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ABSTRACT

This work presents a computationally-efficient, probabilistic
approach to model-based damage diagnosis. Given measure-
ment data, probability distributions of unknown damage pa-
rameters are estimated using Bayesian inference and Markov
chain Monte Carlo (MCMC) sampling. Substantial compu-
tational speedup is obtained by replacing a three-dimensional
finite element (FE) model with an efficient surrogate model.
While the formulation is general for arbitrary component ge-
ometry, damage type, and sensor data, it is applied to the
problem of strain-based crack characterization and experi-
mentally validated using full-field strain data from digital im-
age correlation (DIC). Access to full-field DIC data facilitates
the study of the effectiveness of strain-based diagnosis as the
distance between the location of damage and strain measure-
ments is varied. The ability of the framework to accurately
estimate the crack parameters and effectively capture the un-
certainty due to measurement proximity and experimental
error is demonstrated. Furthermore, surrogate modeling is
shown to enable diagnoses on the order of seconds and min-
utes rather than several days required with the FE model.

1. INTRODUCTION

Structural health monitoring (SHM) is the driving technol-
ogy behind the transition from time-based to condition-based
maintenance. Motivated by both safety and economic drivers,
this paradigm shift from offline inspection to online (i.e.,
while operating) monitoring is critically important to indus-
tries including manufacturing, aerospace, and defense that
seek to detect damage in structural and mechanical systems
at the earliest possible time. For example, an online monitor-
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ing system onboard an aircraft would be capable of produc-
ing a damage diagnosis well within the time period between
flights and, ideally, during the course of a single flight. While
SHM is in the process of making the transition into the ap-
plication domain, the evolution of the technology to enable
damage prognosis to forecast residual life has very few de-
ployed applications (Farrar & Worden, 2013). As damage
prognosis is inherently probabilistic in nature and presumes a
properly characterized initial damage state, its practical use is
predicated on not just the detection and localization of dam-
age from SHM, but on a thorough assessment of the extent
of the damage along with rigorous uncertainty quantification
(UQ).

In order to deliver a more comprehensive online health man-
agement system for practical use, a SHM system should pos-
sess several key characteristics to enable integration with
damage prognosis. Since an explicit quantification of dam-
age is required for prognosis, model-based (inverse problem)
SHM is preferred to a data-based approach since the latter
is generally limited to detection and localization in the ab-
sence of training data from damage states (Barthorpe, 2010).
In this case, high-fidelity modeling (e.g., finite element (FE)
analysis) is needed to allow for arbitrary geometries and dam-
age types to be considered (limited only by sensitivity of sen-
sors to the damage indices). The damage diagnosis approach
must also effectively incorporate UQ to facilitate probabilis-
tic prognostics rather than providing only deterministic as-
sessments. Finally, in order to make online application of
the framework feasible, the algorithms deployed must also be
computationally efficient. Unfortunately, model-based SHM
with high-fidelity modeling implies time-consuming simula-
tions and UQ often requires tens of thousands of such analy-
ses, so taking such an approach is generally impractical if not
impossible.
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Because of this, existing damage detection techniques have
largely been deterministic in nature and have identified struc-
tural anomalies based on changes in measured mechani-
cal response (e.g., vibrations (Kim & Stubbs, 2002; Mal,
Ricci, Banerjee, & Shih, 2005), ultrasonic wave characteris-
tics (L. Wang & Yuan, 2007; Kehlenbach & Hanselka, 2003),
and strains (Krishnamurthy & Gallegos, 2011; Hochhalter,
Krishnamurthy, Aguilo, & Gallegos, 2016)). While determin-
istic approaches have been successfully used to accurately lo-
cate and sometimes quantify damage in a computationally-
efficient manner, these methods neglect the impact of uncer-
tainty that is ubiquitous SHM systems deployed in the field
due to effects such as sensor noise and modeling assumptions.

More recently, there has been increased focus on uncertainty
quantification for damage diagnosis using Bayesian inference
in order to explicitly account for measurement and model
uncertainties in practice. Several studies (Moore, Murphy,
& Nichols, 2011; Nichols, Link, Murphy, & Olson, 2010;
Huhtala & Bossuyt, 2011) have used noisy vibrations data to
detect structural damage, while in one such study (Nichols,
Moore, & Murphy, 2011), the emphasis was on the develop-
ment of an efficient numerical sampling algorithm for explor-
ing the resulting probability distribution. A Bayesian imaging
method was developed to probabilistically estimate delami-
nation location and size in composite laminates using Lamb
wave measurements (Peng, Saxena, Goebel, Xiang, & Liu,
2014). Additionally, Bayesian inference and the extended
FE method has been used to inversely estimate the probabil-
ity distribution of crack location and size using strain data
(Yan, 2012). Most recently, displacement data were used
to estimate the parameters of a continuum mechanics model
within a Bayesian framework while Kalman filters were sub-
sequently used to update and evolve the system state in time
(Prudencio, Bauman, Faghihi, Ravi-Chandar, & Oden, 2015).

Compared to deterministic methods, Bayesian approaches
have the advantage of quantifying uncertainty in the esti-
mates provided, but also incur a substantial computational
penalty. Here, the computational expense results from the
numerical sampling algorithms, e.g., Markov Chain Monte
Carlo (MCMC) (Gamerman & Lopes, 2006), which can
exhibit slow convergence and involve the evaluation of a
potentially time-consuming computational model for each
sample drawn. To alleviate this computational burden, ad-
vanced MCMC methods have been developed to reduce
sampling time by improving sampling convergence (Haario,
Laine, & Mira, 2006; Nichols et al., 2011) or through paral-
lelization of the algorithms themselves (Vrugt et al., 2009;
Neiswanger, Wang, & Xing, 2013; Prudencio & Cheung,
2012; Warner, Zubair, & Ranjan, 2017). Another common
approach is to replace the original physics-based model with
a computationally-efficient surrogate model using probabilis-
tic spectral methods (Marzouk, Najm, & Rahn, 2006) or ma-
chine learning algorithms (Meeds & Welling, 2014).

The development of surrogate model-accelerated Bayesian
approaches for model-based SHM applications remains rela-
tively limited in comparison to data-based approaches. How-
ever, machine learning has been used in conjunction with
physics-based models to learn the inverse-map directly from
measurement to damage directly, rather than the forward-
map in traditional surrogate modeling (Katsikeros & Labeas,
2009; Sbarufatti, Manes, & Giglio, 2013). Most notably,
this inverse-mapping approach was demonstrated using arti-
ficial neural networks (ANNs) to perform damage localiza-
tion and quantification using experimentally measured strains
in a simplified structure resembling a helicopter fuselage
(Sbarufatti et al., 2013). The uncertainty quantification ef-
fort, however, was limited to confidence intervals based off
the scatter in predictions from various ANNs.

