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Abstract

Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of
aerospace composite components. In recent years there has been an increased development of guided wave based
methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence
of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite
element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification
and classification. This work describes an inverse solution for realistic composite damage characterization by
comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The com-
posite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo),
enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy
of the proposed damage model and comparative metrics between the experimental and simulated output. The
FEM is then parameterized with a damage model capable of describing the typical complex damage created
by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte
Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investi-
gated here. The posterior probability distributions of the individual delamination petals as well as the overall
envelope of the damage site are determined.

Keywords: Nondestructive evaluation; Guided waves; Composites; Delamination; Model-based
characterization; Bayesian analysis

1. Introduction

In the past decade a number of industries, including aerospace and automotive, have increased the use of light-
weight composite materials for structural and non-structural components [1]. Carbon fiber reinforced polymer
(CFRP) composites are extensively used in aerospace components. This expanded use of composites leads to
unique nondestructive evaluation (NDE) challenges since defects which are specific to layered composites (i.e., did
not exist in heritage metallic parts) can occur during the manufacture and curing of components. Additionally,
damage to composites can occur post-curing in a manufacturing or in-service setting. Common defects/damage in
CFRP components include delaminations, fiber waviness (marcelling) and wrinkling, microcracking and porosity
[2, 3, 4]. Delamination damage due to impact and/or in-service loading can occur as a complex three-dimensional
(3D) volumetric geometry with individual delaminations existing at different ply depths through the composite
thickness. The defects that commonly occur in CFRPs may lead to no visible indication on the composite
surface, thus appropriate NDE methods are required for defect detection and characterization.

Ultrasonic inspection is one of the most widely used NDE approaches applied to composites in both manu-
facturing and in-service settings. Traditional ultrasonic inspection approaches commonly applied to composites
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include pulse-echo and through-transmission scanning. Guided wave methods are also highly applicable for in-
spection of plate-like composite laminates [5, 6, 7, 8]. Simulation of ultrasonic wave behavior in composites
can significantly aid in the development and application of damage characterization methods. The simulation
of the wave interaction with materials/defects is commonly referred to as the forward modeling problem. The
inverse modeling problem entails the use of models/simulation to estimate the defect characteristics which caused
a measured experimental signal, and involves making comparisons between simulated and experimental data.
NASA has unique needs for light-weight advanced materials for aerospace applications, including manned space-
flight applications which have strict safety, durability, and reliability requirements. Advancing the state-of-art
in forward and inverse modeling for the purpose of improved defect detection and characterization in advanced
materials (such as composites) is highly relevant to NASA’s aerospace missions.

In recent years there is a growing literature on the use of ultrasonic modeling tools (mostly Finite Element
(FE) based tools) for simulation of the physics of wave propagation and scattering in composites. Recent authors
reporting forward model simulation of ultrasound in composites includes Ng and colleagues who implemented
3D FE, using LS-DYNA as the FE solver, to study guided wave scattering from delaminations in a quasi-
isotropic composite laminate [9]. Ng et al. assume homogeneous orthotropic material properties for each ply
and accounted for the individual ply rotations of the layup [9]. They simulated scattering from simple circular
geometry delaminations located at a single ply depth. Singh et al. report using COMSOL FE software to
simulate guided waves in a composite laminate with homogenized material properties through the thickness
(i.e., individual ply layers were not simulated). Guided wave interaction with a simulated conical shaped defect
representing impact damage was studied [10]. Leckey et al. used a custom 3D finite integration code to study
guided wave propagation in composite laminates (simulating each ply layer) and incorporated a realistic damage
geometry using x-ray computed tomography data of impact induced delamination damage [11]. More recently,
Murat et al. report using a custom FE code to simulate guided wave propagation in a cross-ply composite
laminate and study guided wave interaction with a square shaped delamination [12].

There are significantly fewer reports in published literature addressing the ultrasonic inverse problem for
defect characterization in composites. Roberts and Holland recently reported use of a Green’s function based
analytical approach for model-based inversion of pulse-echo ultrasound data of delamination defects in composites
laminates [13]. Fahim et al. considered a cost function (i.e. an optimization problem) as the inverse solution
to characterize delamination damage features through the use of a semi-analytic model of the wave propagation
forward problem [14]. Bochud et al. model the composite damage in each layer as a reduction of Young’s modulus
and studied various signal processing techniques for use in an inverse problem [15].

In this work a finite element simulation is implemented to model guided wave propagation in composite
laminates and wave interaction with delamination defects. A model-based inversion approach using Markov
Chain Monte Carlo (MCMC) method is combined with the FE modeling and is applied to ultrasonic wavefield
data from a composite laminate containing impact induced delamination damage. Prior to the application of
the inversion method to the real delamination case, a material characterization study is performed. Numerous
factors can lead to differences between simulation and experiment. For composite materials a primary factor
can be differences between the ideal ply level material properties (provided by a manufacturer or found through
destructive testing) and the properties of a cured as-manufactured specimen [11]. A comparison between the FE
simulation and experimental data is performed for a pristine unidirectional laminate to more closely characterize
the as-manufactured composite material properties. Section 2 describes the mathematical approach used in the
forward and inverse modeling, along with the wavenumber domain method that is used to compare the simulation
data to experimental wavefield data. Section 3.2 discusses the results of the material characterization step. In
Section 3.3 the MCMC method is then applied to a single delamination case to verify that the approach works for
a simple defect scenario. Application of the inverse model method to the wavefield data recorded in experiment
for the complex delamination case is then reported in Section 3.4.

