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This paper develops an atmospheric state estimator based on inertial acceleration and angular rate measurements

combinedwith a vehicle aerodynamicmodel. The approachuses the navigation state of the vehicle to recast the vehicle

aerodynamic model to be a function solely of the atmospheric state. Force and moment measurements are based on

vehicle sensed accelerations and angular rates. Thesemeasurements are combinedwith an aerodynamicmodel and a

Kalman–Schmidt filter to estimate the atmospheric conditions. The method is applied to data from theMars Science

Laboratory mission, which landed the Curiosity rover on the surface of Mars in August 2012. The results of the

estimation algorithm are compared with results from a flush air data sensing algorithm based on onboard pressure

measurements on the vehicle forebody. The comparison indicates that the proposed method provides estimates

consistent with the air data measurements, without the use of pressure transducers. Implications for future missions

such as the Mars 2020 entry capsule are described.

Nomenclature

C = state-parameter covariance
F = aerodynamic force, N
F = linearization of f with respect to x
f = process model
G = linearization of f with respect to u
g = gravitational acceleration, m∕s2
H = linearization of h with respect to x
h = measurement model
I = identity matrix
I = vehicle inertia, kg ⋅m2

i = iteration counter
K = filter gain
k = integer time index
L = linearization of h with respect to u
M = aerodynamic moment, N ⋅m
M = Mach number
P = covariance of x
ps = static pressure, Pa
Q = process noise spectral density
~Q = process noise covariance
R = measurement error covariance matrix
R = specific gas constant, J∕�kg ⋅ K�
r = radius, m
T = atmospheric temperature, K
u = aerodynamic model parameters
vn, ve, vd = vehicle planet-relative north, east, and down

velocity components, m∕s
wn, we, wd = north, east, and down wind velocity components,

m∕s
x = atmospheric state vector

Λ = declination, rad
λ = aerodynamic database uncertainty factors
μ = gravitational parameter, m3∕s2
ν = vehicle inertial state
ρ = density, kg∕m3

Φ = state transition matrix
Θ = longitude, rad
θ, ϕ, ψ = vehicle pitch, roll, and yaw attitude angles, rad

I. Introduction

NASA has developed an entry, descent, and landing (EDL)
technology development roadmap [1] to guide investment

strategies for increased EDL capabilities and robustness. One area of
emphasis is on the development of precision landing capabilities
achieved through improved environment/atmosphere characteriza-
tion and EDL instrumentation for validation of engineering models
and ground testing procedures. One approach that can be used to
address these areas is the implementation of a flush air data sensing
(FADS) system, which uses an array of pressure ports installed in the
vehicle forebody to measure the pressure distribution during entry.
These pressure measurements can be processed to estimate the
freestream aerodynamic state (such as flow angles, Mach number,
and dynamic pressure), atmospheric conditions (density, pressure,
and winds), and vehicle aerodynamics. These sensors can be used for
postflight trajectory reconstruction and model validation, but also
have the potential to be used to augment the onboard flight control
systemby providing estimates of density andwind velocity if the data
processing algorithms can be implemented in real time, assuming
that suitable guidance and control algorithms exist that can use this
information. In one recent example [2], the direct force control
method to entry guidance has been shown to greatly reduce fuel usage
for human class Mars missions. The direct force control method
differs from previously used bank angle modulation methods in that
lift and side forces are controlled directly in the guidance algorithm.
The direct force control method thus uses the freestream flow angles
(angles of attack and sideslip) in the feedback loop for controlling lift
and side force. It is expected that a sensor system that can provide
real-time data can further enhance the onboard guidance performance
by providing estimates of the true aerodynamic flow angles rather
than inertial estimates of the angles.
Incorporation of pressure transducers into the heat shield of an entry

vehicle is not trivial. Implementationof a reliableFADSsystem typically
involves hardware development and qualification, optimization of
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pressureport layout, sensor calibration, ground testing to ensurepressure
port and thermal protection system integrity, and so on, which can be
costly. Additionally, a FADS system is subject to risks of sensor failures
and other hardware anomalies. Thus, backup systems are required for
robustness in the event of aFADSsensor failure.Oneapproach is touse a
vehicle aerodynamic model in place of the sensor measurements to
provide estimates of the freestream conditions.
The concept of using vehicle aerodynamic models for entry probe

