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The Cranked Arrow Wing Aerodynamics Program, International (CAWAPI) investigation is

continued with the FUN3D and USM3D flow solvers to fuse flight test, wind tunnel test, and

simulation of swept wing aerodynamic features. Simulations of a low speed, high angle of attack

condition are compared: Detached Eddy Simulation (DES), Modified Delayed Detached Eddy

Simulation (MDDES), and the Spalart-Allmaras (SA) RANS model. Isosurfaces of Q criterion

show the development of coherent primary and secondary vortices on the upper surface of the

wing that spiral, burst, and commingle. Mean DES and MDDES pressures better predict the flight

test measurements than SA model predictions, especially on the outer wing section. The USM3D

simulations predicted many sharp tones in volume point pressure spectra with low broadband noise

and The FUN3D simulations predicted more broadband noise with weaker tones. Spectra of the

volume points near the outer wing leading-edge was primarily broadband for both codes. Time-

averaged forces are very similar between FUN3D simulations and and similar between USM3D

simulations, but FUN3D predicts slightly higher lift and lower drag than USM3D. There is more

variation in the pitching moment predictions. Spectra of the unsteady forces and moment are

mostly broadband for FUN3D and tonal for USM3D simulations.

I. Introduction

The Cranked-Arrow Wing Aerodynamics Project (CAWAP) was established to document upper-

surface flow physics at high-lift and transonic test conditions and to characterize the stability and
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control of the F-16XL aircraft. [1] Ship one, F-16XL-1, provides a unique opportunity to fuse flight

test, wind tunnel test, and computational fluid dynamics (CFD) to understand the aerodynamic

features of swept wings. [2] The High-Speed Research (HSR) program identified a need to improve

understanding of swept-wing aerodynamic performance. [1] High lift prediction during takeoff

and landing continues to be a critical element of viable quiet supersonic aircraft concepts. [3,

4] Studying the high lift performance of the cranked-arrow wing planform has been a focus for

supersonic transports for decades [5] and this study addresses a flow condition that is important for

understanding pitch-up. [6] Low-boom supersonic transport concepts recently developed include

highly swept [7] and cranked-arrow planforms, [8] which is the focus of this study.

The original CAWAP project grew into an international collaboration: the Cranked Arrow

Wing Aerodynamics Program, International (CAWAPI). [1] An assessment at the competition of

CAWAPI [9] indicated that “Overall, it can be said that the technology readiness of computational

fluid dynamics simulation technology for the study of vehicle performance has matured since 2001,

such that it can be used today with a reasonable level of confidence for complex configurations.”

However, simulations at two Flight Conditions (FC), numbered 25 and 70, did not compare as

well to flight measurements as the other FCs near the center of the Mach/angle of attack flight

envelope. Test point FC 25 is low speed and high angle of attack and exhibits unsteady vortex

burst phenomenon. Test point FC 70 is a high speed case dominated by vortex-shock interaction.

With the exception of two papers, [10,11] analysis was performed with steady Reynolds-averaged

Navier–Stokes (RANS) and Euler methods for CAWAPI.

A subsequent program [12] (CAWAPI-2) targeted additional FCs near FC 25 and FC 70. These

nearby conditions were chosen primarily to help establish trends in the measured pressures associ-

ated with the vortex and shock structures near FC 25 and 70. [12] Sensitivities to aeroelasticity and

control surface deflection were noted. [13] Finer grids and improved physics simulation due to ad-

vanced turbulence models and unsteady hybrid RANS/Large Eddy Simulation (HRLES) resulted

in improved predictions of flight test measurements. [13] This study continues the CAWAPI-2 in-

vestigation with two simulation tools and focuses on FC 25 and HRLES methods. Continued eval-

uation and development of HRLES models is a recommendation of the CFD Vision 2030 Study,
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“The use of CFD in the aerospace design process is severely limited by the inability to accurately

and reliably predict turbulent flows with significant regions of separation. . . Hybrid RANS-LES

and wall-modeled LES offer the best prospects for overcoming this obstacle although significant

modeling issues remain to be addressed here as well.” [14] The study recommendation suggests

this work is critical for the development of future aerospace design methods.

Previous CAWAPI and CAWAPI-2 investigations used USM3D (Unstructured Mesh Three-

Dimensional), which is also applied in this study. Lamar and Abdol-Hamid [15] compared surface

pressures and boundary layer profiles computed with three RANS models to flight test measure-

ments. Elmiligui et al. [16] applied grid adaptation to these same three RANS models. Elmiligui,

Abdol-Hamid, and Parlette [17] applied unsteady RANS and HRLES. This study expands the

HRLES study to include FUN3D (Fully Unstructured Navier-Stokes Three-Dimensional) and ex-

amine the fluctuating pressure frequency spectra to better understand the application of HRLES to

a cranked-arrow wing planform.