2. Problem description

2.1. Forward problem

The wave propagation problems investigated here are implemented in the commercial finite element software
PZFlex [16]. The forward problem entails simulating wave propagation and interaction with delamination damage
in a composite laminate. The domain of the problem corresponding to the delaminated quasi-isotropic specimen
is given in figure 3 . The composite laminate is comprised of 26 ply layers with a layup of [(0/45/−45/90)3]s. To
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build up the entire composite laminate in the finite element model, the material tensor of a single ply is computed
in a reference orientation (such as along the 0◦ fiber direction of the top ply shown in figure 3), and the material
tensors of the ply layers at differing ply angles are computed by rotating the material tensor by the appropriate
rotation transformation operator. In this work, we assume that a single ply layer containing fibers and resin
can be accurately modeled as a single anisotropic material (with transverse anisotropy for the cases studied in
this work). However, due to variations in fiber volume ratio, overall specimen thickness, and fiber waviness
and warping (i.e. where fibers do not run along the intended direction), accurately predicting the homogenized
anisotropic material properties for the ply layer is difficult. An approach for addressing as-manufactured laminate
property variations from the idealized properties will be discussed in Section 3.2.

The composite laminate in this work is excited by a 12.7 mm diameter piezoelectric transducer. The response
of the laminate to the excitation considered here is the out-of-plane velocity on the top surface of the composite
laminate. While the entire displacement and stress time history (in-plane and out-of-plane) is modeled within
the laminate in the FE simulation, we only consider the response that is captured in the experimental wavefield
measurements. In this work, a 1D laser Doppler vibrometer (LDV) attached to an x-y scanning system is used
to record the out-of-plane velocity v(t,x), where x is the in-plane spatial location on the laminate surface, and
t is the time. The details on the inspection setup are provided in Section 3.1.

2.1.1. Three-dimensional Fourier transform

In a model-based inversion problem, the response of the simulation model is directly compared to the experi-
mental inspection data. Therefore, we require a means of processing the recorded velocity time signals such that
the simulation data and inspection data are readily comparable. Directly comparing the velocity time signals
v(t,x) (i.e., A-scan signals) between simulation and experiment is non-ideal since a number of factors would
make a quantitative comparison challenging. Factors influencing a direct velocity time signal (A-scan) compar-
ison include: the LDV pixel locations and the finite element nodal coordinates would need to align; the LDV
sampling rate and the finite element time steps would need to be coordinated so that the data is compared at
appropriate time steps; and significant effort would need to be undertaken to ensure that excitation amplitude is
correctly simulated so that the model response amplitude is the same as that generated by the transducer used in
the experiment (including any amplitude variations due to the couplant) and recorded by the LDV, vLDV (t,x).

To mitigate the challenges associated with comparing the velocity spatial-time signals directly, we implement
a post-processing method that involves wavenumber comparisons between the inspection data and simulated
data. The wavenumber analysis is implemented through the 3D Fourier transformation of the time domain
wavefield data to generate frequency versus x̂ wavenumber, kx, and ŷ wavenumber, ky.

V (f,k) =

∫ x

0

∫ t

0

v(t,x)e−j(2πft−k·x) dt dx (1)

Two-dimensional wavenumber spectra (kx − ky) are generated over a range of frequencies f . The wavenumber
spectrum associated with the excitation frequency is the metric to be used in comparing the simulated and
inspection responses.

2.2. Stochastic inverse problem

We assume that the spatio-temporal wavefield data has been transformed via the 3D Fourier transformation
and evaluated at frequency f and discrete wavenumebrs kxi , i = 1, · · · , N and kyj , j = 1, · · · ,M . We further
assume that only experimental noise recorded by the LDV contributes to discrepancies between the finite element
response and the recorded inspection response, such that the finite element response may be written

V LDV ≡ V LDVij = V FEMij (θ) + ηij (2)

where V LDVij is the 3D Fourier transform of the experimental data at wavenumbers kxi and kyj and excitation

frequency f ; V FEMij (θ) is the 3D Fourier transformation of the associated deterministic finite model output,
as a function of the unknown and sought-after model parameters θ; and ηij is the independent and identically
distributed (i .i .d .) errors taken from a zero-mean, Gaussian distribution with variance σ2

η. Given this assumed

noise distribution, we may model the probability of observing a wavenumber spectrum amplitude value V LDVij ,

given the measured finite element model response V FEMij (θ) as:
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fη(V LDVij |V FEMij (θ)) =
1√

2πσ2
η

e
− 1

2σ2η
(V LDVij −V FEMij (θ))2

(3)

Eq. (3) is the probability density function (PDF) for each amplitude value in the wavenumber spectrum; and
clearly relates the unknown model parameters θ to the inspection data.

Because the noise is assumed i.i.d. and stationary, we may express the PDF for the entire wavenumber
spectrum as the product of the individual (marginal) distributions of each wavenumber point:

fη(V LDVij |V FEMij (θ)) =

N∏
i

M∏
j

1√
2πσ2

η

e
− 1

2σ2η
(V LDVij −V FEMij (θ))2

=
1

(2πσ2
η)N×M/2

exp

− 1

2σ2
η

N∑
i=1

M∑
j=1

(V LDVij − V FEMij (θ))2

 ≡ fη(V LDV |θ). (4)

Eq. (4) is a probabilistic model, predicting the wavenumber spectrum, given model parameters θ, and is referred
to as the likelihood of the observations. A maximum likelihood estimation (MLE) therefore provides the values
θ that maximize Eq. (4). However, rather than focusing on a single “best” value (in the sense of maximizing
the likelihood), we treat each model parameter value as a random variable, modeled with a corresponding PDF.
Estimates of this PDF can therefore be used to provide a different definition of “best” parameter value (e.g.,
mean or mode of the PDF). More importantly, by estimating the entire PDF of the parameter we can quantify
the uncertainty in the parameter value.

