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ABSTRACT

Alex Burant: CHARACTERIZING HYPERPOLARIZED 129Xe
DEPOLARIZATION MECHANISMS DURING CONTINUOUS-FLOW SPIN

EXCHANGE OPTICAL PUMPING AND AS A SOURCE OF IMAGE
CONTRAST.

(Under the direction of Rosa Tamara Branca.)

Xenon-129 has become the isotope of choice for applications of hyperpolarized (HP)

noble gases in magnetic resonance imaging (MRI) and spectroscopy due to its lower cost

and higher availability compared to 3He, relatively high tissue solubility, and wide range of

chemical shifts. As the signal achieved in HP gas MRI is directly related to the nuclear spin

polarization, the production of large volumes of highly polarized 129Xe is paramount.

While near unity levels of xenon polarization have been achieved in optical cells using

stopped-flow spin exchange optical pumping (SEOP), continuous-flow SEOP is the most

widely used method for clinical applications as it enables the production of large volumes

of hyperpolarized gas, which are necessary for imaging applications in humans. However,

polarization levels achieved via continuous-flow SEOP are well below the theoretically pre-

dicted values. In this dissertation, 129Xe relaxation mechanisms that are often ignored during

continuous-flow SEOP are investigated, through both simulations and experiments, to quan-

tify their effects.

First, computational fluid dynamics simulations are used to better characterize the SEOP

process inside the optical cells. This work reveals turbulence inside the optical cell occurs at

much lower flow rates than previously predicted. Turbulence leads to a wide distribution of

xenon residency times in the cell, previously assumed to be constant for a given flow rate.

This could be a cause for the discrepancy between the theoretical model for the final xenon

polarization and the levels achieved experimentally.
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Then, the effect of diffusion-mediated depolarization of 129Xe gas in magnetic field in-

homogeneities during continuous-flow SEOP is determined. The results indicate that xenon

diffusion in regions in which the magnetic field abruptly changes strength and direction can

be a major source of depolarization during continuous-flow SEOP. As such, care should be

taken in the design of the SEOP setup to avoid these gradients in the flow path of the HP

gas. In the absence of such large magnetic field gradients, wall collisions remain the major

contributing factor to gas-phase spin relaxation.

Depolarization in magnetic field gradients can also be a source of image contrast for

magnetic resonance imaging. To this end, the effects of longitudinal and transverse spin

relaxation are separated and characterized for hyperpolarized 129Xe diffusing near SPIONs

using finite element analysis and Monte Carlo simulations. Simulations demonstrate that

signal loss near SPIONs is dominated by transverse relaxation, with little contribution from

longitudinal relaxation. In addition, experimental and computational work clearly show that

the high diffusion coefficient of xenon does not provide appreciable sensitivity enhancement

to SPIONs at the length scales typically probed by MRI.

This work provides a better understanding of often-ignored relaxation mechanisms dur-

ing continuous-flow hyperpolarization and will aid in the effort to bridge the gap between

theoretical and experimental xenon polarization levels.
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CHAPTER 1: INTRODUCTION

The first demonstration of hyperpolarized (HP) gas magnetic resonance imaging (MRI)

in a biological system occurred in 1994 when Albert et al. (1994) produced mouse lung images

using hyperpolarized 129Xe. Shortly thereafter, the first in vivo images using hyperpolarized

3He were produced and work in hyperpolarized noble gas MRI took off. Hyperpolarized

noble gas MRI offered a new frontier of imaging in the lungs that had previously been

limited because of the low spin density of 1H in the void space of the lungs along with a

variety of other confounding factors that make proton MRI in the lungs difficult (Wild et al.,

2012).

There were many hurdles to overcome in the pursuit of using hyperpolarized noble gases

to perform ventilation studies in the lungs. First, 1H, the most often used nucleus in magnetic

resonance, has the highest gyromagnetic ratio of all stable nuclei, which means using any

other nucleus will immediately impart a penalty on the achievable signal. Second, noble gas

density is three orders of magnitude lower than the density of 1H in the lungs even in the

best case scenario of inhaling an entire inspiratory capacity (∼3.5 L) of noble gas. Even if

inhaling that much noble gas were feasible, it is not allowed under current imaging protocols.

To see how it is possible to overcome these obstacles, it is important to understand how

signal is generated in MRI. The nuclear magnetic resonance (NMR) signal is proportional

to:

Signal ∝ N × µ× Ω0 × P, (1.0.1)

where N is the nuclear spin density of the detected atom, µ is the nuclear magnetic moment

of the atom, Ω0 is the Larmor frequency, and P is the nuclear spin polarization of the

detected atom. The Larmor frequency is related to the gyromagnetic ratio of the atom,
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γ, and the applied magnetic field strength, B0 (Ω0 = γB0). The magnetic moment is an

intrinsic property of the atoms. Therefore, these are properties which cannot be changed. In

the case of noble gases the spin density may also not be increased as there is a finite amount

of gas that a subject can inhale. This leaves increasing the spin polarization as the only

option to increase the signal generated by the noble gases. Hyperpolarization techniques

are able to increase the nuclear spin polarization of noble gas nuclei by up to five orders

of magnitude compared to their thermal equilibrium levels and provides the signal-to-noise

ratio (SNR) necessary to produce void space images in the lungs.

Early work in hyperpolarized noble gas MRI centered around the use of hyperpolarized

3He. Hyperpolarized 3He MRI produced high SNR images in the lung to help better un-

derstand lung function and structure and was able to provide anatomical information on

ventilation defects caused by asthma, cystic fibrosis, and Chronic Obstructive Pulmonary

Disease (COPD) (de Lange et al., 2006; Woodhouse et al., 2009; Evans et al., 2007). The

decision to use 3He was an easy one as hyperpolarized 3He had been used for many years as

a target in fundamental nuclear physics experiments including neutron detection and parity

violation in the weak interaction between the proton and neutron (Johnson et al., 1995;

Anthony et al., 1993; Coulter et al., 1988). This meant that the methods to polarize helium

were understood and the polarization technology was well developed. The achievable polar-

ization levels of helium were already greater than 50%, much higher than the polarizations

achieved by 129Xe (Chen et al., 2014).

Unfortunately, a 3He supply crisis began in the early 2000’s arising from increasing

demand for 3He in applications outside of MRI (Cho, 2009). Specifically, the United States

is interested in using hyperpolarized 3He in neutron detectors for matters of national security.

Additionally, there is simply an extremely limited supply source for 3He as the only way to

produce 3He on Earth is as byproduct of tritium decay and the only sources of tritium are

nuclear fusion warheads and commercial nuclear reactors. While the government still offers

3He to select groups at a subsidized price, these two factors have caused the price of 3He
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for everyone else to rise above $2000 per liter. Fortunately, 129Xe provides a cheap (∼$20

per liter for natural abundance) and effective alternative to 3He and can now reach similar

polarization levels for comparable volumes of gas (Nikolaou et al., 2013).

For comparison, Figure 1.1 shows typical ventilation images that are possible today using

both 3He and 129Xe along with the first 129Xe human lung image produced by Mugler et al.

(1997). As can be seen, the ventilation images achieved using hyperpolarized 129Xe rival the

SNR and resolution of those using hyperpolarized 3He. Along with providing high quality

ventilation images of the lungs, 129Xe has other characteristics which make it appealing for

use in in vivo MRI including its relatively high tissue solubility and wide range of chemical

shifts. These properties, along with the higher nuclear spin polarization achieved in recent

years, have enabled application of hyperpolarized 129Xe outside the lungs. HP 129Xe is now

used as a probe for gas exchange in the lungs (Wang et al., 2017), for brain perfusion studies

(Venkatesh et al., 2001; Rao et al., 2016), for the detection of highly perfused fatty tissues

like brown adipose tissue (Branca et al., 2014), as well as a non-invasive temperature probe

(Zhang et al., 2017).

Figure 1.1: Left: Image of healthy lungs using 350 ml of HP 3He at a polarization of ∼35%
in a 1.5 T MRI scanner. Middle: The very first HP 129Xe image of the lungs produced in
1996 using 700 ml of gas at a polarization of 1% in a 1.5 T MRI scanner. The difference in
image quality caused by the much lower xenon polarization even with twice the volume of
gas is easily noticeable. Right: Image of healthy lungs from 2009 using 700 ml of HP 129Xe
at a polarization of ∼35% in a 3 T MRI scanner. The image quality rivals that of the HP
3He image. All images reproduced from Mugler & Altes (2013).

3



In order to perform these experiments, liter volumes of highly polarized xenon gas are

necessary. Since the signal-to-noise ratio is directly related to the polarization level of the

gas (Equation 1.0.1), attaining the highest possible polarization is crucial. While there

are multiple methods to hyperpolarize 129Xe, the most commonly used is spin exchange

optical pumping (SEOP) performed in either batch-mode or continuous-flow (Barskiy et al.,

2017). Though batch-mode hyperpolarization has seen polarization levels approaching unity

in situ, the maximum achievable polarizations for xenon occur at low xenon partial pressures

(Nikolaou et al., 2013, 2014; Fink et al., 2005). This suggests that continuous-flow SEOP,

which operates at much lower xenon partial pressures compared to batch-mode, should

provide the means for obtaining the highest final xenon polarizations. However, continuous-

flow hyperpolarizers have historically performed below predicted theoretical levels (Driehuys

et al., 1996; Zook et al., 2002; Hersman et al., 2008).