II. Flight Condition 25 and Instrumentation

This report focuses solely on FC 25, a subsonic high angle-of-attack case. The freestream flow con-

ditions are Mach M = 0.242, 19.84◦ angle of attack, and 32.22×106 Reynolds number based on the

reference chord length. The freestream conditions are the U.S. Standard Atmosphere [18] at 10,000

ft. pressure altitude. Propulsion boundary conditions are obtained from Obara and Lamar. [1] The

FUN3D [19, 20] and USM3D [21] code nondimensionalize the propulsion boundary conditions

with freestream conditions to produce the ratios listed in Table 1.

Table 1. Propulsion measurements and boundary conditions.

Inlet static temperature 470.1◦ R
Inlet Mach number 0.447
Inlet static pressure 8.72 psia Inlet static pressure ratio 0.86265
Exit total pressure 26.3 psia Exit total pressure ratio 2.6018
Exit total temperature 1209◦ R Exit total temperature ratio 2.5029

A three-view drawing of F-16XL-1 is shown in Fig. 1. The cranked-arrow planform (more

sweep on the inner wing than the outer wing) is clearly evident. The geometry of the configuration
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is summarized in Table 2. Dummy wing tip missiles and rails are attached to each wing tip.

There is an actuator pod and air dam located at the wing trailing-edge break, which is slightly

inboard of the wing leading-edge break. Boelens et al. [22] describe the geometry modifications

used to create a water-tight geometry for grid generation and state that the control surfaces are not

deflected. Details of the F-16XL-1 instrumentation is available in Lamar et al. [2] and the pressure

measurement locations are shown in Fig. 2. The heavy black lines denote the location of pressure

belts of 0.028 in. inner diameter tubing used to measure surface pressure. These pressure belts are

placed at constant butt lines (BL) and have orifices at common fuselage stations (FS), which allows

comparison to simulation in either plane. Due to the curvature of the upper wing surface, water line

(WL) varies between orifices. No measurement uncertainties or unsteady pressure measurements

are available from the flight tests.

54.2 ft

17.7 ft

32.5 ft

Figure 1. Three-view drawing of F-16XL-1 airplane.

Table 2. Reference geometry for the F-16XL-1. [2]

Wing Reference Area 86,400 in.2

Mean Aerodynamic Chord 296.4 in.
Wing Span 388.8 in.
Aspect Ratio 1.75
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Figure 2. Planform drawing of F-16XL-1 airplane indicating the location of the pressure instrumentation. [2]

III. Numerical Approach

The focus of this report is applying the HRLES capabilities of USM3D and FUN3D. First, these

flow solvers and the HRLES methods are described. Then details on the time step and grids are

provided.

A. USM3D

The USM3D [23] code is a cell-centered finite volume flow solver (the solution is stored at tetra-

hedra centers). The spatial discretization in nominally second-order and it is part of TetrUSS

(Tetrahedral Unstructured Software System). [24] The USM3D code uses advanced turbulence

models [25] and second-order temporal schemes for unsteady flows. [26] Three-point backward

differencing and pseudo-time subiterations are used for time integration, which is referred to as

Option-1 in Elmiligui, Abdol-Hamid, and Parlette. [17] Frink [27] describes the inviscid interface

reconstruction scheme used with the Roe [28] flux and the viscous discretization. The minmod

limiter is applied to the inviscid reconstruction. Forces, moments, and spectra of unsteady pressure

for DES cases examined in Elmiligui, Abdol-Hamid, and Parlette [17] are detailed in this report.

The mean values of surface pressures at BL and FS are provided by Elmiligui, Abdol-Hamid, and
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Parlette, [17] but not reproduced in this report. In this study, USM3D results use the DES HRLES

model and are explicitly labeled with the flow solver name.

B. FUN3D

The FUN3D [20] code is a node-centered finite volume scheme (the solution is stored at grid

nodes). Anderson and Bonhaus [29] describe the reconstruction scheme for inviscid terms, the

viscous discretization, and solution scheme, which results in a nominally second-order spatial

discretization. The Roe [28] approximate Riemann solver is used in this study with a unlimited

least-squares reconstruction scheme for inviscid terms. The optimized second order backward

difference (BDF2OPT) [30] scheme is used for time advancement of the unsteady simulations.

Steady results are computed with the Spalart-Allmaras [31] (SA) turbulence model. Both DES [32]

(Detached Eddy Simulation) and MDDES [33] (Modified DDES [34] (Delayed DES)) are used

for the unsteady results. MDDES was developed to alleviate pockets of large eddy viscosity in

regions upstream of a cylinder in testing. [33] The MDDES simulations use SA-R [35, 36] and

the DES simulations use SA for the RANS portion of HRLES. The advantage of using SA-R with

MDDES is that the eddy viscosity is reduced in the regions that have higher vorticity than strain

rate, such as in the vortex core where the pure rotation should suppress the turbulence. [35] The

SA model is used with DES to match the USM3D implementation to the greatest extent possible.