The above described approach (i.e. treat parameters as random variables) is a hallmark of Bayesian analysis.
At the core of this analysis is Bayes’ Theorem which allows us to express the desired posterior PDF for the
parameter vector θ in terms of the likelihood Eq. (4) as

fθ(θ|V LDV ) = C−1fη(V LDVij |θ)fπ(θ) (5)

where fπ(θ) is the prior PDF, which encapsulates any prior information about the parameters θ; and C−1 is
defined as the multidimensional integral

∫
RP fη(V LDVij |θ)fπ(θ)dθ, ensuring that the posterior integrates to unity

(a requirement of any PDF). As it is that we are interested in the marginal distribution associated with each
model parameter θl ∈ θ, l = 1, ..., P , we are required to integrate Eq. (5) over each of the parameters in θ,
excluding θl. If we define the parameter vector that excludes parameter θl as θ−l, then the expression for the
marginal posterior distribution for parameter θl is given as:

fθ(θl) =

∫
RP−1

fθ(θ|V LDV )dθ−l (6)

Equation (6) is the end goal of this Bayesian analysis; providing a complete probabilistic description of our
unknown model parameters. The problem is that Eq. (6) is analytically intractable in most situations and
instead must be solved by numerical methods. The numerical approach used in this work is discussed in section
(2.4).

2.3. Unknown model parameters

As the end goal of this analysis is to solve Equation (6) to characterize the damage, we must formulate and
implement a parameterization model for the damage. Because the laminate damage in this work is a complex
site of several delaminations, we will allow the delamination model θ to be suitably complex through the use of
a flexible model that will allow the dimension of θ to change.

Prior to attempting to characterize the damage, however, we must first ensure that the model used to generate
the measured data accurately captures the mechanics of the physical inspection (i.e. we need to validate the
model). This is crucial in model-based inversion methods, as the FE model results are to be directly compared
to the experimentally acquired data. Therefore, prior to attempting to characterize the damage, we will first use
the model-based inversion approach to characterize the homogenized laminate material properties. In this initial
material characterization validation step, the model parameter vector θmat will take on values of the material
properties as described in Section (2.3.1) below.
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2.3.1. Laminate material model

Fundamental to model-based inversion methods is that the mechanics of the simulation model must accurately
capture that of the physical inspection. If the FE simulation does not accurately represent the physics of the
inspection, then there is little hope of using the high fidelity FE model to invert the inspection data to characterize
damage. As discussed in section (2.1), one of the reasons that inspection data and simulated data (even in a case
with no damage) may not agree is due to using inaccurate homogenized ply level material properties. In addition
to fiber waviness, warping, porosity, resin rich regions and prepreg material property changes due to material
aging or out-of-freezer time prior to manufacture; the cured laminate material properties may also change over
time due to aging and exposure to the environment. For this reason, before attempting to characterize the
complex delamination site, we first employ the model-based inversion approach to characterize the ply-level
anisotropic material tensor.

For the CFRP material used in our studies, we assume that each ply layer can be modeled as a transversely
isotropic material. For ply layers oriented at angles other than the reference angle (0◦ defined as fiber direction
in the top ply, as shown in Figure 3), the material tensors are obtained by applying a rotation transformation to
the reference material tensor. Therefore, the number of sought-after material properties are assumed to depend
only on the unique material properties in a single layer, and are not proportional to the number of ply layers.
The material properties for a single ply layer of IM7/8552 reported in literature are given in Table (1) [17, 18].
As can be seen in the table, there are seven unique material properties due to the material symmetry that can
be used to populate the material tensor that describes the ply layer and comprise parameter vector θmat. An
initial material property sensitivity study will be discussed in Section 3.2 to determine whether all seven of the
unique material properties need to be included in θmat, as unnecessarily including extra parameters to solve for
increases the inversion and characterization difficulty. Thus, special care should be given to determining which
parameters are included.

Table 1: IM7/8552 material properties (for a single ply, with E1 in the fiber direction)

Property IM7/8552

ρ (kg/m3) 1570
E1 (GPa) 171.4
E2 (GPa) 9.08
E3 (GPa) 9.08
G12 (GPa) 5.29
G13 (GPa) 5.29
G23 (GPa) 2.80
ν12 (GPa) 0.32
ν13 (GPa) 0.32
ν23 (GPa) 0.5

2.3.2. Delamination model

As will be discussed further in (3.1), the goal is to characterize impact-induced delamination damage. Micro-
focus computed tomography (microCT) scans of the damaged quasi-isotropic laminate were taken at a resolution
of 23.4 µm, and can be seen in Fig. (1), where red indicates delaminated regions. Because the microCT images
indicate that the delaminated regions are relatively open, we model a delamination in the FE model through
stress-free boundary conditions between ply layers in the regions that have been identified as delaminated. The
stress-free boundary condition is effected through de-bonding the ply layers in the regions of delaminations.
Additionally, in order to simplify the delamination implementation in the model, we assume that each individual
delamination petal is a perfect circle. This choice is made in order to balance accuracy with as simple of a
damage model as possible. An initial sensitivity study (for a single delamination) is described in Section 3.3 to
illustrate how various delamination parameters effect the wavenumber spectrum that is to be used to evaluate
the posterior distributions.

The parameters that describe a delaminated region are: the interface number between layers l; the in-plane
location of the center of the delamination circle cx and cy; and the radius of the delamination petal r (see Figure
2 for an example). The stress-free boundary condition is indicated by the function Γ,
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Figure 1: Delaminations images created by segmenting microfocus x-ray CT data of the damaged composite laminate. Red regions
are the open delaminations, while blue regions are pristine (non-delaminated) composite material. The through-thickness locations
of the images from the bottom of the laminate are: (a) - 2.72 µm; (b) - 1.94 µm; (c) - 1.69 µm

Γ(x; θd) =

nk∑
j=1

{
1, if ||{cj , lj} − x|| ≤ rj
0, else

(7)

where nk is the number of delamination petals in the laminate. If Γ(x; θd) ≥ 1, then a stress-free (i.e. delamina-
tion) boundary condition exists at layer l and location x, with radius r. As evidenced in Fig. (1), the complex
damage pattern contains several delamination petals of different locations and sizes. It is not expected that the
exact number of petals nk is known a prior . Therefore, we allow nk to be an additional unknown parameter.
This enables the inversion method to automatically determine the number of delamination petals as well as their
locations and size, that best agree with the measured inspection data.

