
Citation: Liao, Yong, Shen, Xuanfan, Sun, Guodong, Dai, Xuewu and Wan, Shaohua (2019) 
EKF/UKF-based channel estimation for robust and reliable communications in V2V and IIoT. 
EURASIP Journal on Wireless Communications and Networking, 2019 (1).  p.  144. ISSN 
1687-1499 

Published by: Springer

URL: https://doi.org/10.1186/s13638-019-1424-2 <https://doi.org/10.1186/s13638-019-1424-
2>

This  version  was  downloaded  from  Northumbria  Research  Link: 
http://nrl.northumbria.ac.uk/39666/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to 
access the University’s research output. Copyright © and moral rights for items on NRL are 
retained by the individual author(s) and/or other copyright owners.  Single copies of full items 
can be reproduced,  displayed or  performed,  and given to third parties in  any format  or 
medium for personal research or study, educational, or not-for-profit purposes without prior 
permission or charge, provided the authors, title and full bibliographic details are given, as 
well  as a hyperlink and/or URL to the original metadata page.  The content must  not  be 
changed in any way. Full  items must not be sold commercially in any format or medium 
without  formal  permission  of  the  copyright  holder.   The  full  policy  is  available  online: 
http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been 
made available online in accordance with publisher policies. To read and/or cite from the 
published version of the research, please visit the publisher’s website (a subscription may be 
required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/210991309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


Liao et al. EURASIP Journal onWireless Communications and
Networking        (2019) 2019:144 
https://doi.org/10.1186/s13638-019-1424-2

RESEARCH Open Access

EKF/UKF-based channel estimation for
robust and reliable communications in V2V
and IIoT
Yong Liao1, Xuanfan Shen1, Guodong Sun1, Xuewu Dai2 and Shaohua Wan3*

Abstract

Cyber-physical systems (CPSs) are characterized by integrating computation, communication, and physical system. In
typical CPS application scenarios, vehicle-to-vehicle (V2V) and Industry Internet of Things (IIoT), due to doubly
selective fading and non-stationary channel characteristics, the robust and reliable end-to-end communication is
extremely important. Channel estimation is a major signal processing technology to ensure robust and reliable
communication. However, the existing channel estimation methods for V2V and IIoT cannot effectively reduce
intercarrier interference (ICI) and lower the computation complexity, thus leading to poor robustness. Aiming at this
challenge, according to the channel characteristics of V2V and IIoT, we design two channel estimation methods based
on the Bayesian filter to promote the robustness and reliability of end-to-end communication. For the channels with
doubly selective fading and non-stationary characteristics of V2V and IIoT scenarios, in the one hand, basis extended
model (BEM) is used to further reduce the complexity of the channel estimation algorithm under the premise that ICI
can be eliminated in the channel estimation. On the other hand, aiming at the non-stationary channel, a channel
estimation and interpolation method based on extended Kalman filter (EKF) and unscented Kalman filter (UKF)
Bayesian filters to jointly estimate the channel impulse response (CIR) and time-varying time domain autocorrelation
coefficient is adopted. Through the MATLAB simulation, the robustness and reliability of end-to-end communication
for V2V and IIoT are promoted by the proposed algorithms.
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1 Introduction
Cyber-physical systems (CPSs) are multidimensional
complex systems with real-time perception, dynamic
control, and information services, which consist of com-
prehensive computing, networking, and physical environ-
ments to implement information integration and deep
collaboration using computing, communication, and con-
trol technologies (3Cs) [1–3]. CPS realizes the integrated
design of computing, communication, and physical sys-
tem, which can make the system more reliable and high
efficient and realize real-time collaboration. Therefore, it
has broad application prospects [4–6].
As an intelligent system, any problems in any link

may affect the normal operation of the CPS, resulting in
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equipment damage, lower economic benefits, and even
casualties. Thus, the stability of CPS, which is an enor-
mous challenge in system design, should be considered
and improved [4]. The stability of CPS mainly includes
system reliability and robustness1. Firstly, to ensure the
system reliability of operation, CPS should respond to
the input of the system timely and effectively. In par-
ticular, for the auto-vehicle system (shown in Fig. 1)
in the vehicle-to-vehicle (V2V) communication scenario,
extremely high reliability for system communication is
required [7]. Extremely demanding, traffic order and pas-
senger safety are guaranteed only when the system can
send the correct driving instructions to the target vehicle
terminal quickly. Secondly, it is still necessary to ensure
the system’s robustness. In particular, for the process
control system (shown in Fig. 2) in the Industry Inter-
net of Things (IIoT) communication scenario, it requires
extremely high robustness of system communication [8].
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Fig. 1 The schematic diagram of V2V channel scene. This figure
illustrates V2V communication scenario

