NASA

National Aeronautics and Space Administration

Electrical, Electronic and Electromechanical (EEE) Parts for Spaceflight Applications

A NASA Electronic Parts and Packaging Historical Perspective

Michael J. Sampson NEPAG Manager michael.j.sampson@nasa.gov

This work was sponsored by NASA Office of Safety & Mission Assurance

www.nasa.gov

Acronyms (1 / 2)

Abbreviation	Definition	Abbreviation	Definition	
AF	Air Force	IC	Integrated Circuit	
BGA	Ball Grid Array	IEEE	Institute of Electrical and Electronics Engineers	
BN	Bayesian Network	JAN	Joint Army-Navy	
BoK	Body of Knowledge	JPL	Jet Propulsion Laboratory	
CMOS	Complementary Metal Oxide Semiconductor	JSC	Johnson Space Center	
COTS	Commercial Off the Shelf	LaRC	Langley Research Center	
CPU	Central Processing Unit	LGA	Land Grid Array	
DDR	Double Data Rate	MAPLD	Military and Aerospace Programmable Logic Devices (Workshop)	
DLA	Defense Logistics Agency	MBMA	Model-Based Mission Assurance	
DMEA	Defense Microelectronics Activity	MIL	Military	
DoD	Department of Defense	MRAM	Magnetic Random Access Memory	
DoE	Department of Energy	MSFC	Marshall Space Flight Center	
EEE	Electrical, Electronic, and Electromechanical	NASA	National Aeronautics and Space Administration	
ELDRS	Enhanced Low Dose Rate Sensitivity	NEPAG	NASA Electronic Parts Assurance Group	
ESA	Europeans Space Agency	NEPP	NASA Electronic Parts and Packaging (Program)	
ESTEC	European Space Research and Technology Centre	NESC	NASA Engineering and Safety Center	
ETW	Electronics Technology Workshop	NODIS	NASA Online Directives Information System	
FBC	Faster, Better, Cheaper	NPR	NASA Procedural Requirement	
FPGA	Field Programmable Gate Array	NPSL	NASA Parts Selection List	
GaN	Gallium Nitride	NRO	National Reconnaissance Office	
GIDEP	Government Industry Data Exchange Program	NSREC	Nuclear and Space Radiation Effects Conference	
GPU	Graphics Processing Unit	OCE	Office of the Chief Engineer	
GRC	Glenn Research Center	OGA	Other Government Agency	
GSFC	Goddard Space Flight Center	OSMA	Office of Safety and Mission Assurance	
GSN	Goal Structuring Notation	PA	Parts Analysis	
GWG	Government Working Group	PIC	Photonic Integrated Circuit	
HDBK	Handbook	PIND	Particle Impact Noise Detection	
HQ	Headquarters	POC	Point of Contact	

To be presented by Michael Sampson at NEPP Electronics Technology Workshop, Goddard Space Flight Center on June 17, 2019

Abbreviatio	on Definition	Abbreviatio	on Definition	
PoF	Physics of Failure	SMC	Space and Missile Systems Center	
PPL	Preferred Parts List	SOA	Safe Operating Area	
QML	Qualified Manufacturers List	SoC	System on a Chip	
QPL	Qualified Products List	SRAM	Static Random Access Memory	
RF	Radio Frequency	SSAI	Science Systems and Applications, Inc.	
RH	Radiation Hardened	STD	Standard	
RHA	Radiation Hardness Assurance	STMD	Space Technology Mission Directorate	
RoHS	Restrictions on the use Of certain Hazardous Substances	STT	Spin Transfer Torque	
SAPP	Space Asset Protection Program	SysML	System Modeling Language	
SCD	Source Control Drawing	TID	Total Ionizing Dose	
SDRAM	Synchronous Dynamic Random Access Memory	TSV	Thru-Silicon Via	
SEE	Single-Event Effects	USA	United States of America	
SEM	Scanning Electron Microscope	USAF	United States Air Force	
SiC	Silicon Carbide	USSR	Union of Soviet Socialist Republics	
SMA	Safety and Mission Assurance			

History Doesn't Repeat Itself But it Rhymes!

The 1950s Beginning of the Space Age

• 1957 October:

USSR launch and deployment of *Sputnik 1* Unofficially marks beginning of the space age.