Utilizing a damage model in which the number of delamination sites is not known a prior enables flexibility in
the damage characterization, as the inversion method can estimate the number of delaminations. This flexibility,
however, comes at the price of adding model complexity to the problem. Adding complexity to the damage
model can allow for a more refined characterization of the delamination, but it also increases the difficulty in
fitting the parameters (the “curse of dimensionality”). Additionally (as will be described in (2.5), the ability
to increase or decrease the number of delamination petals nk in the inversion scheme must be addressed in the
algorithm, as we require a means of comparing the posterior probability distributions of two damage parameter
vectors of different dimensions.

2.4. MCMC sampling

Evaluating the conditional posterior in Eq. (5) is difficult, in that it requires evaluating a multi-dimensional
integral. Rather than analytically solving for the posterior, it has been shown that one may numerically draw
samples from the posterior PDF [19]. More specifically, the Markov chain Monte Carlo (MCMC) algorithm
builds a first order Markov chain such that the resulting sequence of values θl(i), i = 1 · · ·N are, in fact, samples
from the desired posterior distribution (i.e., each θl(i) ∼ fθ(θl)). Variants of the MCMC algorithm abound in
the statistics literature, and we describe one such implementation (the Metropolos-Hastings algorithm [19]) here.

Taking a sample from the prior PDF as the starting value, (e.g., θl(0) ∼ fπ(θl)), the algorithm generates a
candidate delamination petal θ∗l via a probabilistic model q(θ∗l |θl(i)) which specifies the probability of attaining
petal parameters θ∗l given the current value θl(i). Specific choice of q(·, ·) is discussed in [20]. Both current and
candidate delamination petal values are then used to evaluate the ratio r:

r =
fη(y|θ∗l )

fη(y|θl(i))
× fπ(θ∗l )

fπ(θl(i))
× q(θl(i)|θ∗l )

q(θ∗l |θl(i))
(8)

which is simply the ratio of posterior PDFs (evaluated using the finite element model) multiplied by the ratio of
the candidate generating PDFs q(·|·). The value θ∗l is then retained as θl(i+ 1) with probability Pr = min(r, 1),
otherwise θl(i+ 1) = θl(i). While the above-described approach is theoretically sound, there are several choices
that need to be made in a practical implementation. The reader is referred to [20] for details on the practical
aspects of the implementation.
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Figure 2: Potential delamination petals occurring in a single layer. A new delamination can emerge (birth); two delaminations could
be merged or split apart; or a delamination can be removed (death). The flexible damage model enables complex delamination
patterns to occur when delaminated regions overlap.

2.5. Reversible jump Markov chain Monte Carlo

The previous section describes a sampling method which is appropriate when the number of delamination
petals is specified in the damage model a priori. However, we may also consider nk to be a variable, in which
case the number of parameters to estimate is equal to nk. The sampling procedure for the case where the number
of petals, nk, varies may be treated using the reversible jump Markov chain Monte Carlo (RJMCMC) method
described by Green [21]. RJMCMC differs from standard MCMC in that the former permits the dependent
sampling of posterior distributions possessing different dimensions, in a way that preserves detailed balance
within the method. Theoretical details can be found in the literature [21], [22].

The acceptance ratio given in Eq. (8) is augmented so that the appropriate acceptance probability is:

r =
fη(y|θ∗)

fη(y|θ)

fπ(θ∗)

fπ(θ)

p(nk → nk
∗)

p(nk∗ → nk)

1

g(u)

∣∣∣∣ ∂θ∗

∂(θ,u)

∣∣∣∣ , (9)

The acceptance ratio of the reverse, dimension-decreasing move is given by:

r =
fη(y|θ)

fη(y|θ∗)

fπ(θ)

fπ(θ∗)

p(nk
∗ → nk)

p(nk → nk∗)
g(u)

∣∣∣∣ ∂θ∗

∂(θ,u)

∣∣∣∣−1

(10)

In Eqs. (9) and (10), fη(·) is the likelihood, defined as in Eq. (4).
In addition to the usual Metropolis-Hastings move described in Sec. (2.4), in which a candidate parameter

value is uniformly sampled around the original value, we may also consider moves that change the number of
delamination petals. To ensure reversibility, each move that changes the value of nk must have a counter move,
capable of restoring the proposed parameter vector (θ∗) back to the original parameter vector (θ). This is done
through special operations resulting in the creation or deletion of a petal (birth/death); the splitting of a petal
into two petals; or merging two petals into one petal (split/merge). The flexible defect model enables complex
delamination patterns to emerge when delaminated regions overlap. The reader is referred to [20] and [23] for
practical implementations on the RJMCMC algorithm.

3. Results

3.1. Experimental setup

A Polytec OFV-505 laser Doppler vibrometer (LDV) was used to collect relevant experimental data for the
undamaged laminate plate comparisons. The LDV is attached to a two-axis scanning system to record out-of-
plane velocity on a Cartesian grid. The out-of-plane velocity signal recorded by the LDV was digitized by a 14
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Figure 3: (a) - Diagram showing the LDV scan setup, (b) - Diagram showing the quasi-isotropic composite layup of the impact
delaminated laminate, with the 0◦ reference direction defined, (c) - 3D image created from the microCT data of the impact
induced delamination damage (color corresponds to depth through the thickness, z-axis, and is provided to more readily differentiate
delamination depths).

bit high speed digitizer card at a rate of 10 MHz. Guided waves were excited in the experimental composite
specimens using a 12.7 mm contact transducer. LDV data was recorded for two cases: 1) an 8 ply IM7/8552
unidirectional ([08])pristine laminate excited using a 200 kHz 6.5 cycle Hann windowed sine wave, 2) a 26
ply IM7/8552 quasi-isotropic laminate of layup [(0/ + 45/ − 45/90)3]s containing impact induced delamination
damage and excited using a 400 kHz 5 cycle Hann windowed sine wave. The delamination was introduced via
a quasi-static indentation technique [24]. For the pristine laminate case the LDV scan grid spacing was set
to 1 mm and for the delamination case the grid spacing was set to 0.5 mm. A diagram of the experimental
setup, the quasi-isotropic laminate layup with the 0◦ direction defined, and a volumetric microCT image of the
delamination damage is shown in Figure 3.