With the movement of the terminal, the channel state may
change drastically in a short period of time, and the elec-
tromagnetic environment in the factory is complicated.
So, the system should be able to effectively complete the
data transmission in the case of frequently switching of
the channel state.
At the communication system receiver, channel estima-

tion plays an important role in improving the reliability
and robustness of the communication system in different
communication scenarios. The pilot symbols are firstly
utilized to obtain the channel impulse response (CIR) of
the partial frequency or time in channel estimation, and
then, the channel interpolation method is used to cal-
culate the channel response of the entire time-frequency
domain resource block [9]. Finally, the estimated channel
response for channel equalization is utilized to eliminate
the wireless signal distortion and interference introduced
by the channel during signal propagation. Therefore, in
order to improve the reliability and robustness of CPS, the
physical channel features of the V2V and IIoT should be
analyzed and studied. The V2V communication scenario
is shown in Fig. 1. Because the terminal is in the state of
high-speed movement, the channel will exhibit the selec-
tive fading (doubly selective fading) in the time-frequency
domain under the combination of multipath effect and the
Doppler effect [7, 10]. At the same time, some recent stud-
ies have pointed out that the time-domain autocorrelation

coefficient of the CIR appears time-varying or non-
stationary characteristics due to the rapidly time-varying
characteristics of the geometric parameters of the beam
between the receiving antenna array and the base station.
For the IIoT scenario shown in Fig. 2, due to the influence
of various scatters in the factory, the number of taps of the
channel is time-varying [8, 11]. It means that the transmis-
sion path of the wireless channel includes not only a direct
path but also scatter paths and dynamic paths. Therefore,
the time domain autocorrelation function of the chan-
nel also exhibits time-varying characteristics. At the same
time, in the communication scenario of IIoT, since the
scatters in the factory are very rich and in moving states,
the channel will also show the doubly selective fading
characteristics.
According to the form of its estimated channel response,

the channel estimation methods can be classified into the
time domain and frequency domain channel estimations,
respectively. It is worthy mentioning that the methods
of time domain channel estimation can effectively elim-
inate the intercarrier interference (ICI) in the channel
estimation because the CIR is estimated directly. Since
this paper is aimed at the scenario of the doubly selec-
tive fading channel that may exist severe ICI, the time
domain channel estimation method is adopted. More-
over, the basis expansion model (BEM) can effectively
reduce the complexity of the estimation by transform-
ing the CIR to a low dimensional space formed by the
base vector. At the same time, the damage of the channel
information can be almost ignored by the selection of a
reasonable base vector. Consequently, the BEM has been
widely applied in channel estimation for doubly selective
channels [10, 12].
In view of the non-stationary characteristics of the

channel, based on Bayesian filter, our previous research
results have pointed out that the joint estimation of the
CIR and the time domain autocorrelation coefficient of
time-varying channel is an effective method for tracking
the response changes of non-stationary channels.
In our previous research [13], a non-stationary chan-

nel estimation method based on extended Kalman filter
(EKF) is proposed. However, the method is limited by
its model and cannot effectively deal with ICI. Therefore,
the estimation accuracy is low and it is not applicable to
communication scenarios such as V2V or IIoT.
In summary, in order to improve the robustness and

reliability of the end-to-end communication link of CPS,
channel estimation and interpolation is implemented
based on Bayesian filtering and the theories of BEM,
joint estimation of channel response, and time domain
correlation coefficient. Finally, the accuracy of channel
estimation and the ability of combat complex and variable
communication environments could be improved.
The main contributions of this paper are as follows:
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Fig. 2 The schematic diagram of IIoT channel scene. This figure illustrates the IIoT communication scenario

1. For the channels with doubly selective fading charac-
teristics of V2V and IIoT scenarios in CPS, BEM is used to
further reduce the complexity of the channel estimation
algorithm under the premise that ICI can be eliminated in
the channel estimation.
2. Based on the non-stationary characteristics of the

channels in V2V and IIoT scenarios, this paper uses chan-
nel estimation and interpolation method based on EKF
and unscented Kalman filter (UKF) Bayesian filters to
jointly estimate the CIR and time-varying time domain
autocorrelation coefficients.
3. The system complexity of the proposed algorithms is

further analyzed. Due to the fact that the BEM is utilized,
the CIR matrix is transformed from N dimension to QL
dimension (QL � N), whereN is the number of subcarri-
ers, Q and L denote the dimension of basis vector and the
number of taps, respectively. Thus, the complexity of the
channel estimation algorithms including least square (LS),
EKF, and UKF is greatly reduced.
4. Through the MATLAB simulation platform, we com-

pare the normalized minimum mean error (NMSE) and
bit error rate (BER) performance of the LS, EKF, and
UKF BEM-based channel estimation algorithms at differ-
ent terminal moving velocity in the V2V scene, as well as
the NMSE and BER performance under the condition of
different taps in the IIoT scene. The mean and variance of
the BER are listed under the conditions of different chan-
nel estimation algorithms at different terminal moving
speeds and taps. Simulation results show that the pro-
posed channel estimation methods could be applied to
V2V and IIoT scenarios to promote the robustness and
reliability of end-to-end communication.
The rest of this paper is organized as follows. In

Section 2, the related works are presented and analyzed.

In Section 3, both the system model and channel model
are presented. In Section 4, we propose the BEM-EKF and
BEM-UKF channel estimation methods, including state
space model, updating equation, and analyzing of com-
plexity. In Section 5, the performances of the proposed
methods are compared with the traditional methods in
V2V and IIoT environments by MATLAB. Finally, the
conclusion is discussed in Section 6.