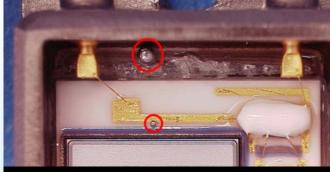
 Beginning of intense spaceflight rivalry between the USA and USSR

• **1958 January:** USA launch and deployment of *Explorer 1 After a series of failures*

- Design and manufacturing defects in EEE parts were suspects in premature system failures
- EEE parts were typically commercial and standard military quality, aggressively tested (upscreened)

https://www.nasa.gov/multimedia/imagegallery/image_feature_924.html

https://www.nasa.gov/mission_pages/explorer/explorer-overview.html


Unclassified / Open Access The 1960s

The First Specifications & Products Specifically for Spaceflight Use

• Application specific features:

Electricals and environmentals from -55°C to 125°C or wider				
Hermetic packaging	Resistance to flammability and outgassing			
Strict visual inspection	High vibration and shock levels			
Conservative derating	Radiation tolerance			

Solder Balls NASA GSFC PA Lab Report J12121

- **1962:** NASA MSFC developed the 85MO microcircuit requirements
- 1962: Preferred Parts Lists PPL-100 (MSFC), PPL-1 (GSFC)
- **1968:** NASA developed MIL-STD-976 *Certification Requirements for JAN (Joint Army-Navy) Microcircuits*
- 1968: MIL-STD-883 Test Method Standard for Microcircuits
- 1969: MIL-M-38510 (microcircuits)
 - Established Class Levels A and B.
 - NASA MSFC certified the first compliant lines
- **1969:** MSFC published first visual inspection std for transistors and diodes
- **1969:** MIL-STD-883 test method 2018 Particle Impact Noise Detection (PIND)
 - Solder balls were a serious threat in the early days

The 1970s

EEE Parts Standardization for Space Begins

- **1970:** MSFC promoted development of the tantalum cased wet slug capacitor, CLR79, to replace the silver-cased CLR65 which tended to short circuit
- 1970: MIL-STD-883 TM 2020 for scanning electron microscope (SEM) inspection
- 1970: JPL Preferred Parts List published
- 1972: NASA hybrid line certification program was established
- **1972:** Class S* was added to MIL-S-19500
- 1973: USAF-SD published MIL-M-0038510 for Class S* microcircuits
- 1975: Class A in MIL-M-38510 was changed to Class S* so USAF-SD could cancel M0038510
- 1976: MIL-STD-975, the NASA Standard Parts List was published
- 1978: Novel test methods were developed to reduce the risk of low voltage failures in plastic film capacitors
 Apollo Lunar Roving Vehicle
- **1978:** MIL-HDBK-978, NASA Parts Application Handbook was published, in five volumes

*Class S indicates space grade

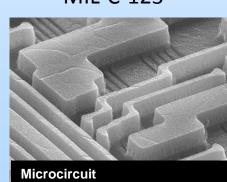
https://nssdc.gsfc.nasa.gov/planetary/lunar/apollo_lrv.html

The 1980s

Decade of Transformative Space-Focused Documentation Influenced by NASA

- MIL-STD-1546 Parts, Materials, And Processes Control Program For Space And Launch Vehicles – USAF-SD
- MIL-STD-1547 Military Standard For Space And Launch Vehicles USAF-SD
 - DoD Test Method Standard: Destructive Physical Analysis (DPA) for EEE Parts – USAF-SD
 - MIL-STD-1772 Certification Requirements For Hybrid Microcircuit Facilities And Lines
- Class S* Capacitors

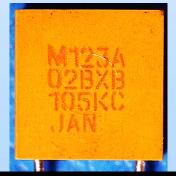
MIL-STD-1580


MIL-C-87217 MIL-C-87164 MIL-C-123

(metallized film-CHS) (mica- CMS) (ceramic-CKS)

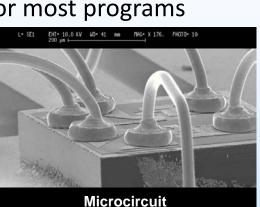


•


Power Rectifier NASA GSFC PA Lab Q60698

NASA GSFC PA Lab J16093

Optocoupler NASA GSFC PA Lab J16233



Ceramic Capacitor NASA GSFC PA Lab J14094

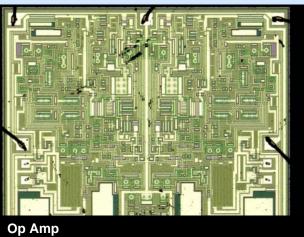
NASA EEE Parts Concerns (1987) From a NASA Status Report