Identifying the cause for the discrepancy between theoretical and experimental 129Xe

polarization levels during continuous-flow SEOP remains one of the last obstacles faced by

the field of HP gas MRI. This work focuses on possible mechanisms for polarization loss dur-

ing continuous-flow SEOP which are either ignored or have been neglected to characterize

their effects on the relaxation of HP 129Xe. In additions, the longitudinal and transverse

relaxations of xenon near superparamagnetic iron oxide nanoparticles (SPIONs) are charac-

terized.

In the next sections, a theoretical primer on the hyperpolarization techniques of the

noble gas 129Xe is provided. First, the physics behind spin exchange optical pumping is

described, and then the production of HP gas is detailed. Next, the theoretical framework

for determining the final xenon polarization is explained using the most up-to-date models.

The mechanisms which cause the depolarization of 129Xe gas are reviewed, and those which

are often ignored during continuous-flow SEOP are identified. Finally, an overview of the

chapters contained in this dissertation is provided.
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1.1 Spin Exchange Optical Pumping of Noble Gas Nuclei

The idea of optically pumping alkali metal atoms to polarize electron spins was first

shown in the Nobel Prize winning experiments performed by Kastler (1967). Kastler (1967)

also theorized the possibility of transferring spin polarization from the electrons of alkali

atoms to nuclei of noble gas atoms. The first experimental demonstrations of this technique

were reported by Bouchiat et al. (1960) in 3He and by Grover (1978) in 129Xe who showed

it could be accomplished in 129Xe at a much higher rate.

There are two possible methods for polarizing noble gas nuclei via exchange processes

after optical pumping. The first, which is possible exclusively for 3He, is known as metasta-

bility exchange optical pumping (MEOP) (Batz et al., 2011). This method takes advantage

of a metastable state in 3He, which acts as a ground state during the optical pumping pro-

cess, that can be populated by electron collisions within a plasma. Coupling between the

nucleus and electrons in these atoms causes the optically-pumped orientation of the elec-

trons to affect the nuclear spin orientation simultaneously. Finally, through metastability

exchange collisions these atoms transfer their angular momentum to the 3He atoms which

have remained in the true ground state to polarize the spins.

The second method is Spin Exchange Optical Pumping (SEOP), which is possible in a

variety of nuclear spins including 3He and 129Xe. As the work presented here is achieved

exclusively using 129Xe which is hyperpolarized via SEOP, this section will center on an

explanation of this process and the hardware used in our lab to polarize the gas.

However, before the process of spin exchange optical pumping is described, a clear defini-

tion of what it means for a noble gas to be “hyperpolarized” must be provided. As discussed

previously, 129Xe is a spin-1
2

nucleus. Therefore, in the presence of an applied magnetic field,

its nuclear spin can be aligned either parallel, N+, of antiparallel, N−, to the magnetic field.

The nuclear spin polarization may then be defined as the ratio of the difference of spins in
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the ground state and excited state to the total number of spins:

P =
N+ −N−
N+ +N−

. (1.1.1)

It is important to note that while this semiclassical definition is true for spin-1
2

systems, it

breaks down for spins with spin quantum numbers greater than I = 1
2
, such as 131Xe (I = 3

2
).

As this work will not be dealing with spins that exhibit spin quantum numbers greater than

I = 1
2
, our semiclassical definition will suffice.

Spin Exchange Optical Pumping is a two-step process whereby angular momentum is

transferred from the electronic spin of an alkali metal atom to the nuclear spin of a noble

gas atom. In order for this exchange to occur, first the alkali metal vapor must be polar-

ized through depopulation optical pumping and then angular momentum transfer can occur

through spin exchange binary collisions or the formation of van der Waals molecules (Happer,

1972; Becker et al., 1994; Ruset et al., 2006; Schrank et al., 2009).

In practice this is achieved through the use of an optical pumping system whose schematic

is shown in Figure 1.2. Optical components are employed to ensure the proper polarization

for the light illuminating the optical cell. First, the laser beam, whose polarization has

been scrambled by the optical fiber, is expanded and collimated and then separated by a

polarizing beam splitter into its s and p components. The s and p components are then

sent through two separate quarter-wave plates, where the linear polarization is transformed

into circular polarization. The optical pumping cell contains an alkali metal vapor and

a gas mixture typically composed of the noble gas (3He or 129Xe), helium, and nitrogen.

Helium is added to the gas mixture to pressure-broaden the D1 absorption line of the alkali

metal to increase the amount of absorbed light (Romalis et al., 1997). Nitrogen is added to

quench the fluorescence of the excited alkali metal through the vibrational modes in nitrogen

thus preventing alkali metal depolarization through the absorption of emitted unpolarized

photons (Wagshul & Chupp, 1994). As seen in Figure 1.2, the optical cell is housed inside a

temperature controlled oven and placed at the center of a Helmholtz coil. The oven is heated
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to between 100-200°C to produce an optically thick rubidium vapor while the Helmholtz coil

produces a low, uniform magnetic field which causes Zeeman splitting of the alkali metals

energy levels.

Figure 1.2: Example SEOP system schematic. 1. Helmholtz coil pair generating the polar-
izing magnetic field. 2. Temperature controlled oven 3. Optical pumping cell containing
an alkali metal vapor and the noble gas. 4. Quarter-wave plate to circularly polarize light.
5. Polarizing beamsplitter to separate horizontally and vertically polarized light. 6. Laser
tuned to D1 transition of alkali metal.

The alkali metal vapor is continuously irradiated by the laser which is tuned to the

D1 transition of the alkali metal. This causes the electrons in the ground state (5S 1
2

for

rubidium) to transition into the excited state (5P 1
2

for rubidium), but in order for optical

pumping to occur, the alkali metal must be selectively excited from only one of the ground

state spin sublevels. Optical pumping takes advantage of conservation of energy and angular

momentum, in the form of quantum selection rules, to achieve this goal. In the ground state,

the alkali metal has a total angular momentum of 1
2

which is a combination of spin and orbital

angular momentum. The same is true of the excited state. Therefore, both the ground and

excited states may be in either the spin up or spin down sublevel. Because of the circularly-

polarized nature of the laser light, the alkali metal is selectively excited to only one of the

excited sublevels as the transition must conserve energy and angular momentum. Figure 1.3

illustrates the optical pumping of rubidium for right-circularly-polarized light. Once in the

excited state, the spins undergo collisional mixing and are then evenly distributed among the
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excited sublevels which means they relax to either of the ground state sublevels. Fortunately,

since only one of the two ground states can absorb the angular momentum from the circularly

polarized photons, the spins in other ground state become transparent to light. As a result,

the “transparent” ground state becomes overpopulated and the electronic spins of the alkali

atoms are said to be polarized. The depopulation of a single, alkali metal ground state

sublevel is why this process is known as depopulation optical pumping.

Figure 1.3: Diagram showing the depopulation optical pumping of rubidium by laser light
tuned to the 795 nm D1 transition. Spins are initially in either of the 5S ground state
sublevels. Due to selection rules only one of the ground state sublevels may absorb the
circularly polarized photons and transition to a single 5P excited state. Collisional mixing
in the excited state gives an equal probability of relaxing to each ground state sublevel but
eventually all of the electrons find themselves in the non-absorbing sublevel thus polarizing
the rubidium to nearly 100%. Reproduced from Möller et al. (2002).

The polarized alkali metal atoms may now transfer their angular momentum to polarize

the nuclear spins of the noble gas atoms via spin exchange collisions. The polarization

can be transferred through the Fermi contact interaction during binary collisions, which is

the only way spins become polarized in the case of 3He. However, for 129Xe, there is an

additional method by which the spins may become polarized. Nitrogen in the gas mixture

may mediate the formation and breakup of Rb-129Xe van der Waals molecules which lead to

angular momentum transfer and polarize the xenon gas. These two methods of polarization

transfer are illustrated in figure Figure 1.4. After collision or breakup of the van der Waals
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Figure 1.4: Spin exchange diagram showing the two possible means for polarization transfer
between rubidium and xenon. Left: The polarized rubidium electron collides with the unpo-
larized xenon nuclear and through a Fermi contact interaction the polarization is transferred
to the xenon nucleus. The rubidium atom may again become polarized through optical
pumping. Right: Formation and breakup of Rb-129Xe van der Waals molecules through
three body collisions involving nitrogen. The interaction leaves the 129Xe polarized and the
Rb depolarized.

molecule, the rubidium atom is left depolarized and will again absorb photons from the laser

irradiation until it becomes repolarized.

Originally, noble gas was polarized via SEOP using a batch method. In this case, the

unpolarized noble gas is flowed into the optical cell containing the alkali metal and sealed.

The alkali metal is heated to create the optically thick vapor and then illuminated by laser

light to induce the optical pumping. Spin exchange follows through collisions between the

alkali metal and noble gas atoms as described previously. Once the gas reaches the desired,

achievable polarization, the cell is cooled to allow the alkali metal to condense and the

polarized gas is transferred to a storage container. The batch method is the only method

used to polarize 3He using SEOP due in part to the low spin exchange rates between helium

and alkali metals, which cause pump up times on the order of hours. The batch method is
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also used for polarizing xenon, but the maximum achievable polarizations for xenon occur at

low xenon partial pressures, meaning clinically relevant volumes (∼1 L) of highly polarized

(>25%) xenon can be difficult to achieve using the batch method (Ben-Amar Baranga et al.,

1998; Fink et al., 2005).