Motivated by online, integrated SHM and damage prognosis,
this study demonstrates an efficient and general approach to
probabilistic model-based damage diagnosis. Given measure-
ment data, probability distributions of unknown damage pa-
rameters are estimated using Bayesian inference and MCMC
sampling. The framework is applicable to arbitrary compo-
nent geometries and damage types as well as different sensor
data and is formulated as such. This generality is enabled
under the assumption that a properly-calibrated, high-fidelity
model (e.g., via FE modeling) is available with adequate pre-
dictive capability of the quantity being measured by sensors.
For computational speedup, it is proposed that this potentially
expensive model is only used offline to generate training data
for the development of surrogate models that can be used for
rapid online diagnosis. Furthermore, the surrogate training
data can also be used to generate an informed initial guess
for the unknown damage, which can significantly improve
convergence of MCMC sampling for additional gains in ef-
ficiency.

The general model-based diagnosis approach is applied to
the problem of strain-based crack characterization and ex-
perimentally validated using digital image correlation (DIC)
(Peters & Ranson, 1982) strain data from two cracked lab
specimens. Access to full-field DIC data facilitates the study
of the effectiveness of strain-based diagnosis as the distance
between the locations of damage and strain measurements is
varied. It also demonstrates the ability of the Bayesian frame-
work to capture the growing uncertainty in diagnosis as the
signal-to-noise ratio is decreased in this way. It is shown
that surrogate modeling provides orders of magnitude com-
putational speed up with respect to using a FE model while
retaining satisfactory accuracy.

With respect to the preliminary work done on the damage
diagnosis framework (Warner, Hochhalter, Leser, Leser, &
Newman, 2016), this study emphasizes the practicality of
the approach and provides explicit quantification of the ac-
curacy versus efficiency tradeoff associated with surrogate
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modeling. The formulation provided here serves as a general,
application-independent procedure for probabilistic damage
diagnosis in terms of a generic damage model and sensor
data type. It also provides more details on the required model
calibration step, a commonly-stated hurdle to implementing
model-based SHM. The strain-based crack characterization
example is tailored in this paper to mimic a practical scenario
where fiber optic strain sensors (Meltz & Snitzer, 1981; Li,
Li, & Song, 2004) are used to provide monitoring data. It is
shown that accurate damage diagnoses can be obtained with
just one component of strain along two linear arrays (as op-
posed to two strain components used in the preceding study).
Finally, a rigorous comparison of the surrogate-accelerated
diagnosis framework versus a reference implementation with
a FE model is provided here to quantify the gains in perfor-
mance obtained. The comparison includes a demonstration
of the improvements in MCMC convergence obtained by the
simple scheme for generating a favorable initial guess versus
a randomly chosen guess.

The remainder of the paper is organized as follows. First, a
complete formulation of the proposed damage diagnosis ap-
proach is provided in the following section, with individual
subsections devoted to model-based diagnosis, Bayesian in-
ference, MCMC sampling, and surrogate modeling. Next, the
specifics of applying the diagnosis framework to the problem
of strain-based crack characterization are illustrated. Experi-
mental validation of the approach is then provided, including
the experimental strain data obtained with digital image cor-
relation, the development and performance of the surrogate
models used, and results of the damage diagnosis method ap-
plied to both damage localization and characterization in two
separate lab specimens containing cracks are presented. The
gains in computational efficiency enabled through surrogate
modeling are explicitly quantified here. Finally, the findings
of the study are summarized in the conclusion section.

2. FORMULATION

In this section, the proposed probabilistic approach for
model-based damage diagnosis is presented. Starting from
a deterministic model-based approach, Bayesian inference
is then used to deduce the probability distribution of dam-
age parameters conditional on available sensor data. Markov
Chain Monte Carlo (MCMC) sampling is employed to ex-
plore the resulting distribution. Finally, surrogate modeling is
introduced to provide computational speedup in the approach.
These points are elaborated on in detail in the subsequent sub-
sections.

2.1. Model-Based Diagnosis

Damage diagnosis methods operate under the assumption that
the mechanical response of a structural component is altered
in the presence of damage. To this end, the goal of diagno-

sis is to use measured response data dmeas ∈ Rm to detect
if damage is present and then ideally estimate some parame-
ters c ∈ Rd that characterize the damage (location, size, etc.).
Model-based approaches to diagnosis require a model of the
structural component,M, capable of predicting the mechan-
ical response y ∈ Rm for a given set of damage parameters

M(c; f) = y ∈ Rm, (1)

where f are any additional free parameters (material proper-
ties, boundary conditions, etc.) affecting the output.

Prior to diagnosis, the parameters f must be properly pre-
scribed for the specific component being monitored through a
model calibration procedure. Generally speaking, this is done
by taking an initial measurement of the component, dcal, for
a known, often undamaged state, ccal. Then, system-specific
model parameters, f̂ , can be found through an optimization
problem of the following form

f̂ = arg min
f

g
(
M(ccal; f)− dcal) , (2)

where g(·) is a scalar-valued norm function. After model
calibration, it is assumed that y ≈ dmeas for a damage es-
timate c that accurately characterizes the true damage. For
the remainder of the formulation, the explicit dependence
on f will be suppressed to denote a calibrated model (e.g.,
M(c) ≡M(c; f̂)).

In the context of model-based diagnosis, M is referred to
as the forward model while the diagnosis problem of using
dmeas to infer c is the associated inverse problem. A typical
deterministic approach to solving this inverse problem is to
first pose an error metric between the measured response data
and corresponding model response

Q(c,dmeas) =

m∑
i=1

‖dmeas
i −Mi(c)‖2, (3)

where Mi(c) ≡ yi. Then, gradient-based or global opti-
mization algorithms are employed to find the damage param-
eters that minimize Equation 3 to produce the so-called least
squares estimator

cLS = arg min
c

Q(c,dmeas). (4)

The primary drawback of such deterministic approaches for
model-based diagnosis is that only a point estimate of the
damage is produced with no regard to uncertainty inherent in
the measurement data (noise, sparsity, etc.). A suitable regu-
larization strategy must also be chosen and tuned in an effort
to rectify the well known ill-posedness of the inverse problem
(Isakov, 1998) (e.g., infinitely many solutions may exist).
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2.2. Bayesian Inference

The Bayesian inference approach to model-based diagnosis
reformulates the inverse problem (Equation 4) as one of de-
ducing a probability distribution of the unknown damage pa-
rameters, c, conditional on the observed measurement data
dmeas. This distribution, p(c|dmeas), known as the posterior
distribution, is given according to Bayes’ Theorem (Kaipio
& Somersalo, 2004):

p(c|dmeas) =
p(dmeas|c)p(c)

p(dmeas)
∝ p(dmeas|c)p(c), (5)

integrating any knowledge about the damage prior to the mea-
surement in the prior distribution, p(c), with the informa-
tion from the data, dmeas, through the likelihood function,
p(dmeas|c). Note that the normalizing constant, p(dmeas),
need not be computed in order to explore the posterior prob-
ability distribution with MCMC, as explained later.