atmosphere estimation is not new. In fact, the concept goes back to a
1963 NASA report [3] in which a proposal was made to “invert” the
entry physics problem by solving for atmospheric density, given
acceleration measurements and a model of vehicle drag. The concept
was further developed to estimate aerodynamic flow angles in later
papers, such as [4]. The proposed approach was validated using entry
vehicle test flights on Earth, with known atmospheric conditions [5],
andwas subsequently applied to the reconstruction of the atmosphere
of Mars based on measurements from the Viking entry probes [6].
SinceViking, the approach has been used onvirtually every planetary
atmospheric entry reconstruction to date. A recent thesis [7]
documents the development and history of the algorithm, from its
inception in the early 1960s to the most recent application of the
method for the Mars Science Laboratory (MSL) mission [8].
The previous approaches make use of measured accelerations and

assumed aerodynamic models to solve for the freestream conditions
by first computing density from the axial force coefficient and axial
acceleration. The reconstructed density is then used to integrate the
hydrostatic equation to estimate static pressure. The ratios of normal
to axial and side to axial forces are then used to estimate the angles of
attack and sideslip, respectively. The process can be iterated at each
instant in time to improve the estimates; for instance, a combined
inner and outer loop is implemented in [8] for solving the
aerodynamic flow angles (inner loop) and freestream atmospheric
conditions (outer loop). Note that the algorithm is completely
deterministic in nature, although uncertainties in the reconstructed
quantities can be computed using linear covariance analysis
techniques [7,8]. Estimation of winds from the aforementioned
methods has not been addressed directly; some approaches instead
rely on a postprocessing method such as that proposed in [9] for
computing winds from flow angles and the navigation state.
Note that themethods described above have been implemented for

postflight reconstruction. The use of vehicle aerodynamic models
combined with data from an inertial measurement unit (IMU) to
provide real-time wind-relative state information to the vehicle
guidance and control system has been proposed. Koifman and
Bar-Itzhack [10] develop a Kalman filter approach for blending IMU
datawith an aircraft dynamicmodel for improved vehicle navigation,
includingwind velocity in the filter state. Colgren et al. [11] develop a
deterministic algorithm for estimating aerodynamic flow angles from
IMU-specific force measurements and an aircraft aerodynamic force
model for the U-2 aircraft. Wise [12] introduces a Kalman filter
method that uses body acceleration and Pitot tube measurements to
estimate the aerodynamic flow angles for the X-45 Unmanned
Combat Aerial Vehicle. This system is proposed as a backup system
to air data vanes on the X-45. It is limited, however, in the need for
Pitot airspeed measurements. McLaren [13] develops a method for
airspeed estimation following an air data sensor failure that uses a
Kalman filter to process IMU data and geometric relations to
determine thewind vector. The method was successfully flight tested
onboard a Calspan variable stability Learjet [14]. Reference [15]
develops a deterministic algorithm for aerodynamic flow angle
estimates that makes use of accelerometer measurements and a
linearized aircraft aerodynamic model. Reference [16] proposes a
Kalman filter method for blending wind forecast data, IMU data, and
aircraft model for wind gust estimation. The method is proposed as a
backup air data sensor for aircraft applications.
Onboard blending of IMU data with vehicle aerodynamic models

has also been proposed for entry vehicle applications. Westhelle [17]
develops a deterministic algorithm using ratios of specific force
measurements and an aerodynamic model for computing an estimate
of the aerodynamic flow angles, dynamic pressure, and Mach
number. The method is proposed as a backup air data system for the

