

1 | P a g e

Plan Execution Interchange Language (PLEXIL)

Software User’s Manual

https://ntrs.nasa.gov/search.jsp?R=20190025961 2019-08-31T14:17:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/211015655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 | P a g e

Table of Contents

PURPOSE ... 5

PLEXIL and Safety-Critical Systems ... 5

User Instruction .. 5

3 | P a g e

Notices:

Copyright © 2018 United States Government as represented by the Administrator of the National
Aeronautics and Space Administration. No copyright is claimed in the United States under Title 17, U.S.
Code. All Other Rights Reserved.

This software may be used, reproduced, and provided to others only as permitted under the terms of
the agreement under which it was acquired from the U.S. Government. Neither title to, nor ownership
of, the software is hereby transferred. This notice shall remain on all copies of the software.

License:

The PLEXIL cFE application is licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0/. Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

Disclaimers:

THE SOFTWARE AND/OR TECHNICAL DATA ARE PROVIDED "AS IS" WITHOUT ANY WARRANTY OF ANY
KIND, EITHER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY
THAT THE SOFTWARE AND/OR TECHNICAL DATA WILL CONFORM TO SPECIFICATIONS, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR FREEDOM FROM
INFRINGEMENT, ANY WARRANTY THAT THE SOFTWARE AND/OR TECHNICAL DATA WILL BE ERROR FREE,
OR ANY WARRANTY THAT TECHNICAL DATA, IF PROVIDED, WILL CONFORM TO THE SOFTWARE. IN NO
EVENT SHALL THE UNITED STATES GOVERNMENT, OR ITS CONTRACTORS OR SUBCONTRACTORS, BE
LIABLE FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING FROM, OR IN ANY WAY CONNECTED WITH
THIS SOFTWARE AND/OR TECHNICAL DATA, WHETHER OR NOT BASED UPON WARRANTY, CONTRACT,
TORT, OR OTHERWISE, WHETHER OR NOT INJURY WAS SUSTAINED BY PERSONS OR PROPERTY OR
OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED FROM, OR AROSE OUT OF THE RESULTS OF,
OR USE OF, THE SOFTWARE AND/OR TECHNICAL DATA.

THE UNITED STATES GOVERNMENT DISCLAIMS ALL WARRANTIES AND LIABILITIES REGARDING THIRD
PARTY COMPUTER SOFTWARE, DATA, OR DOCUMENTATION, IF SAID THIRD PARTY COMPUTER
SOFTWARE, DATA, OR DOCUMENTATION IS PRESENT IN THE NASA SOFTWARE AND/OR TECHNICAL
DATA, AND DISTRIBUTES IT "AS IS."

RECIPIENT AGREES TO WAIVE ANY AND ALL CLAIMS AGAINST THE UNITED STATES GOVERNMENT AND
ITS CONTRACTORS AND SUBCONTRACTORS, AND SHALL INDEMNIFY AND HOLD HARMLESS THE UNITED
STATES GOVERNMENT AND ITS CONTRACTORS AND SUBCONTRACTORS FOR ANY LIABILITIES,
DEMANDS, DAMAGES, EXPENSES OR LOSSES THAT MAY ARISE FROM RECIPIENT'S USE OF THE
SOFTWARE AND/OR TECHNICAL DATA, INCLUDING ANY DAMAGES FROM PRODUCTS BASED ON, OR
RESULTING FROM, THE USE THEREOF.

IF RECIPIENT FURTHER RELEASES OR DISTRIBUTES THE NASA SOFTWARE AND/OR TECHNICAL DATA,
RECIPIENT AGREES TO OBTAIN THIS IDENTICAL WAIVER OF CLAIMS, INDEMNIFICATION AND HOLD

http://www.apache.org/licenses/LICENSE-2.0/

4 | P a g e

HARMLESS AGREEMENT WITH ANY ENTITIES THAT ARE PROVIDED WITH THE SOFTWARE AND/OR
TECHNICAL DATA.

NOTWITHSTANDING THE ABOVE, WHEN RECIPIENT IS PROHIBITED BY LAW FROM PROVIDING
INDEMNIFICATION, THE INDEMNIFICATION REQUIREMENTS SPECIFIED ABOVE SHALL NOT APPLY TO
RECIPIENT.

5 | P a g e

PURPOSE

Plan Execution Interchange Language (PLEXIL) is a Core Flight System (or Core Flight Software) (cFS)

based application, developed by the Autonomy Operating System project at NASA. cFS is open-

source, reusable flight software, also developed by NASA and targeted to space missions. PLEXIL

runs within the cFS framework, and is a wrapper integrating the open source PLEXIL Executive into

the cFE infrastructure. Software features include:

 Executes PLEXIL plans stored on local file system

 Can be event-driven or clock-driven

 Intended for “soft real time” discrete control

PLEXIL and Safety-Critical Systems

PLEXIL was not developed to the software standards required to run on and diagnose safety-critical

systems. It is research-level software, Class E and non-safety critical, in the NASA terms defined by

its software procedural requirements document NPR 7150.2. It is released for use in non-critical

research systems and demonstration projects. PLEXIL has gone through some internal software

engineering procedures, such as requirements verification and internal code reviews, so it is hoped

that the software runs as expected, but these were not done to the level required for higher

classifications by NPR 7150.2.