Fortunately, the spin exchange rates between xenon and rubidium are three orders of

magnitude higher than between helium and rubidium, decreasing the pump-up time from

hours to seconds and allowing xenon to be polarized via continuous-flow SEOP (Grover,

1978; Jau et al., 2003). In this method, a gas mixture including xenon, nitrogen, and helium

are continuously flowed through the optical cell illuminated by laser light. Typically, a lean

mixture of xenon (between 1% and 5%) is used to limit the spin destruction mechanism due

to spin-non-conserving, binary, Rb-Xe collisions (Driehuys et al., 1996). The xenon gas atoms

become polarized by SEOP with an optically thick alkali metal vapor, in the same way as the

batch method, but continue to flow out of the cell where they are separated from the mixture

and collected using a liquid nitrogen cold trap. Once the desired volume of xenon is frozen

in the cold trap, the flow of gas is stopped, the optical cell is closed, and the polarized xenon

is thawed and transferred to a storage container. Continuous-flow SEOP is the most widely

used method for clinical applications as it offers the potential to produce large volumes of gas

in a shorter amount of time than the batch method. The work presented here is completed

exclusively using hyperpolarized xenon produced via continuous-flow SEOP.

The polarizer used for all work presented in this dissertation is a Polarean 9800 129Xe

Hyperpolarizer. Figure 1.5 shows an image of the polarizer as it appears in our lab along with

an illustration of continuous-flow SEOP as it occurs within the optical cell of the polarizer.

The polarizer uses most of the parts that were originally shipped with the polarizer with

notable exceptions. First, a custom-designed, spiral cold finger is used instead of the original,

cylindrical cold finger. The custom cold finger has lead to an increase in the polarization

levels likely for two reasons. The spirals improve the thermal contact of the glass with its

surroundings, which leads to more efficient freeze-out of xenon and faster sublimation when
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Figure 1.5: Continuous-flow hyperpolarizer used for all work presented in this dissertation.
Left: Schematic of the spin exchange optical pumping process in continuous-flow mode.
Right: Our lab’s Polarean 9800 129Xe Hyperpolarizer which operates in a continuous-flow
mode.

thawing for collection, and the larger volume of the spiral cold finger allows the xenon to

freeze in a thin layer rather than a large chunk of ice. This leads to a decrease in solid

state relaxation and prevents blockages in the flow during collection. The second variable

part is the permanent magnet in which the cold finger is placed to increase the longitudinal

relaxation of xenon while in the solid state. This magnet is interchangeable and our lab

has two permanent magnet designs which may be used: the original magnet shipped with

the polarizer and the magnet which is available in the Polarean 3777 129Xe Hyperpolarizer

Upgrade Module. The original magnet has an open front for easy access to the liquid nitrogen

dewar and a closed top which was used as a flux return. The new magnet design has a closed

front and open top which generates a stronger and more homogeneous magnetic field which

help produce larger final xenon polarizations.

In the next section, the equations which dictate rubidium optical pumping and polar-

ization are discussed along with the spin exchange and spin destruction equations which

ultimately determine the xenon polarization.
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1.2 Theoretical Model of Noble Gas Polarization

As polarization is transferred from the electrons of the alkali metal atoms to the nuclei

of the noble gas, the noble gas polarization is directly related to the alkali metal polariza-

tion. In the previous section, the process of spin exchange optical pumping was described

qualitatively, but in this section, the polarization of 129Xe by spin exchange with optically

pumped rubidium will be described quantitatively.

The theory behind spin exchange optical pumping of noble gas nuclei has been extensively

studied and is fairly well understood (Happer, 1972; Walker & Happer, 1997). Following the

work of Appelt et al. (1999b), Norquay et al. (2013), and Freeman et al. (2014), a theoretical

model to determine the final 129Xe polarization during SEOP will be presented. The time

dependence of the rubidium polarization throughout the length of the optical cell during

optical pumping may be described by (Happer & Van Wijngaarden, 1987):

PRb(z, t) =
γOP (z)

γOP (z) + ΓSD

[
1− e−(γOP (z)+ΓSD)t

]
(1.2.1)

where γOP (z) is the position-dependent Rb optical pumping rate with z representing the

distance from the illuminated window of the optical cell, along its main axis and ΓSD is the

rubidium spin destruction rate. This equation shows the exponential buildup of rubidium

polarization. However, as the time needed to reach saturation of the Rb polarization is on

the order of milliseconds while the time required for spin exchange is on the order of seconds

or longer, the steady-state polarization of the rubidium can be used:

PRb(z, t) =
γOP (z)

γOP (z) + ΓSD
. (1.2.2)

As can be seen from this equation, achieving the maximum rubidium polarization requires

minimizing the spin destruction rate of rubidium. The rubidium spin destruction rate, or

the rate at which rubidium is depolarized, is a combination of depolarization through binary
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Table 1.1: Spin destruction cross sections for Rb binary collisions

i κRb−iSD (cm3s−1)
Rb 4.2×10−13 (Ben-Amar Baranga et al., 1998)
He 1.0×10−29T4.26 (Ben-Amar Baranga et al., 1998)
N2 1.3×10−25T3 (Chen et al., 2007)

Xe 6.02×10−15
(

T
298K

)1.17
(Freeman et al., 2014)

collisions (BC) with the various constituents of the gas mixture and the formation and

breakup of van der Waals molecules (vdW). The contribution from binary collisions is given

by:

ΓBCSD =
∑
i

[Gi]κ
Rb−i
SD , (1.2.3)

where κRb−iSD is the spin destruction cross section for rubidium binary collisions with each gas

in the optical cell with an atomic density [Gi]. Table 1.1 lists the temperature dependent

values for the spin destruction cross section of rubidium with the various gases present during

continuous-flow SEOP.

The contribution of van der Waals molecules to rubidium spin destruction is dependent

on temperature and the atomic gas densities of He, N2, and Xe (Ruset, 2005):

ΓvdWSD =

(
66183

1 + 0.92 [N2]
[Xe]

+ 0.31 [He]
[Xe]

)(
T

423K

)−2.5

(1.2.4)

As seen from this equation, to minimize the effects of the formation and breakup of van

der Waals molecules on the rubidium spin destruction, it is advantageous to keep the xenon

atomic densities low within the optical cell while maintaining high concentrations of nitrogen

and helium. According to Equation 1.2.3, maintaining low xenon atomic densities also

helps lower the spin destruction due to binary collisions while having high concentrations of

nitrogen and helium have a negligible effect on binary collisions.

Now that we know how to minimize the spin destruction of rubidium, the next step is to

maximize the optical pumping rates of rubidium within the optical cell. For this, the pump

laser will be modeled as a Gaussian function with a center wavelength of λl and linewidth
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of ∆λl. The pressure-broadened D1 absorption cross section of rubidium will be modeled

as a Lorentzian function. With these assumptions, the optical pumping rate, γOP , may be

written (Appelt et al., 1999b; Antonacci et al., 2017):

γOP (z) =
β

[Rb]
F, (1.2.5)

where F is the photon flux defined by F = I·np

A
with I being the intensity of the pumping

laser, np being the photons per Joule produced by the pumping laser, and A being the cross-

sectional area of the pump laser as incident on the optical cell. [Rb] is the rubidium number

density. It is important to note that when determining the rubidium number density within

the optical cell most often vapor curves, such as those from Killian (1926), Nesmeyanov

(1964), or Alcock et al. (1984), are employed along with the temperature reading from a

resistance temperature detector (RTD) placed on the outside of the cell. This assumes that

the rubidium vapor is in thermal equilibrium with a number density determined by an RTD

on the outside of the optical cell and a uniform distribution along the entire length of the

optical cell. The term β is defined by:

β =
2
√
πln2refD1λ

3
lw
′(r, s)

hc∆λlnp
[Rb] . (1.2.6)

In this equation, re is the classical radius of the electron, fD1 is the rubidium D1 oscillator

strength, h is Planck’s constant, and c is the speed of light. The function w′(r, s) is the real

part of the complex overlap function dependent on r, the ratio of the atomic D1 linewidth

to the pumping laser linewidth, and s, the relative detuning between the pumping laser and

the D1 cross section (Appelt et al., 1999a).

Using the above equation, the attenuation of the optical pumping rate along the length

of the optical cell may be described by:

dγOP (z)

dz
= −β

(
1− sz

γOP (z)

γOP (z) + ΓSD

)
γOP (z), (1.2.7)
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where sz is the fraction of laser photons that are circularly polarized. Equation 1.2.7 can be

solved via separation of variables and provides a solution for the optical pumping rate such

that (Appelt et al., 1999b):

[1 + (1− sz)(βz +K)] γOP (z) + γSDln(γOP (z)) + γSD(βz +K) = 0. (1.2.8)

K is a constant determined by the boundary condition at z = 0. γOP (0) is the initial optical

pumping rate at z = 0 and forces the constant K to be:

K =
−γOP (0) + γSDln(γOP (0))

γSD + (1− sz)γOP (0)
. (1.2.9)

This solution for the optical pumping rate as a function of the z may be used to determine

the optical pumping rate at discrete positions along the axis of the optical cell. Once the

optical pumping rate is known for a specific position in the cell, it may be used to calculate

the expected rubidium polarization at that point through Equation 1.2.2. This provides

the ability to determine a mean rubidium polarization, 〈PRb〉, throughout the cell which

may be used to calculate the final xenon polarization. The xenon polarization is dependent

on the residency time, tres, within the optical cell and exhibits an exponential buildup in

polarization, similar to rubidium, described by (Driehuys et al., 1996):

PXe(tres) =
γSE

γSE + Γ
〈PRb〉

[
1− e−tres(γSE+Γ)

]
. (1.2.10)

Here, Γ is the relaxation rate of 129Xe, which is described in more detail in section 1.3,

while γSE denotes the Rb-Xe spin exchange rate. As discussed in section 1.1, the spin

exchange between xenon and rubidium is mediated by a combination of binary collisions

and the formation of short-lived van der Waals molecules. Combining the formulas for the

spin exchange rates due to binary Rb-Xe collision and van der Waals molecules allows for a
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total theoretical spin exchange rate to be calculated by (Cates et al., 1992):

γSE = γBCSE + γvdWSE =

(
κRb−XeSE +

∑
i

1
|Gi|
ξi

)
[Rb] . (1.2.11)

The spin exchange cross section due to binary collisions has been reported to be 2.2×10−16

cm3s−1 (Jau et al., 2003). The variable ξi is a van der Waals specific rate that has been

measured for each gas atom in the mixture. The values have been calculated as ξXe =5230

Hz, ξN2 =5700 Hz, and ξHe =17000 Hz (Cates et al., 1992; Zeng et al., 1985; Driehuys et al.,

1996).