- Inadequate availability of Class S* and B military parts
 - Vendor-screened parts or SCDs almost mandatory for most programs
- High dropout rates observed during "rescreening" of vendor-screened devices (i.e., vendor "883 compliant")
- "Off-Shore" Manufacturing Risks
 - Quality control of processes and lines unknown
 - Changes in critical quality factors and production methods can occur without knowledge of the user
- Manufacturers show little interest in providing EEE parts to NASA quality levels due to fragmented procurements and low quantity buys
- Increased frequency of "particle" issues due to poor contamination controls at some suppliers
- Low priority of funds for conference travel and specialized training preclude keeping pace with changes and advancements in parts industry
- NASA Centers extremely thin in expertise in many areas

*Class S indicates space grade

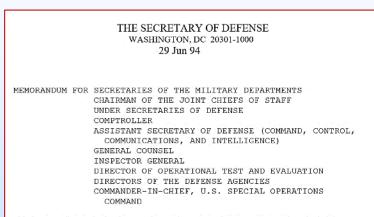
NASA GSFC PA Lab Q50006

The Early 1990s


Transformation from QPL to QML for Military Hybrids and Microcircuits

QML-38534-1 (1989) & QML-38535-1 (1990)

- A revolutionary change intended to
 - Reduce manufacturing costs
 - Encourage qualification of a wider span of microcircuit technologies and types
 - Speed that qualification
 - Accommodate offshore supply chain elements
 - Encourage the standardization of new technologies
 - Generally facilitate participation in a vibrant QML program for Class K* hybrids and Class V* microcircuits


*Class K and V indicate space grade

Op Amp NASA GSFC PA lab J18235

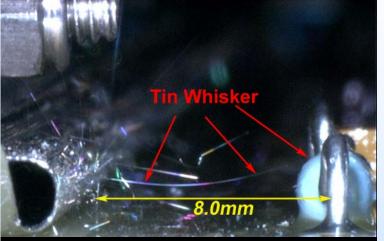
But Then There Was ...

- 1992: Faster, Better, Cheaper (FBC) for NASA
 - Initiative of Daniel Goldin/NASA Administrator
 - Inside Agency Comment -- "Pick 2"
- 1994: Acquisition Reform for the Military
 - The "Perry Memo" William Perry/Secretary of Defense
 - Also driven by Faster, Better, Cheaper although not stated as such
 - Directed the greater use of commercial and performance specs
 - Military Specifications canceled or converted to Performance Specifications "unless no practical alternative exists to meet the user's needs"

SUBJECT: Specifications & Standards - A New Way of Doing Business

To meet future needs, the Department of Defense must increase access to commercial state-of-the-art technology and must facilitate the adoption by its suppliers of business processes characteristic of world class suppliers. In addition, integration of commercial

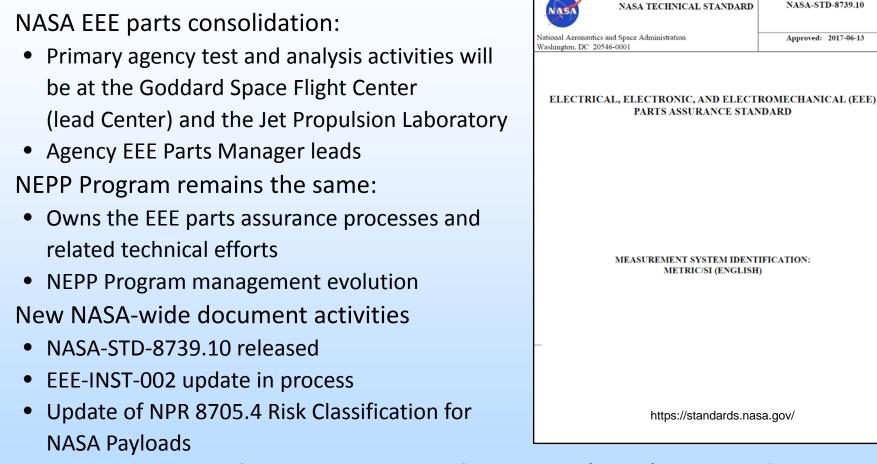
- "If it is not practicable to use a performance specification, a non-government standard shall be used."
- Waivers required for the use of Military Specifications and Standards
- Attempted purge of all "how to" content, content often based on more than 30 years of painful experience
- Memo encouraged formation of "partnerships with industry associations to develop nongovernment standards for replacement of military standards where practicable."