The prior density function, p(c), provides an effective way of
incorporating an analyst’s insight about likely damage char-
acteristics into the Bayesian inference approach. From a
mathematical point of view, prescribing such an informative
prior density function is an approach to regularize the inverse
problem (J. Wang & Zabaras, 2014). While prior distributions
have been shown to increase the effectiveness of Bayesian
damage diagnosis (Leser & Warner, 2017; Warner, Hochhal-
ter, et al., 2016), a non-informative prior density function
(e.g., p(c) ∝ 1) is chosen in this work to represent a common
practical case where no reliable a priori knowledge about the
damage is available.

The likelihood function, p(dmeas|c), models the discrepancy
between the measurement data and the predicted values of re-
sponse from the model. To this end, the following common
assumption is made about this relationship (Kaipio & Somer-
salo, 2004)

dmeas
i =Mi(c) + δi, δi ∼ Normal(0, σ). (6)

That is, the measurement data are polluted with errors, δi,
that are treated as a sequence of independent, identically
distributed (i.i.d.) samples drawn from a zero-mean Gaus-
sian (Normal) distribution with variance σ (interpreted as the
noise level). The i.i.d. assumption yields the following ex-
pression for likelihood function

p(dmeas|c) =
1

(2πσ2)m/2
exp

(
− 1

2σ2

m∑
i=1

‖dmeas
i −Mi(c)‖2

)

∝ exp

(
− 1

2σ2
Q(c,dmeas)

)
. (7)

Here, it is clear that as the error between computed and mea-
sured strains (Equation 3) increases, the value of the likeli-
hood function (and hence posterior probability in Equation 5)
decreases and vice versa. Note that in cases where signifi-

cant inadequacy or bias of the model remain after calibration,
an additional input-dependent model discrepancy term can be
added to the righthand side of Equation 6 in an attempt to cor-
rect this (Kennedy & O’Hagan, 2001).

The noise level parameter, σ, can be inferred on the fly dur-
ing damage diagnosis (Warner, Hochhalter, et al., 2016) or
through a comparison of the calibrated model in the refer-
ence damage state,M(ccal), with the measurement data used
for calibration, dcal. To this end, the empirical error is first
calculated for each measurement point

δ̂i = dcal
i −Mi(c

cal). (8)

Then, the noise level, σ, can be estimated using the sample
standard deviation

σ ≈ σ̂ =

(
1

1− n

n∑
i=1

(
δ̂i − µ̂

)2)1/2

, (9)

where n is the number of data points used for calibration and
µ̂ is the sample mean of δ̂. This approach will be demon-
strated in the application section of this paper.

2.3. Markov Chain Monte Carlo

The solution of the model-based diagnosis problem as the
posterior probability distribution in Equation 5 is not prac-
tically helpful since it can rarely be evaluated analytically.
MCMC (Gamerman & Lopes, 2006) is a powerful tool for
numerically forming probabilistic damage estimates based on
p(c|dmeas). The goal of MCMC is to generate a collection of
N damage parameter samples from the posterior probability
distribution

{c(j)}Nj=1 where c(j) ∼ p(c|dmeas), (10)

which can then be used to construct empirical probability dis-
tributions, credibility intervals, and moment estimates for c.
Algorithm 1 summarizes a very basic instantiation of MCMC,
the Metropolis algorithm, used in this work:

Algorithm 1 Metropolis MCMC

Initialize c(0)

for j = 1 : N do
Sample u ∼ Uniform(0, 1)
Sample c∗ ∼ q(c∗|c(j−1))
if u < A(c∗, c(j−1)) = min{1, p(c∗|dmeas)

p(c(j−1)|dmeas)
} then

c(j) = c∗

else
c(j) = c(j−1)

end if
end for

Here, the method simply draws a trial sample, c∗, at each it-
eration from a proposal distribution, q(c∗|c(j−1)), and then
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decides whether to accept or reject this sample based on the
acceptance probability, A(c∗, c(j−1)). The Metropolis al-
gorithm assumes that the proposal distribution is symmetric,
where a common choice is a Gaussian distribution centered
at the previous sample

q(c∗|c(j−1)) = Normal(c(j−1),Σq), (11)

and Σq is the user-specified covariance matrix. Algorithm 1
with Equation 11 constructs a Markov chain that, by design,
is guaranteed to have a stationary distribution that reflects the
true posterior distribution in Equation 5 (Gamerman & Lopes,
2006). Note that since the posterior probability distribution
only appears as a ratio through A, the normalizing constant
p(dmeas) in Equation 5 is not required.

Although the Metropolis MCMC algorithm above is concep-
tually simple and straightforward to implement, the number
of samples (N ) required for convergence can be very large,
making it’s application challenging and often infeasible. The
convergence rate is directly related to the selection of Σq , an
appropriate value for which is often unknown a priori and can
be difficult to tune on the fly. Convergence of MCMC sam-
pling is also greatly affected by the choice of initial guess,
c(0), where a lengthy burn-in period (samples discarded from
the beginning of the chain) can be necessary for a value of
c(0) far from the true damage.

While advanced algorithms that rely on adaptively selecting
Σq (Warner, Hochhalter, et al., 2016) or parallel computing
(Warner et al., 2017) can be used to accelerate MCMC-based
diagnosis, this work employs a simple scheme to generate a
highly probable initial guess that yields efficient performance
from the Metropolis algorithm in it’s most basic form. This
approach is elaborated on at the end of the following section.

2.4. Surrogate Modeling

Combining Bayesian inference (Equation 5) and MCMC
sampling (Algorithm 1), as described in the previous sec-
tions, yields a powerful method for generating probabilistic
damage estimates. However, the primary challenge associ-
ated with the approach is that the model,M, must be evalu-
ated for each sample drawn with MCMC. Since large values
of N are typically required for convergence of the sampling
process, Bayesian diagnosis can be infeasible even for mod-
estly expensive models, especially in it’s application to online
SHM.

Surrogate modeling is a technique that can alleviate the
computational burden associated with probabilistic model-
based diagnosis when intensive, high fidelity simulations
are required for the components being monitored (Meeds &
Welling, 2014; Warner & Hochhalter, 2016; Warner et al.,
2017). The approach relies on the (offline) pre-computation
and storage of input-output pair datasets from an original

computational model in an effort to replace it during (online)
analysis by a more efficient data-driven model. Furthermore,
with a sufficient amount of pre-computed data and an effec-
tive regression/interpolation algorithm, a high degree of ac-
curacy with respect to the original model can be maintained.