X-38 crew return vehicle. Lim et al. [18] develop a Bank-to-Steer
control algorithm that uses the polarity of the commanded control
torque to estimate the vehicle trim angle of attack for Apollo-class
entry vehicles. Reference [19] develops a Kalman filter method for
processing forecast wind data and accelerometer measurements to
estimate wind gusts and aerodynamic flow angles during atmospheric
entry. Estimates of density, dynamic pressure, and Mach number are
not considered in [19].
A recently proposed model-based wind-relative state estimation

method is a technique known as a synthetic air data sensing (SADS)
system [20–22]. The SADS approach makes use of an aerodynamic
model of the vehicle, combined with acceleration and angular
rate measurements on an onboard IMU to estimate the freestream
aerodynamic and atmospheric conditions using a bank of Kalman
filters. A SADS system can be used either as a backup, or as an
alternative to a traditional FADS system that does not require pressure
transducers. The past research on inertial-based wind and angle
of attack and sideslip estimation proves the viability of inertial
measurements as a second source of air data information.
This paper extends the SADS concept [20] to the planetary probe

entry vehicle atmosphere estimation problem. Themethod developed
in this paper is similar to that of [20], in which a model of the vehicle
dynamics is combined with an inertial navigation system to produce
estimates of the atmospheric winds using a Kalman filter method for
improved navigation and flight control. One important drawback of
[20] is that the atmospheric density and pressure are not estimated in
the filter; instead these are assumed to be known as a function of
altitude. This assumption is not suitable for planetary probe entry
estimation in which the atmospheric properties are highly uncertain.
In this paper, the concept of atmospheric estimation aided by a
vehicle aerodynamics model is extended to estimate freestream
density and pressure in addition to winds. This new approach is
developed for planetary entry atmospheric state estimation, and it is
anticipated that the method can be applied to other applications such
as high-speed aircraft.
The remainder of this paper is organized as follows. Section II

develops the synthetic air data system approach for entry vehicle
atmosphere estimation using aerodynamic models and IMU
measurement data. The approach is then applied to flight data from
theMSLmission fromAugust 2012 in Sec. III. The proposedmethod is
compared with data from the MSL Entry, Descent, and Landing
Instrumentation (MEDLI) project [23], which flew an array of pressure
transducers on the MSL heat shield arranged as a FADS system to
obtain data to be used for reconstruction the atmosphere and
aerodynamics of the entry vehicle [24]. Section IV describes the
potential use of the proposed method to augment theMars 2020 Entry,
Descent, and Landing Instrumentation (MEDLI2) project [25], which
will fly a heat shield instrumented with pressure transducers with
different full-scale ranges to better capture the low-pressure, supersonic
flight regime at low altitudes. Only a single stagnation pressure
measurement will be available during the high-altitude, hypersonic
flight regime. It is expected that the method proposed in this paper will
augment the MEDLI2 dataset by providing some additional wind-
relative state information during the hypersonic portion of flight where
the single stagnation point measurement is available. A linear
covariance analysis is conducted in Sec. IV to compare the proposed
SADS estimates accuracy to the expected FADS performance under a
common set of assumptions.

II. Atmospheric State Estimation

The approach for SADS-based state estimation proposed in this
paper makes use of the state from the onboard navigation system
combined with the vehicle aerodynamic database to estimate the
atmospheric conditions. The estimation algorithm is aided by both a
priori atmospheric models tabulated versus altitude to be used as a
pseudo measurement and initial guess at the atmosphere profile, and
atmospheric models based on the hydrostatic equation that are
integrated along the trajectory within the algorithm to propagate
information forward in time from one measurement sample to
the next.
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A. Measurement Model

Thiswork assumes that an aerodynamicmodel of the entry capsule

is available, inwhich force andmoment coefficients can be calculated

from a given flight condition. It is assumed that the aerodynamic

model produces outputs in some known coordinate frame, such as

that shown in Fig. 1. Dimensional aerodynamic forces and moments

acting on the vehicle are then computed using the relations

F �x; u� � ma � 1

2
ρV2S

8>><
>>:
−CA�α; β;M; λ�
CY�α; β;M; λ�

−CZ�α; β;M; λ�

9>>=
>>; (1)

M�x; u� � I _ω� ω × Iω � 1

2
ρV2Sb

8>><
>>:

Cl�α; β;M; λ�
Cm�α; β;M; λ�
Cn�α; β;M; λ�

9>>=
>>; (2)

where x � �ρ; ps; wn; we;wd�T is the atmospheric state; λ is a vector
composed of the aerodynamic database uncertainty factors, which are

a collectionof adders andmultipliers used toperturb the aerodynamics;

and u � �ν; λ�T are combined model parameters, and the vehicle

planet-relative navigation state is ν � �r;Θ;Λ; vn; ve; vd;ϕ; θ;ψ �T .
Atmosphere model data can be incorporated into the state estimate

as prior information. Atmosphere model data can be incorporated

using table look-ups where the atmospheric conditions and

uncertainties are tabulated as a function of altitude along some

nominal trajectory. The model of this form produces an estimate of

the atmospheric conditions, alongwith an associated error covariance

matrix.
The aerodynamic force and moment and atmosphere models can

be combined into a single expression,

z � h�x;u� �

2
664

F �x;u�
M�x; u�

x

3
775 (3)

Note that the measurement error covariance matrixR is a function

of both sensor and mass property uncertainties.

B. Process Model

Amodel of the change in atmospheric conditions along the trajectory

can be derived from basic idealized relations such as the hydrostatic

equation and the perfect gas law. Such simplified relationships are

suitable for implementation in the algorithm for propagating the

atmospheric state estimate forward between aerodynamic measure-

ments, which are assumed to occur at a reasonably high rate (several

samples per second) along the trajectory. Because the simplified model

involves idealized approximations, uncertainties in the model can be

accounted for with process noise.
A model for the rate of change in static pressure can be found by

rewriting the hydrostatic equation as the time derivative of pressure

along a given trajectory, namely,

_ps � ρgvd (4)

Similarly, a model for the rate of change in density along the

trajectory can be derived from the perfect gas law, with the

assumption that the atmosphere is locally isothermal ( _T ≈ 0) between
measurement samples. The equation is of the form

_ρ � _ps

RT
� _psρ

ps

� gvdρ
2

ps

(5)

A reasonable simplified model for the rate of change in

atmospheric winds is to assume a random walk model where the

deterministic portion of the model is simply _wn � _we � _wd � 0.
Thus, the process model can be written in the form

_x � f�x; u� � η (6)

where η is a process uncertainty term that is assumed to be zero mean

with spectral density Q, and

f�x; u� �

8>>>>>>>><
>>>>>>>>:

gvdρ
2∕ps

ρgvd

0

0

0

9>>>>>>>>=
>>>>>>>>;

(7)

The continuous model in Eq. (6) can be transformed to a discrete

model of the form

xk�1 � xk � f�xk; uk�Δt (8)

which is suitable for propagation between measurements.

C. Data Fusion Algorithm

The atmospheric state estimate can be determined from a fusion of

the available data sources, including the aerodynamic force and

moment measurements, the prior tabulated data, and information from

the processmodel. The proposed algorithm is in the form of an Iterated

Extended Kalman–Schmidt Filter (IEKSF) [26] incorporating the

process and measurement models described above. The IEKSF

approach incorporates parameter uncertainties in the process and

measurement models, thus producing a realistic state covariance

estimate.
The algorithm is structured as a predictor-corrector method, in

which state estimates are propagated between measurement samples

using the relations

�xk�1 � x̂k � f� �xk; �uk�Δt (9)

�Pk�1�ΦkP̂kΦT
k �ΦkĈkG

T
k �GkC

T
kΦT

k �GkΩkG
T
k � ~Qk (10)

�Ck�1 � ΦkĈk � GkΩk (11)

Fig. 1 Body coordinate system.
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where Φk is the state transition matrix and ~Qk is the discrete-time
process noise covariance. These quantities can be jointly calculated
from the Van Loan matrix integral [27], given by

exp

 "
−Fk Qk

0 Fk

#
Δt

!
�
"
X11 X12

0 X22

#
�
"
X11 Φ−1

k
~Qk

0 ΦT
k

#
(12)

which leads to the result Φk � XT
22 and

~Qk � ΦkX12. Assuming a
reasonably fast integration step (1 Hz or higher), these quantities can

be approximated by Φk ≈ I� FkΔt and ~Qk ≈QkΔt.
Because of measurement equation nonlinearity, the measurement

update step is an iterative process to solve a nonlinear least squares
regression problem, involving the measurement and the state
prediction as observations. The process is given by the equations