- EEE parts management responsibility delegated to each NASA Center. The following Center-Specific Parts Selection Documents persist
 - GSFC 311-INST-001 (now EEE-INST-002) also used by LaRC and GRC
 - MSFC MSFC-STD-3012
 - JSC SSP 30312, Space Station document
 - JPL JPL-D-20348
- **1995:** Cancelation of MIL-HDBK-978 NASA Parts Application Handbook
- **1997:** Predecessor of NEPP released the on-line NASA Parts Selection List (NPSL) to capture important content from MIL-STD-975 before it was lost
 - The NPSL captures "standard" EEE parts lessons learned
 - Not intended to be contractually imposed
- 1998: Cancelation of MIL-STD-975 NASA Standard EEE Parts List

2000s Global Supply Chain Issues

- RoHS Restrictions On the use of certain Hazardous Substances (European Union) Forces Others to Develop
 - Pb-free Electronics Risk Control Plans
 - Tin Whisker Mitigation
 - Prohibited Materials Analyses
- Counterfeit Parts Control Plans
- Non-Hermetic Microcircuit Packaging
- COTS, Automotive Grade Parts for Space?
- ELDRS and other Radiation Effects Concerns
- Obsolescence Management
- Challenges Looking Ahead
 - Commercial vs. Government Space
 - Copper Bond Wires
 - Free flow of communication with International Partners
 - Complexity of semiconductor technologies at the nanometer scale


Tin Whiskers on Tin-Plated Printed Circuit Card Guides Space Shuttle Endeavour (~2006)

Evolution of NASA Parts Management

YEAR	Activity	Lead Center	HQ Oversight	Comments
1950s and 1960s	Assurance and Reliability requirements evolve at the individual Center Level	N/A	?	
1975	NASA Standard Parts Program	MSFC	Engineering	Responsible for MIL-STD-975, NASA Standard EEE Parts List
1984	Program moved to GSFC	GSFC	Assurance	Focus realigned to assurance
1987	MSFC Annual Report	GSFC	Assurance	List of Concerns still valid today
1992	Packaging effort begins	GSFC	Assurance	Recognition of the growing challenges
1995	NASA Parts Project Office transition to the NASA Parts and Packaging Program	GSFC	Assurance	Impact of Acquisition Reform and Faster Better Cheaper
1996	Program now called NASA EEE Parts Advanced Interconnect and Radiation Program (EEE/AI/RAD	GSFC and JPL	Engineering	Focus on new and emerging technologies
1998	NASA Electronic Parts and Packaging Program (NEPP)	GSFC	Engineering	Post Acquisition Reform realignment. Included radiation hardness assurance (RHA)
2000	NASA EEE Parts Assurance Group (NEPAG) formed	GSFC	Assurance	Focus supply chain, standardization and EEE part failure investigation
2003	NEPAG becomes part of the NASA Electronic Parts and Packaging Program (NEPP)	GSFC	Assurance	Combined NEPP focus on advanced technologies and RHA with NEPAG's focus on current technologies and standardization
2017	NEPP continues as an OSMA Delegated Program	GSFC	Assurance	NEPP Focuses on assurance of EEE parts from TRL 4 to 9
2018-19	Consolidation as the NASA OSMA Delegated Program	GSFC	Assurance	EEE Parts Consolidation emphasizes NASA standardization under NPR8739.10

NASA EEE Parts – Evolving Structure in 2019

 A new organization, the Government Working Group (GWG) was stood up in 2017 to focus on standardization of space level requirements, both government and Industry

NASA-STD-8739.10

Approved: 2017-06-13

Acknowledgement

Much of the content of this presentation prior to 1990 was borrowed from Mr. Leon Hamiter's paper,

THE HISTORY OF SPACE QUALITY EEE PARTS IN THE UNITED STATES,

Presented at the ESA Electronic Components Conference, ESTEC, Noordwijk, The Netherlands, 12 - 16 November 1990, ESA SP-313 (March 1991)

Leon was a major figure in the development of assurance test and process requirements for space grade parts and was responsible for the creation of MIL-STD-975. Leon served 23 years at NASA MSFC

THANK YOU, LEON (and JAY)