To utilize surrogate modeling for model-based damage di-
agnosis, a set of T damage parameter arrays, {c(k)}Tk=1, is
first selected. Then, the model responses corresponding to all
m measurements are computed and stored for each damage
state,

M(k)
i ≡Mi(c

(k)), k = 1, ..., T, (12)

for i = 1, ...,m. The result is the following T × (d + m)
input-output dataset

S = {c(k);M(k)
1 , ...,M(k)

m }Tk=1. (13)

From a machine learning perspective, S is the training data
and a variety of off-the-shelf regression and interpolation al-
gorithms can be utilized to directly infer the input-output
mappings. Specifically, a surrogate model that maps a new
damage state, c(∗), to the predicted sensor response is gener-
ated offline for each individual measurement

M̃i : c(∗) →M(∗)
i for i = 1, ...,m. (14)

Now, the original model,M, is replaced by the set of surro-
gate models, {M̃i}mi=1, in the posterior probability distribu-
tion (Equation 5) so that sampling can be conducted rapidly
for damage diagnosis.

A couple of remarks about the surrogate modeling process
are worth noting. First, the size, T , of the training dataset has
a lower limit based on accuracy requirements and a practical
upper limit based on the computational expense of the orig-
inal model, M, the computational resources available, and
the training complexity and memory requirements of the re-
gression/interpolation algorithm used. In this work, a testing
dataset, Ŝ, of randomly generated damage states and corre-
sponding responses

Ŝ = {Ĉ(n);M̂(n)
1 , ...,M̂(n)

m }Pn=1, (15)

is used to evaluate surrogate model accuracy for both differ-
ent training dataset sizes and different learning algorithms.
The assessment is based on the relative error between the sur-
rogate and original models when predicting the test data

∆j =
1

P

P∑
n=1

|M̃j(Ĉ(n))− M̂(n)
j |

|M̂(n)
j |

. (16)

It is also worth pointing out that the T model evaluations and
the training of the m surrogate models is an offline cost as-
sociated with the diagnosis framework. That is, the compu-
tational burden of generating the surrogate models is a single
upfront cost that then permits an arbitrary number of efficient
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damage diagnoses to be conducted by rapidly evaluating M̃j

during the online analyses. Furthermore, the T executions of
the FE simulation are completely independent of each other,
and can therefore be run in parallel on as many computer pro-
cessors as are available.

As shown in the preceding study (Warner, Hochhalter, et al.,
2016), an additional benefit of surrogate modeling is that the
training dataset, S, can be used to generate a favorable initial
guess for MCMC sampling, c(0), that can reduce the required
burn-in period. This is done by computing the least squares
estimator (Equation 3) over the input-output dataset (Equa-
tion 13)

c(0) = arg min
c∈S

Q(c,dmeas). (17)

By only considering the precomputed training grid values,
this computation can be done rapidly as it does not require
any additional model evaluations. While multimodal distri-
butions may still pose a challenge, Equation 17 provides a
simple and systematic way to generate an initial guess that
will reside in a high probability region of the posterior dis-
tribution as a good starting point (Smith, 2013). It will be
shown in this work that even the basic Metropolis MCMC
method (Algorithm 1) can be effective and robust when start-
ing the algorithm in this fashion.

2.5. Summary

The formulation presented thus far has prescribed a general
framework for using noisy sensor data to produce proba-
bilistic damage estimates using a model-based diagnosis ap-
proach. The formulation is broadly applicable irrespective of
the damage description, c, type of measurement data, dmeas,
and computational model, M, under two primary assump-
tions. First, the measurement data must be sufficiently sen-
sitive to changes in the damage parameters chosen. This is
dependent on the sensor density, the quality of the measure-
ments (signal-to-noise ratio), and the complexity of the dam-
age description adopted. Second, the model, after proper cali-
bration, must have adequate predictive capability of the quan-
tity being measured for the range of possible damage states.
The validity of these two assumptions can be further investi-
gated prior to conducting diagnosis through sensitivity analy-
sis (Saltelli, Chan, & Scott, 2000; Global sensitivity analysis:
the primer, n.d.) and model validation (Roy & Oberkampf,
2011) studies, respectively.

In some simple scenarios, the model, M, may be efficient
enough to use directly in the framework. Otherwise, the sur-
rogate modeling strategy in Section 2.4 is a viable approach
to alleviate the computational burden associated with execut-
ing M repeatedly during MCMC sampling. Successful ap-
plication of surrogate modeling is contingent upon thorough
tuning and testing of the regression algorithm used and the
ability to generate a sufficient amount of training data. To

this end, it is important in practice to choose the simplest, low
dimensional description of damage possible for the applica-
tion, as regression becomes more difficult in high dimensions
and the amount of training data required grows exponentially
with the number of input parameters. Furthermore, higher or-
der descriptions of damage are limited in the first place by the
sensitivity of the measurement data to them for diagnosis.

To summarize, the necessary steps that must be taken both
offline (prior to putting the component in service) and online
(while operating) to implement the diagnosis framework are
provided below.

Offline:

1. Create model,M(c, f), of component and calibrate it

• Perform initial measurement
• Determine optimal parameters, f̂ , to produce cali-

brated model,M(c), (Equation 2)
• Estimate noise level, σ2, (Eqs. 8, 9)

2. Train surrogate models

• Generate input-output training dataset, S, (Eqs. 12,
13)

• Train surrogate models for each measurement
(Equation 14)

• Validate surrogate models, add training data and re-
train if necessary

Online:

1. Acquire measurement data, dmeas, from sensors
2. Compute initial guess, c(0), (Equation 17)
3. Perform MCMC sampling (Algorithm 1) utilizing

trained surrogate models

The next section will demonstrate how this general frame-
work can be applied to solve a specific, practical damage di-
agnosis problem.

3. EXPERIMENTAL VALIDATION

3.1. Application: Strain-Based Crack Characterization

The general model-based diagnosis framework presented in
the previous section is now applied to the specific problem
of crack characterization in thin plates using strain data. A
schematic illustrating the application can be seen in Figure 1.
Here, the damage is represented by a four-dimensional array

c = [x, y, a, θ], (18)

describing the center location, (x, y), length (a), and orienta-
tion (θ) of the crack.

The panel is subject to general prescribed displacement
boundary conditions along the top and bottom surfaces, com-
prising the additional model parameters (f ) for this applica-
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Figure 1. Boundary conditions and damage parameterization
for the crack characterization application.
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f =
[
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y , U3

x , U
3
z , U

4
x , U

4
z , U

34
y

]
. (19)

The measurement data used to estimate the crack parameters
are an array of m strains recorded throughout the domain

dmeas = {Ŝi}mi=1, (20)

where Ŝi is the ith strain measurement. Note that Ŝi can
generally represent any one of the surface strain components
[ε̂xx, ε̂yy, γ̂xy]. However, in this study it will be limited to
a single component to mimic the capabilities of fiber optic
strain sensing (Meltz & Snitzer, 1981), as described in the
next section. For this application,M(c; f) (Equation 1) is a
FE model capable of computing and extracting strains at the
measurement locations for a given set of damage parameters
and prescribed displacements.