3.2. Material characterization

Prior to characterizing the delamination damage using model-based inversion, a material validation study is
conducted to ensure that the material properties used in the FE simulation of the experimental setup described
in (3.1) are accurate. The pristine [08] laminate used for the material characterization validation has an average
thickness of 0.925 mm. While this laminate has a different thickness and layup than the 26-ply laminate
containing the delaminations, we are confident that the material properties at a ply-level are similar to the
26-ply case. Using a thinner laminate in the material characterization validation has the added benefit of a
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Figure 4: (a) - single snapshot in time of the experimental out-of-plane wavefield velocity data recorded by the LDV. (b) - simulated
wavefield velocity using the theoretical material properties in Table 1.

smaller (and thus faster) computational model. Fast computational models are particularly important since
MCMC analyses requires large number (i.e. thousands) of evaluations of the deterministic model. The inversion
computational time is directly proportional to the time to evaluate a single model.

Fig. (4) shows the out-of-plane velocity v(t,x) wavefield data. It should be noted that the A0 mode has
significantly higher out-of-plane motion compared to the S0 mode for this laminate and excitation scenario; thus,
the wavefield and wavenumber figures shown in this section primarily display the A0 mode behavior. Figure
Fig. (4a) shows the wavefield data recorded by the LDV. The velocity data appears off-centered because the
LDV scan region was not centered directly over the excitation source. Fig. (4b) shows the simulated wavefield
data. Note that in the simulation, a single element is used to excite the model as opposed to explicitly modeling
the 12.7 mm transducer used in the experiment. This choice will not significantly alter the guided wave mode
wavenumber spectrum values [11].

Fig. (5a) shows the 3D Fourier transformation of the experimental data acquired by the LDV. The red
amplitude peak is due to the LDV scan grid being non-symmetric relative to the excitation source, resulting
in more waves recorded in the positive kx direction. The wavenumber spectrum for the FE model using the
theoretical material properties given in Table (1) is shown in Fig. (5b). The computed wavenumbers in the 0◦

and 90◦ directions for the experiment and the simulation are shown in Table (2). For the material validation
part of this study, these wavenumber values are the metrics we are using in evaluation of Eq. (4).

Table 2: Unidirectional layup model 1 wavenumber comparisons

Method 0◦ k (m−1) 90◦ k (m−1)

Experiment 129.5 263.4
FEM 140.0 250.5

As discussed in Sec. (2.3.1), there are seven unique material properties that describe the material tensor
and density of the composite laminate. An initial material parameter study was undertaken to evaluate the
sensitivity of the wavenumber values kx and ky in the 0◦ and 90◦ directions to changes in the material properties
(e.g. E,G, ρ). The purpose of this initial study is to remove redundancies in the material parameterization (if
possible) and to reduce the number of material properties from the θmat parameter vector to be characterized.
Reducing the dimension of θmat exponentially decreases the amount of required samples (i.e. the computaitonal
time) to fully characterize the materiall, and thus care should be taken in determining which parameters truly
need to be characterized.

Fig. (6) shows the likelihood evaluation (i.e. Eq (4)) as a function of various material property values, where
red indicates a higher likelihood, and blue a lower likelihood. While there are seven unique material properties,
visualizing more than three at a time is difficult. Additionally, showing all material property combinations
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Figure 5: The wavenumber spectra ((a) - experimental; (b) - simulated) resulting from the spatio-temporal wavefield velocity data
in Fig. (4). The yellow lines correspond to the experiment wavenumbers at 0◦ and 90◦. The simulation was performed using the
material property values reported in the literature.

Figure 6: The colored dots represent the likelihood function value (Eq. 4) as a function of varying material properties (where red
indicates a higher likelihood, and blue a lower likelihood). It is clear that the likelihood is less sensitive to changes in the shear
modulus G23, given that the likelihood does not change for changing shear modulus values.

would result in several plots similar to Fig. (6). Thus, only two are shown for demonstration. As can be seen
in Fig. (6a), the likelihood changes as each material property (i.e. E11, E22, ρ) changes, indicating that the
likelihood is sensitive to those material properties. In Fig. (6b), however, the likelihood (indicated by the colors)
does not change in the z-axis corresponding to material property G23. This same observation occurs when G23 is
plotted against other material properties (not shown in the figure). Because G23 does not appear to influence the
likelihood, we will remove it from θmat and assume it is known (taken to be the value reported in the literature in
Table 1). Additionally, we will assume the two unique Poisson’s ratios are perfectly known in order to reduce the
amount of redundant material properties to characterize. This reduces the number of unique material properties
to be determined from seven to four.

The prior distribution of the material parameters are assumed to be uniform fπ(θmat) ∼ U [a, b], where the
bounds a and b for each material parameter are given in Table 3. The range in values in Table 3 was chosen such

that the span of each parameter is +/−
1 0% to 15% of the material property value reported in scientific literature

[17], [18]. It is generally not possible to know the required number of iterations required for convergence of the
Markov chains a priori , and therefore the convergence of the chains is typically monitored using variance-based
methods as in [25]. In this work, however, the chains appear to mix well and thus visually monitoring the chain

10



Table 3: IM7/8552 material parameter prior bounds

Property a b

ρ (kg/m3) 1175 2000
E1 (GPa) 130 210

E2, E3 (GPa) 7.5 10.5
G12, G13 (GPa) 4.0 7.0

convergence was done. The Markov chains are initiated by randomly sampling from the prior distribution, and
N = 10, 000 iterations are sampled. The first 3, 000 are discarded as burn-in, and the remaining 7, 000 iterations
are assumed to have been sampled from the posterior distribution of the material parameters. The authors in
[25] reccomend discarding the first half of the Markov chains, but this is conservative. In this work, we discarded
the iterations that appeared to be in the transient phase of the Markov chain.

