be found efficiently.55

Using the Gaussian forms of the nuclear matter densities and transition amplitude for56

light nuclei (A < 20) in the position-space representation, exact analytic expressions for57

the optical potential for nucleon-nucleus (NA) and nucleus-nucleus (AA) scattering are58

presented. This approach effectively reduces the 7-dimensional integral for the Eikonal59

phase factor in the position-space representation to an integral over 1-dimension. This60

method is not used for heavier projectile and target nuclei since no closed form solution61

was found for the optical potential.62

Another approach is needed for heavier projectile or target nuclei. The Eikonal phase63

factor is presented in the momentum-space representation, which also reduces the number64

of integrations to 1-dimension. This method may be used when the optical potential65

is expressed in momentum-space or when the Fourier transforms of the position-space66

nuclear matter densities and transition amplitude are known in the momentum-space67

representation.68

This paper is organized as follows. In section 2, the optical potential and Eikonal scat-69

tering theory are reviewed. The nuclear matter densities and NN transition amplitudes–70

and their corresponding Fourier transforms–are explicitly defined, and the exact formulas71

for NA and AA optical potentials are given for light nuclei (A < 20). Next, the opti-72

cal potential is expressed as a function of momentum transfer, and the 7-dimensional73

integral of the Eikonal phase factor is reduced to a 1-dimensional integral when the74

momentum-space optical potential is used.75

In section 3, elastic differential cross sections for light nuclei reactions are predicted76

with the analytic formulas and are compared to elastic differential cross sections produced77

from the numerically integrated optical potential. It is demonstrated that the light78

nuclei formulas for the optical potential produce elastic differential cross sections that79

are in exact agreement with the numerically integrated optical potential. Next, the80

momentum-space formulation of the Eikonal phase factor is used to compute the elastic81

differential cross sections and compared to the differential cross sections as computed with82

the optical potential in the position-space representation. The Eikonal phase function in83

the momentum-space representation produces results that are in exact agreement with84

the position-space results. The conclusions are given in section 4.85

2. Theory86

The Eikonal scattering amplitude, f(θ), is needed to compute the elastic differential,87

reaction, total, and elastic cross sections and is given by [1]88

f(θ) =
k

i

∞
∫

0

J0(2kb sin(θ/2))
[

eiχ(k,b) − 1
]

b db, (1)

where b is the impact parameter, k is the relative momentum of the projectile-target89

system in the center of mass (CM) frame, χ(k, b) is the Eikonal phase shift function,90

J0(kb) is the cylindrical Bessel function, and θ is the scattering angle in the CM frame.91

The Eikonal phase function is found by integrating the optical potential, U(b, z), in the92

z-direction of the scattering plane, which is defined to be in the same direction as that93
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of the incident projectile [1]:94

χ(k, b) = − 1

2k

∞
∫

−∞

U(b, z)dz. (2)

The elastic differential cross section is given by95

dσ

dΩ
= |f(θ)|2, (3)

and the total elastic cross section is found by integrating over the polar and azimuthal
angles [1],

σel =

∫

dσ

dΩ
dΩ = 4π

∞
∫

0

[1− e−Imχ cos(Reχ)]b db

− 2π

∞
∫

0

[1− e−2Imχ]b db.

The scattering amplitude satisfies the optical theorem, therefore [1]96

σtot =
4π

k
Imf(θ = 0) = 4π

∞
∫

0

[1− e−Imχ cos(Re χ)]b db. (4)

Finally, the reaction cross section, σre, can be found from using σre = σtot − σel.97

All of the the cross sections described above are functions of the Eikonal phase func-98

tion and depend on the optical potential, as shown in equation (2). For AA scattering,99

the optical potential may be expressed as [10, 15]100

U(r) = APAT

∫

tNN(|rNN|)ρP (|rP |)ρT (|rT |) drT drNN, (5)

where A is the number of nucleons, P represents the projectile, T represents the target,101

tNN is the NN transition amplitude, and ρ is the nuclear matter density. As illustrated in102

Fig. 1, rNN is the vector between a nucleon in the projectile and a nucleon in the target;103

rP is the vector that extends from the center of the projectile nucleus to a nucleon in the104

projectile; rT is the vector between the center of the target nucleus to a nucleon in the105

target; r is the relative distance between the centers of the projectile and target nuclei;106

R = r + rT is the distance from the center of the projectile to a nucleon in the target.107