The theory presented here is often used to make comparisons to experimental data for

various polarizer designs and may be used for both batch method and continuous-flow SEOP.

However, in all cases, the theory overestimates the polarization achieved experimentally by

up to a factor of two. In the next section, the relaxation mechanisms of 129Xe which may

lead to this discrepancy are reviewed.

1.3 Depolarization Mechanisms of Hyperpolarized Gases

Once 129Xe has been hyperpolarized, it is important to maintain the polarization up

to the point it is put to use. This requires a thorough understanding of the longitudinal

relaxation of xenon in the solid, liquid, and gas phases. Longitudinal relaxation, also known

as T1 relaxation, involves the interaction of nuclear spins with the surrounding environment

and, through energy exchange, causes the relaxation of a nuclear spin system back to thermal

equilibrium. Here, the mechanisms which cause longitudinal relaxation of 129Xe in the gas

and liquid phases are presented. The longitudinal relaxation rate may be described by the

combined effects of multiple depolarization mechanisms using the following equation:

1

T1

=

(
1

T1

)
CR

+

(
1

T1

)
MFI

+

(
1

T1

)
O2

. (1.3.1)
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In this equation, The relaxation has been categorized as collisional relaxation, CR, relaxation

due to magnetic field inhomogeneities, MFI, and relaxation with molecular oxygen, O2.

Collisional relaxation includes the intrinsic relaxation due to binary collisions and van der

Waals molecules as well as the extrinsic relaxation caused by collisions with the container

walls.

In the early stages of the development of SEOP, many of the intrinsic relaxation mech-

anisms were studied. Hunt & Carr (1963) developed the theory on relaxation due to binary

collisions through the identification of the spin-rotation Hamiltonian for the 129Xe nuclear

spin. Relaxation resulted as magnetic fields were generated by the moving electrons in the

xenon atoms during binary collisions. The highly polarizable xenon atoms are thus affected

by these magnetic fields and may become depolarized. These magnetic fields are modulated

by the lifetime of the collisions and thus have a small effect during the short lifetime of a

binary collision. The formula for the relaxation rate of xenon caused by intrinsic binary

collisions was determined to be (Streever & Carr, 1961; Hunt & Carr, 1963):

1

T1

=
[Xe (amagat)]

56h · amagat
(1.3.2)

While this equation was determined for xenon densities, [Xe], greater that 50 amagat, it

was extrapolated down to ∼1 amagat, a regime much more relevant to SEOP, and predicts

a T1 for xenon on the order of tens of hours. Therefore, in most SEOP polarizers these

mechanism is ignored because, as will soon be shown, other relaxation mechanisms provide

a much shorter longitudinal relaxation time on the order of tens of minutes.

Chann et al. (2002) showed that at the number densities typically achieved during spin

exchange optical pumping the formation and break up of van der Waals molecules dominates

the intrinsic relaxation of 129Xe. While only a very small percentage (<1%) of xenon atoms at

room temperature and standard pressure are bound in van der Waals molecules, the lifetime

of these molecules is on the order of nanoseconds, which is nearly three orders of magnitude

greater than the lifetime of binary collisions(Bernardes & Primakoff, 1959). Work by Anger
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Table 1.2: Room temperature coefficients, KB (×10−10 cm3/s), for the breakup of van der
Waals molecules for xenon and nitrogen as measure by aChann et al. (2002) and bAnger
et al. (2008).

Gas KB

Xe 1.2a

3.7b

N2 1.3a

1.9b

et al. (2008) provided an empirical formula for the relaxation rate caused by the formation

of van der Waals molecules. When combined with Equation 1.3.2, the formula for the total

intrinsic relaxation of 129Xe takes the form:

1

T1

=
[Xe (amagat)]

56h · amagat
+

1

4.59h

[
1 +

(
3.65× 10−3

)
B2

0

](
1 + rN2

[N2]

[Xe]

)−1

, (1.3.3)

where B0 is the applied magnetic field and rN2 is relative efficiency of nitrogen to breakup the

van der Waals molecules. The coefficients, KB, for the breakup of van der Waals molecules

by xenon and nitrogen as measured by Chann et al. (2002) and Anger et al. (2008) are listed

in Table 1.2. The relative efficiency of breakup, rN2 , is given by rN2 = KB/KXe.

Extrinsic collisional relaxation takes the form of collisions with container walls. Wall

relaxation is arguably the least understood relaxation mechanism for hyperpolarized noble

gases. Wall relaxation of hyperpolarized xenon depends on a wide range of factors includ-

ing the surface-to-volume ratio of the container, the coating of the container, temperature,

and magnetic field strength. However, highly variable relaxation times may be obtained

in seemingly identical containers. To make matters worse, use of the container can change

the longitudinal relaxation time due to wall collisions. Zeng et al. (1983) studied the wall

relaxation of hyperpolarized 129Xe and found for uncoated Pyrex, the most common ma-

terial used for optical cells in continuous-flow SEOP, at temperatures of ∼80°C that wall

relaxation times ranged from 200 s to as high as 1300 s in exceptional cases. Interestingly,

Repetto et al. (2016) found that a specific type of glass, GE180, increased the longitudinal
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relaxation time of xenon up to 9 hours with no wall coating and very long lifetimes. This

increase is helpful but in most cases a relaxation time due to wall collisions is expected to

be on the order of tens of minutes to an hour. While optical cells used in batch method

SEOP always make use of surface coatings, those used in continuous-flow SEOP forgo this

costly procedure as the contribution from wall collisions to the longitudinal relaxation time

is negligible because of the decreased residency time of the xenon atoms.

The contribution of relaxation due to magnetic field inhomogeneities is the subject of

chapter 3 and as such will not be covered in detail here. However, it is worth noting that

relaxation in magnetic field gradients is often ignored in continuous-flow SEOP even though it

is possible to obtain relaxation times on the order of minutes in regions where the magnetic

field approaches zero. However, with careful design of the continuous-flow SEOP setup,

relaxation arising from diffusion in magnetic field gradients can be increased to tens of

minutes or hours.

Finally, relaxation through interactions with oxygen is one of the strongest longitudinal

relaxation mechanisms of hyperpolarized xenon owing to the permanent magnetic dipole

moment of oxygen. During SEOP and transport, depolarization of xenon because of interac-

tions with molecular oxygen can be minimized by flushing the leak-proof storage container

several times with ultra-high purity nitrogen gas before use. Unfortunately, interactions with

oxygen become unavoidable during in vivo experiments with 129Xe. Experiments performed

to measure the relaxation arising from collisional coupling of oxygen produced a formula for

the relaxation rate described by (Jameson et al., 1988):

1

T1

=
(
0.478s−1amagat−1

)
nO2 . (1.3.4)

In this equation nO2 is the oxygen density. This equation reveals that at atmospheric concen-

trations, oxygen causes a longitudinal relaxation time of approximately 10 s, which becomes

an inescapable consequence when performing pre-clinical or clinical scans.
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1.4 Overview of Contents

In this dissertation, work fundamental to the understanding of continuous-flow spin

exchange optical pumping inefficiencies is presented.

In chapter 2, the fluid flow within optical cells used for continuous-flow SEOP is studied.

Previous work has been done to simulate flow within the optical cell but multiple assumptions

and symmetries are used to simplify the simulations. These assumptions ignore important

aspects which can considerably affect the fluid flow. Work simulating the entire 3D geometry

of two different optical cell designs is presented. This work suggests that the path the gas

takes before entering the optical cell influences gas flow within the optical cell and that

turbulence is introduced at much lower flow rates than expected, close to those flow rates used

for production of clinically relevant doses of hyperpolarized gas. Additionally, this turbulence

leads to a distribution of residency times, antithetical to the way that the residency times

are treated when modeling xenon polarization. These results could explain the discrepancy

found between theoretical and experimental polarization levels achieved during continuous-

flow SEOP.

In chapter 3, the contribution of gas diffusion in magnetic field inhomogeneities to the

depolarization of xenon during continuous-flow SEOP is discussed. Through the combined

use of finite element analysis and random walk simulations, large gradients were discovered

in the flow path of the gas that can lead to a significant increase in the longitudinal relaxation

rates of hyperpolarized 129Xe, particularly in regions where the magnetic field approaches

zero. The results were validated using experimental longitudinal relaxation measurements

of two different permanent magnet designs, generating significantly different magnetic field

distrubutions. The work suggests that careful design of the magnets required for continuous-

flow SEOP can minimize the effects of magnetic field gradients on longitudinal relaxation,

leaving wall collisions as the largest remaining source of gas phase spin relaxation during

SEOP of xenon.

In chapter 4, relaxation of xenon diffusing in magnetic field gradients generated by
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SPIONs is analyzed and used as a new source of contrast in magnetic resonance imaging.