The results of the MCMC analysis for the material characterization are shown in Fig. (7) for the four
material properties comprising θmat. The trace histories are shown in the top quadrants of Fig. (7). From the
trace histories, it would appear that the material properties are highly correlated with respect to the posterior.
As can be seen, the trace histories for all four material parameters appear to have similar trends over time (i.e.
iteration). This indicates that several combinations of material parameters are equally as likely.

In addition to the trace histories, histograms of the Markov chains are also provided in Fig. (7) . The his-
tograms allow us to visualize the frequency with which the material parameter values appear in the Markov chain.
As the Markov chains have been constructed such that the values contained in the data are sampled from the
posterior, the histograms are thus the marginal posterior distributions of the material parameters. The median
values of the material parameters are taken and used to evaluate the finite element model of the inspection. The
resulting simulation wavenumber spectrum is shown in Fig. (8b), with the experimental wavenumber spectrum
is shown in Fig. (8a). In both plots the yellow “experiment” line indicates the experimental wavenumber values
kx and ky in the 0◦ and 90◦ for comparison. As can be seen in Fig. (8), the simulation wavenumber spectrum
agrees very closely with the experimental wavenumber spectrum in Fig. (8a). Note that for the purposes of
comparing the simulated wavenumber spectrum using the validated material properties against the experimental
wavenumber spectrum, the source is explicitly modeled as a 12.7 mm diameter transducer (as opposed to the
point source used in generating Fig. (5)). For the forward model evaluations for the material characterization
and the delamination characterization, however, the point source is used.

3.3. Single Delamination Study

In this section we describe the analysis undertaken to understand the effects of a single delamination on the
wavenumber spectrum. The goal is to understand how the delamination parameters (i.e. the in-plane location,
the through-thickness location, and radius) affect the wavenumber spectrum, as the wavenumber spectrum is
the metric by which we will compare the experimentally recorded data and the simulated data.

Fig. (9), shows the side view simulation of the laminate with a single delamination located half way through
the thickness of the laminate, for three different time steps. The transducer source is located at the bottom
center of the laminate, and the LDV measures the out-of-plane velocity on the top surface of the laminate (i.e.
the opposite side of the source). As shown in Fig. (9), the delamination (the the right of the source) causes waves
to be trapped above and below the delamination, resulting in higher wavenumbers. This observation matches
with the expected behavior based on guided wave theory and published literature [26, 5].

The effect of the delaminations at different locations through the thickness of the laminate can be seen in
Fig. (10). In the top two images in Fig. (10), a delamination is located within the black ring at approximately
halfway through the thickness. This delamination depth results in higher wavenumbers above the delamination,
as can be seen in the reduced wavelengths within the black circle. These decreased wavelengths result in increased
wavenumbers, which manifest in the perturbation in the wavenumber spectrum. In Fig. (10c) and Fig. (10d),
the delamination is located closer to the surface, resulting in even further reduction in wavelengths and increased
wavenumbers, as can be seen in the corresponding wavenumber spectrum. These single delamination results
indicate that the wavenumber spectrum is sensitive to the through-thickness delamination location.

In addition to seeing the effects on the wavenumber spectrum due to varying the ply layer below which
the delamination occurs, we also show how other delamination locations in the x-y plane affect changes in
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Figure 7: MCMC results for the four unique material properties. The trace histories are converted to histograms, which represent
the marginal posterior probabilities. The correlations in the trace histories over iteration indicate a non-unique solution.

Figure 8: The updated wavenumber spectra using the median posterior material property values. It is clear that the simulated
results shown in (b) are in significantly better agreement with the experimental measurements shown in (a) when compared to the
simulation results in Figure 5 based on literature values.
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Figure 9: A side view of the laminate excited with a transducer on the bottom of the laminate at three different times. The
delamination located halfway through the thickness affects the wavelengths above and below the delamination. (a) - 8.5µs; (b) -
13.6µs; (c) - 30.µs. Supplementary video of this simulation can be found in the online version of this article.

Figure 10: Top view of the ultrasonic simulation with a delamination located at ply 14 (a), delamination located at ply 22 (closer
to the surface of the laminate) (c). The resulting wavenumber spectra are shown in (b) and (d). The closer the delamination is to
the surface of the laminate, the higher the wavenumbers are.
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Figure 11: Examples of the wavenumber spectrum differences between a reference spectrum Kref associated with a reference
delamination (θref : delamination centered at x = 10 mm; y = 10 mm; r = 10 mm; ply number = 14) and the wavenumber spectra
associated with different delaminations (Kθ).
(a): delamination centered at x = 0 mm; y = 10 mm; r = 10 mm; ply number = 14.
(b): delamination centered at x = −10 mm; y = −10 mm; r = 10 mm; ply number = 14.
(c): delamination centered at x = 10 mm; y = 10 mm; r = 5 mm; ply number = 14).
(d): delamination centered at x = 10 mm; y = 10 mm; r = 10 mm; ply number = 22).

the wavenumber spectrum in Fig. (11). We assume a reference delamination θref has generated a reference
wavenumber spectrum Kref . We perturb the delamination and see how much the wavenumber spectrum changes
by plotting the difference between the reference wavenumber spectrum and the new wavenumber spectrum as-
sociated with new delamination θ. When Kref −Kθ is large over the wavenumber domain, it indicates that the
wavenumber spectra is sensitive to changes in the delamination feature. In general, when the wavenumber spec-
trum associated with the experimentally recorded data minus a candidate delamination’s wavenumber spectrum
(Kexpt − Kθ) is zero over the domain, then we have found the delamination θ that exists in the experiment.
From Fig. (11), we see that the wavenumber spectrum is most sensitive to changes in the delamination depth.