Sk;i � Hk;i
�Pk;iH

T
k;i �Hk;i

�CkL
T
k � Lk

�CT
kH

T
k;i � Rk (13)

Kk;i �
h
�PkH

T
k;i � �CkL

T
k

i
S−1
k;i (14)

x̂k;i�1 � �xk � Kk;i

h
zk − h�x̂k;i;uk� −Hk;i� �xk − x̂k;i�

i
(15)

Equations (13–15) are iterated until convergence or until reaching
a prescribed iteration limit. After the iteration is complete, the state
covariance and state-parameter covariance matrices can be computed as

P̂k � �Pk −KkSkK
T
k (16)

Ĉk � �Ck −Kk

h
Hk

�Ck � LkΩk

i
(17)

The IEKSF method has the advantage of providing optimal state
estimates that account for systematic parameter uncertainties to produce
a realistic state covariance estimate.

D. Aerodynamic State Transformations

Theatmospheric state (winds, pressure, anddensity) areoutputs of the
proposed SADS data processing algorithm. The atmospheric state can
readily be combined with the INS state solution to produce estimates of
aerodynamic states, including angle of attack, sideslip, Mach number,

and dynamic pressure. Uncertainties can be mapped from the
atmospheric and INS states into the aerodynamic states through linear
covariance analysis. The equations of the transformation from
atmospheric and INS states to aerodynamic states are readily available in

various sources such as [28] and are not repeated here.

III. Application to Mars Science Laboratory

OnAugust 5, 2012, theMSL entry vehicle successfully entered the
atmosphere of Mars and landed the Curiosity rover safely on the
surface of the planet inGale crater. TheMSL entry vehicle comprised

a 70-degree sphere-cone heat shield and backshell consisting of a
stack of three truncated cones. The MSL vehicle as-built outer mold
line is shown in Fig. 2a [29]. During most of entry, the capsule used a
radial center of mass offset to fly at an angle of attack (approximately

16 deg at hypersonic conditions). This attitude produced lift to fly a
guided entry profile, reducing the landing footprint to amuch smaller
size than any previous Mars mission. To fly the guided entry, the
vehicle carried four pairs of reaction control system (RCS) jets to

perform maneuvers and damp rates. The four pairs of jets could be
fired rapidly in different combinations to provide control torque
about any axis by modulating the pulses of the jet.
MSL carried with it an instrumentation package designed to

measure the aerodynamic and aerothermal environments during
atmospheric entry. This instrumentation package was known as the

MEDLI [23], which consisted of three major subsystems: the Mars
Entry Atmospheric Data System (MEADS), the MEDLI Integrated
Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). The
MEADS consisted of seven pressure transducers connected to flush

orifices in the heat shield to measure pressures across the vehicle
forebody. The MISP devices were a system of seven thermocouple
and recession sensors that provided aerothermalmeasurements of the
heat shield performance. The SSE provided power to the sensors,

conditioned their signals, and transmitted the data to storage on the
Curiosity rover. The MEDLI sensors provided measurements that
were used for trajectory reconstruction and engineering validation of
aerodynamic, atmospheric, and thermal protection system models in

addition to Earth-based systems testing procedures. TheMEDLI data
and their usage for reconstructing the aerodynamic and aerothermal
performance of the MSL entry vehicle are described in [30–32].
The remainder of this section is focused on the application of the

SADS method developed in the previous section to flight data

obtained from the MSL mission. The SADS-based estimates can be
compared with the reconstructed atmosphere based on the MEDLI

SR1134.11

Spacecraft Coordinate Frame

20°

2874.82

4518.16
1295.39

R12.7

R161.8

R134.88
R126.75

+x

+z

+y

22.09°

53.1°

34.43°

33.73°

31°
119° (543.3)

1407.3

924.21

BS-HS
Sep. Plane

BIP: SC z=0.0

a) As Built MSL Outer Mold Line b) MEDLI/MEADS Geometry (Looking Aft)
Fig. 2 Vehicle geometry.
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flight data [30], providing a useful check case in the form of an air

data system that used data from calibrated pressure transducers [33].