2 Related work
2.1 The robust communications in V2V
For the past few years, the Internet of Vehicle (IoV) com-
munication has successfully verified its superiority in var-
ious fields. In order to improve traffic safety by adopting
advanced wireless communication systems, further inves-
tigations and studies on V2V are carried out widely. Based
on the channel measurement method, literatures [14] and
[15] show that the V2V channel is time-varying and non-
stationary due to the mobility of the transmitter/receiver
terminal or the existence of dynamic scatters. Thus, set-
ting up future measurement campaigns and proposing
more realistic V2V channel models are the two challenges.
To ensure frequency non-selectivity and minimum ICI,
the performance analysis of orthogonal frequency division
multiplexing (OFDM)-based V2V communication system
is reported in [16], which aims to alleviate the Doppler
spread of vehicles when driving at high speed. Time varia-
tion and its time-frequency domain selectivity of channel,
which lead to non-stationarity characteristic, are further
discussed in [17], and the non-stationarity characteris-
tic of V2V channels is one of the key factors that must
be considered in establishing a correct channel model. In
order to take advantage of upcoming V2V applications, a
robust method of communication between vehicles must
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be established. Literature [18] points out that the main
challenge of V2V communication system is the robustness
of the entire communication system caused by extremely
fast time-varying channel characteristics in high speeds
and the high mobility of the environment. Therefore,
the channel response of the system must be accurately
estimated before it can be used for equalization, demodu-
lation, and decoding. Thus, accurate and reliable channel
estimation is critical to the overall system performance.
In [19], a channel estimation scheme is proposed by
constructing pilots using the data symbols and properly
exploiting the correlation characteristics of V2V channels.
Three different Doppler shifts in the vehicle networking
environment are compared by using simulation, which
proves that the proposed constructed data pilot (CDP)
estimation scheme has a good robustness, especially in
high signal-to-noise ratio (SNR) regime. The method for
reducing the complexity associated with the estimation
and equalization of a doubly selective channel is proposed
in [20]. However, it will reduce the system robustness.
Meanwhile, the author also proposes a new algorithm of
Gradient Rake-Matching Pursuit (GRMP) algorithm to
reduce complexity and improve system robustness. Three
channel estimation and tracking algorithms, Finite Alpha-
bet with Time Truncation (FA-TT), Minimum Distance
with Time Truncation (MD-TT), and Decision Directed
with Time Truncation (DD-TT) are reposted in [21].
Those algorithms obtain very high performance in low
mobile environments as well as fast varying channels,
whichmeet the requirements of improving system robust-
ness. In [22], non-stationary channel models based on the
well-known tapped delay line (TDL) model are used; the
authors compare the BER performance of different chan-
nel interpolation algorithms at different moving speeds,
which reveals that the robustness can be further improved
since the performance degradation from the optimum
performance is still significant.

2.2 The robust communications in IIoT
In recent years, in addition to the IoV, wireless communi-
cation and networking have been introduced into indus-
trial systems due to the advantage of cable-free deploy-
ment [23]. Because of the presence of significant noise and
interference effects caused by large machinery and heavy
multipath propagation effects caused by highly reflective
structures [24], the performance of the wireless channel
in an industrial environment are different with the radio
channels in home and office environments. In order to
avoid the problems of industrial equipment damage, secu-
rity risks and economic losses due to the instability of the
wireless network, the approaches to improve the stabil-
ity and reliability of the wireless network are urgent. The
studies on the fading channel in industrial scenarios last
over decades. Measurement-based approach examining

the fading effect of the factories environment are reported
in [25, 26], and the results identify that the industrial
channel still follows the classical propagation principle
and the existence of heavy temporal fading effect. The
work in [27] attempts to model the time variant mobile
peer-to-peer fading effect with the extension to the classi-
cal mobile channel model. A state of the art survey on the
industrial fading channel has been provided in [24], which
confirms the temporal fading effects. Since doubly selec-
tive or time-varying multipath channels caused by the
propagation channel environment of IIoT will affect the
robustness of the entire communication system [20]. In
addition, since the channel state is varying and the equal-
izer must be constantly updated to match the channel
changing, it is difficult to realize estimation and equal-
ization simultaneously [28, 29]. A low-complexity channel
estimation scheme based on compressed sensing in IIoT
environment is proposed in [20], and the simulations
results show that the proposed method can effectively
improve the robustness of the system.

3 Systemmodel
With the rapid development of communication technol-
ogy, people are pursuing high-speed and stable wireless
data transmission. At the same time, the shortage of
frequency band resources is becoming more and more
serious. The OFDM communication system uses multi-
carrier modulation to improve the data transmission rate
and effectively combat the influence of multipath fading,
and the positive subcarrier modulation greatly improves
the utilization rate of the frequency band. It can be seen
that the OFDM system satisfies the needs of modern
wireless communication technology. The IEEE 802.11p
protocol used in the V2V and the IEEE 802.15.4 protocol
commonly used in the IIoT all use the block pilot insertion
[30, 31]. Therefore, we use the OFDM communication
system based on block pilot as the basis of the research as
shown in Fig. 3.
Considering an OFDM systemwithN subcarriers, there

are I OFDM symbols in a subframe. si (n) is defined as a
transmitted symbol at ith OFDM symbol on nth subcar-
rier, and the vector of transmitted symbols at ith OFDM
symbol is si = [si (0) , . . . , si (N − 1)]T. TheOFDMmodu-
lation for si, inverse discrete Fourier transforming (IDFT),
can be expressed as

Si = FHsi (1)

where Si = [Si (0) , . . . , Si (N − 1)]T is the transmitted
sequences in time domain and [F]n,k = 1√

N exp
(−j 2πN kn

)

is the Fourier transforming matrix. Then, the OFDM
communication model can be described as

yi = Hisi + zi (2)
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Fig. 3 Frame structure and pilot pattern. OFDM communication system based on block pilot satisfies the needs of modern wireless communication
technology

where yi = [
yi (0) , . . . , yi (N − 1)

]T is the vector of
received symbols at the ithOFDM symbol, zi is an additive
complex Gaussian noise with zero mean, and covariance
matrixQz = σ 2

z IN , where the σ 2
z is variance of zi, andHi ∈

C
N×N denotes the channel frequency response (CFR)

matrix at ith OFDM symbol, which could be described by
the CFR matrix as

Hi=FgiFH (3)

where the gi ∈ C
N×N is the CIR matrix at ith OFDM

symbol

gi=

⎡

⎢⎢⎢
⎣

hi(0, 0) 0 · · · hi(0, L − 1) · · · hi(0, 1)
hi(1, 1) hi(1, 0) 0 · · · · · · hi(1, 2)

...
. . . . . . . . . . . .