Specifically, the effects of longitudinal and transverse spin relaxation are separated and

characterized for hyperpolarized 129Xe undergoing restricted diffusion near SPIONs using

finite element analysis and Monte Carlo simulations. Simulations showed that signal loss near

the SPIONs is almost entirely caused by transverse relaxation with only a small contribution

from longitudinal relaxation. Simulated image contrast and experimental images revealed

that xenon diffusion provides no noticeable increase in sensitivity to SPIONs at the length

scales typically probed by MRI. This indicates that to increase image contrast near iron

oxide nuclei with larger gyromagnetic ratios and/or diffusion coefficients, such as 3He or

fluorinated gases, should be used.

Finally, in chapter 5, this work is put into context within the field. Guidelines for

the design and orientation of magnets and optical cells used for continuous-flow SEOP are

provided. In addition, suggestions for extending current work and possibilities for new

research opened by the work in this dissertation are presented.
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CHAPTER 2: CHARACTERIZATION OF FLUID FLOW IN
CONTINUOUS-FLOW SPIN EXCHANGE OPTICAL

PUMPING CELLS

In this chapter, results from an investigation into the fluid flow within optical cells used

for continuous-flow spin exchange optical pumping of 129Xe gas are presented. Wall collisions

are known to be a significant source of relaxation for hyperpolarized xenon gas. Designing

cells that generate laminar flow and minimize contact with the cell walls are necessary to

achieve maximum polarization. Computational fluid dynamics and heat transfer simulations

are performed on two different optical cells designed for use in a commercial hyperpolarizer

to determine the flow regime inside the cells. These simulations reveal turbulence in both

designs at flow rates typically used to generate clinical volumes (∼1 liter) of hyperpolarized

129Xe. This turbulence leads to a wide distribution of residency times for xenon in the

optical cell which could contribute partially to the discrepancy between the predicted and

experimental polarization levels currently achieved.

2.1 The Discrepancy between Theoretical and Experimental Nuclear Spin Po-
larization of 129Xe

Continuous-flow xenon polarizers have historically produced polarization levels well be-

low the theoretical maximum and a significant effort has been put forth to characterize

continuous-flow SEOP experimentally to determine the sources of inefficiency. Norquay

et al. (2013) analyzed relaxation of xenon in the solid state during continuous-flow freeze-

out to measure the effect of solid state relaxation. They determined that, for a standard

collection time of 40 minutes, the percentage loss of polarization due to solid state relaxation

would only be about 10%. Schrank et al. (2009) performed in situ electron paramagnetic
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resonance experiments to measure the rubidium polarization profile during continuous-flow

SEOP. They concluded that, at least for their system based on the polarizer design from

Ruset et al. (2006), the rubidium polarization was between 85% and 95%. As the rubidium

polarization directly affects the xenon polarization, another mechanism must be causing the

discrepancy. Antonacci et al. (2017) used atomic absorption spectroscopy to measure polar-

ization losses due to dark rubidium vapor in the outlet of the optical cell. They found that

dark rubidium also has a negligible impact on the final xenon polarization under typical ex-

perimental conditions. Even correcting the theoretical model to incorporate the combination

of all of these effects cannot account for the nearly factor of two difference often observed

between theoretical and experimental xenon polarizations.

This has led to the hypothesis that perhaps there are factors missing from the theoretical

model of xenon polarization. Freeman et al. (2014) have proposed the presence of paramag-

netic rubidium nanoclusters in the cell during SEOP. The presence of rubidium nanoclusters

would fundamentally change the theoretical framework of xenon polarization. By including

the production of these particles and the depolarizing effects they have into the standard

theoretical model of spin exchange optical pumping, they were able to show consistency

between the predicted and observed xenon polarization levels. However, while Flower et al.

(2017) used electron microscopy to observe rubidium particles in certain locations of some

optical pumping cells, these experiments were not performed during SEOP and no exper-

imental evidence has yet shown the presence of rubidium clusters during continuous-flow

SEOP. Until such time as these clusters are shown to be present during SEOP, the culprit

behind SEOP inefficiency is still unknown.

One factor which is often neglected during the modeling of continuous-flow SEOP is the

fluid flow within the optical cell. To our knowledge, Fink et al. (2005); Fink & Brunner (2007)

are the only group to perform computational fluid dynamics simulations of flow within the

optical cell during xenon hyperpolarization for both batch-mode and continuous-flow SEOP.

Their work on continuous-flow pump cells provided helpful recommendations for optimizing
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spin exchange that are still used today, including the need to presaturate the gas mixture

with rubidium vapor prior to entering the optical cell and to preheat the gas to the oven

temperature to avoid temperature gradients leading to turbulent flow. Unfortunately, the

simulations performed by Fink & Brunner (2007) used simplified optical cell geometries that

neglect the complex flow that develops before the gas enters the main body of the cell. In

addition, assumptions about the rubidium density distribution within the optical cell are

made which are possibly incorrect for many polarizers.

In the work presented here, a systematic approach is taken to determine the factors

that most affect fluid flow within the optical cell during continuous-flow SEOP. This is

accomplished by performing computational fluid dynamics simulations on two, complete,

full-scale optical cell designs for the only available commercial hyperpolarizer. The effect of

using a plug flow versus a fully-developed flow is simulated along with the effect of a density-

dependent gravitational force on the gas. The fluid dynamics equations are then coupled

with the heat equation to understand the effect of convection on the fluid flow within the two

optical cell designs. Finally, a model of rubidium evaporation is included to determine the

effect of heat absorption caused by the latent heat of vaporization. Comparisons to previous

experimental work are used to test the accuracy of these simulations.

2.2 Optical Cell Designs

The work presented here utilizes two optical cell designs developed for use on the Po-

larean 9800 129Xe Hyperpolarizer system. Because of the size of the oven on the polarizer,

constraints are placed on the possible geometries and sizes of the optical cell designs. Both

optical cell designs have a radius of 2.4 cm and length of 15 cm leading to a volume of

approximately 0.27 L. Each cell contains a region for presaturation of the gas mixture with

rubidium vapor right before the cell inlet. As shown in Figure 2.1, the major difference

between the two cell designs is the location of the inlet. While one cell has an inlet at the

rear of the optical cell, the other has an inlet at the bottom of the cell. The gas mixture
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used in our system is composed of 1% xenon, 10% nitrogen, and 89% helium by volume.

During operation, the gas is typically flowed at a volume rate between 0.1-1.5 SLM and a

total pressure of 2 atm. The optical cell, housed within the temperature-controlled oven, is

maintained at a temperature of 408 K while the temperature of the presaturation region is

controlled via wraparound heating cord to 458 K.

Figure 2.1: SolidWorks models of both cell designs simulated in this investigation. Left:
Older cell design with a presaturation “bulb” before the inlet, which is at the rear of the
optical cell. Right: Newer cell design with inlet at the bottom of the cell. The presaturation
region is still present but is no longer a bulb.

2.3 Computational Fluid Dynamics Simulations of Flow within the Optical Cell

In this section, the simulations used to evaluate the factors that affect fluid flow inside

the optical cell during spin exchange optical pumping are presented. The simulations start by

just solving for the flow field while ignoring heat transfer and convection. Then the effects

of convection on the flow are tested. Finally, a model for heat transfer due to rubidium

vaporization is added to determine if any changes occur within the flow field. Particle

tracing simulations are used to calculate the residency time of xenon in the optical cell.
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2.3.1 Plug Flow and Fully Developed Flow at the Cell Inlet

According to the theoretical model of xenon polarization, the polarization level is de-

pendent on the residency time of xenon within the optical cell. The longer the spins spend

within the optical cell, the greater the final polarization that is achieved. Therefore, the

average residency time can help to estimate the maximum achievable xenon polarization.

Typically, to calculate the residency time within the cell, τres, the volume flow rate is used

in the following manner:

τres =
V

Q
, (2.3.1)

where V is the volume of the optical cell and Q is the volumetric flow rate. Underlying this

method of calculating the residency time are a number of assumptions. The flow profile in

the cell is assumed to be radially uniform meaning all atoms have the same speed. This is

a poor assumption in the case of continuous-flow SEOP as there is a great deal of piping

before the optical cell which will lead to a fully developed flow profile entering the cell.

Additionally, using the average residency time based on the flow rate assumes that there is

no turbulence present in the optical cell. Turbulence could lead to a wide range of xenon

residency times vastly changing the final xenon polarization. Computational fluid dynamics

simulations by Fink & Brunner (2007) have already revealed turbulence in a simplified model

of continuous-flow optical cells indicating that assuming laminar flow within complex optical

cell designs is likely incorrect.

Therefore, the first test was to compare flow field results from a simulation using a plug

flow inlet condition against results from a simulation which contained a fully developed flow

at the inlet. A plug flow describes a flow profile with a uniform velocity. This is physically

unrealistic because of the no-slip condition of the boundary. When a fluid enters a circular

pipe at a uniform velocity, the particles near the surface come to a complete stop. This

causes nearby particles in the boundary layer to gradually slow down as well. To make up

for the velocity reduction near the boundary, the velocity of the fluid at the center of the pipe
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Figure 2.2: The development of the velocity profile in a pipe. The flow enters the pipe as
a plug flow then after the necessary entrance length becomes fully developed. The fully
developed velocity profile has a parabolic shape.

increases to maintain the mass flow rate through the pipe. Therefore, a velocity gradient

develops along the pipe. A certain entrance length is required for the flow to develop this

velocity gradient. After the entrance length, the flow is said to be fully developed. Figure 2.2

shows a developing flow within a pipe. As can be seen, magnitude of the velocity at the

boundary is zero, while the speed at the center is twice the velocity at the inlet.