Table 4: Single delamination “ground truth” parameters θgt for use in MCMC verification

θgt Value

In-plane center cx 10 mm
In-plane center cy 10 mm
Radius r 10 mm
Ply layer N 14

The Markov chain Monte Carlo inversion described in Sec. 2.4 is then used to characterize the delamination
parameters of a single delamination. This single-delamination analysis is numerical only (inversion of simulated
data) and conducted to verify that the MCMC inversion can correctly characterize a single delamination. The
“ground truth” delamination parameters are given in Table 4. A signal-to-noise ratio (SNR) of 250 with a
normal distribution is added to the spatio-temporal wavefield data generated from the ground truth delamination
parameters, to mimic variance that could be expected in an experimental setting.
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Figure 12: The MCMC results for the single delamination numerical study. The red dashed line indicates the “ground truth”
delamination values. The delamination in-plane location and radius appear normally distributed while the ply number where the
delamination occurs appears uniformly distributed.

The MCMC results for the single delamination case are shown in Fig. (12), where each quadrant represents
the marginal posterior likelihood for each delamination parameters. The Trace plots above the histograms show
the Markov chains for each parameter, where the red dashed line indicates the true value. The histograms
represent the marginal posterior distributions (i.e. Eq. 6). For this single delamination, numerical problem, the
MCMC is able to characterize the delamination parameters very well. The delamination in-plane location and
radius appears to be approximately normally distributed. The ply number (representing the through-thickness
location) appears to be more uniformly distributed. This is because the the ply number parameterization in the
PZFlex model is described by an integer number. In the finite element model, the ply number is rounded to the
nearest integer and the delamination is inserted at the integer ply level. Therefore, any numbers between 13.5
and 14.5 will round to integer 14 and result in the same simulation. Note that in the MCMC, the delamination
petal is allowed to occur between any two ply layers.

3.4. Complex Delamination

The overall goal of this work is to determine the damage parameters that describe the complex, impact-
induced delamination defect cluster shown in Fig. (13). The analyses described in the previous sections serve
to illustrate that the finite element model is a validated model for use in the model-based inversion approach.
Additionally, the single delamination numerical study was conducted to determine whether the wavenumber
spectrum and MCMC inversion algorithm are suitably able to characterize a single delamination. In this section,
we use the experimental UT data in Fig. (14) in the RJMCMC algorithm to characterize the delamination
cluster. For this study of the algorithm for inversion in a case with a complex defect, we chose to avoid the
complication of reflections due to the specimen boundaries and only analyzed the experimental data contained
within the white box shown in Fig. (14a) and for times below 30 µs. Because the total time of the experiment
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Figure 13: MicroCT scan of the impact-induced damage. (b) - approximate dimensions of the delamination cluster.

Figure 14: Experimental LDV data. The source is located in the upper left region of the laminate. The data within the white box
is used in the inverse analysis (a) The associated wavenumber spectrum (b). Supplementary video of these results can be found in
the online version of this article.

(and simulation) is truncated at t = 30 µs, only the faster S0 mode is captured in the data, as can be seen in
Fig. (14b).

The experimental delamination case is much more complex than the single delamination case. Using the
microCT data, delamination petals were placed into the model to demonstrate and visualizethe complexity of
the wave interactions occurring within the laminate. The UT inspection simulation is then evaluated with the
manually placed delamination petals. A side view of the UT inspection simulation (i.e. where a slice of the
laminate cuts through the delamination cluster) at three time steps can be seen in Fig. (15). The several
delamination petals trap waves within the plies. On the side of the delamination cluster opposite the excitation
source, the waves result the wave pattern as in the non-damaged laminate area. Again, the simulation for Fig.
(15) is provided to the reader for demonstration of wave complexity created by the real delamination shape.

In the RJMCMC algorithm, we assume the number of delamination petals is not known a priori ; rather,
we let the algorithm estimate the number of petals nk and the parameters (i.e. location including depth) and
radius) of each petal. We initialize the damage parameter vector θ with one petal (nk = 1), located in the lower
left region of the white box in Fig. (14). We require information about the petals for use in the prior distribution
fπ(θ). We assume that there can be zero, one, or two petals in between each layer and any two adjacent layers
can have petals between them. The centers of the petals can be located anywhere in the white box in Fig. (14),
and the petal radii are uniformly distributed between 1 mm and 15 mm. The petals are allowed to occur between
any two ply layers. In addition to priors for the damage parameter values, a prior for the number of petals, nk,
is required, since the damage model size is unknown. Consistent with the Occam’s razor heuristic [27], [28], a
prior for nk is chosen such that fewer petals are favored over more petals, following the prior work in [23].
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Figure 15: Side view of the 26 ply laminate where damage petals have been inserted into the model based on the CT data. (a) -
1.6µs; (b) - 3.0µs; (c) - 10µs. Supplementary video of this simulation can be found in the online version of this article.

The Markov chain results are shown in Figs. 16-18 for each petal parameter (the ply number where the
delamination occurs; horizontal and vertical centers of the delamination; and the radius of each ply), where the
first N = 1, 000 iterations are discarded as burn-in. In the case of the complex damage, the objective is to locate
the center of the delamiantion petal cluster and envelope the size of the damage site. It can be seen from the five
colored lines in the top halves of Figs. 16-18 (corresponding to the trace histories of each delamination petal)
that the individual chains have converged to values after N = 1, 000. Additionally seen in the trace history
plots, the trace history lines begin at varying iteration numbers. This is because the RJMCMC algorithm is
able to introduce new delamination petals during the algorithm. If a new delamination petal is introduced and
the resulting posterior probability is greater than the posterior probability of the current damage state θ, then
the new petal is accepted and nk increases by one. The histograms in Figs. 16-18 correspond to the pooled
Markov chain results at the final iteration (N = 9, 000), which is why the histograms appear “spikey”. In Fig.
(17), the histogram does encompass the “true” monolithic defect center, indicating the delamination petals are
aggregating such that their center is located near the true defect center.