...
0 · · · 0 hi(N − 1, L − 1) · · · hi(N − 1, 0)

⎤

⎥⎥⎥
⎦

where the hi (k, l) is the kth CIR sample point on lth tap at
ith OFDM symbol.
Under the doubly selective channel condition, the fre-

quency domain channel estimation methods cannot elim-
inate ICI, and the time domain channel estimation
methods can effectively eliminate the impact of ICI by
directly estimating the CIR. However, the time domain
channel estimation needs a complete CIR in a symbolic
time, which greatly increases the number of parame-
ters to be estimated. Therefore, the BEM is adopted to
reduce the space complexity of channel estimation. For

the BEM channel model, the selection of base vectors is
the key issue. According to the difference of base vectors,
the BEM channel model also includes complex exponen-
tial BEM (CE-BEM), prolate spheroidal BEM (PS-BEM),
Karhunen-Loeve BEM (KL-BEM), and polynomial BEM
(P-BEM) [32]. Because the base vectors of CE-BEM are
easy to acquire, which does not depend on additional
channel statistical information, and they are pairwise
orthogonal, the CE-BEM is chosen as the basic channel
model in this paper.
Assuming that the number of taps of multi-path channel

is L, the CIR could be described by CE-BEM as

hi (k, l) =
Q−1∑

q=0
bk,qc

q
i,l = bTk ci,l (4)

where Q is the dimension of base vectors (Q � N) and
bk = [

bk,0, . . . , bk,Q−1
]T is the kth base vector and bk,q =

exp
(
j2π(q−Q)k

N

)
. Due to the fact that the CE-BEM is

adopted, ci,l =
[
c(0)i,l , . . . , c

(Q−1)
i,l

]T
is the vector of coef-

ficients of BEM. Let hi,l = [hi (0, l) , . . . , hi (N − 1, l)]T
denote the vector of CIR on lth tap at ith OFDM symbol,
and the vector of CIR at ith OFDM symbol hi could be
described as

hi = [
hTi,0, . . . ,h

T
i,L−1

]T = Bci (5)
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where B = IL ⊗ [b0, . . . ,bN−1]T, ci = [
cTi,0, . . . , c

T
i,L−1

]T.
Then, the BEM-based base-band OFDM communica-

tion model could be expressed as

yi = Aici + zi (6)

where Ai denotes the measurement matrix as

Ai = FS̃iB (7)

where S̃i is consisted by transmitted symbols from trans-
mitter, as

S̃i =
[
S(0)
i , . . . , S(L−1)

i

]
andS(l)

i

= diag {[S (N − l) , S (N − l + 1) , . . . , S (0) , . . . , S (N − l − 1)]}
.
Then, we could construct a time-varying auto regression

(TVAR) model for BEM-based CIR as

ci+1 = Rici + vi (8)

where Ri is the correlation matrix of the coefficients of
BEM for adjacent OFDM symbols, vi is the process noise
with variance σ 2

v , and covariance matrix Qv = σ 2
v IQL.

It could be concluded from [33] that Ri is obtained by
mapping the time domain correlation coefficient matrix
of the CIR to a linear space based on the base matrix
B. Because the base vectors of CE-BEM model are pair-
wise orthonormal, it can be considered that the CE-BEM
entirely eliminates the time correlation of the CIR on base
space, which means that the coefficients of BEM are pair-
wise uncorrelated. Based on that, we could consider Ri as
a diagonal matrix, and the elements on the diagonal are
the correlation coefficients of the BEM coefficients.

4 Channel estimation and interpolation
The challenge of estimation and interpolation in time
domain for non-stationary channel would be coped with
an EKF or UKF, which could jointly estimate the CIR and
channel time correlation coefficients.

4.1 State space model
In order to jointly estimate the coefficients of BEM ci
and the channel time correlation coefficients Ri, we rede-
fine a correlation coefficients vector ri with the diagonal
elements of Ri as

ri = vec (Ri) . (9)

According to [13], assuming a random walk model for ri,
the state space model can be constructed as

⎧
⎨

⎩

ri+1 = ri + wi
ci+1 = Rici + vi
yi = Aici + zi

(10)

where wi denotes process noise of time correlation coef-
ficients ri and it is an independent zero-mean Gaussian
complex white noises, with covariance matrix Qw =

σ 2
wIQL, where σ 2

w is the variance of wi. Then, a new state
variable can be defined as xi = [

ri ci
]T, and the state

space model can be further derived as
{

xi+1 = f (xi) + ui
yi = [

0 Ai
]
xi + zi

(11)

where f (xi)=
[

ri
Rici

]
=

[
ri

diag (ri) ci

]
is a nonlinear

state transform equation.

4.2 EKF
Applying the principle of EKF, we could get a linear state
space model by the first order Taylor approximation as

{
xi+1 = Tixi + ui

yi = [
0 Ai

]
xi + zi

(12)

where Ti =
[
IQL 0
1
2 Ĉi

1
2 R̂i

]
is state transform matrix of xi,

Ĉi=diag
(
ĉi

)
is a diagonal matrix consist of the a posterior

estimates of the coefficients of BEM, R̂i is the a posterior
time correlation coefficients matrix, and ui is the process
noise vector of state transfer equation with the covariance

matrixQu =
[
Qw 0
0 Qv

]
.