The distance from the center of the projectile nucleus to a nucleon in the projectile may108

be expressed as rP = r+R = r+ rT + rNN, which, when substituted into equation (5),109

leads to110

U(r) = APAT

∫

tNN(|rNN|)ρP (|r+ rT + rNN|)ρT (|rT |)drT drNN. (6)
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(Note that |r| =
√
b2 + z2 in the cylindrical coordinate system and that the dr notation111

refers to the differential volume element, which is also written as d3r.) In the next112

section, the nuclear matter densities are described.113

2.1. Nucleon-nucleon transition amplitude and nuclear matter density114

In the current work, elastic differential cross sections are predicted with the Eikonal115

approximation utilizing the position-space representation and the momentum-space rep-116

resentation of the optical potential, which is a function of the nucleon-nucleon (NN)117

transition amplitude and nuclear matter densities. In this section, the position-space118

representation and Fourier transforms of the NN transition amplitude and nuclear mat-119

ter densities are given.120

Usually, harmonic-well nuclear matter densities are used for A < 20, and Woods-121

Saxon matter densities are used for A ≥ 20 [10, 15]. The harmonic-well nuclear matter122

density in position-space is [10]123

ρHW(r) =
ρHW
0 a3

8s3
[(1 +

3γ

2
− 3γa2

8s2
) +

γa2

16s4
r2] exp

[−r2

4s2

]

, (7)

where124

ρHW
0 =

1

π3/2a3[1 + 3
2γ]

, (8)

γ and a are parameters given in references [11, 12], s2 = a2/4 − r2prot/6, and rprot is125

the proton radius [10, 15]. The Fourier transform of the harmonic-well nuclear matter126

density is given by [10]127

ρHW(q) = ρHW
0 π3/2a3[(1 +

3

2
γ)− a2γ

4
q2]e−q2s2 . (9)

The Woods-Saxon nuclear charge density is given as [10]128

ρWS(r) =
ρWS
0

1 + e
r−R

cA

, (10)

where the normalization is129

ρWS
0 =

3

4π

[

1

R3 + π2c2AR

]

. (11)

R is the half density radius, and cA is a parameter that is related to the surface diffuseness,130

c, by [10]131

cA =
2rp√
3
ln

[(

3β − 1

3− β

)]

−1

(12)

and132

β = exp

[

rprot

c
√
3

]

, (13)

where rprot is the proton radius. The parameters R and c are given in references [11, 12].133
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The Fourier transform of the Woods-Saxon charge density is [7]134

ρWS(q) =
4π

q
ρWS
0 φ(q), (14)

where

φ(q) = πcAR

[ − cos(qR)

sinh(qcAπ)
+

πcA
R

sin(qR) coth(qcAπ)

sinh(qcAπ)
(15)

− 2cA
πR

∞
∑

n=1

(−1)n nqcA
[(qcA)2 + n2]2

]

.

The NN transition amplitude is given by [10].135

tNN(r) = −
√

e

mprot

1

[2πB(e)](3/2)
σ(e)[κ(e) + i]e−r2/2B(e), (16)

where e is the kinetic energy of the NN system in the CM frame, mprot is the proton136

mass, B(e) is the slope parameter, σ(e) is the NN cross section, and κ(e) is the real to137

imaginary ratio of the NN cross section.138

The Fourier transform of the NN transition amplitude is given as [10]139

tNN(q) =
−1

(2π)2
~
2

µ

kσ(e)

4π
[κ(e) + i]eB(e)q2/2 (17)

where ~ is Planck’s constant, µ is the reduced mass of the NN system, and k is the140

relative momentum in the NN CM frame.141

2.2. Analytical Expressions of the Optical Potential142

In this section, the analytic expressions for the optical potential are presented for143

nuclei with A < 20, where harmonic-well nuclear matter densities have been used. To144

simplify the notation, the harmonic-well nuclear matter densities are written145

ρ(r) = (α+ βr2) exp

[−r2

4s2

]

, (18)

where146

α =
ρHW
0 a3

8s3

[

1 +
3γ

2
− 3γa2

8s2

]

(19)

and147

β =
ρHW
0 a3

8s3
γa2

16s4
, (20)

and the NN transition amplitude is written as148

t(r) = τ exp

[ −r2

2B(e)

]

, (21)
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with149

τ = −
√

e

mp

σ(e)

[2πB(e)]3/2
[κ(e) + i] . (22)