The implementation of the method, including surrogate
model development and MCMC sampling, was carried out in
Python (Python Software Foundation, 2016). All FE model-
ing was performed using the Scalable Implementation of Fi-
nite Elements by NASA (ScIFEN) (Warner, Bomarito, Heber,
& Hochhalter, 2016) software. Both the FE and Python soft-
ware for this study was executed on a machine with quad-
core 2.4GHz AMD Opteron processors. The remainder of
the section will detail each aspect of the experimental vali-
dation effort. First, a description of the strain measurement
data used for diagnosis is provided followed by an overview
of the FE model calibration that was performed. Next, the de-
velopment and verification of the surrogate models used for

0 1 2 3
x (in)

0

1

2

3

4

5

6

7

8

y 
(in

)

Exp. Crack

Sensor Array 1

Sensor Array 2

Sensor Array 3

Figure 2. Diagram of the effective sensor arrays tested and
the cracks from the flat and angled crack specimens.

accelerated diagnosis is then presented. Finally, the perfor-
mance of the framework is demonstrated on two examples:
1) damage localization and 2) general crack characterization
(location, size, and orientation) in thin metal plates.

3.2. DIC Strain Data

Two cracked thin sheet specimens of Aluminum Alloy 2024
(AA2024) were considered for experimental validation of
the diagnosis framework, one with a flat crack (i.e., ori-
ented 0◦ from the x axis) used to test damage localiza-
tion and the other with an angled crack to test full crack
characterization. The width and height of the specimens
were 3.93in and 8.73in, respectively. The crack parameters
were [xflat, yflat, aflat, θflat] = [1.81in, 4.53in, 0.67in, 0rad] for
the flat crack specimen and [xangled, yangled, aangled, θangled] =
[1.83in, 4.29in, 0.78in,−0.82rad] for the angled crack speci-
men.

Full-field strain data was acquired with DIC using the VIC3D
(Correlated Solutions Inc., 2012) software. DIC is an optical
measurement technique that takes a sequence of digital pho-
tographs of a component and uses computer vision algorithms
to track blocks of pixels and build up full 2D and 3D defor-
mation and strain fields (Sutton, Orteu, & Schreier, 2009). A
speckle pattern was first applied to the test specimens using
spray paint to facilitate pixel tracking with DIC. Each speci-
men was then loaded individually in tension and strain fields
were obtained using VIC3D.

The motivation behind gathering full-field strain data using
DIC was that measurement (“sensor”) locations could be
freely chosen in order to test the diagnosis accuracy and un-
certainty as the distance between the measured data and dam-
age was varied. Three different sensor arrangements were
tested in the diagnosis examples to follow, shown in Fig-
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ure 2, along with the two crack configurations considered.
Each arrangement was composed of two separate horizon-
tal arrays of sensors with increasing distance between them
(1.47in, 3.25in, and 5.02in). Thirteen measurement locations
were recorded along each array. Only the εXX component of
strain was used at each location, so that there were m = 26
measurements for each arrangement. This setup was chosen
to mimic a practical scenario where fiber optic strain sensors
(Meltz & Snitzer, 1981; Li et al., 2004) were utilized to col-
lect monitoring data.

The resulting strain fields captured with DIC can be seen in
Figures 3(a) and 3(b), showing the εXX strain component for
the flat and angled crack specimens, respectively. Dashed
lines are overlaid across the strain fields to denote where data
will be extracted for the three sensor arrays in Figure 2. The
localized nature of the strain field in the presence of dam-
age is apparent, indicating the importance of sensor proxim-
ity for practical monitoring applications. It is worth pointing
out that while four sensor arrays were tested in the previous
work (Warner, Hochhalter, et al., 2016), the fourth and fur-
thest array from the damage was removed from consideration
in this work because it resulted in diagnoses with little useful
information about the cracks. Hence, only diagnosis results
using the three sensor arrays in Figure 2 will be presented in
the examples to follow.

3.3. Model Calibration

A FE model representing M(c; f) for each test specimen
based on the measured dimensions given above was first cre-
ated in ScIFEN to facilitate model calibration. A Young’s
Modulus, E = 10.6Msi, and a Poisson’s ratio, ν = 0.33, for
AA2024 were considered known and deterministic. Thus, the
model calibration problem in Equation 2 was solved only for
an appropriate set of boundary condition parameters in Equa-
tion 19 for each test specimen. A more detailed, rigorous
calibration is performed here with respect to the crude single
parameter approach in (Warner, Hochhalter, et al., 2016) in
an attempt to decrease the model discrepancy observed due
to misalignment in the test stand used for uniaxial loading.

While in the ideal case initial measurements would be taken
prior to the introduction of damage to use for calibration, no
DIC measurements were available from the undamaged state
in this study. Instead, dcal was chosen as displacement data
in the damaged states (sampled at 500 random locations in
the domain) to ensure that the model was still calibrated with
a different set of data than was used for diagnosis later. The
2-norm was used for the objective function in Equation 2 to
quantify the error between the model and calibration data, i.e.,

g(a− b) =

√√√√ n∑
i=1

(ai − bi)2 (21)

for two arbitrary n-dimensional vectors. This optimization
was performed using the Nelder-Mead algorithm (Wilde &
Beightler, 1967) as implemented by the open source Python
package SciPy (Jones, Oliphant, Peterson, et al., 2001). The
model calibration problem was solved individually for the flat
and angled crack specimens, resulting in two sets of optimal
boundary condition parameters, f̂flat and f̂angled, respectively.

To assess the effectiveness of the calibration and estimate the
noise levels, σ2, needed for Bayesian inference, the strains
from DIC and the calibrated model were then compared on
the randomly sampled grid of points. The resulting distri-
bution of errors (Equation 8) is shown in Figure 4 for the
flat (a) and angled (b) crack specimens along with a fitted
Gaussian distribution to the errors. The estimated noise lev-
els (Equation 9) for Bayesian inference are depicted in the
plots and will be used for the damage diagnosis results to fol-
low. The mean values of error here, µ̂flat and µ̂angle, can be
interpreted as model bias and would be 0 in the ideal case.
While non-zero, these values are substantially smaller using
the more rigorous calibration approach here than in the pre-
liminary work (Warner, Hochhalter, et al., 2016): µ̂flat was
reduced from 1.87× 10−5 to 1.09× 10−5 and µ̂angle was re-
duced from 1.01× 10−4 to 8.40× 10−6.