These HRLES capabilities in FUN3D have been compared to wind tunnel and flight measurement

for aeroacoustics, [33, 37] unsteady launch vehicle aerodynamics, [38, 39] and F-15 vertical tail

buffet. [40]

C. Temporal Integration

The FUN3D code uses the BDF2OPT [30, 41] time advancement scheme for the HRLES cases.

The USM3D code uses the three-point backward differencing and pseudo-time subiteration scheme

described by Elmiligui et al. [17] as Option-1. The surface pressures computed with Option-

1 showed a small sensitivity to time step. [17] The time accuracy of USM3D and FUN3D was

evaluated by Green et al. [42] Both FUN3D [20] and USM3D [26] nondimensionalize time with

6 of 46

American Institute of Aeronautics and Astronautics



the freestream speed of sound and the grid unit length. A time step ∆t is typically chosen by

selecting a fraction (1/N) of the nondimensional time required for a particle to travel at freestream

Mach number M a characteristic distance L,

∆t =
L

MN
, (1)

where L is the mean aerodynamic chord. All the unsteady FUN3D results used ∆t = 1.2248 =

296.4/(0.242 × 1000). The USM3D results used ∆t = 5 and ∆t = 1. The FUN3D physical time

step is ∆t̄ = 9.4747× 10−5 seconds assuming a freestream speed of sound of 12, 927 in. per second

(1,077.2 ft. per second) at standard-day 10,000 ft. pressure altitude. The two USM3D physical time

steps are ∆t̄ = 7.7358×10−5 and ∆t̄ = 3.8679×10−4 seconds. The FUN3D averaging windows are

8,000 time steps, which is approximately 0.76 seconds or eight free stream passages of the mean

aerodynamic chord. USM3D used 16,000 time steps or 1.24 seconds for the fine time step size and

6,000 time steps or 2.32 seconds for the coarse time step size. These data are extracted after the

initial start up transients have decayed.

D. Grids

Details of the half domain grids used in this study (including images of the surface grid and volume

slices) are provided by Elmiligui et al. [16] and are summarized in Table 3. The sides of the

outer domain box are approximately 50 mean aerodynamic chords in length. Elmiligui et al. [17]

provides further details of the half domain grids (denoted Grid-1) and shows that mirroring the

grids to include both starboard and port halves of the aircraft (denoted Grid-2) had a negligible

effect on the averaged HRLES surface pressures. As a result of this observation, only the half

domain grids will be used for the zero sideslip cases in this article. The FUN3D code stores the flow

solution at the nodes of the mesh and USM3D stores the the flow solution at the tetrahedra centers.

Therefore, nodes indicates the resolution of the FUN3D solutions and tetrahedra indicates the

resolution USM3D solutions. The USM3D results labeled with 19M and 62M indicate the number

of tetrahedra in the coarse grid. The FUN3D results are labeled with 11M and 24M to indicate
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the number of nodes in the medium and fine grids. The given first cell heights result in an average

y+ = 1.1 for the coarse grid and less on the finer meshes. [16, 17] The grids were constructed

with guidelines from the AIAA Drag Prediction and High Lift Prediction Workshops [16] and no

additional refinement was added to resolve off-body vorticies or turbulent structures. The grid is

in full-scale inches, which corresponds to the units of BL, FS, and WL.

Table 3. Grids.

Description Nodes Tetrahedra First cell height (in.)
Coarse 3,302,181 19,369,037 0.00092
Medium 10,635,136 62,472,142 0.00061
Fine 24,330,073 143,034,292 0.00041

IV. Results

Isosurfaces colored with pressure coefficient are provided to show a global view of the upper wind

flow features and qualitative differences between a RANS and the two HRLES methods. Medium

and fine grids are shown to indicate how grid refinement helps to resolve the features. Next, mean

pressure coefficient is shown at constant BL and FS. This is a typical comparison that is made to

flight test measurements in CAWAPI reports.

Unsteady results begin with surface plots of standard deviation of fluctuating surface pressure

coefficient. This provides a global view of the relative magnitude of unsteadiness on the upper

fuselage, lower fuselage, engine inlet, and exhaust plume. More details are provided at FS and BL

by showing one standard deviation of pressure coefficient around the mean.

Points are sampled in the volume to compute standard deviation. Frequency spectra are exam-

ined at points that exhibit large standard deviation magnitude and changes in magnitude between

medium and fine grids. Statistics and frequency spectra of integrated forces and moment complete

the examination of the unsteady solution.
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A. Isosurfaces

Isosurfaces of Q criterion [43] are provided for FUN3D to gain a global intuition for the location

of vortices predicted by each turbulence model. Q criterion is defined as,

Q =
1
2

(
||Ω||2 − ||S||2

)
, (2)

where Ω is the rotation rate tensor, S is the strain rate tensor, and || · || is the Frobenius norm.