The aerodynamic forces and moments were sensed by the onboard

IMU in the form of acceleration and angular rate measurements at a

frequency of 200 Hz. The dimensional aerodynamic forces and

momentswere calculated from thesemeasurements andmass property

models of the vehicle. Forces andmoments due to the RCS firing were

subtracted from the total force andmoment measurements. The results

were found to be sensitive to vibration and noise associated with RCS

firings, and so a low-pass optimal Fourier smoother with a cutoff

frequency of 2 Hz was applied to smooth the data [31]. Note that the

smoother that was implemented in these results was done so in a way

that mimicked onboard computation, and so artifacts such as lags are

introduced. The raw and smoothed aerodynamics are shown in Fig. 3.

Note the increase in noise around the time of bank reversals, which

correlate with the times of RCS thruster commands shown in Fig. 4.

The smoothed side/normal and pitch/yaw moments are shown

in Fig. 5.

The SADS filter was initialized at 580 s in the MSL EDL timeline,

corresponding to an altitude of approximately 66.15 km.The filter was

implemented to run at a rate of 64 Hz to match the rate of the onboard

navigation state. The filter was terminated at a time of 800 s, at an

altitude of 7.10 km. The SADS filter was set to use a maximum of 10

iterations at each measurement sample. Convergence of the solution

was said to occur if the norm of the difference between state estimates

at subsequent iterations divided by the current estimate was less than

10−6. Given the sensitivity ofmoments to the RCS noise, the filter was

set to ignoremomentmeasurementswhile theRCSwas active and rely

solely on force measurements. The filter made use of the postflight

reconstructed aerodynamic model described in [31] as a means to

directly compare FADS and SADS given consistent data sources.

Uncertainties in the aerodynamic database were based on those

Fig. 3 Measured aerodynamic forces and moments.
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provided in [34]. The initial atmospheric state and the prior atmosphere
tables were based on preflight mesoscale models [35]. The initial

atmospheric state and table data covariance is based on the uncertainty

analysis performed by the atmospheric scientists who developed the
model, and no tuning of these uncertainties was performed. The prior

atmosphere table and the associated uncertainties are shown in Fig. 6.
Note that the mesoscale model does not produce an uncertainty

estimate for static pressure, and so it was assumed here that the static

pressure uncertainty percentage was equal to that corresponding to

density. The mesoscale model downward wind component was

assumed to be zero with a 3σ uncertainty of 7.5 m∕s.
Components of the process model spectral density were tuned

using preflight simulation data to encapsulate the maximum range of
expected deviations in between the hydrostatic assumption compared

with the mesoscale model for this class of trajectory. The 3σ density
process model uncertainty was set to 20%∕s at the initial altitude of
66.15 km, and was scaled linearly to 1%∕s at the altitude of 13.5 km
(650 s in the MSL EDL timeline) and then held constant. The 3σ
pressure process model uncertainty was held constant over entire
trajectory at a value of 0.01%∕s. The 3σ components corresponding

to the horizontal winds were set to a constant value of 35 m∕s2, and
the 3σ downward wind component was 8.5 m∕s2.
Results of the SADS filter are shown in the following figures. The

results are compared with true air data estimation results from the

MEADS pressuremeasurement data, described in [36]. In the following
figures, the pressure transducer-based estimation is labeled FADS, and

new synthetic air data solution developed in this paper is labeled
as SADS.
The atmospheric density and pressure estimates are shown in

Fig. 7. The two solutions give consistent results. Some differences are

apparent in the low supersonic flight regime, below 850 Pa dynamic
pressure. These differences are consistent with those between the

postflight reconstructed axial force coefficient and the reconciled
aerodynamics, as described in [31]. These differences are attributable

to transducer instrumentation errors in low-pressure ranges that are
outside their design requirements. Differences in density and
pressure estimates are within 0.5% over the range in which the

transducers were calibrated (above 850 Pa dynamic pressure).
The estimated winds along the trajectory are shown in Fig. 8. The

two methods produce consistent estimates, although the SADS

exhibits more noise in the estimate. The noise is likely due to

Fig. 4 RCS firing.