To simulate both plug flow and fully developed flow, full-scale models of both optical cell

designs were developed using the CAD software SolidWorks for use in finite element analysis

simulations. To compute the velocity field within the optical cell, COMSOL Multiphysics

was utilized. Material properties were computed using data from the Material Properties

Database Software (JAHM Software, Inc., North Reading, MA, U.S.A.). The gas mixture

simulated was 1% Xe, 10% N2, and 89% He by volume, equivalent to what is typically used,

and material properties were computed using a volume-averaged value from data for the

constituent gases.
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For all simulations, a k-ω turbulence model was employed in solving the Reynolds-

averaged Navier-Stokes equations in three dimensions using a stationary solver (Bassi et al.,

2005). The k-ω turbulence model was chosen because of the low Reynolds number of the

conditions simulated. Modified versions of both cells were designed without the inlet portion

to simulate the plug flow at the inlet of the of the main body of the optical cell and are

shown in Figure 2.3. In order to simulate a fully developed flow at the inlet of the optical

cell, inlet conditions were obtained from a separate simulation to generate a fully developed

flow profile. Owing to the symmetry of the pipe flow, a 2D axisymmetric simulation was

used. The pipe had a diameter of 7.84 mm to match the inlet diameter of the optical cell

and was taken to be 200 diameters long to ensure the flow was truly fully developed at the

outlet. The inlet conditions were taken to be plug flow profiles with velocities of 0.1296

m/s, 0.2592 m/s, 0.3888 m/s, and 0.5184 m/s corresponding to volume flow rates of 0.375

SLM, 0.75 SLM, 1.125 SLM, and 1.5 SLM, respectively. These flow rates were chosen as

they are values typically used to generate pre-clinical and clinical volumes of HP 129Xe using

continuous-flow SEOP. An example of the velocity profile at the inlet for plug flow and fully

developed flow is shown in Figure 2.4

After performing the 2D axisymmetric simulations, the outlet results for the velocity,

turbulent kinetic energy (k), and specific dissipation rate (ω) were mapped onto the inlet

boundary condition for the 3D simulations. A normal inflow boundary condition was used

at the inlet when simulating a plug flow for the four different flow rates simulated here.

The temperature of the gas was kept constant at a typical oven temperature of 408 K for

all simulations. A force was included on the fluid volume to determine the effect of gravity

on the flow. This was accomplished through the use of a force in the negative z-direction

as indicated in Figure 2.5 based on the local gas density and a parameterized gravitational

constant that was taken to be zero or 9.81 m/s2 to turn gravity off or on.

Figure 2.5 shows results from both plug flow and fully developed flow simulations for the

new cell design with the inlet at the bottom of the cell. Turbulence in the cell is observed in
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Figure 2.3: SolidWorks models of both cell designs used to simulate plug flow at the inlet
of the main cell body. Left: Older cell design with inlet leg removed where the boundary
condition at the rear of the cell was taken to be an inlet with a normal inflow velocity whose
magnitude was the average velocity for a given flow rate. Right: Newer cell design with
inlet leg removed. Boundary condition was again taken to be an inlet with a normal inflow
velocity.

both cases, but the flow rate at which turbulence is introduced is not the same. For the fully

developed flow simulations, turbulence is introduced as early as 0.75 SLM while turbulence

begins around 1.125 SLM in the case of a plug flow. The figure also shows that the flow field

in the case of the plug flow looks quite similar to the fully developed flow at a lower flow rate.

For example, the flow field for a plug flow at 1.125 SLM looks much like the flow field for

the fully developed flow at 0.75 SLM. This indicates that when assuming a plug flow during

modeling of xenon polarization, the residency time may be estimated incorrectly because

of turbulence increasing the residency time for some atoms while decreasing the residency

times for others.

The older optical cell design with the inlet at the rear of the optical cell exhibited

much more laminar flow in the case of plug flow and fully developed flow for all flow rates

tested. Some recirculation at the back of the cell occurred for the fully developed flow

simulation at 1.5 SLM but to much less of an extent compared to the optical cell with the

inlet at the bottom. For both optical cell designs, in both plug flow and fully developed flow

simulations, gravity had no effect on changing the flow. This is due to the fact that heat
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Figure 2.4: Comparison of plug flow velocity profile to fully developed flow velocity profile
for flow rate of 1.5 SLM. Left: Plug flow velocity profile showing a uniform velocity of
0.5184 m/s corresponding to the 1.5 SLM flow rate. Right: Fully developed velocity profile
exhibiting the expected shape and values. The velocity at the center is twice the velocity at
the inlet and the gradient is parabolic with a velocity of zero at the boundary.

transfer was not included in these simulations meaning the temperature throughout the cell

was uniform leading to the absence of convection within the cell. While the streamlines are

helpful in gaining some knowledge about the flow in the cell they do not provide quantitative

information on the time individual particles spend in the optical cell.

Particle tracing simulations were performed in all fully developed flow cases to determine

the residency time of xenon in the optical cell. Xenon molecular mass and diameter were

specified as particle properties for the particles in the simulation. Temperature, pressure,

velocity field, and dynamic viscosity results from the turbulent flow and heat transfer sim-

ulations were used to include a drag force on the particles. Particles were released with a

density proportional to the velocity magnitude at the inlet. A total of 5000 particles were

released at time zero and a time-dependent solver was employed to determine each particle’s

position and velocity every tenth of a second up to a total time of 60 seconds. The particles

underwent an elastic collision if they interacted with the wall except at the outlet. A freeze

condition was taken at the outlet boundary in order to allow solution of an auxiliary variable

which determined the total residency time of each particle.

Figure 2.6 shows histogram plots of the residency time for both optical cell designs.

For the cell design with the inlet at the rear, the smooth nature of the histogram is to be
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Figure 2.5: Comparison of plug flow results to fully developed flow results at multiple flow
rates Left: Plug flow results for increasing flow rate. Turbulence is not introduced until
around 1.125 SLM Right: Fully developed flow results for increasing flow rates. It can be
seen that turbulence in the fully developed flow simulations is introduced at a lower flow
rate compared to the plug flow indicating that assuming a plug flow which creates laminar
flow could lead to incorrectly predicted residency times.
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Figure 2.6: Histogram plots showing relative frequency of the residency time for each second
in the optical cell for both cell designs at all simulated flow rates. Partitions are connected
by lines to more easily show temporal trends. Left: Residency times for the older cell design
with the outlet at the rear of the cell. The smooth, exponentially-decreasing shape of the
plot shows the lack of turbulence in the cell Right: Residency times for the new cell design
with the outlet at bottom of the cell. For the 1.125 SLM and 1.5 SLM plots, the spikes are
indicative of significant turbulence affecting the residency times.

expected because of the laminar flow inside the cell. In the case of the cell with the inlet

at the bottom, the histograms at the higher flow rates reveal the turbulence that is present

in the cell. Both the 1.125 SLM and 1.5 SLM flow rates show a spike in relative frequency

after the initial decreases caused by the recirculation of the gas due to turbulence in the cell.

The turbulence actually has the effect of increasing the residency time of some particles in

the cell as the particles are recirculated. If the effect of wall collisions is not too large on

these recirculating atoms, this turbulence could increase the final polarization of xenon by

increasing the average residency time. For comparison, the average residency time at 1.5

SLM for the rear inlet cell, with no turbulence, from the simulations is 7.6 s while the average

residency time at the same flow rate for the bottom inlet cell, which has turbulence, is 12.1

s. The expected residency time from use of Equation 2.3.1 for the 0.27 L cell at a flow rate

of 1.5 SLM is 10.8 s. This shows that in some instances the residency time may be greater

than or less than the average predicted by the assumption of a plug flow which will change

the predicted final xenon polarization. While these simulations shed light on flow inside the
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cell for various geometries, inlet velocity profiles, and flow rates, they are not yet a complete

picture of the hydrodynamic and thermodynamic processes occurring during SEOP.

2.3.2 Effects of Convection on the Flow Field within the Optical Cell

The effect of convection on the flow was determined by coupling the heat equation to

the Navier-Stokes equations within COMSOL Multiphysics to simulate the heat from the

oven and heat from the wraparound heating cord on the presaturation region. The CAD

models were modified to include an additional material domain which served as the PYREX

(Corning Inc., NY, U.S.A.) portion of the optical cell. For these simulations, all boundary

condition from the CFD models remained the same. As the gas was not preheated before

entering the cell, the boundary condition at the inlet was taken to be a constant temperature

of 293 K to match the ambient temperature in the laboratory. The boundary condition for

the presaturation region of each cell was a constant temperature of 458 K to simulate heat

transfer from the heating cord, which was temperature controlled via resistance temperature

detector on the glass surface, wrapped around the region. All other boundaries were given

a heat flux boundary condition at a temperature of 408 K to simulate the convection on the

external walls of the optical cell from the oven in which the optical cell was housed.

Figure 2.7 shows results for both optical cell designs at a flow rate of 0.375 SLM. The

gravitational force on the volume of the fluid was turned off and on to determine the effect of

gravity on the flow field when convection was included in the simulations. As the figure shows

for the bottom inlet cell, the inclusion of the gravitational force and convection can lead to

turbulence at lower flow rates compared to when convection is not present. This is in part due

to the increased velocity of the gas arising from the higher temperature in the presaturation

region. For the higher flow rates, where turbulence was already present without coupling

heat transfer, the direction of the flow field was changed only slightly but the magnitude of

the particle velocities increased similar to the 0.375 flow rate. The gravitational force had

minimal effect on the rear inlet cell at all flow rates examined except for increasing the speed
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of the flow field. Both gravity and convection did not lead to turbulence in the older cell

design even at 1.5 SLM.