Positive Q defines regions where the vorticity magnitude is greater than the strain-rate magnitude.

Snapshots, at the end of the simulation, are shown for the Q = 0.001 isosurface colored with

pressure coefficient in Fig. 3 to Fig. 7. The wing upper surface is shown for four models. Only one

half of the domain is simulated with the surfaces mirrored in the x–z plane to provide two views

of the vortical structures and depict the entire symmetric domain. The steady-state solution with

SA is shown for two grid resolutions in Fig. 3. Distinct sets of vortices are observed at the wing

apex, air dam, outer wing, and surrounding the dummy missile. The isosurfaces of the SA solution

appear to be insensitive to grid resolution for these two grid resolutions. The extent of the vorticies

is the smallest for all models. The vorticity-based source term of SA predicts an excessive level of

eddy viscosity, which dissipates the vorticies.

Snapshots of the DES simulations are shown in Fig. 4. Vortices are maintained for a longer

distance down stream as compared to SA. The main wing leading-edge vortices spiral and break

into filaments. Secondary vortices are seen below the main vortex, near the wing leading-edge.

The significant difference between DES on the medium and fine grids indicates a strong depen-

dence on grid resolution for these 11M and 24M node grids. The secondary vortices are breaking

into filaments and becoming entrained in the main vortex for both grids. The secondary vortex

entrainment mechanism is more common on the 24M node grid. Vortex breakup is evident in the

outer wing and the distinct vortices seen on the medium grid commingle.

Snapshots of the MDDES simulations are shown in Fig. 5. The medium grid simulation ex-

hibits the breakup of the secondary vortices seen in the fine DES simulation. The topology of

the medium and fine grid flow structures is similar with the fine grid exhibiting finer details. The
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main vortex begins to spiral very near the wing apex. The secondary wing leading-edge vortices

are clearly entrained into the main vortex. The secondary vortex entrainment mechanism is more

common on the 24M node grid where these filaments persist inboard the main vortex. Secondary

wing leading-edge vortex filaments are transported down the wing leading-edge and disrupt the

coherence of the outer wing vortex. Vortices that surround the dummy wing tip missile rail, body,

and fins mix with the outer wing vortex filaments.

Views of the top and starboard side are shown for the half of the aircraft simulated with the

HRLES methods DES (Fig. 6) and MDDES (Fig. 7). The coherent secondary wing leading-edge

vortex of the medium grid is seen in Fig. 6(b), which breaks up on the fine grid, Fig. 6(c and d). The

entrainment of the secondary vortex around the main vortex is seen in Fig. 7(c) and the commin-

gling of the vortex filaments is seen in Fig. 7(d). The pressure footprint of the vortex filaments can

also be seen in Fig. 7(d) snapshot with pressures alternating above and below freestream pressure

on the outer wing section.
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a) Medium grid, 11M.

b) Fine grid, 24M.

Figure 3. Snapshot of Q criterion colored with pressure coefficient for FUN3D SA.
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a) Medium grid, 11M.

b) Fine grid, 24M.

Figure 4. Snapshot of Q criterion colored with pressure coefficient for FUN3D DES.
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a) Medium grid, 11M.

b) Fine grid, 24M.

Figure 5. Snapshot of Q criterion colored with pressure coefficient for FUN3D MDDES.
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a) Medium grid, 11M, side view.

b) Medium grid, 11M, top-down view.

c) Fine grid, 24M, side view.

d) Fine grid, 24M, top-down view.

Figure 6. Snapshot of Q criterion colored with pressure coefficient for FUN3D DES.
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a) Medium grid, 11M, side view.

b) Medium grid, 11M, top-down view.

c) Fine grid, 24M, side view.

d) Fine grid, 24M, top-down view.

Figure 7. Snapshot of Q criterion colored with pressure coefficient for FUN3D MDDES.
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B. Mean Section Cut Pressures

The mean surface pressure coefficient is shown for constant BL slices in Fig. 8 and constant FS

slices in Fig. 9. The negative pressure coefficient is depicted; a positive value is suction. The x

position is nondimensionalized with local chord and the y position with local wing span, which

excludes the dummy missile and rail. The dummy missile and rail are excluded from this presenta-

tion because their location is y/(b/2) > 1. The peak values of BL 55 and FS 185 negative pressure

coefficient are clipped to use the same −CP scale as companion CAWAPI papers. The BL 55 SA

24M has a peak of −CP = 3.75 at x/c = 0.045, the FS 185 DES 24M has a peak of −CP = 4.30 at

y/(b/2) = 0.79, and the FS 185 SA 24M has a peak of −CP = 4.45 at y/(b/2) = 0.84. The heights

of these clipped peaks are higher than the values reported by other CAWAPI participants and the

flight test measurements.