In the state prediction process, it is necessary to make
a prediction of the a priori estimates of the state variable
at the next moment based on the a posterior estimates,
which is estimated at the previous moment with state
transfer equations, and the state prediction equations can
be described as

xi|i−1 = Ti−1xi−1 (13)

Pi|i−1 = Ti−1Pi−1TT
i−1 + Qu (14)

where Pi|i−1 denotes the a priori covariance matrix of ith
state variable.
As mentioned above, the measurement matrix of data

symbols are difficult to acquire. Here, we propose a
decision-directed scheme to construct the measurement
matrix as follows. Predicted CIR vector hi|i−1 can be
obtained from the a priori coefficients of BEM ci|i−1 by (5)
at first, and then, it can be transformed into a priori CFR
matrix Hi|i−1 by (3). Therefore, the transmitted symbols
vector si of ith OFDM symbol can be calculated through
the MMSE equalization as

ŝi =
(
HH

i|i−1Hi|i−1 + σ 2
z IN

)−1
HH

i|i−1yi (15)

where ŝi denotes the predicted value of transmitted sym-
bols vector. However, ŝi might deviate from the original
constellation points of transmitted symbols si due to the
influence of noise and the error of channel state predic-
tion. Obviously, measurement matrix constructed by ŝi
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is inappropriate, a decision-directed scheme is proposed
herein to improve the validity of state measurement.
The operation of decision-directed scheme is described

in detail as follows. The modulation symbol set of trans-
mitted symbols is defined as S= {S0, ..., SM−1}, where Sm
denotes the one of the modulation symbols and log2M
is the modulation order. The output of decision-directed
scheme ŝ(d)

i (n) is the modulation symbol which is the
nearest one for ŝi(n), as

ŝ(d)
i (n) = min

Sm∈S
∥
∥Sm − ŝi(n)

∥
∥ . (16)

Thus, the measurement matrix Â(d)
i can be constructed

from ŝ(d)
i by (7), and it could be put into the state update

equations of EKF.
In this situation that the received signal is affected by

noise significantly, the decision error ŝ(d)
i , which ŝ(d)

i �= si,
would lead to an obvious measurement error which would
propagate with the iteration of EKF until next pilot sym-
bol arrived. Nevertheless, the decision-directed scheme is
very simple, and the cost of hardware implementation for
decision-directed scheme is low.
After state prediction, the a posterior state variable xi

would be estimated through the state updating equations
of EKF as

Ki = Pi|i−1

[
0
AH
i

] ([
0 Ai

]
Pi|i−1

[
0 Ai

]T + Qz
)−1

(17)

xi = xi|i−1 + Ki
(
yi −

[
0 Ai

]
xi|i−1

)
(18)

Pi = Pi|i−1 − Ki
[
0 Ai

]
Pi|i−1 (19)

where Ki is the gain of EKF. It is worth mentioning
that the complexity would be increased because of the
matrix inversing in (17). However, BEM is used to estab-
lish the state spacemodel of EKF, the relationship between
the complexity and estimation accuracy can be effec-
tively controlled by adjusting the compression base vector
dimension Q according to the actual application scenario.

4.3 UKF
The UKF uses a deterministic sampling technique known
as the unscented transform (UT) to pick a minimal set of
sample points (called sigma points) around the mean. The
sigma points are propagated through the nonlinear func-
tions, fromwhich a newmean and covariance estimate are
formed. There are threemain steps for the state prediction
of UKF, including generating of sigma points, substitut-
ing the sigma points into the transformation equation, and
calculating the means of the a priori state variable and
covariance matrix.
According to the length of the vector of state variable,

the number of sigma points should be set as 2QL+ 1. The
a posterior sigma points could be described as

χ
(0)
i−1 = xi−1

χ
(j)
i−1 = xi−1 + √

QL + λ
[√

Pi−1
]
j

χ
(QL+j)
i−1 = xi−1 − √

QL + λ
[√

Pi−1
]
j
(
j = 1, . . . ,QL

)

(20)

where χ
(j)
i−1 denotes the jth sigma point, xi−1 is the a pos-

terior estimate of state variable on the (i − 1)th OFDM
symbol, Pi−1 denotes the a posterior covariance matrix on
the (i− 1)th OFDM symbol, and the λ is the weight factor
of covariance

λ=α2 (QL + β) − QL (21)

where α and β control the spread of the sigma points.
According to the state space model proposed in (11) and
the parameters setting recommendation for UKF in [34],
we set the α as 0.95 and β as 2, respectively. The sigma
points are propagated through the transition function

χ̂
(j)
i =f

(
χ̂

(j)
i−1

)
, j = 0, ..., 2QL (22)

where the χ̂
(j)
i is the predicted sigma points. The weighted

sigma points are recombined to produce the predicted
state and covariance, which can be derived as

xi|i−1=
2QL∑

j=0
W (m)

j χ̂
(j)
i (23)

Pi|i−1=
2QL∑

j=0
W (c)

j

(
χ̂

(j)
i − xi|i−1

)(
χ̂

(j)
i − xi|i−1

)T+Qv (24)

whereW (m)
j andW (c)

j are the weights of state and covari-
ance, which are given by

W (c)
0 = λ

QL+λ

W (m)
0 = λ

QL+λ
+ (

1 − α2 + β
)