Fig. 5 Smoothed aerodynamic forces and moments.
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vibrations in the accelerometer and smoothing artifacts not accounted
for in the filter gain. The mean profile and general trends follow the
FADS solution. This result is important as it indicates the ability of
the SADS approach to mimic a true FADS system without the use of
pressure sensors. The reconstructed winds from these two methods
are consistent with observed vehicle dynamics and guidance
response [37,38]. Specifically, in [37] it was noted that the vehicle
response during the third bank reversal was consistent with a roughly
10 m∕s cross wind, blowing north to south, which matches with the
northerlywind component calculated fromboth the FADS andSADS
methods. Additionally, the time between entry balance mass jettison

and parachute deployment was theorized in [38] to be due to a
roughly 20 m∕s tail wind, blowing to the east. This wind also
matches with both the FADS and SADS estimates near the time of
parachute deployment.
The dynamic pressure andMach estimates are shown in Fig. 9. The

methods are in agreement over the entry trajectory. Differences in the
dynamic pressure and Mach estimates are in the order of 0.5% and
0.05, respectively, in region where the pressure measurements were
calibrated. The aerodynamic flow angle estimates are shown in
Fig. 10. The FADS and SADS solutions are in agreement, with
differences within 0.25 deg, thus indicating that the SADSmethod is

Fig. 6 Mesoscale atmosphere and uncertainties.

Fig. 7 Atmosphere.
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able to provide an estimate of the vehicle state that is consistent with a
true air data system.

IV. Application to the Mars 2020 Mission

AnotherMEDLI-like system of instruments is planned to be flown
on the Mars 2020 mission. This instrumentation system, known as
MEDLI2 [25], will acquire FADS pressure data to be used for the
reconstruction of atmospheric states and vehicle aerodynamics
during entry. The focus of the pressure system onMEDLI2 is geared
toward estimating aerodynamics in the supersonic regime of
flight, where some questions remain regarding the aerodynamic

reconstruction of MSL [31]. To this end, the forebody pressure
systemwill carry one transducer with a full-scale range of 35 kPa (the
same as MSL transducers) to measure stagnation pressure over the
entire entry trajectory (which in turn yields estimates of dynamic
pressure and density), and six transducers with a full scale range of
7 kPa to more accurately measure the atmosphere and aerodynamics
in the supersonic regime of flight (roughly Mach 6 and below). In
addition, one transducer will be installed on the backshell to measure
the base pressure and its contribution to drag. The forebody pressure
port layout corresponding to the current MEDLI2 design is shown in
Fig. 11. Note that port P1 corresponds to the hypersonic pressure
transducer.

Fig. 8 Winds.

Fig. 9 Dynamic pressure and Mach number.
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Because the focus of this instrumentation is on supersonic

measurements, only one hypersonic transducer is available to provide
estimates of the atmospheric conditions during entry for a large-

altitude range before the supersonic transducers de-saturate at 7 kPa.
The hypersonic stagnation pressure transducer will provide estimates

of density and dynamic pressure but will yield little to no information
about the wind environment. It is anticipated that the algorithm
developed in this paper can augment the single pressuremeasurement

to provide estimates of winds along with a redundant estimate of
density and dynamic pressure. The atmospheric states reconstructed

from this algorithm can also be used to initialize the filter that
processes the supersonic pressure measurements as the transducers
de-saturate. Furthermore, the algorithm can serve as a backup in the

event of supersonic transducer failures or anomalies.
The following figures show the results of a linear covariance

analysis of the SADSalgorithm applied to a representativeMars 2020
entry trajectory. The reference trajectory used for this analysis is

shown in Fig. 12. Note that the supersonic FADS measurements are
saturated over the time period from 605 to 668 s. The synthetic air
data method is compared against results of a single-pressure-port

FADS air data estimate from the stagnation pressure port in the
hypersonic flight regime, and a complete array of six pressure
measurements in the supersonic regime. To stress the estimators,

large a priori atmosphere uncertainties are used for this analysis,
consisting of 50% uncertainty in density and pressure, 100 m∕s in
horizontal winds and 25 m∕s in downward winds (all specified at the
3σ level). The process model uncertainties from the previous section
are increased by an order of magnitude. The increased uncertainties

on the prior atmosphere estimate and the process model have the
effect of pushing the burden of algorithm onto the measurement
model, thereby allowing a more direct comparison of the FADS

versus SADS measurements. The IMU model is based on the MSL
flight hardware as described in [30]. The FADS pressure sensors are

Fig. 10 Aerodynamic angles.