Overall, SA on both grids overpredicts the suction peaks and displaces these peaks forward or

outboard (nearer to the wing leading-edge). Elmiligui, Abdol-Hamid, and Parlette [17] show in

their Fig. 9 that the peak of USM3D SA results are also more forward and outboard of the DES

mean pressure and flight measurements, but these peaks are lower for the 62M tetrahedra medium

grid than the FUN3D SA results. The HRLES methods are closer to the flight test measurements

(circles) than SA for a majority of the measurements. The most variation between methods is seen

in the wing apex region, the forward portion of BL 55 and BL 70. The DES and MDDES peak

negative pressure coefficient level increases and location moves forward with grid refinement for

BL 55, BL 70, and BL 80.

The air dam is seen in FS 375 and greater as a vertical line in the simulations. This air dam,

described as a wing fence by Grafton, [44] was added to improve lateral and pitch stability at high

angles of attack, but is detrimental to vortex lift. This report shows that more suction is maintained

on the outer wing upper surface outboard of the air dam, which has a favorable impact on pitch-up

and lateral stability. Two mean suction peaks are seen in FS 407.5 and FS 450 outboard of the

air dam, which are due to the air dam vortex and outer wing leading-edge vortex. SA has very

different −CP levels in the outer section of the wing, BL 184.5, where MDDES 11M has a slightly

higher mean than the other HRLES methods.
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a) BL locations depicted on surface CP.
[17]
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Figure 8. FUN3D time-averaged coefficient of surface pressure along butt lines.
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a) FS locations depicted on surface CP. [17]
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Figure 9. FUN3D time-averaged coefficient of surface pressure along fuselage station lines.
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C. Surface Pressure Fluctuations

Unfortunately, there were no unsteady flow measurements made during the flight tests, but un-

steady pressures are examined here to illustrate the differences in the HRLES methods and the

effect of increasing grid resolution. These results also provide a database for code-to-code com-

parison with other CAWAPI participants. To gain a global picture of the unsteady pressure loads on

the vehicle, the standard deviation of pressure coefficient is studied for the HRLES methods. This

standard deviation is also referred to as the root mean square (RMS) of the pressure coefficient

variation from the mean.

The RMS pressure coefficient on the upper surface and symmetry plane is shown for DES in

Fig. 10 with a logarithmic color scale. The footprint of the unsteady vorticies are seen at the apex,

air dam, and outer wing section. A high level of unsteadiness is also seen in the engine exhaust

plume diamond shock pattern. The RMS levels are higher for the fine grid. The RMS pressure

coefficient on the lower surface and symmetry plane is shown for DES in Fig. 11. The engine

inlet, wing leading-edge, wing trailing-edge, and engine exhaust plume have the highest levels of

unsteadiness. The medium grid has an unexplained patch of unsteadiness in front of the wing,

below the leading-edge of the canopy. There is no vortex indicated in Fig. 6(a) near this patch,

which is not seen on the fine grid.

The RMS pressure coefficient on the upper surface and symmetry plane is shown for MDDES

in Fig. 12. The structures are the same as DES, but the levels are higher. The medium grid

(Fig. 12(a)) has a lower level of RMS pressure at the wing apex than the fine grid (Fig. 12(b)), but

the medium grid has a higher level of unsteadiness on the outer wing section. This MDDES case

on the medium 11M node grid also has slightly different mean values at outer wing section as seen

in Fig. 8(f and g) and Fig. 9(e, f, and g). The medium grid MDDES has the same unexplained

patch of unsteadiness in front of the wing as seen on the medium grid DES.

One standard deviation of unsteady pressures is shown above and below the mean for constant

BL and FS stations in Fig. 14 and Fig. 15. The BL 55 DES 24M mean plus RMS peak of −CP =

3.76 at x/c = 0.05 was clipped to have a consistent range with companion CAWAPI report plots.

The variation of lower wing surface pressures is much lower than the upper surface pressures.
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The lowest level of variation on the upper surface is inboard, particularly over the fuselage. The

variation range of methods on both grid is similar for the inner wing, but the MDDES 11M medium

grid has a slightly higher range on the outer wing, see Fig. 14(e and f) and Fig. 15(d and e). Most

of the the flight test measurements are within the unsteady variation of the HRLES methods on

both grids. The flight measurements are assumed to be time-averaged mean data, but the unsteady

flight pressure may be filtered by the long lengths of 0.028 in. inner diameter tubing used for

instrumentation. [2]
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a) Medium grid, 11M.

b) Fine grid, 24M.