Two cases are considered. First, the optical potential is calculated for a single nucleon150

projectile and a target nucleus. Next, the calculation is repeated for a projectile nucleus151

and a target nucleus.152

2.2.1. Nucleon-Nucleus Optical Potential153

For nucleon-nucleus (NA) collisions, the single projectile nucleon matter density is154

taken as a Dirac delta function, and the harmonic-well nuclear matter density from155

equation (18) is used for the target. The optical potential from equation (6) may be156

expressed in the following form with AP = 1:157

U(r) = (C0 + C1r
2) exp[−C2r

2] (23)

with158

C0 = τAT
π

µ1 + µ2

)3/2
[

αT +
3βT

2(µ1 + µ2)

]

, (24)

159

C1 =
τβTATµ

2
1π

3/2

(µ1 + µ2)7/2
, (25)

and160

C2 = µ1 −
µ2
1

(µ1 + µ2)
, (26)

where161

µ1 =
1

2B
and µ2 =

1

4s2T
. (27)

It should be noted that C0 and C1 are complex, because both are functions of τ from162

equation (22).163

2.2.2. Nucleus-Nucleus Optical Potential164

The calculation of the optical potential is repeated for nucleus-nucleus (AA) collisions165

with harmonic-well nuclear matter densities for both the projectile and the target, which166

results in the following formula for the optical potential:167

U(r) = (A0 +A1r
2 +A2r

4) exp[−A3r
2], (28)

where168

A0 =
2πNAPAT

θ

√

π

θ
(29)

×
[

αTΛ1

2
+

3

4θ
(βTΛ1 + Λ2αT )

+
15Λ2βT

8θ2

]

,
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A1 =
2πNAPAT

θ

√

π

θ
(30)

×
[

αTΛ2

2
+

1

4θ
(3Λ2βT − 4αTΛ2δ)

+
δ

2θ2
(βTΛ1δ + Λ2αT δ − 5βTΛ2)

+
5δ2Λ2βT

2θ3

]

,

A2 =
2πNAPAT

θ

√

π

θ
(31)

×
[

Λ2βT δ
2

2θ2
− βTΛ2δ

3

θ3
+

Λ2βT δ
4

2θ4

]

,

and169

A3 = δ − δ2

θ
(32)

where170

N =
2πτ

κ

√

π

κ
, (33)

κ =
1

4s2P
+

1

2B
(34)

θ =
1

4s2T
+ δ, (35)

δ =
1

4s2P
− 1

16s4Pκ
, (36)

Λ1 =
αP

2
+

3βP

4κ
, (37)

and171

Λ2 =
βP

2
+

βP

32κ2s4P
− βP

4κs2P
. (38)

Ultimately, A0, A1, and A2 are complex since each depends on N from equation (33).172

The authors would like to acknowledge that Bidasaria and Townsend [18, 19] have173

studied this problem independently, but the results were not published. In the next sec-174

tion, the optical potential is written as a function of momentum transfer, which leads to175

more efficient evaluation of cross sections when exact expressions for the optical potential176

are not known.177
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2.3. Optical Potential in Momentum-Space178

In section 2, it was shown that the Eikonal phase function can be obtained by in-179

tegrating the optical potential in the position-space representation. In this section, the180

optical potential is expressed as a function of momentum transfer, q. By doing so, the181

number of integration dimensions will be significantly reduced.182

To begin, the NN transition amplitude and nuclear matter densities in equation (6)
are replaced with their Fourier transforms

U(r) =
APAT

(2π)6

∫

drT drNN dq1 dq2 dq3 [tNN(|q1|)ρT (|q2|)ρP (|q3|) (39)

× e−iq1·rNNe−iq2·rTe−iq3·(r+rT+rNN)],

where the Fourier transforms are given by183

tNN(r) =

∫

tNN(q)e
−iq·rdq (40)

and184

ρ(r) =
1

(2π)3

∫

p(q)e−iq·rdq. (41)

Note that because of the traditional normalization of nuclear matter densities, the nor-185

malizations for the Fourier transforms of ρ(r) and tNN(r) differ. Next, integration over186

rT and rNN is performed by using the the delta distribution,187

δ(A) =
1

(2π)3

∫

e−iA·B dB, (42)

which results in188

U(r) = APAT

∫

t(|q1|)ρT (|q2|)ρP (|q3|)δ(q1 + q3)δ(q1 + q2)e
−iq3·r dq1 dq2 dq3. (43)

After evaluating the delta functions, the optical potential from equation (39) is reduced189

to integration over the momentum transfer,190

U(r) =

∫

U(q)eiq·rdq, (44)

where U(q) = APAT tNN(|q|)ρP (|q|)ρT (|q|).191

Next, the Fourier transform of the optical potential (44) is substituted into the ex-
pression for the Eikonal phase shift function from equation (2),

