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Abstract: We present the application of Balanced Truncation (BT) for linear time-varying
(LTV) systems. This directly leads to the solution of the controllability and observability
differential Lyapunov equations associated to the LTV system. For large-scale dynamical systems
the main task is to efficiently solve these equations with respect to computational cost and
memory requirements. Thus, efficient strategies exploiting the low-rank structure of the systems
are applied in the context of the matrix-valued time integration schemes. In particular, an
LDLT -type low-rank splitting is considered in order to avoid the problems arising from the
indefinite right hand sides of the algebraic Lyapunov equations that have to be solved inside
the time integration schemes.
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1. INTRODUCTION

Many physical phenomena are naturally modeled in terms
of linear time-varying (LTV) systems of the form

E(t)ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),
(1)

where E(t), A(t) ∈ Rn×n, B(t) ∈ Rn×m and C(t) ∈ Rq×n,
x(t) ∈ Rn defines the state vector, u(t) ∈ Rm the
inputs, and y(t) ∈ Rq are the outputs of the system.
The system matrices E(t), A(t), B(t), C(t) are assumed
to be continuous and bounded, and E(t) is non-singular
for all t ∈ [t0, tf ]. Models of dynamical systems of the
form (1) originating from complex physical and technical
processes such as mechanical systems, fluid flow or chip
design simulation are often of very large dimension n. In
order to perform real time simulations or controller design,
model order reduction (MOR) becomes very important.
The goal of any model order reduction procedure is to
find a reduced order approximant

Ê(t) ˙̂x(t) = Â(t)x(t) + B̂(t)u(t), x̂(t0) = x̂0,

ŷ(t) = Ĉ(t)x̂(t),
(2)

of (1) with

Ê(t) = W (t)TEV (t) ∈ Rk×k,

Â(t) = W (t)TAV (t)−W (t)TEV̇ (t) ∈ Rk×k,

B̂(t) = W (t)TB ∈ Rk×m, Ĉ(t) = CV (t) ∈ Rq×k,

and projection matrices W (t), V (t) ∈ Rn×k, such that
k � n and the output ŷ of the reduced order model (ROM)
yields a significantly small approximation error �ŷ−y� in a

suitable norm. In the remainder, we consider the Balanced
Truncation MOR method applied to LTV systems.

2. BALANCED TRUNCATION FOR LTV SYSTEMS

The theoretical application of Balanced Truncation (BT)
model order reduction for standard LTV systems with
E(t) ≡ I is deeply studied in the literature, see e.g.,
Sandberg (2002); Shokoohi et al. (1983) and the references
therein. Its main ingredients are the controllability and ob-
servability Gramians P (t) and Q(t) given as the solutions
of the differential Lyapunov equations (DLEs)

A(t)P (t) + P (t)A(t)T −B(t)B(t)T = Ṗ (t),

P (t0) = 0,
(3)

A(t)TQ(t) +Q(t)A(t)− C(t)TC(t) = −Q̇(t),

Q(tf ) = 0,
(4)

associated to (1). Note that the observability Lyapunov
equation (4) has to be solved backwards in time.

Given the solutions of (3) and (4), a ROM of the form (2)
can be computed via a generalization of the Square Root
Balanced Truncation method developed, e.g., Laub et al.
(1987) for linear time-invariant (LTI) systems based on
a factorization of the Gramians P (t) = R(t)R(t)T and
Q(t) = L(t)L(t)T . In practice we often observe that
P (t), Q(t) are of low numerical rank. Therefore, efficient
algorithms exploiting the low-rank property can be used
in order to obtain R(t) ∈ Rn×r and L(t) ∈ Rn×� with
r, � � n. Furthermore, the DLE can be considered as a
special case of the differential Riccati equation (DRE).
That is, any integration method for DREs, e.g., discussed
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Â(t) = W (t)TAV (t)−W (t)TEV̇ (t) ∈ Rk×k,

B̂(t) = W (t)TB ∈ Rk×m, Ĉ(t) = CV (t) ∈ Rq×k,
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P (t0) = 0,
(3)

A(t)TQ(t) +Q(t)A(t)− C(t)TC(t) = −Q̇(t),

Q(tf ) = 0,
(4)

associated to (1). Note that the observability Lyapunov
equation (4) has to be solved backwards in time.

Given the solutions of (3) and (4), a ROM of the form (2)
can be computed via a generalization of the Square Root
Balanced Truncation method developed, e.g., Laub et al.
(1987) for linear time-invariant (LTI) systems based on
a factorization of the Gramians P (t) = R(t)R(t)T and
Q(t) = L(t)L(t)T . In practice we often observe that
P (t), Q(t) are of low numerical rank. Therefore, efficient
algorithms exploiting the low-rank property can be used
in order to obtain R(t) ∈ Rn×r and L(t) ∈ Rn×� with
r, � � n. Furthermore, the DLE can be considered as a
special case of the differential Riccati equation (DRE).
That is, any integration method for DREs, e.g., discussed

8th Vienna International Conference on Mathematical Modelling
February 18 - 20, 2015. Vienna University of Technology, Vienna,
Austria

Copyright © 2015, IFAC 7

Towards Practical Implementations of
Balanced Truncation for LTV Systems

Norman Lang ∗ Jens Saak ∗,∗∗ Tatjana Stykel ∗∗∗

∗ Technische Universität Chemnitz, Reichenhainerstraße 39/41,
D-09126 Chemnitz (e-mail:

norman.lang@mathematik.tu-chemnitz.de).
∗∗ Max Planck Institute for Dynamics of Complex Technical Systems,

Sandtorstraße 1, D-39106 Magdeburg (e-mail:
saak@mpi-magdeburg.mpg.de)

∗∗∗ Universität Augsburg, Universitätsstr. 14, 86159 Augsburg, (e-mail:
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P (t0) = 0,
(3)

A(t)TQ(t) +Q(t)A(t)− C(t)TC(t) = −Q̇(t),

Q(tf ) = 0,
(4)

associated to (1). Note that the observability Lyapunov
equation (4) has to be solved backwards in time.