Figure 10. Upper surface pressure coefficient RMS variation for FUN3D DES.
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a) Medium grid, 11M.

b) Fine grid, 24M.

Figure 11. Lower surface pressure coefficient RMS variation for FUN3D DES.
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a) Medium grid, 11M.

b) Fine grid, 24M.

Figure 12. Upper surface pressure coefficient RMS variation for FUN3D MDDES.
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a) Medium grid, 11M.

b) Fine grid, 24M.

Figure 13. Lower surface pressure coefficient RMS variation for FUN3D MDDES.
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Figure 14. FUN3D standard deviation of surface pressure coefficient along butt lines.
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Figure 15. FUN3D standard deviation of surface pressure coefficient along fuselage stations.
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D. Volume Point Pressure Fluctuations

Pressure coefficient is sampled at a number of points in the domain to examine the off-body flow

unsteadiness. These points are arranged in groups of three that extend in the WL direction at

constant BL and FS. The RMS of pressure coefficient is shown for USM3D DES on the coarse

19M tetrahedra grid in Fig. 16 for two time step sizes. The level of unsteadiness appears uniform

for this logarithmic color scale of RMS. The FUN3D DES results in Fig. 17 show a higher RMS

level than USM3D, particularly on the outer wing section and fine grid apex. The FUN3D MDDES

results in Fig. 18 show similar RMS levels as the DES results.

Spectra are computed via the method of Welch [45] as implemented in the Octave-Forge

pwelsh function. Segments of 211 = 2048 points are used with 50% overlap between segments

with the mean subtracted and the application of a Hamming window. The spectra for two groups

of point samples denoted “Apex” and “Outer Wing Leading-Edge” in Fig. 19 are detailed. Sound

pressure level (SPL) is computed with a reference sound pressure of 20 µPa. These groups are

selected because they have a high RMS level on the fine grid and there is significant variation in

the levels between methods and grid resolutions. Frequencies are reported in full-scale, see Section

C for simulation time step information and Section D for grid descriptions. The apex spectra are

examined first.

The USM3D apex spectra are shown in Fig. 20. A series of strong tones are depicted. The

three largest peak tones on the coarse grid are 116 Hz, 233 Hz, and 350 Hz for ∆t = 5 and 130 Hz,

260 Hz, 389 Hz for ∆t = 1. Tones in the medium grid calculation are wider with a peak noise level

similar to the FUN3D broadband noise on the fine grid. The FUN3D DES is primarily broadband

noise with a weak tone at 164 Hz for the medium grid and 130 Hz for the fine grid, Fig. 21. The

MDDES method shows a significant peak at 144 Hz for the medium grid at 165 Hz and 371 Hz

for the fine grid, Fig. 22. There does not appear to be a single tone that is predicted consistently

by these combinations of methods and grids. Both DES and MDDES on the fine grid show very

similar broadband noise spectra.

The USM3D outer wing leading-edge spectra are shown in Fig. 23. The ∆t = 5 simulation

exhibits one tone at 76 Hz and a steep roll-off at 200 Hz. The FUN3D DES (Fig. 24) and FUN3D
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MDDES (Fig. 25) signals are broadband for the outer wing leading-edge spectra. The MDDES

method on the 11M grid has the most energy between 100 and 1,000 Hz of all the methods. Both

USM3D DES time steps and FUN3D DES 11M spectra drop below 80 dB at 1,000 Hz, but the

other FUN3D results have energy above 80 dB at 1,000 Hz. Probe #43 at FS 452.8, BL 181.1, and

WL 94.5 (the most outboard and closest to the upper wing surface) has a higher noise level than

other probe locations at this FS. There is more similarity between FUN3D and USM3D spectra at

these outer wing leading-edge probe locations than at the wing apex.

Without unsteady flight measurements, the flight pressure environment can not be used to de-

termine whether broadband spectra or tonal spectra predictions are appropriate for these locations.

A lack of consistent tone frequency predictions may indicate that the tones are an artifact of the

simulation or that the flow features have not been sufficiently resolved in space or time.

28 of 46

American Institute of Aeronautics and Astronautics



a) Large time step, ∆t = 5.

b) Small time step, ∆t = 1.

Figure 16. Point pressure coefficient RMS for USM3D DES, coarse grid, 19M.
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a) Medium grid, 11M.

b) Fine grid, 24M.

Figure 17. Point pressure coefficient RMS for FUN3D DES.
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a) Medium grid, 11M.

b) Fine grid, 24M.

Figure 18. Point pressure coefficient RMS for FUN3D MDDES.
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a) Apex point group.

b) Outer wing leading-edge point group.

Figure 19. Point pressure coefficient RMS groups.
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a) Coarse grid, 19M, small time step, ∆t = 1.
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Figure 20. Apex sound pressure level spectra for USM3D DES.
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Figure 21. Apex sound pressure level spectra for FUN3D DES.