χ(k, b) = − 1

2k

∞
∫

−∞

dz

∫

U(q)eiq·(z+b)dq (45)

= − 1

2k

∞
∫

−∞

∫

dzdqU(q)eiq·beiqz cos θ,
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where r = b + z in cylindrical coordinates has been used. The integration of z is192

performed, which results in193

χ(k, b) = −π

k

∫

1

q
δ(cos θ)U(q)eiq·bdq, (46)

where the following delta distribution has been used:194

2π

q
δ(cos θ) =

∞
∫

−∞

eiqz cos θdz. (47)

Using dq = q2dq sin θdθdφ and evaluating the delta distribution leads to the final form
for the Eikonal phase function,

χ(k, b) = −π

k

∞
∫

0

dq

2π
∫

0

q U(|q|)eiqb cosφdφ (48)

=
−2π2

k

∞
∫

0

qU(q)J0(qb)dq. (49)

The advantage of equation (49) is that the 6-dimensional integral for the optical po-195

tential in position-space, and the z integration need not be performed. Instead, the196

7-dimensional integral for χ has been reduced to 1-dimension over the magnitude of the197

momentum transfer, q. This result significantly increases the efficiency for the numerical198

evaluation of χ.199

3. Results200

The optical potential depends on parameterizations of the nuclear matter density201

and NN transition amplitude. The harmonic-well nuclear matter density parameters for202

16O used in equations (18) - (20) are γ = 1.544 and α = 1.83 fm [11, 12]. The NN203

transition amplitude depends on parameterizations of the NN total cross section, the204

real to imaginary ratio of the transition amplitude, and the slope parameter. Parame-205

terizations of the proton-proton and neutron-proton cross sections are from reference [3].206

The proton-proton and neutron-proton real to imaginary ratio of the transition ampli-207

tude was obtained by fitting to data in reference [20], and the NN slope parameter is208

from reference [10]. In the current work, the isospin average of the proton-proton and209

neutron-proton parameterizations were used for both the total NN cross section and the210

real to imaginary ratio of the transition amplitude. The transition amplitude parameters211

for total projectile kinetic energies in the laboratory frame of 497 MeV and 1120 MeV212

are given in Table 1.213

The formulas for the optical potential from section 2.2 are used to predict the differen-214

tial cross sections for p + 16O and 16O+ 16O reactions at total projectile kinetic energies215

in the laboratory frame of 497.5 MeV and 1120 MeV, respectively. The results of the216

new formulas are compared to the numerically integrated results and experimental data217
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[21, 22] in Figs. 2 and 3. The solid black circles with error bars indicate experimental218

data [21, 22]. The solid red lines show the result of using the analytically integrated219

optical potential, and the blue stars result from using the numerically integrated optical220

potential. The analytical results are verified numerically.221

Fig. 2 shows the elastic differential cross section of a p + 16O reaction with a total222

projectile kinetic energy in the laboratory frame of 497 MeV. The figure shows that the223

differential cross section predicted with the new formula for proton-nucleus collisions224

agrees with the cross section that was generated by numerically integrating the optical225

potential. Furthermore, both results are in good agreement with experimental data given226

in reference [21]. The elastic differential cross section of a 16O+ 16O reaction at a total227

projectile kinetic energy in the laboratory frame of 1120 MeV is shown in Fig. 3. Note228

that the cross section predicted with the AA formula for the optical potential agrees229

exactly with numerical calculation, and each are in good agreement with experimental230

data from reference [22].231

As examples of the momentum-space formulation of the Eikonal phase function, the232

elastic differential cross section of p + 16O and α + 20Ne reactions are computed with233

equation (2) in the position-space representation (the usual way of performing the calcu-234

lation) and equation (49), which is a function of momentum transfer in the new formula-235

tion. These results are shown in Figs. 4 and 5. The position-space Eikonal calculations236

are shown with a solid red line, and the momentum-space results are given with blue237

stars. Experimental data [23, 24] are presented as black circles with error bars.238

The harmonic-well nuclear matter density parameters needed for equations (18) and239

(9) are γ = 0 and a = 1.33 fm for α-particles, and γ = 1.88 and a = 1.54 fm for 16O240

[11, 12]. The Woods-Saxon nuclear matter density parameters used in equations (10),241