3.4. Surrogate Model Development

Two separate sets of surrogate models were developed for the
flat crack and angled crack specimen since the former was
used to demonstrate damage localization (cflat = [x, y] ∈ R2,
with a = 0.67in and θ = 0rad), while the latter was used
for full crack characterization (cangled = [x, y, a, θ] ∈ R4).
For both specimens, surrogate models were constructed and
stored for each measurement in the sensor arrays consid-
ered (Figure 2) that were capable of mapping new values
of cflat and cangled directly to the resulting strain (Equation
14). Several different machine learning algorithms from the
scikit-learn (Buitinck et al., 2013) and SciPy (Jones
et al., 2001) Python modules were compared to obtain a sur-
rogate model with an optimal balance of prediction accuracy
and efficiency.

First, training datasets, S , (Equation 13) were generated us-
ing the ScIFEN FE code according to Equation 12. For the
case of damage localization in the flat crack specimen, sev-
eral uniform training grids, {c(k)flat }Tk=1, were considered from
T = 450 to T = 5000 to study the accuracy and efficiency of
the machine learning algorithms for increasing training data
size. Only one training grid with T = 32076 was generated
for the angled crack specimen due to the added computational
expense of the increased dimension of the input space, d = 2
to d = 4. Additionally, two test datasets, Ŝ, (Equation 15)
were generated from 1000 randomly selected values of cflat
and cangled to verify the accuracy of the trained surrogate mod-
els for each case. The bounds for the parameters for training

International Journal of Prognostics and Health Management, ISSN2153-2648, 2017 8



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

0 1 2 3
x (in)

0

1

2

3

4

5

6

7

8

y 
(in

)

−1. 50× 10−3

−1. 37× 10−3

−1. 24× 10−3

−1. 11× 10−3

−9. 75× 10−4

−8. 44× 10−4

−7. 12× 10−4

−5. 81× 10−4

−4. 50× 10−4

(a)

0 1 2 3
x (in)

0

1

2

3

4

5

6

7

8

y 
(in

)

−1. 60× 10−3

−1. 50× 10−3

−1. 40× 10−3

−1. 30× 10−3

−1. 20× 10−3

−1. 10× 10−3

−1. 00× 10−3

−9. 00× 10−4

−8. 00× 10−4

(b)

0 1 2 3
x (in)

0

1

2

3

4

5

6

7

8

y 
(in

)

−1. 50× 10−3

−1. 37× 10−3

−1. 24× 10−3

−1. 11× 10−3

−9. 75× 10−4

−8. 44× 10−4

−7. 12× 10−4

−5. 81× 10−4

−4. 50× 10−4

(c)

0 1 2 3
x (in)

0

1

2

3

4

5

6

7

8

y 
(in

)

−1. 60× 10−3

−1. 50× 10−3

−1. 40× 10−3

−1. 30× 10−3

−1. 20× 10−3

−1. 10× 10−3

−1. 00× 10−3

−9. 00× 10−4

−8. 00× 10−4

(d)

Figure 3. A comparison of the εXX strain field obtained by DIC ((a) flat crack specimen, (b) angled crack specimen) versus the
calibrated FE model ((c) flat crack specimen, (d) angled crack specimen). The dashed lines in (a) and (b) indicate the locations
of the sensor arrays.
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Figure 4. Histogram of errors between DIC and FE strains
(Equation 8) with fitted Gaussian distributions, for the a) flat
and b) angled crack specimen.

and testing were specified as

x ∈ [0.64, 3.18]in, (22)
y ∈ [0.64, 7.94]in, (23)
a ∈ [0.20, 1.19]in, and (24)
θ ∈ [−π/2, π/2]rad, (25)

where the bounds for x, y, and a were chosen such that the
entire crack would always be contained within the geometry
(i.e., edge cracks were not considered).

Generating all the necessary surrogate training and test data
took approximately 2000 CPU-hours for this study. How-
ever, exploiting the independent nature of the computations
(as mentioned in Section 2.4) and utilizing parallel processing
resulted in about 5 days of total run time. Specifically, four
separate FE simulations were executed simultaneously with
each simulation running on four processors with ScIFEN. The
CPU times for each FE model execution varied between 25
and 45 seconds depending on the crack geometry and com-
putational mesh.

Surrogate models for the flat crack specimen were generated
using linear regression, nearest neighbors, and Gaussian pro-
cess algorithms from scikit-learn and a multi-linear in-
terpolation algorithm from SciPy. Free parameters for the
nearest neighbors and Gaussian process models were tuned
using cross-validation. A comparison of algorithm perfor-
mance for increasing training dataset sizes is shown in Figure
5. Figure 5(a) shows the average relative error over the testing
dataset (Equation 16), while Figure 5(b) compares prediction
times for the different models tested.

It is clear that the nearest neighbors and linear interpolation
models provide the most accurate predictions, nearing 1% er-
ror for the larger training datasets. In terms of prediction
speeds, the linear interpolation model is significantly faster in
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Figure 5. Performance comparison of four different regression algorithms for surrogate modeling in the damage localization
problem in terms of a) relative error and b) prediction time.

this case, and was chosen for surrogate modeling for the dam-
age localization study for this reason. It is important to point
out, however, that the nearest neighbors model demonstrates
a near-constant scaling in prediction time versus the size of
the dataset, which will be highlighted in the crack characteri-
zation surrogate performance to follow.

The disparity in performance seen with the Gaussian pro-
cess and linear regression models may be due in part to the
global nature of the approximations provided by these meth-
ods (Bishop, 2006) in contrast with the localized behavior
of the strains being predicted. Nearest neighbors and linear
interpolation benefit in this situation by basing their approx-
imations locally from the data points in closest proximity to
the one being predicted. It is also important to point out that
these results are not indicative of the performance of these
regression algorithms in general, but are specific to this par-
ticular application.

For the angled crack specimen, only the nearest neighbor and
linear interpolation approaches were considered. Here, train-
ing Gaussian process models on a dataset of this size was
infeasible due to the memory consumption imposed by the
method, while linear regression was omitted due to poor ac-
curacy. The performance of the algorithms in terms of ac-
curacy and efficiency is displayed in Table 1. In this case,
choosing the more superior method for surrogate modeling is
not as straightforward. The linear interpolation models have
nearly three times less error but are two orders of magnitude
slower in terms of prediction time with respect to the nearest
neighbors regressor. Based on the larger disparity in predic-
tion speeds, the nearest neighbor models are selected over lin-
ear interpolation for the general crack characterization study
in the angled crack specimen. However, the tradeoff in accu-
racy and speed for the two methods is investigated further in
their application to diagnosis in Section 4.