Given the solutions of (3) and (4), a ROM of the form (2)
can be computed via a generalization of the Square Root
Balanced Truncation method developed, e.g., Laub et al.
(1987) for linear time-invariant (LTI) systems based on
a factorization of the Gramians P (t) = R(t)R(t)T and
Q(t) = L(t)L(t)T . In practice we often observe that
P (t), Q(t) are of low numerical rank. Therefore, efficient
algorithms exploiting the low-rank property can be used
in order to obtain R(t) ∈ Rn×r and L(t) ∈ Rn×� with
r, � � n. Furthermore, the DLE can be considered as a
special case of the differential Riccati equation (DRE).
That is, any integration method for DREs, e.g., discussed

8th Vienna International Conference on Mathematical Modelling
February 18 - 20, 2015. Vienna University of Technology, Vienna,
Austria

Copyright © 2015, IFAC 7



8	 Norman Lang et al. / IFAC-PapersOnLine 48-1 (2015) 007–008

in Benner and Mena (2013); Lang et al. (2014) can also be
employed in the DLE setting.

3. SOLVING DIFFERENTIAL LYAPUNOV
EQUATIONS

In this contribution, we consider the backward differentia-
tion formulas (BDF) and the Rosenbrock methods applied
to the generalized DLE

E(t)Ẋ(t)ET(t) = F (t,X(t)), X(0) = 0, (5)

with

F (t,X(t))=A(t)X(t)ET(t)+E(t)X(t)AT(t)+N(t)NT(t).

Further, let τk = tk − tk−1 be the time step size, where
0 = t0 < t1 < · · · < tkmax = tf denote the discrete
time instances. These may be determined adaptively. We
abbreviate Ek = E(tk), Ak = A(tk) and Nk = N(tk) in
the remainder for easier reading.

Backward Differentiation Formulas: The p-step BDF
method applied to equation (5) has the form

Ek

� p�
j=0

αjXk−j

�
ET

k = τkβF (tk, Xk),

where Xk is an approximation to X(tk). The coefficients
αj and β are chosen such that the p-step BDF method has
the maximum possible order p, see Hairer and Wanner
(2002). Assuming that X0, . . . , Xk−1 are already known,
the matrix Xk can then be determined from the algebraic
Lyapunov equation (ALE)

ÃkXkE
T
k + EkXkÃ

T
k = −NkN

T
k + Ek

� p�
j=1

αjXk−j

�
ET

k .

(6)

with Ãk = τkβAk − 1
2α0Ek. Note that, since for p ≥ 2

some of the coefficients αj , j = 1, . . . , p, are positive,
the right-hand side of (6) may be indefinite. Assume that
the matrices Xj , j = 0, . . . , k − 1, admit a low-rank
LDLT decomposition Xj ≈ LjDjL

T
j with Lj ∈ Rn×�j ,

Dj ∈ R�j×�j and �j � n. Then the right-hand side of the
ALE (6) takes the form

−NkN
T
k + Ek

� p�
j=1

αjXk−j

�
ET

k = −GkSkG
T
k

with Gk = [Nk, EkLk−1, . . . , EkLk−p ] and

Sk =

⎡
⎢⎢⎣

I
−α1Dk−1

. . .
−αpDk−p

⎤
⎥⎥⎦ .

In this case, an approximate solution of the ALE (6)
can be determined in the factorized form Xk ≈ LkDkL

T
k

Lk ∈ Rn×�k , Dk ∈ R�k×�k using the LDLT -type ADI or
Krylov method presented in Lang et al. (2014) based on
earlier ideas in Benner et al. (2009).

Rosenbrock methods: Following the statements in Ben-
ner and Mena (2013) for DREs, the general p-stage Rosen-
brock method applied to the DLE (5) reads

Xk+1 = Xk +

p�
j=1

mjKj ,

ÃkKiE
T
k + EkKiÃ

T
k =−F

�
tk,i, Xk+

i−1�
j=1

aijKj

�

−
i−1�
j=1

cij
τk

Kj − γiτkFtk ,

(7)

where Ãk = Ak − 1
2γiiτk

Ek, tk,i = tk + αiτk, i = 1, . . . , p,

and γii, aij , cij , γi, mj , αi are the method coefficients,
that are available in text books as, e.g. Hairer and Wanner
(2002). We denote by Ki the n×n matrix representing the
solution of the i-th-stage of the method and abbreviate
Ftk = ∂F

∂t (tk, X(tk)). Again considering a right hand side

factorization −GkSkG
T
k in (7) yields an approximate solu-

tion Xk ≈ LkDkL
T
k to (5) at time step tk. The particular

representations of the several Rosenbrock methods and
the corresponding low-rank factors Gk, Sk in the stage
equations for Ki, i = 1 . . . , p depend on the order p and
the choice of the coefficients γii, aij , cij , γi, mj and αi.
Details on the particular formulations will be presented
elsewhere for reasons of space.

4. CONCLUSION

The BT MOR method for LTV systems is deeply studied
in the literature. Still, as far as the authors know, there is
no suitable procedure that is applicable for large-scale LTV
systems. Therefore, the authors investigate the application
of low-rank based solvers for matrix differential equations
previously mentioned for solving large-scale DREs. It is
briefly shown that the ideas for DREs also apply to the
DLE case. Also the origin of the initial and final conditions
for the controllability and observability DLEs will be
addressed.
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