W (c)
j = W (m)

j = 1
2(QL+λ)

(
j = 1, . . . , 2QL

)
(25)

In the next step, the predicted state xi|i−1 and covari-
ance Pi|i−1 are utilized to calculate the a posterior state
and covariance which would be fed to the equalizer and
demodulator.
The a posterior estimates of state variable would be

calculated by updating equations according to the a pri-
ori estimates. There are four steps in the program of
state updating: generating of sigma points; substituting
the sigma points into the measurement equation; calcu-
lating the mean, covariance matrix, and cross-covariance
matrix of measurement variable; and computing the gain
of filtering and the a posterior estimates and covariance
matrix of state variable, respectively.
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There are also 2QL + 1 a priori sigma points would be
generated as

χ
(0)
i|i−1 = xi|i−1

χ
(j)
i|i−1 = xi|i−1 + √

QL + λ
[√

Pi|i−1
]
j

χ
(j+QL)

i|i−1 =xi|i−1−√
QL+λ

[√
Pi|i−1

]
j
(
j = 1, . . . ,QL

)
. (26)

The decision-directed method is utilized to construct the
measurement matrix Âi, so we would obtain the measure-
ment sigma points by substituting the sigma points into
the measurement equation like

γ̂
(j)
i = [

0 Âi
]
χ

(j)
i|i−1

(
j = 0, . . . , 2QL

)
(27)

where γ̂
(j)
i denotes the jth measurement sigma point on

the ith OFDM symbol. The weighted a priori sigma points
are recombined to produce the mean, covariance matrix,
and cross-covariance matrix of γ̂ (j)

i as

μi =
2QL∑

j=0
W (m)

j γ̂
(j)
i (28)

Ti =
2QL∑

j=0
W (c)

j

(
γ̂

(j)
i − μi

)(
γ̂

(j)
i − μi

)T + Qw (29)

Ci =
2QL∑

j=0
W (c)

j

(
χ

(j)
i|i−1 − xi|i−1

)(
γ̂

(j)
i − μi

)T
(30)

where μi is the mean of measurement sigma points, Ti
is the covariance matrix, and Ci is the cross-covariance
matrix.
Then, the gain of filtering Ki, the a posterior estimates

xi and the covariance matrix Pi could be described as

Ki = CiT−1
i (31)

xi = xi|i−1 + Ki (yi − μi) (32)

Pi = Pi|i−1 − KiTiKT
i . (33)

4.4 System complexity
Table 1 showed the comparison of the computational
complexity (the number of times) for several classical
channel estimation methods, similar channel estimation

Table 1 The mean for BEM-based channel estimation methods
in different velocity

Velocities (km/h) LS EKF UKF

0 0.0712 0.0152 0.0148

30 0.0732 0.0174 0.0165

60 0.0768 0.0202 0.0185

90 0.0803 0.0238 0.0210

120 0.0874 0.0329 0.0295

150 0.0933 0.0389 0.0333

methods, and the proposed BEM-based EKF and BEM-
based UKF methods in an OFDM symbol.
The LS, EKF, and UKF methods in Table 1 all belong

to frequency channel estimation method without BEM. It
could be also witnessed that the complexity of BEM-based
channel estimation methods is based on the dimension of
basis vector Q and the number of taps L, rather than the
number of subcarriers N. Generally, the QL � N , so the
complexity of BEM-based methods is much lower than
frequency channel estimation.
Compared with the BEM-based LS method, the com-

plexity of the BEM-based EKF is about 5 times of it, but
both of them are still in a same level. According to the
(22) and (27), we find that the main part of the complexity
of the BEM-based UKF method is substituting the sigma
points into the measurement equation and transforming
equation, because the times of substituting sigma points
depend on the number of sigma points and the calcula-
tion of substituting for all sigma point is (2QL+1) (QL)3.
Although the complexity of BEM-based UKF is in a higher
level than the BEM-based EKF and the BEM-based LS,
the BEM could ensure it keeps in a reasonable value. And
the performances of these methods in both V2V and IIoT
scenarios will be presented in the next section.

5 Experimental design
In this section, we would like to present and com-
pare the performances of the BEM-EKF and BEM-UKF
with traditional channel estimation methods in V2V and
IIoT environments. Firstly, the simulation parameters are
presented, and the simulation results of the methods pro-
posed in this paper are analyzed. Particularly, for demon-
strating and showing the robustness and reliability of the
end-to-end communication systems with BEM-EKF and
BEM-UKF in CPS, we pay more attention to observe
and analyze the simulation results in some environments,
including the V2V environments with high velocity and
the IIoT environments with very deep doubly selective
fading.

5.1 Simulation parameters
The NMSE and BER performances of BEM-LS as well
as BEM-EKF and BEM-UKF proposed in this paper are
simulated by MATLAB, and the results are compared
and analyzed as follows. Actually, for simulating the most
general end-to-end communication in V2V and IIoT envi-
ronments, we set the basic parameters of end-to-end
communication system as the definition in LTE [35] which
is one of the common and available physical layer commu-
nication protocols for both V2V and IIoT. The parameters
of end-to-end OFDM communication system are shown
in Table 2 . It is worth mentioning that the setting about
the variance of process noise σ 2

w and σ 2
v , according to (8)

and (10), the σ 2
w and σ 2

v present the uncertainty of the
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Table 2 The variance for BEM-based channel estimation
methods in different velocity