34 of 46

American Institute of Aeronautics and Astronautics



Frequency (Hz)

S
P

L
 (

d
B

)

102 103
40

60

80

100

120

140

160

# 1, FS 196.9, BL 49.2, WL 94.5
# 2, FS 196.9, BL 49.2, WL 98.4
# 3, FS 196.9, BL 49.2, WL 100.4
# 4, FS 196.9, BL 55.1, WL 94.5
# 5, FS 196.9, BL 55.1, WL 98.4
# 6, FS 196.9, BL 55.1, WL 100.4
# 7, FS 196.9, BL 63.0, WL 94.5
# 8, FS 196.9, BL 63.0, WL 98.4
# 9, FS 196.9, BL 63.0, WL 100.4

a) Medium grid, 11M.

Frequency (Hz)

S
P

L
 (

d
B

)

102 103
40

60

80

100

120

140

160

# 1, FS 196.9, BL 49.2, WL 94.5
# 2, FS 196.9, BL 49.2, WL 98.4
# 3, FS 196.9, BL 49.2, WL 100.4
# 4, FS 196.9, BL 55.1, WL 94.5
# 5, FS 196.9, BL 55.1, WL 98.4
# 6, FS 196.9, BL 55.1, WL 100.4
# 7, FS 196.9, BL 63.0, WL 94.5
# 8, FS 196.9, BL 63.0, WL 98.4
# 9, FS 196.9, BL 63.0, WL 100.4

b) Fine grid, 24M.

Figure 22. Apex sound pressure level spectra for FUN3D MDDES.
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Figure 23. Outer wing leading-edge sound pressure level spectra for USM3D DES.
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b) Fine grid, 24M.

Figure 24. Outer wing leading-edge sound pressure level spectra for FUN3D DES.
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Figure 25. Outer wing leading-edge sound pressure level spectra for FUN3D MDDES.
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E. Forces and Moment

Mean, RMS, minimum, and maximum integrated coefficient of lift CL, drag CD, and pitching

moment CM are examined for the entire sampling window in Table 4, Table 5, and Table 6. For

reference, an F-16XL wind tunnel test with flow thorough inlet, wing fence (air dam), nose boom,

and missiles at Reynolds number 2.1× 106 based on mean aerodynamic chord, 20◦ angle of attack,

and 0◦ angle of sideslip is provided. This test point is from run 200 by Hahne [46] and differs from

the simulation in Reynolds number and propulsion modeling. Lift is slightly higher and drag is

significantly lower than the mean simulation forces. The mean forces are similar between the SA

and HRLES FUN3D results. The USM3D DES has slightly lower lift and higher drag than the

FUN3D results. The large time step USM3D has the lowest RMS levels. The FUN3D MDDES

11M has the highest RMS levels. The remaining HRLES methods are within 15% for RMS CL

and CD.

Table 4. Coefficient of lift.
Case Cmean

L Crms
L (Cmin

L −Cmax
L )

WT 0.8405
FUN3D SA 11M 0.8036
FUN3D SA 24M 0.8041
USM3D DES 19M ∆t = 1 0.7507 0.0055 (0.7347-0.7656)
USM3D DES 19M ∆t = 5 0.7605 0.0037 (0.7503-0.7725)
FUN3D DES 11M 0.8015 0.0054 (0.7880-0.8138)
FUN3D DES 24M 0.8021 0.0058 (0.7868-0.8180)
FUN3D MDDES 11M 0.7939 0.0088 (0.7688-0.8159)
FUN3D MDDES 24M 0.8020 0.0054 (0.7870-0.8180)

Table 5. Coefficient of drag.
Case Cmean

D Crms
D (Cmin

D −Cmax
D )

WT 0.2693
FUN3D SA 11M 0.4478
FUN3D SA 24M 0.4507
USM3D DES 19M ∆t = 1 0.4801 0.0018 (0.4753-0.4845)
USM3D DES 19M ∆t = 5 0.4823 0.0012 (0.4791-0.4860)
FUN3D DES 11M 0.4513 0.0017 (0.4462-0.4555)
FUN3D DES 24M 0.4526 0.0020 (0.4476-0.4577)
FUN3D MDDES 11M 0.4463 0.0030 (0.4375-0.4528)
FUN3D MDDES 24M 0.4528 0.0020 (0.4472-0.4585)

The same method is used to compute the spectra of integrated forces and moments as the

volume pressures. Spectra are computed via the method of Welch [45] as implemented in the

Octave-Forge pwelsh function. Segments of 211 = 2048 points are used with 50% overlap be-

tween segments with the mean subtracted and the application of a Hamming window. The USM3D
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Table 6. Coefficient of pitching moment.
Case Cmean