3.5. Damage Localization

The Bayesian damage diagnosis framework was first ap-
plied to the problem of damage localization in the flat crack
specimen. The MCMC algorithm described in Section 2.3
was used to sample the posterior probability distribution
p(c|dmeas) and estimate cflat. A uniform distribution was used
for the prior probability p(c), simply enforcing the bounds
in Equations 22 - 23 (i.e., 0 probability if either parameter
falls outside the bounds in a given sample). The linear inter-
polation surrogate models described in the previous section
were used to accelerate the evaluation of p(c|dmeas) during
sampling. DIC strain data (Figure 3(a)) extracted at each of
the three sensor arrays in Figure 2 were tested individually
to compare the impact of measurement location on the re-
sulting damage location estimates. The noise level, σ2, was
prescribed according to Figure 4(a).

For all of the damage diagnosis results presented in this study,
11000 total samples were drawn using the MCMC algorithm.
The first 1000 samples were discarded for the burn-in period
after which a thinning interval of 10 was applied to reduce au-
tocorrelation, yielding 1000 samples to produce estimates of
damage location probability. The initial guess for sampling
in each case was generated automatically using the approach
in Equation 17. The covariance matrix Σq for the proposal
distribution (Equation 11) was chosen such that the variance
for each parameter was 10% of the size of its corresponding
bounds in Equations 22 - 25, which resulted in sample ac-
ceptance rates of 9%, 56%, and 80% for sensor arrays 1, 2,
and 3, respectively. For sensor array 1, Σq was scaled by 0.5
from here to increase the acceptance rate to 20% and reduce
autocorrelation for the results to follow. The average solution
time for the three cases was just 23.4 seconds.

Figure 6 shows the resulting crack location probability con-
tours for each of the sensor arrays. It can be seen that sensor
array 1, which is closest to the crack, provides an estimate
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Table 1. Performance comparison for the crack characterization surrogate models. The models were generated using 32076
training data points.

Method Mean Relative Error Prediction Time
Nearest Neighbor 8.22× 10−2 8.43× 10−4 sec

Linear Interpolation 2.86× 10−2 1.39× 10−1 sec
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Figure 6. Crack location probability contours using the different sensor arrays from Figure 2 (denoted by white circles).

that is nearly coincident with the true value with a high de-
gree of certainty. Sensor array 2 is also highly accurate, in
the sense that the highest predicted probability agrees with
the true crack location, while the diagnosis using sensor ar-
ray 3 is slightly less accurate. Of equal importance, it can
be seen that Bayesian diagnosis framework effectively cap-
tures the increasing uncertainty in estimates with increasing
distance between the damage and sensors, as indicated by the
growing spread in the probability distributions. While it is
clear that sensor proximity has a significant impact on the di-
agnoses provided, even sensor array 3, which is farthest from
the crack, provides useful information about the nature of the
damage present.

3.6. General Crack Characterization

The performance of the proposed diagnosis framework is
now illustrated for general crack characterization in the an-
gled crack specimen. That is, the probability distribution,
p(cangled|dmeas) = p(x, y, a, θ|dmeas), for unknown crack lo-
cation, size, and orientation was estimated using DIC strains
(Figure 3(b)) at each of the sensor arrays in Figure 2. Nearest
neighbor surrogate models were used to accelerate the sam-
pling process for crack characterization following the devel-
opments in Section 3.4. The MCMC parameters remained
unchanged from those provided for the damage localization

results in the previous section and a uniform distribution was
used again for the prior probability, p(c). The noise level, σ2,
was prescribed according to Figure 4(b). The sample accep-
tance rates were 24%, 39%, and 52% for sensor arrays 1, 2,
and 3, respectively, while the average solution time was 356
seconds. Note the slower execution time versus damage lo-
calization is a result of an increase in prediction time of the
nearest neighbor surrogate models trained with a larger train-
ing dataset and higher input dimension.

The results for general crack characterization for each of the
three sensor arrays considered are shown in Figure 7. Here,
the estimated marginal probability distributions for x, y, a,
and θ are displayed along with the true values of these pa-
rameters from the angled crack specimen. Again, the trend of
decreasing accuracy and increasing uncertainty is observed
with increasing distance between sensor arrays used for di-
agnosis. The one outlier in this trend is the distributions of
crack length in Figure 7(c), where the predictions for arrays
1 and 3 appear to be more similar than those for arrays 1
and 2 (which are closer in proximity). The exact cause of this
anomaly is likely only explained by a more detailed investiga-
tion of the individual measurement errors at each sensor loca-
tion and the correlations between the crack parameters under
the joint posterior probability distribution, which is omitted
here for brevity.
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Figure 7. Crack characterization results for each sensor array. The marginal distributions of the (a) x-coordinate, (b) y-
coordinate, (c) length, and (d) orientation of the crack compared to the true measured values.

Generally speaking, it can seen that each sensor array pro-
vides reasonably accurate predictions of the true values in
that the points of maximum probability are near the true dam-
age parameters in all cases. Predictions with sensor array 1,
in particular, have a high degree of accuracy and relatively
high precision while even sensor array 3 provides useful crack
characterization information, more so in terms of the location
of damage. Furthermore, it appears to be harder to predict
the extent and nature of the damage with a high degree of
certainty as compared with the location, as evidenced by the
relative spread in the predicted distributions of p(a) and p(θ)
versus p(x) and p(y).

4. COMPUTATIONAL EFFICIENCY

The computational efficiency of the surrogate-accelerated
damage diagnosis framework is now illustrated in detail.
First, the tradeoff in terms of computational speed and accu-
racy associated with surrogate modeling is presented. Then,
the impact of generating an informed initial guess for MCMC
according to Equation (17) on sampling convergence as op-
posed to doing so randomly is illustrated.

4.1. Surrogate Modeling vs FEM

In order to study the computational speedup and accuracy
provided by surrogate modeling, the damage localization and
crack characterization problems were also solved using the
original FE model, M, to evaluate p(c|dmeas) during sam-
pling instead of M̃. All MCMC parameters for these analyses
matched those used in the previous examples. Each evalua-
tion of the FE models during sampling was executed in par-
allel on four CPUs. The run times and estimated probability
distributions were stored for each sensor array for compar-
ison. Furthermore, the crack characterization example was
solved using linear interpolation models to assess the im-
pact of choosing the less accurate, but faster nearest neighbor
models in this case (Table 1).

A comparison of the run times and computational speedup
using each model is displayed in Table 2 for damage local-
ization and characterization. Note that the run times reported
are average values of the analyses for each of the sensor ar-
rays. Diagnosis using the FE model took over four days for
each case. The execution time here (in contrast with using
surrogate models) is independent of number of unknowns;
the slight disparity observed between localization and char-
acterization times is due to random variation in the crack pa-
rameters and computational meshes generated during sam-
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Table 2. Computational Speedup comparison for surrogate modeling versus the original FE model.