Figure 2.7: Flow field within the optical cell at 0.375 SLM when conduction and convection
are included in the simulations. Top: Flow field in the bottom inlet optical cell. The
gravitational force creates turbulence when convection is included at the lowest flow rate
tested which was not the case in the absence of convection Bottom: Flow field in the rear inlet
optical cell. Whether the gravitational force is included or not the flow remains qualitatively
the same. This was true for all flow rates tested for this cell design.

These results show that including heat conduction and convection along with the gravita-

tional force are important when determining the flow field for continuous-flow SEOP. While

in some cases, these additions may have little effect on the flow in the cell, in others they

can lead to significant changes. The addition of heat conduction and convection brings these

simulations closer to reality but some key thermodynamic processes must still be included.
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2.3.3 Modeling Rubidium Vaporization within the Presaturation Region

To incorporate heat loss from rubidium vaporization, a rubidium evaporation model was

included in the simulations. The CAD models were again modified to include a pool of liquid

rubidium, colored red in Figure 2.8, at the bottom of the presaturation region for each cell.

The rubidium pool was 13.8 mm wide by 15.4 mm long for the optical cell with the inlet

at the rear of the cell and 4.3 mm wide by 29.9 mm long for the optical cell with the inlet

at the bottom of the cell. A boundary heat source for the latent heat of vaporization was

used as the boundary condition for the rubidium/gas mixture boundary. The value of the

heat source was calculated using the latent heat of vaporization for rubidium and a modified

version of the Hertz-Knudsen equation:

φq =
−Hvap

NA

α (psat)√
2πMRbkBT

, (2.3.2)

where Hvap is the specific heat of vaporization of rubidium (844.95 kJ/kg), NA is Avogadro’s

number, α is the sticking coefficient of the rubidium gas, MRb is the molecular mass of

rubidium in kilograms, kB is the Boltzmann constant, T is the local temperature, and psat

is the saturation pressure of rubidium taken from the vapor pressure curve. The sticking

coefficient is taken here to be 1 in order to calculate a best-case scenario rubidium evaporation

and because the value is expected to be near unity (Nagayama & Tsuruta, 2003; Tsuruta

et al., 1999). The partial pressure of rubidium has been removed from the Hertz-Knudsen

equation to simplify computation of a steady state solution. All other boundary conditions

for heat transfer were kept the same for these simulations.

The addition of the boundary heat source from rubidium vaporization only had a sig-

nificant effect on the flow field in some cases. The speed of the fluid was minimally changed

for all flow rates by including heat loss on the rubidium surface. However, for the rear in-

let optical cell, the rubidium vaporization caused turbulence in the presaturation bulb and

optical cell at the higher flow rates. Figure 2.9 shows a top view of the flow field in the
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Figure 2.8: Modified SolidWorks models of both cell designs with the addition of rubidium in
the presaturation region. Left: Older cell design with rubidium in the presaturation “bulb”
before the inlet. Right: Newer cell design with rubidium in the presaturation region below
the cell inlet.

rear inlet optical cell for the case when rubidium vaporization is included and when only

conduction and convection are included. As the figure shows, in addition to turbulence, the

distribution of the streamlines also changes as the gas is forced to the right side of the optical

cell. This indicates that what happens to the fluid before it enters the main body of the

cell is important in determining the flow field within the cell. These results also indicate the

importance of including a model for heat loss at the rubidium surface to determine the flow.

While Fink & Brunner (2007) performed simulations to determine the length of tubing re-

quired to completely presaturate the gas mixture with rubidium, when they performed later

simulations to determine xenon polarization in a continuous-flow SEOP cell, they assumed

that the gas mixture was already sufficiently presaturated with rubidium. This assumption

may have changed the flow field because of the lack of heat loss from rubidium vaporization.

Particle tracing simulations were again performed to determine the change in residency

time caused by the inclusion of heat transfer in the simulations. Figure 2.10 shows the

histogram plots for the results of simulations which included heat conduction, convection,

and rubidium vaporization. While the streamlines show turbulence within the optical cell
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Figure 2.9: Flow field within the optical cell at 1.5 SLM for the optical cell with the inlet at
the rear Left: Flow field when heat conduction and convection are included in the simulation
but rubidium vaporization is neglected. No turbulence is present in the cell Right: Flow field
when heat conduction, convection, and heat loss due to rubidium vaporization are included
in the simulation. Notice that turbulence occurs in this case and that the gas preferentially
moves to the right side of the cell.

for the rear inlet cell design, this turbulence is not noticeable on the residency time plots as

shown by the smooth nature of the curve. In the case of the bottom inlet cell design, the

turbulence is now noticeable at a flow rate of 0.75 SLM. The average residency time for all

flow rates in both optical cell designs has decreased as compared to Figure 2.6 because of

the increase in particle speed. The average residency time at a flow rate of 1.5 SLM is 4.9 s

for the rear inlet cell and 8.6 s for the bottom inlet cell, both of which are shorter than the

plug flow prediction of 10.8 s.

Not only are the average residency times lower than those expected from a plug flow,

they are much lower than the residency time required for spin exchange to occur. Using the

theoretical model for the final xenon polarization, a “spin-up” time can be calculated for the

conditions in the cell during continuous-flow SEOP. This spin-up time is the time required
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Figure 2.10: Histogram plots showing relative frequency of the residency time for each second
in the optical cell for both cell designs at all simulated flow rates with heat conduction,
convection, and rubidium vaporization included. Partitions are connected by lines to more
easily show temporal trends. Left: Residency times for the rear inlet cell design. While
streamlines show turbulence in the cell at the higher flow rates, the histogram does not
reveal this turbulence. It is important to note that at 1.5 SLM nearly 100% of the particles
have already left the cell in under 10 s. Much shorter than the time required for spin exchange
to occur. Right: Residency times for the bottom inlet cell design. Turbulence in the cell
can be seen at flow rates of 0.75 SLM, 1.125 SLM, and 1.5 SLM as indicated by the bimodal
shape of the histogram.

for the expected xenon polarization to reach 63% of its maximum possible value. It can be

defined using the xenon spin exchange rate, γSE, and the xenon spin destruction rate, Γ, in

the following manner (Freeman, 2015):

τSU =
1

γSE + Γ
. (2.3.3)

For the conditions used in these simulations at 1.5 SLM, which were chosen to match the

experimental conditions used in our lab to generate clinical volumes of HP 129Xe, the spin-up

time was calculated to be 34 s. This shows that even if the conditions in the cell are such

that the xenon spin destruction rate is low and xenon spin exchange rate is high, the final

polarization of xenon will still be lower than expected because of the short residency time

of xenon in the optical cell. This could be an indicator of why polarizers with longer optical

cells are able to achieve higher polarizations, simply because the residency time in the cell
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increases.

These simulations still do not provide a complete picture of fluid flow during continuous-

flow SEOP. Heating from laser radiation incident on the front of the cell has not been added

to these simulations. While the addition of laser heating is important to accurately measure

the most realistic average residency time based on flow rate, temperature, and cell geometry,

the shape of the flow field is not expected to change drastically when laser heating is included.

In the work performed by Antonacci et al. (2017), video was taken of the fluid flow inside

the cell when the laser was turned on and the flow of the particles matches qualitatively with

the results achieved in the work presented here. Of course, this is not definitive proof of the

veracity of the simulations, but it does appear to point to the laser heating having less effect

on the shape of the flow field and more likely increasing the speed of the particles because

of increased temperature.

2.4 Conclusions

Continuous-flow hyperpolarizers often achieve experimental polarizations that are much

lower (by up to a factor of two) than the predicted, theoretical polarization. A great deal of

work has been done to find the cause of this inefficiency experimentally and has determined

many factors that affect the final polarization slightly but has not found the reason for

such a large discrepancy. One factor that has been mostly neglected up to this point is

the flow inside the optical cell during SEOP. This could be a cause for the large difference

between theoretical and experimental polarization as the hydrodynamic and thermodynamic

processes inside the optical cell during continuous-flow SEOP are not yet fully understood.

Therefore, in this work, a systematic approach is used to determine the factors that most

affect the fluid flow within continuous-flow optical cells. This was accomplished using finite

element analysis fluid dynamics and heat transfer simulations. The simulations started by

only solving the Navier-Stokes equations for fluid flow and were adjusted to include various

thermal processes to more closely match experimental parameters.
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These simulations revealed that using a plug flow velocity profile at the inlet of the optical

cell incorrectly determines the flow field inside the cell for a given flow rate. As such, a fully

developed velocity profile must be used at the inlet to accurately determine the velocity field

inside the cell. It was also shown that turbulence in the cell could lead to longer average

residency times for xenon compared to laminar flow at high flow rates. This means optical

cells that exhibit turbulent flow may actually lead to higher xenon polarizations through

xenon spins spending a longer amount of time in the region where spin exchange can occur.

When heat transfer was added to the simulations, the results indicated that gravity can

create convection rolls that lead to turbulence, even at flow rates that did not show turbulence

when the temperature was uniform. Including this effect is therefore necessary to determine

an accurate flow field inside the optical cell. Heat loss due to rubidium vaporization played

a significant role in the flow for the higher flow rates. The heat loss led to temperature

gradients in the presaturation bulb of the cell designed with the inlet at the rear of the

cell. This turbulence then propagated to the main body of the cell which did not contain

turbulence at any of the flow rates tested when rubidium vaporization was not included.

