Structural and Catalytic Investigation of Active-Site Isolation in Pd-Ga Intermetallic Compounds

28 August - 1 September 2005, Sofia, Bulgaria

Jürgen Osswald, Rainer Giedigkeit, Kirill Kovnir, Rolf E. Jentoft, Marc Armbrüster, Yuri Grin, Robert Schlögl, Thorsten Ressler

Inorganic Chemistry, Fritz-Haber-Institute Berlin, Germany Chemical Metal Science, MPI for Chemical Physics of Solids, Dresden, Germany

Motivation and introduction

Acetylene hydrogenation – active site isolation – Pd intermetallic compounds

Structural investigation

In situ XRD – In situ EXAFS

Surface studies

BET – CO chemisorption – SEM – XPS

Catalysis data

Activity – selectivity – stability

Jürgen Osswald Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin

MAX-PLANCK-GESELLSCHAF

Why active-site isolated intermetallic compounds?

Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin

Pd-Ga intermetallic compounds: PdGa and Pd₃Ga₇

Pd-Ga intermetallic compounds $PdGa - Pd_3Ga_7$

Pd intermetallic compounds

- Structurally defined catalysts with isolated Pd atoms
- Catalysis?

Preparation

by mixing and melting appropriate amounts of the metals under Ar atmosphere. The samples were powdered in a ball mill

Goal

Thermal stability in different atmospheres and hydride formation:

Surface investigation:

Catalytic studies:

Methods

In situ XRD, in situ EXAFS, TG / DSC

BET, CO chemisorption, XPS, ISS

GC, MS

Cu Kα

\rightarrow no decomposition, phase transition or hydride formation

Jürgen Osswald Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin

High structural stability of PdGa and Pd₃Ga₇

In situ EXAFS (local structure of Pd atoms) measured at Pd K edge (24.35 keV)

Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin

MAX-PLANCK-GESELLSCHAF

Surface characterisation of Pd-Ga intermetallic compounds

BET:

surface area ~ 1 m²/g

CO chemisorption:

no chemisorption of CO at RT detectable

SEM / EDX:

inhomogeneous particle size distribution Pd/Ga ratio homogeneous

XPS of PdGa Ga 2p^{3/2}

predominantly Ga₂O₃ not removable with hydrogen treatment

 \rightarrow chemical etching

Acetylene hydrogenation: $C_2H_2 + H_2 \rightarrow C_2H_4$

By-products:	total hydrogenation to C ₂ H ₆
	dimerisation to C_4H_x
	1-butene, 1,3-butadiene, trans-butene, cis-butene, n-butane

Plug flow reactor: $2\% C_2H_2 + 4\% H_2$ in He, total flow 30 ml/min $0.5\% C_2H_2 + 5\% H_2 + 50\% C_2H_4$, total flow 30 ml/mincatalyst + 30 mg BN

Gas analysis:

MicroGC Varian CP 4900, 4-Channel GC

Reference:

Pd/Al₂O₃ 5 wt%, commercial catalyst (Aldrich) BET: 114 m^2/g , Pd metal surface: 5.3 m^2/g

Vol%

High selectivity of Pd intermetallic compounds Conversion and selectivity in acetylene hydrogenation

 $PdGa - Pd_3Ga_7 - Pd/Al_2O_3$

in 2% C₂H₂ + 4% H₂

PdGa: 50 mg, Pd₃Ga₇: 100 mg, Pd/Al₂O₃: 0.5 mg

Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin

Jürgen Osswald

Increased activity by chemical etching

Acetylene conversion of Pd-Ga intermetallic compounds untreated and after chemical etching in ammonia solution

Jürgen Osswald Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin

Increased activity by chemical etching

Selectivity of Pd-Ga intermetallic compounds untreated and after chemical etching in ammonia solution

Long-term stability of Pd intermetallic compounds Isothermal experiments at 398 K

in 2% C_2H_2 + 4% H_2 PdGa: 50 mg, Pd/Al₂O₃: 0.5 mg

Jürgen Osswald Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin

Long-term stability of Pd intermetallic compounds

Isothermal experiments in ethylene excess at 473 K

0.5% C₂H₂ + 5% H₂ + 50% C₂H₄

Jürgen Osswald Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin

Conclusion

Active-site isolated Pd-Ga intermetallic compounds show

- o high structural stability and no hydride formation
- higher selectivity in acetylene hydrogenation compared to Pd and Pd based alloys
- o catalytic long-term stability

Isolation of active sites through selection of Pd-Ga intermetallic compounds leads to superior catalysts

Acknowledgement

Frank Girgsdies, Edith Kitzelmann, Benjamin Kniep, Eva Rödel, Alexandra Szizybalski, Olga Kirilenko Group Geometric Structure, Inorganic Chemistry, FHI

Ute Wild

Group Surfaces Analysis, Inorganic Chemistry, FHI

HASYLAB

Hamburg / Germany