Fig. 11 Mars 2020 pressure port arrangement.

Fig. 12 Mars 2020 reference trajectory.
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Fig. 13 Comparison between SADS and FADS: density, pressure, dynamic pressure, and Mach number uncertainties.

Fig. 14 Comparison between SADS and FADS: wind uncertainties.
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modeled with a nonrepeatability uncertainty of 0.05% full-scale
pressure, and a noise floor of 30 Pa. Hysteresis uncertainties are
included as a time-varying zero offset, modeled as randomwalk. The
random walk uncertainty model was tuned to produce zero offsets in
the order 30 Pa over the duration of the entry, based on transducer
performance observed from MSL flight data.
Results of the linear covariance analysis of the two methods are

shown in Fig. 13. These results compare reconstructions of density,
pressure, dynamic pressure, and Mach number. These results show
that the SADS solutions produce estimates of density and dynamic
pressure with higher uncertainties than the FADS algorithm. The
incorporation of the hydrostatic process model enables the SADS
estimator to produce estimates of static pressure that are similar to
that of the FADS state estimator, although slightly less precise. A
similar trend appears in the Mach number estimate uncertainty.
A comparison of the wind estimate uncertainties is shown in Fig. 14.

The SADS estimates provide some enhancement of the wind estimates
during the hypersonic flight regime where the low-scale supersonic
pressure sensors are saturated. This effect is most noticeable in the north
component, which is essentially a cross wind for this entry trajectory.
The single hypersonic transducer provides estimates similar to the
SADSmethod for the east (headwind) component. The FADSestimates
are superior in all components in supersonic flight regime, where all
pressuremeasurements are used.Note that the uncertainties in theSADS
estimate of the downward wind component are weakly observable for
this particular trajectory, as indicated by the uncertainties staying near to
the a priori atmospheric uncertainties. This result is due to the high
uncertainties in the aerodynamic database itself, which obfuscates
the effects of horizontal versus vertical winds in the measurement
weighting. For these classes of trajectories, it may be beneficial to
remove the downward wind component as a filter state. Other classes of
trajectories may have better observability of downward wind states.
Similar trends are evident in the aerodynamic flow angle

uncertainties, shown in Fig. 15. The SADS approach can improve on
the FADS results during the period where the supersonic pressure
transducers are saturated. The FADS method using all pressure
transducers is far superior in the supersonic flight regime. There are
high uncertainties in the SADS estimates because the aerodynamic
database uncertainties are highest in the supersonic flight regime.

V. Conclusions

An estimator suitable for planetary probe entry atmosphere
estimation has been developed. This estimator is based on an
aerodynamic database (forces andmoments) combinedwith in-flight
measurements of the vehicle aerodynamics computed from inertial
measurement unit data (accelerations and rates). The atmospheric
states (winds, density, and pressure) are estimated using a nonlinear
Kalman–Schmidt filter approach in which the inertial states of the
vehicle (position, velocity, and attitude) are assumed to be known
from the navigation system, and the atmosphere states are solved for
from the measured aerodynamic forces and moments. A test case

with flight data from theMars ScienceLaboratorymission shows that
the method performs well and is consistent with atmosphere states
independently estimated from a flush air data system.
The method is expected to be used to aid the Mars 2020 entry air

data system by providing additional data during periods in which the
low-pressure-range transducers are saturated (above 7 kPa). Linear
covariance analysis indicates that the synthetic method produces air
data estimates with higher uncertainties than a true flush air data
sensing system.Although the uncertainties in the derived atmosphere
using the assumed aerodynamic model are higher than those
computed from a traditional flush air data system, the proposed
method provides an alternative for atmosphere estimation that does
not require pressure transducers.
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