Model Damage Localization Crack Characterization
Time (sec) Speedup Time (sec) Speedup

Finite Element 3.64× 105 1 3.40× 105 1
Linear Interpolation 2.34× 101 14299 3.56× 104 10
Nearest Neighbor - - 3.56× 102 955

pling. It can be seen that tremendous computational speedup
was provided by linear interpolation (14299X) and nearest
neighbors (955X) for crack localization and characterization,
respectively. If linear interpolation was used for crack char-
acterization instead, only a 10X speedup would have been
provided.

To assess any loss in accuracy associated with replacing the
FE model with a surrogate, a comparison of the resulting
probability distributions using each model is displayed in Fig-
ures 8 and 9 for damage localization and crack characteriza-
tion, respectively. The crack location probabilities using lin-
ear interpolation show excellent agreement with the FE model
in Figure 8, a trend that was seen previously in Figure 5(a).

More variation is seen among the surrogate model and FE
model distributions in Figure 9 for crack characterization, il-
lustrating the increased challenge of performing accurate re-
gression in higher dimensions. Note that although there was
a clear advantage in terms of accuracy for linear interpolation
over nearest neighbors in Table 1, the resulting diagnoses pro-
vided here by each is comparable. For practical situations, it
is likely that the substantial benefit in computational speedup
from surrogate modeling (Table 2) outweighs any relatively
small inaccuracies in the diagnoses that were observed (Fig-
ures 8 and 9). Additionally, some of the disagreement ob-
served can likely be attributed to minor statistical variations
between the randomly-drawn, finite sample sets with MCMC
used to generate solutions.

4.2. Initial Guess Effects

In this section, the benefit of generating an informed initial
guess for MCMC using the surrogate training data (Equation
17) is briefly illustrated. Initializing sampling in a high proba-
bility region this way can decrease the required burn-in period
and reduce the need for more advanced adaptive algorithms
(Smith, 2013). In fact, the basic MCMC implementation pre-
sented in Section 2.3 was specifically utilized in this study to
emphasize the latter.

In an attempt to further substantiate this claim, the difficulty
of converging to the true damage probability distribution from
a purely random guess is highlighted. To this end, a conver-
gence study was performed where the damage localization
problem was solved for each sensor array using 100 different
random initial guesses. MCMC was performed for 2500 it-

erations with the same parameters that were used in Section
3.5. For each initial guess, it was recorded whether or not
any samples had been drawn within a 0.5in radius of the true
crack location during sampling. This criteria was selected to
roughly reflect a point where the effect of the initial guess
had been overcome and the burn-in period could be termi-
nated. Note that random initial guesses that fell within the
target area around the true location were not considered.

The results from this study are displayed in Figure 10 for
(a) sensor array 1, (b) sensor array 2, and (c) sensor array
3. Here, the true crack location and target area are denoted
by the black triangle and surrounding dashed circle, respec-
tively. The green dots represent initial samples that ultimately
reached this target area within 2500 iterations and the red×’s
are initial samples that did not reach the target area.

In Figure 10, only 9% of the random starting points led to
samples within 0.5in of the true location for sensor array 1,
46% for sensor array 2, and 68% for sensor array 3. The
low success rate is likely due, at least in part, to the exis-
tence of local maxima in the probability distribution where
the Markov chain can become temporarily trapped during
sampling. Furthermore, Figure 10 shows a clear trend be-
tween distance of the initial guess from the true solution and
the likelihood that it will reach the area of interest. Here, the
proximity of the initial guess is most critical in the case of
sensor array 1, where the target distribution is most localized
(Figure 6). In all cases, it is clear that a substantial burn-in pe-
riod will often be required when randomly selecting a starting
point for MCMC. By contrast, the initial guess generated via
Equation 17 was 0.09in from the true location with sensor ar-
ray 1, 0.04in away with sensor array 2, and 0.86in with sensor
array 3, virtually eliminating the need for a burn-in period in
these cases.

It is important to note that the observed effects of a poor initial
guess could be reduced with extensive tuning of the MCMC
algorithm used here or the introduction of a more advanced
sampling approach. However, this study advocates the use
of Equation 17 to initialize sampling as a simpler alternative
when surrogate modeling is utilized. Note that while the con-
vergence study was performed for localization and not char-
acterization to aid in visualization, issues with convergence
and poor initial guesses are exacerbated in higher dimensional
cases making the scheme even more valuable in these cases.
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Figure 8. Comparison of the damage localization results using the linear interpolation surrogate model versus the original FE
model for sensor array 2.
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Figure 9. Crack characterization results using linear interpolation and nearest neighbor surrogate models compared with the
original FE model for sensor array 2.
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Figure 10. Convergence of sampling for 100 random initial guesses with (a) sensor array 1, (b) sensor array 2, and (c) sensor
array 3. The green dots represent initial guesses that reached the target area (dashed circle) around the true solution (black
triangle) within 2500 iterations and the red ×’s are those that did not reach the target area.

5. CONCLUSION

In this study, a computationally-efficient, probabilistic dam-
age diagnosis framework was presented and experimentally
validated. Given measurement data, probability distribu-
tions of unknown damage parameters were estimated us-
ing Bayesian inference and MCMC sampling. Substantial
computational speedup was obtained by replacing a three-
dimensional FE model with an efficient surrogate model.
While the proposed formulation is general for arbitrary com-
ponent geometry, damage type, and sensor data, it was
demonstrated on the problem of panel crack characterization
using strain data determined from DIC. Subsets of data were
extracted in a fashion that mimicked monitoring with fiber
optic strain gauges (a single component of strain along a lin-
ear array) for a more practically relevant application. The
effectiveness of strain-based diagnosis was tested as the dis-
tance between the damage and these measurement locations
increased.

The ability of the framework to efficiently perform proba-
bilistic damage localization and characterization while cap-
turing the uncertainty in the predictions as the measurement
locations were varied was demonstrated. Furthermore, the
use of a surrogate model to replace a 3D FE model was shown
to yield average analysis times of 23.4 and 356.0 seconds
for damage localization and full crack characterization, re-
spectively, representing a 14299X and 955X computational
speedup. Furthermore, a simple scheme to generate a highly
probable initial guess for MCMC sampling using the surro-

gate model training data was shown to improve convergence
and reduce the burn-in period needed. While the accuracy
and certainty of the diagnosis results naturally degraded as
measurement locations were moved further from the dam-
age, this study reinforced the potential for strain sensors to
allow for effective local SHM of hot spots in components.
Additionally, the framework, capable of providing full crack
characterization with UQ and computational efficiency, en-
compasses the necessary characteristics to enable subsequent
damage prognosis.
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