(13), and (14) for 20Ne are R = 1.88 fm and c = 0.57 fm. The values of the NN transition242

amplitude are given in Table 1 for total projectile kinetic energies in the laboratory frame243

of 104 MeV and 317 MeV.244

The elastic differential cross section for a p + 16O reaction at a total projectile kinetic245

energy in the laboratory frame of 317 MeV is given in Fig. 4. Experimental data for246

this reaction are from reference [23]. Note that the position-space and momentum-space247

calculations are in good agreement with experimental data. Also note that the position-248

space and momentum-space results are in agreement. Fig. 5 shows the elastic differential249

cross section for α + 20Ne at a total projectile kinetic energy in the laboratory frame250

of 104 MeV. The experimental data are from reference [24]. Again, note that both the251

position and momentum-space results are in agreement, and each are in good agreement252

with experimental data. The predictions of the differential cross sections are less accurate253

at larger angles. This is expected behavior, since the Eikonal method is a high energy254

and small angle approximation.255

Although comparisons to experimental data have been shown, it should be stressed256

that agreement with experimental data is not the objective of this work. The objective257

was to present the two approaches of computing the Eikonal phase function to allow258

for efficient computation of nuclear cross sections. The computational time required for259

convergence of the position-space optical potential is approximately 103 seconds. The260

new methods described herein require only a few seconds of computational time thus261

providing a three orders of magnitude increase in computational efficiency.262
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4. Conclusions263

The AA optical potential may be used with Eikonal scattering theory to predict elastic264

differential, total, total elastic, and total reaction cross sections. The optical potential265

is obtained by computing a 6-dimensional integral over the nuclear matter densities of266

the projectile and target and the NN transition amplitude. Consequently, numerical267

evaluation of the optical potential is inefficient.268

In the current work, NA and AA optical potential formulas were obtained with269

harmonic-well nuclear matter densities, which are suitable for light nuclei (A < 20).270

The formulas were used to predict the elastic differential cross sections for two light nu-271

clei reactions. The results generated from the exact optical potentials were verified with272

numerical integration, and it was found that the elastic differential cross sections are in273

good agreement with experimental data. The new methods presented herein are approx-274

imately 1000 times more efficient than the position-space representation calculations.275

The authors have also shown that the Eikonal phase function can be written as a276

1-dimensional integral by expressing the optical potential as a function of momentum277

transfer, thereby greatly increasing the efficiency of the numerical evaluation of cross278

sections using the Eikonal approximation. The momentum-space formulation of the279

Eikonal phase function is used to evaluate the differential cross section of two reactions280

which utilize different nuclear matter density parameterizations. It is found that the281

momentum-space phase function agrees exactly with the Eikonal approximation com-282

puted in position-space, and the results of both calculations are in good agreement with283

experimental data.284

It has been demonstrated that the optical potential can be evaluated analytically for285

light ions (A < 20) that are modeled with harmonic-well nuclear matter densities. The286

momentum-space formulation is better suited for nuclear collisions where the projectile287

or target has mass A ≥ 20. The Eikonal phase function can be evaluated numerically for288

any transition amplitude and nuclear matter density, provided their Fourier transforms289

can be computed. Still, analytical expressions of the optical potential should be used290

when available. Based on the work presented herein, it is recommended that the exact291

expressions should be used for light ions, and the momentum-space optical potential292

should be used for all other reactions.293
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rP

r

R
rT

rNN

Figure 1: Illustration of the vectors used for the AA optical potential. The distance from the center of
the projectile nucleus to a nucleon in the projectile nucleus is rP . Likewise, rT is the distance from the
center of the target nucleus to a nucleon in the target. The center to center distance between nuclei is
r, and rNN is the distance between a nucleon in the projectile to a nucleon in the target. R = r+ rT is
the distance from the center of the projectile to a nucleon in the target.
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Figure 2: The elastic differential cross section for a p + 16O reaction with a total projectile kinetic energy
in the laboratory frame of 497 MeV. Experimental data are from reference [21].

Table 1: Energy dependent parameters for the NN transition amplitude.

Lab Energy σ (fm2) B (fm2) κ
104 MeV 21.80 0.22 0.88
317 MeV 3.02 0.32 0.41
497 MeV 3.52 0.34 0.18
1120 MeV 7.16 0.26 0.96
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Figure 3: The elastic differential cross section of the 16O+ 16O reaction with a total projectile kinetic
energy in the laboratory frame of 1120 MeV. Experimental data are from reference [22].
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Figure 4: The elastic differential cross section for a p + 16O reaction at a total projectile kinetic energy
in the laboratory frame of 317 MeV. Experimental data are from reference [23].
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Figure 5: The elastic differential cross section for a α + 20Ne reaction at a total projectile kinetic energy
in the laboratory frame of 104 MeV. Experimental data are from reference [24].
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