Velocities (km/h) LS EKF UKF

0 6.1436e−05 2.4785e−06 2.7124e−06

30 3.9089e−04 3.2700e−04 2.3728e−04

60 5.3562e−04 3.8719e−04 3.1166e−04

90 3.8699e−04 3.6670e−04 2.2423e−04

120 4.1918e−04 3.6670e−04 2.1158e−04

150 4.1834e−04 3.8870e−04 1.4793e−04

prediction for CIR and the range of variation of time coef-
ficient. According to [10], the most appropriate way to get
the values of them is to measure and track the accurate
changing of physical channel parameters, including direc-
tion of arrival (DoA) and so on, but it is really difficult and
complex to get them. Then, in our previous research [36],
the variance of process noise is set as a reasonable con-
stant after some adjusting, and we demonstrated that it is
a kind of effective and simple way to cope with this prob-
lem, so we did the same work in this paper and set them
as follows.
As mentioned above, the robustness and reliable per-

formances of communication system in V2V and IIoT
environments are what we focus on in this paper, so the
basic parameters for V2V and IIoT physic wireless chan-
nel are very important and they are presented in Tables 3
and 4.
For V2V environments, the CPS with high robustness

and reliable should be able to work in situations with dif-
ferent velocities. According to the extended vehicle model
(EVM) defined by LTE, we set the multi-path channel
parameters, including the information about taps and fad-
ing type, as follows. Then, considering the V2V environ-
ments with very high terminal speed are always occurred
in expressway where the multi-path effect is not obvious
and the line of sight (LoS) should not be neglected, so the
Rician channel model is chosen to be the fading type of
V2V environments with different velocities.
For IIoT environments, the ability to keep the commu-

nication quality in complex multi-path environments is

Table 3 The mean for BEM-based channel estimation methods
in different taps

Number of taps LS EKF UKF

3 0.0574 0.0362 0.0344

6 0.0900 0.0336 0.0326

9 0.1259 0.0355 0.0343

12 0.1548 0.0311 0.0299

15 0.2298 0.0210 0.0200

18 0.4403 0.0362 0.0350

Table 4 The variance for BEM-based channel estimation
methods in different taps

Number of taps LS EKF UKF

3 9.4563e−04 7.9185e−04 6.5175e−04

6 4.6187e−04 3.8377e−04 3.3921e−04

9 5.4519e−04 4.3288e−04 3.3844e−04

12 5.7751e−04 2.8968e−04 2.5852e−04

15 3.4490e−04 1.4435e−04 1.3037e−04

18 4.4029e−04 1.8785e−04 1.8235e−04

vital for CPS. Since the speed of communication termi-
nals which work in factories and industries always keep in
low speed, we set the velocities of terminals in a low level.
According to [24], for demonstrating the stability of CPS
with channel estimation methods proposed in this paper,
we set the parameters for multi-path channel with dif-
ferent number, delay, and power of taps as follows. Some
researches pointed out that when the level of radio inter-
ference in IIoT environments is very high, the distance
between ends is not so far, so in most of the situations,
the power of LoS ray is the major component and the
Rician channel model is also appropriate for IIoT environ-
ments [20]. As the V2V environments, we also adopted
the Rician as the fading type in IIoT environments.

6 Results and discussion
6.1 Simulation results in V2V
In order to demonstate the improvement in robustness
and reliability provided by channel estimation methods
proposed in this paper, BEM-EKF and BEM-UKF, in end-
to-end communication for CPS, we mainly present the
performance of them in V2V and IIoT which are the main
environments for CPS.
For the V2V environments, we mainly simulate the

NMSE and BER in different velocities with a fixed multi-
path setting, as the description in Table 3 at first. Since we
believe that the channel estimation methods with higher
estimation accuracy and lower BERs in different velocities
could improve the robustness for end-to-end communica-
tion in CPS. On the other hand, we also present the BERs
in continuous subframes, which could show the improve-
ment in stability and reliability for CPS. Because the BER
is directly correlated with the communication quality, if
the BERs keep a stable level in continuous subframes
where the speed of terminal is very high, the end-to-end
communication in CPS is reliable. Otherwise, if the BERs
change obvious from subframe to subframe, we would
believe the level of reliability for CPS is in a low level.
Figures 4 and 5 illuminate the BER and NMSE for chan-

nel estimation methods in CPS in V2V environments with
velocities from 0 to 150 km/h. It could be witnessed in
Fig. 4 that the BEM-EKF and the BEM-UKF are still in a
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(a) (b) (c)
Fig. 4 BER for channel estimation methods in V2V environments with different velocities. BEM-EKF and BEM-UKF are still in a very low level
compared with BEM-LS, and with the rising of velocity, BER performance for BEM-LS increases

very low level compared with BEM-LS, and with the rising
of velocity, the BER performance for BEM-LS increases
from 6 × 10−4 to 2 × 10−3 where the SNR=30 dB as
shown in Fig. 4 c, but the BER for BEM-EKF only increases
1.3×10−3 and for BEM-UKF, it only rises 0.8×10−3, which
demonstrated that the BEM-UKF is very appropriate for
the high-speed and non-stationary environments. And
Fig. 5 illuminates the same conclusion. We could observe
that the NMSE of BEM-EKF and BEM-UKF are nearly one
tenth of BEM-LS, because the EKF and UKF could track
the change of channel in high velocity environments.
Figure 6 illuminates the BERs change in continuous 100

subframes with different velocities where the SNR=10 dB,
and Table V and Table VI present the mean and variance
for BEM-LS, BEM-EKF, and BEM-UKF. We could witness
that the means of BER of BEM-EKF and BEM-UKF are
nearly one third of BEM-LS, and the variance of BEM-EKF

and BEM-UKF are also much lower than traditional BEM-
LS a lot in all the velocities. It is obvious that the BEM-EKF
and BEM-UKF could improve the stability and reliability
of CPS.