User Instruction

Getting the Code:

PLEXIL is expected to be released for general source release by the NASA software office. To get

PLEXIL, start at http://software.nasa.gov and search for “PLEXIL”. Follow the instructions on the page

to request the software. Additional information about the PLEXIL Executive can be found at

http://plexil.sourceforge.net/wiki/index.php/Main_Page.

Integrating PLEXIL into the cFS build:

Prebuilding the PLEXIL distribution for your target platform is recommended. The files

plexil/scripts/update-plexil32.sh and plexil/scripts/update-plexil64.sh are used

to check out and build the PLEXIL Executive libraries and tools required by the PLEXIL cFE app for a

Linux cFE environment. They install the PLEXIL includes into plexil/include, the libraries into

plexil/lib and plexil/lib64 respectively, and the compiler into plexil/jars. These products

can be checked into a source code repository for convenience.

To build the PLEXIL cFE app, simply add the target plexil to the list of CMake targets for one or

more CPUs.

The CMake script file cfe/cmake/plexil.cmake implements a CMake rule add_plexil_plans for

compiling PLEXIL plans during the cFS build process, and installing them into the cFS image.

http://software.nasa.gov/
http://plexil.sourceforge.net/wiki/index.php/Main_Page

6 | P a g e

The file apps/plexil/fsw/mission_inc/interface.xml is a sample interface configuration file

for the PLEXIL cFE app.

Interfacing to PLEXIL step-by-step guide:

Every cFS project will require some custom interfacing. This section explains how to implement it.

See the include files in plexil/include and aos/apps/plexil/fsw/src for the PLEXIL classes

and types named in this guide.

1. PLEXIL has a limited repertoire of types. It has:

 Boolean (true/false);

 Integer (32-bit signed int);

 Real (IEEE double float);

 String (C++ std::string);

and one-dimensional arrays of each of the preceding types (BooleanArray, IntegerArray,

RealArray, StringArray).

2. The Value class is a discriminated union capable of representing any of the above, as well as

some types used only internally. The information coming from and going to the PLEXIL cFE app

must be expressible in Value instances.

3. PLEXIL has well-defined APIs for querying and commanding external devices and the

environment.

 A State is a tuple of a lookup name (a String), and zero or more Value instances

representing parameters to the lookup call.

 A Command also has a name and zero or more parameters, and is associated with a command

status value (the enumeration CommandHandle) and an optional return value.

 The abstract base class InterfaceAdapter is the API seen by the PLEXIL Exec for interfacing

to the outside world.

 The abstract base class AdapterExecInterface defines the API for getting data back into

PLEXIL from the external environment.

4. The PLEXIL cFE app - specifically the CfeAdapter class - uses table lookups to dispatch

commands and to interpret incoming cFE Software Bus messages. These handlers are C++

functions with the following signatures:

 Command handlers: void myCommandHandler(Command *cmd, AdapterExecInterface
*intf);

 Message handlers: void myMessageHandler(CFE_SB_Msg_t
*msgHdr, AdapterExecInterface *intf);

7 | P a g e

5. A command handler should digest the command parameters, perform the requested function,

and send back command acknowledgement to the PLEXIL Exec. A typical command handler

might look like this:

#include "AdapterExecInterface.hh"

#include "Command.hh"

void my_command_handler(Command *cmd, AdapterExecInterface *mgr)

{

 // Extract parameters from command

 Integer n;

 Real x;

 cmd->getArgValues()[0].getValue(n);

 cmd->getArgValues()[1].getValue(x);

 // Perform the command

 call_my_subsys(n, x);

 // Acknowledge the command has been sent

 mgr->handleCommandAck(cmd, COMMAND_SENT_TO_SYSTEM);

}

6. A message handler should extract the relevant information from the cFE Software Bus message,

turn it into Value instances, and send it back to the Exec. A typical message handler might look

like this:

#include "AdapterExecInterface.hh"

extern "C" {

#include "cfe_sb.h"

}

void my_message_handler(CFE_SB_Msg_t *msgHdr, AdapterExecInterface *mgr)

{

 // Extract data from message

 const My_Msg_t *myMsg = (My_Msg_t *) msgHdr;

 Value n = (Integer) myMsg->my_subsys_n;

 Value x = (Real) myMsg->my_subsys_x;

 Value ret = (String) myMsg->my_command_result;

 // Send it to PLEXIL

 mgr->handleValueChange(State("MySubsysN"), n);

 mgr->handleValueChange(State("MySubsysX"), x);

 // Send a command return value

 mgr->handleCommandReturn(stored_cmd, ret);

 // Acknowledge the command has been completed

 mgr->handleCommandAck(stored_cmd, COMMAND_SUCCESS);

}

7. Register your handlers with the PLEXIL cFE app:

#include "CfeAdapter.hh"

void init_my_handlers()
{
 // Set message and command handlers
 CfeAdapter &adapter = CfeAdapter::instance();
 adapter.setMessageHandler(my_message_handler, MY_MESSAGE_MID);

8 | P a g e

 adapter.setCommandHandler(my_command_handler, "MY_COMMAND");
}

Add a call to init_my_handlers() to the function plexil_initialize_interfaces() in

apps/plexil/fsw/src/exec_app.cc, after the call to theApp->initialize().