M Crms
M (Cmin

M −Cmax
M )

WT -0.0052
FUN3D SA 11M 0.0025
FUN3D SA 24M 0.0024
USM3D DES 19M ∆t = 1 0.0062 0.0034 (-0.0025-0.0163)
USM3D DES 19M ∆t = 5 0.0072 0.0022 (-0.0002-0.0124)
FUN3D DES 11M -0.0057 0.0030 (-0.0145-0.0013)
FUN3D DES 24M -0.0037 0.0026 (-0.0115-0.0022)
FUN3D MDDES 11M -0.0021 0.0041 (-0.0121-0.0090)
FUN3D MDDES 24M -0.0021 0.0025 (-0.0108-0.0044)

coarse grid simulations have the lowest broadband noise levels with peaks at 76 Hz, 116 Hz, and

232 Hz for ∆t = 5 and 130 Hz ∆t = 1. The medium grid USM3D ∆t = 5 simulation shows

an increase in broadband noise over the coarse grid simulations. The peaks of force and moment

spectra at 116 Hz and 232 Hz at the same frequencies the 116 Hz and 233 Hz observed in the

∆t = 5 volume apex point spectra. The unsteady forces are broadband for FUN3D with the levels

increasing with grid refinement and from DES to MDDES.
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Figure 26. Power spectral density of forces.

41 of 46

American Institute of Aeronautics and Astronautics



V. Conclusions

The HRLES model in FUN3D and USM3D are applied to the F-16XL-1 in the framework of

the CAWAPI project. Q criteria isosurfaces provide a global view of the vortex structures, their

coherency, and how these vortices interact. Mean surface pressure coefficient at constant BL and

FS indicated that steady RANS SA overpredicted the maximum value of suction peak and predicted

it too near the wing leading-edge. Mean HRLES pressures provide a better comparison to flight

test measurements. The mean pressure coefficient has the most spread between methods in the

wing apex region. The outer wing has clear indication of the average suction peaks of both air

dam and wing leading-edge vortices. The medium 11M node MDDES solution has a different

mean value than the other HRLES models for outer wing upper surface. Both SA resolutions have

a stronger wing leading-edge vortex suction and weaker air dam vortex suction than the HRLES

mean pressure.

The RMS values of unsteady surface pressure coefficients provide a global view of the un-

steadiness and the relative magnitude of the variation over the entire aircraft. The medium grid

HRLES simulations have a quieter wing apex and higher levels of unsteadiness in the outer wing

section than fine grid HRLES. The medium grid HRLES simulations have a patch of unsteadiness

on the side of the forward fuselage not seen on the fine grid or the Q criteria isosurface.

The USM3D simulation had lower levels of RMS pressure at sampled volume points. The fine

grid FUN3D HRLES has higher RMS values for the apex than medium grid HRLES or USM3D.

Many of the volume points over the outer portion of the wing exhibited high RMS values, par-

ticularly at the wing leading-edge and near the air dam. These high levels are most likely due to

vorticies in those regions that can be seen to be spiraling and commingling in the Q criteria iso-

surfaces. The USM3D simulation apex volume points have many pure tones with low broadband

noise. The width of these tones increased with grid refinement. The peak noise of these tones are

similar to fine grid FUN3D broadband noise. The FUN3D simulations show weak tones and a dra-

matic increase in apex broadband noise with grid refinement. The outer wing leading-edge spectra

has a similar broadband shape for all methods. These outer wing points are less sensitive to time

step and grid refinement. There is also less variation between FUN3D and USM3D outer wing
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pressure spectra than wing apex spectra. The medium 11M node grid MDDES has the highest

level of outer-wing leading-edge broadband noise, which is also seen in RMS surface pressures.

The medium 11M MDDES also has a slightly different mean coefficient pressure than the other

three FUN3D HRLES simulations.

The forces and moment spectra are primarily broadband. The exceptions are the tones seen

in the large time step USM3D apex volume points are present in the forces and moments for that

model. The mean values of lift and drag of the FUN3D models are very similar. The mean USM3D

lift, drag, and pitching moment are similar for the two different time step sizes, but lower in lift,

higher in drag, and higher in pitching moment than the FUN3D means.

As seen in previous CAWAPI studies, the HRLES methods provided an improved prediction

of steady surface pressure flight measurements over RANS (in this case SA). The Q criterion

snapshots allowed for an interpretation of how the important flow structures generate, evolve, and

interact. The fusion of Q criterion and standard deviation of pressure fluctuation permitted the

interpretation of the effects of these coherent or commingled vortical structures. The interpretation

of pressure and force fluctuation spectra is still ongoing and may be aided by examining the sim-

ulations in other CAWAPI reports, because unsteady flight or wind tunnel measurements are not

available for comparison.
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