As can be seen in Figs. 16-18, the solution θ is initialized far from where the delaminations actually are.
After approximately 1, 000 iterations, the blue trace history line jumps to a new delamination, closer to where
the delamination damage site is. New delamination petals subsequently appear after N = 1, 000 iterations. As
can be seen from the petal centers results in Fig. (17), the new delaminations emerge with centers near each
other. The ply number results in Fig. (16), indicate that some of the delamination petals occur near the top
of the laminate where the data is being captured (corresponding to the high ply numbers) and some of the
delaminations are closer to the bottom of the laminate. According to Fig. (18), the delamination petal with the
smallest radius occurs near the top of the laminate, which is consistent with the microCT data.

While the individual petal results are interesting, we are more interested in how the individual petals aggregate
into a monolithic damage site. The individual petals’ convergence is shown in Fig. (19) at six different iterations.
At the time N = 0 box in Fig. (19), the delamination petal corresponds to the value in which θ was initialized.
As iterations increase, more delamination petals arise, and the monolithic defect image begins to appear. While
the box corresponding to n = 9, 000 (i.e. the final iteration), appears to only have four delaminations, there are
actually five petals, where one petal is hidden beneath the four visible petals. This is a common inspection issue
(especially in scenarios with single-sided access), where shallow delaminations shadow the regions beneath them,
making it difficult or not possible to detect details of deeper delamination damage. The inversion approach
applied in this study does not require that an inspector be able to image the delaminations, but rather the
algorithm places the petals where the resulting inspection data best “matches” the experimental data.

Finally, one of the goals with this analysis is to be able to determine the extent of the delamination damage. We
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Figure 16: The results of the ply numbers where the individual petals occur. The pooled histogram data appears “spiky” because
the petals occur throughout the laminate thickness.

Figure 17: The results of the individual petal centers. The petal centers appear to converge to near the true solution of x = 76 mm
and y = 32 mm. The pooled histograms surround the true values (red dashed lines).
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Figure 18: Results of the individual petal radii. Top - according to the blue chain, the initial delamination with radius of 5 mm
jumps to < 2 mm, and soon after a new larger delamination petal appears.

Figure 19: Snapshots of the individual petals during the algorithm. At N = 0, the delamination is initialized far from the truth so
as not to bias the solution. The colors correspond to location of the petals through the thickness, where red indicates closer to the
top of the laminate. Supplementary video of these results can be found in the online version of this article.
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Figure 20: Aggregated Markov chain results for the monolithic defect size. (a) - trace histories of the defect size, where jumps
correspond to the addition of new petals. (b), (c) - the pooled histogram data. The defect size is underestimated according to the
red, dashed lines representing the true size from the microCT data.
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Figure 21: Simulated experiment (a) with predicted damage parameters. Wavenumber spectrum associated with simulated experi-
ment (b). Supplementary video of this simulation can be found in the online version of this article.

can accomplish this by considering the individual petals as a whole. The aggregated defect size overall dimensions
are estimated by considering the spread of the delaminations from each of the individual petals. The aggregated
data are shown in Fig. (20). The histograms indicate that the aggregated defect size is underestimated with
this approach (the vertical red dashed lines correspond to the approximated true defect size from the microCT
data). It is possible that if the RJMCMC analysis was allowed to continue, then more delamination petals
could have been added to the results which may have increased the total defect size. However, Monte Carlo
algorithms such as this are notoriously computationally expensive, as they involve evaluating expensive finite
element forward solvers. The final Markov chain solution and the resulting simulation and wavenumber spectra
are shown in Fig. (21). It can be seen that the simulation compares well with the experimental data. In
the simulation, however, absorbing boundary conditions are placed along the laminate in-plane boundaries to
mitigate the effects of boundary reflections, which are present in the experimental data but were time-gated out.
This was done to reduce the finite element model size while still having the ability to run the model for the same
amount of time as the experiment. As in the experiment, the data recorded for use in the inverse problem is
contained within the white box in Fig. (21a). The associated wavenumber spectrum in Fig. (21b) has a peak at
the wavenumbers corresponding to the wavenumebrs of the slower S0 mode, where any deviations in the peak
are due of the effects of the delaminations.

4. Conclusions

In this work we present a model-based inversion methodology for characterizing the extent of impact-induced
damage in composite laminates. In the model-based inversion, experimental inspection data in the form of LDV
data on the laminate surface is compared to a defect-parameterized simulation model. The model used as the
forward, deterministic model consists of a finite element model created using the finite element program PZFlex.
The experimental and simulated data are analyzed by considering their wavenumber spectra, where deviations
from the wavenumbers associated with the pristine laminate indicate delaminations. A sensitivity and validation
study was undertaken to ensure that the model parameters and the delamination defects accurately represent
the mechanics of the inspection.

The inversion is effected through Reversible jump Markov chain Monte Carlo (RJMCMC), in which the
number of delamination petals is allowed to increase or decrease. This flexible damage model allows the inversion
algorithm to automatically estimate the number of delamination petals that can suitably describe the extent of
the damage. Additionally, the use of RJMCMC enables visualization of the variance on the delamination values.
While the RJMCMC algorithm does slightly underestimate the extent of the delamination cluster, it is able to
accurately locate where the delaminations occur within the laminate. Additional Markov chain iterations or
improved knowledge about the correlations of the delamination petals (e.g. exploiting the spiral pattern typical
of impact-induced delaminations) could result in a more accurate solution, and these are areas for future work.
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