6.2 Simulation results in IIoT
In the IIoT scenario, dynamic multi-path transmission is
an important factor affecting the stability of CPS wireless
communication. We set up different delays and attenu-
ations to simulate wireless communication in different
multi-path environments, and use the proposed channel
estimationmethods to simulate the NMSE and BER in dif-
ferent multi-path conditions. As described earlier in this
paper, if the NMSE and BER performance obtained by
the proposed channel estimation methods can be kept in
a stable state in different multi-path conditions, it indi-
cates that the proposed channel estimation methods can

(a) (b) (c)
Fig. 5 NMSE for channel estimation methods in V2V environments with different velocities. NMSE of BEM-EKF and BEM-UKF are nearly one tenth of
BEM-LS, because the EKF and UKF could track the change of channel in high velocity environments
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(a) (b) (c)
Fig. 6 BER for channel estimation methods in different velocities where the SNR = 10 dB. BERs change in continuous 100 subframes with different
velocities. The means of BER of BEM-EKF and BEM-UKF are nearly one third of BEM-LS, and the variance of BEM-EKF and BEM-UKF are also much
lower than traditional BEM-LS a lot in all the velocities. It is obvious that the BEM-EKF and BEM-UKF could improve the stability and reliability of CPS

(a) (b) (c)
Fig. 7 BER for channel estimation methods in different taps and SNR environments. Under different SNRs, the BER under the BEM-EKF and BEM-UKF
channel estimation methods can be stably maintained at a low level with the increase of the number of multi-paths, while the BER has changed a
lot under the BEM-LS method

(a) (b) (c)
Fig. 8 NMSE for channel estimation methods in different taps and SNR environments. BEM-EKF and BEM-UKF methods can effectively overcome the
influence of multi-path fading and improve the stability of CPS wireless communication
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(a) (b) (c)
Fig. 9 BER for channel estimation methods in different taps and SNR environments. BER change of 100 consecutive subframes in different
multi-path environments where the SNR = 10 dB

improve the robustness of wireless communication of
CPS. At the same time, we also simulate the BER vari-
ation of consecutive subframes in different multi-path
environments to reflect the time domain stability of CPS
end-to-end communication.
Figures 7 and 8 show the performances of BER and

NMSE for the channel estimation methods in different
SNR environments with the taps changed from 3 to 18.
From Fig. 7, we can see that under different SNRs, the
BER under the BEM-EKF and BEM-UKF channel esti-
mation methods can be stably maintained at a low level
with the increase of the number of multi-paths, while
the BER has changed a lot under the BEM-LS method.
Taking SNR=30 dB as an example, as shown in Fig. 7c,
the BER under BEM-EKF and BEM-UKF methods can
be kept within 1 × 10−3 in different multi-path condi-
tions. When taps is set to 3, the BER under the BEM-LS
method is 3 × 10−4, and when taps is increased to 18,
the BER is increased to 7 × 10−3. The analysis shows that
BEM-EKF and BEM-UKF show better stability in different
multi-path conditions, and the performance of the BEM-
UKF method is better than that of the BEM-EKF method.
The NMSE performance, as shown in Fig. 8, shows the
same conclusion, and the BEM-EKF and BEM-UKFmeth-
ods can effectively overcome the influence of multi-path
fading and improve the stability of CPS wireless commu-
nication.
Figure 9 reflects the BER change of 100 consecutive sub-

frames in different multi-path environments where the
SNR = 10 dB. The mean and variance of the BER obtained
by the channel estimation methods of BEM-LS, BEM-
EKF, and BEM-UKF are shown in Table VII and Table
VIII. According to the results, the BER obtained by the
BEM-EKF and BEM-UKFmethods is generally lower than
the BEM-LS method, and the mean and variance of BER

under the BEM-EKF and BEM-UKF methods are smaller
than that of the BEM-LS method. Therefore, the BEM-
EKF and BEM-UKF methods can be verified to effectively
improve the robustness of CPS.

7 Conclusion
In order to ensure reliable and resilient operation of
CPS, the end-to-end data transmission must be consid-
ered in the communication link with high quality. The
main work of this paper is focused on the two impor-
tant application environments of CPS, including V2V and
IIoT. Firstly, we emphasise the importance of channel
estimation to enhance the stability of CPS wireless com-
munication and summarize the related work. Then, the
doubly selective fading and non-stationary characteris-
tics of V2V and IIoT channels are systematically modeled,
the ICI is eliminated through time domain channel esti-
mation, and the complexity of the channel estimation
algorithm is further reduced by using BEM. For the non-
stationary characteristics of the channel, we use channel
estimation and interpolation method based on EKF and
UKF to jointly estimate the CIR and time-varying time
domain autocorrelation coefficient. At last, the simulation
results demonstrate that the BEM-UKF method is able
to promote the robustness obviously with high comput-
ing, and the BEM-EKF could promote some robustness
with lower computing. It is no doubt that the BEM-based
Bayesian filter channel estimation methods are appropri-
ate for robust and reliable end-to-end communication of
V2V and IIoT.
Our future work will study the actual channel condi-

tions for V2V and IIoT to extract key parameters from
actual channel data and complete actual channel model-
ing, thus improving the availability of channel estimation
algorithms in practical applications.
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