This work suggests that a possible cause for the discrepancy between theoretical and

experimental polarization levels is the low residency time for many atoms in the optical cell.

Obviously, one option to increase residency time would be to flow the gas at a lower flow

rate. However, this is not possible for most clinical applications which are time-sensitive

and require multiple batches of HP 129Xe. Another option would be to design an optical cell

with increased turbulence such that recirculation in the cell would lead to larger residency

times. This would be problematic as wall collisions with the cell could lead to significant spin

destruction in that case. Therefore, it appears that longer optical cells with larger volumes

are necessary to increase the residency time of xenon within the main body of the cell to

provide sufficient time for spin exchange to occur.

While modeling the flow field within the optical cell is important to more accurately
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predict the final xenon polarization, there are many mechanisms which increase the relax-

ation rate of hyperpolarized xenon. In the next chapter, one of these mechanisms, which is

often ignored during continuous-flow SEOP, is investigated to determine its effect on xenon

polarization.
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CHAPTER 3: HP 129Xe DEPOLARIZATION IN MAGNETIC FIELD
GRADIENTS DURING CONTINUOUS-FLOW SEOP 1

In this chapter, results from an investigation on the effect of diffusion-mediated 129Xe

gas depolarization in magnetic field gradients during continuous-flow SEOP is presented. A

combination of finite element analysis and Monte Carlo simulations is used to determine

the effect of these gradients for the first generation of a commercial, continuous-flow xenon

polarizer, while experiments are performed to validate these simulations. The results here

show that large gradients in the gas-flow-path can have a significant effect on the longitudinal

relaxation of hyperpolarized 129Xe, especially in regions where the magnetic field assumes

negligible values. To this end, care should be taken in the design of the permanent magnets

required for continuous-flow SEOP. In the absence of such gradients, wall collisions are the

major contributing factor to gas-phase spin relaxation of HP 129Xe.

3.1 Effect of Magnetic Field Gradients on 129Xe Depolarization

Early on in the lifetime of two of the most prominent hyperpolarization techniques for

noble gases (metastability exchange optical pumping and spin exchange optical pumping),

much work was being done to determine the effects of the various longitudinal relaxation

mechanisms which depolarize the noble gas. Gamblin & Carver (1965) and Schearer &

Walters (1965) were working simultaneously, albeit independently, to characterize the newly

identified longitudinal relaxation mechanism of diffusion through magnetic field gradients.

In order for the gas to remain polarized while moving in a magnetic field gradient, it is

1The work presented in this chapter was originally published in the Journal of Magnetic Resonance, see
Burant & Branca (2016).
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essential that the gas does not violate the adiabatic condition:

(
1

B0

)(
dBT

dt

)
� γB0, (3.1.1)

with γ being the gyromagnetic ratio of the diffusing spin and BT being the transverse com-

ponent of the of the local magnetic field B0. If this condition is violated the nuclear spins

will be unable to “follow” the field, resulting in their depolarization. Cates et al. (1988)

extended the work done by Gamblin & Carver (1965) and Schearer & Walters (1965) by

characterizing the effect of magnetic field gradients on the longitudinal relaxation of noble

gases at low pressure.

Gradient-induced spin relaxation has also been studied for hyperpolarized 129Xe gas near

the fringe field of superconducting magnets but is often ignored during continuous-flow SEOP

(Zheng et al., 2011). While most batch-mode polarization systems contain one or more sets

of Helmholtz coils to generate a low (tens of gauss), uniform magnetic field necessary for

SEOP, continuous-flow polarization systems contain an additional magnet used to generate a

much higher magnetic field (kilogauss) in which the frozen gas is stored during the collection

process. Depending on the relative configuration of these two magnets, the probability that

the polarized gas, while traveling from the optical cell contained within the low field to the

cold trap contained within the high field, flows through a region where the magnetic field

rapidly changes direction and violates the adiabatic condition is particularly high.

Therefore, in this work, by using computer simulations and experimental measurements

of longitudinal relaxation times, the effect of 129Xe diffusion through the magnetic field

gradients that are present in the first generation of a commercial, continuous-flow polarizer

equipped with a single pair of Helmholtz coils and two different, interchangeable permanent

magnets is characterized.
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3.2 Theoretical Background

The contribution of magnetic field inhomogeneities to the longitudinal relaxation of

hyperpolarized gases is well described by the following relation (Gamblin & Carver, 1965;

Schearer & Walters, 1965):

1

T1

= D
|∇Bx|2 + |∇By|2

B2
0

(
1 + Ω2

0τ
2
c

)−1
. (3.2.1)

In this equation, D represents the diffusion coefficient of the hyperpolarized gas and the

mean magnetic field, B0, is assumed to lie along a well-defined quantization axis (taken here

to be the z-axis). Bx and By represent the transverse components of the magnetic field while

|∇Bx| and |∇By| are their spatial gradients. In this case, the spatial gradients are assumed

to be independent of position (Cates et al., 1988). The extra factor, (1 + Ω2
0τ

2
c )
−1

, known

as the magnetic-decoupling factor, accounts for rotation of spins between kinetic collisions,

where Ω0 is the Larmor frequency and τc, the diffusion correlation time, is the time between

collisions. As can be seen in Figure 3.1, this factor for 129Xe is nearly unity for a mean

magnetic field below 20T , much higher than the magnetic fields used in this work, and will

be omitted.

The assumptions in Equation 3.2.1 may be valid within the optical pumping cell, which

is contained within the polarizing field generated by a Helmholtz coil, but they are not valid

when the gas flows out of this region, where the magnetic field is on the order of a few tens of

gauss, to the liquid nitrogen cold trap, where the magnetic field is on the order of thousands

of gauss. Therefore, a modified version of Equation 3.2.1 which removes these assumptions

is necessary:

1

T1

= D
|∇BT |2

B2
0

. (3.2.2)

While Equation 3.2.2 may not appear much different from Equation 3.2.1, B0 now represents

the local magnetic field and ∇BT is the transverse component of the spatially-dependent

gradient of B0. In using the local magnetic field strength rather than the mean magnetic

44



 0.9996

 0.99965

 0.9997

 0.99975

 0.9998

 0.99985

 0.9999

 0.99995

 1

 0  5  10  15  20  25  30

M
ag

ne
tic

-d
ec

ou
pl

in
g 

F
ac

to
r 

(1
)

Field Strength (T)

129Xe
3He

Figure 3.1: Plot of the magnetic-decoupling factor as a function of magnetic field strength
for 129Xe and 3He. The value for 129Xe is very nearly 1 for the magnetic field strengths
presented in this work.

field along a well-defined quantization axis, it is important to note that a large relaxation

rate in Equation 3.2.2 can be obtained whenever the magnetic field rapidly changes direction

and assumes very low values, like in the case of a zero-field crossing. All results presented

here will utilize Equation 3.2.2.

3.3 Simulating Depolarization of 129Xe Gas in Magnetic Field Gradients

In this section, the methods used to simulate xenon diffusion and depolarization in the

magnetic fields generated by a commercial, continuous-flow hyperpolarizer are discussed.

First, the various magnet designs which were modeled and tested are presented. Then

an overview of the finite element analysis simulations used to generate the magnetic field

distribution is provided. Lastly, the Monte Carlo simulations used to simulate gas diffusion

and determine the longitudinal relaxation rate are described.
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3.3.1 Magnet Designs and Models

All work presented here was performed on a Polarean 9800 129Xe Hyperpolarizer system

(Polarean Inc., Durham, NC, U.S.A.), a system currently used by several research groups

around the world. In this system, a single pair of Helmholtz coils creates the polarization

field, while the holding field is created by an interchangeable permanent magnet composed

of steel and rare-earth magnets. A full-scale model of the setup was developed using the

computer-aided design (CAD) software SolidWorks (Dassault Systèmes SolidWorks Corp.,

Vèlizy-Villacoubly, France) as shown in Figure 3.2.

Figure 3.2: 3D model of the continuous-flow SEOP setup used in this work. The model
includes the Helmholtz coil, the optical cell, the cold finger, and the interchangeable per-
manent magnet and frame (highlighted in blue). The interchangeable permanent magnet
allowed for an easy change to the distribution of the magnetic field in the region in which
the gas diffuses after thawing (colored in red). North (N) and South (S) magnetic poles have
been labeled to show the direction of the magnetic field.

To test the effect of various magnetic field distributions of the longitudinal relaxation of
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HP xenon gas, the interchangeable permanent magnet could be varied. Our lab currently

has two different permanent magnet designs available, the original magnet design provided

with the Polarean 9800 129Xe Hyperpolarizer system and one currently available with the

Polarean 3777 upgrade module. The simulated longitudinal relaxation from diffusion in

the magnetic fields created by both magnet designs was calculated by keeping the full-scale

models identical, except for the design of the permanent magnet. Figure 3.3 shows a three-

dimensional view of both permanent magnet designs. Of note for the original magnet design

are the steel top containing two holes and an open front, while the new magnet design has

the steel top removed and a closed, steel front.

Figure 3.3: Three-dimensional view of the two different permanent magnets that were tested
via simulation and experimentally. Left: Original magnet design with a closed, steel top
and open front showing the 4 rare-earth magnets (2 on each side). Right: New magnet with
open top and closed, steel front. For the new magnet, the magnetic field is created by 2
rare-earth magnets (1 on each side). The direction of the magnetic field is shown for both
magnet designs.

3.3.2 Determination of the Magnetic Field Distribution

Simulations were first performed to determine the distribution of the magnetic field

throughout the region in which xenon freely diffuses during the polarization process. The
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CAD models for each permanent magnet design were imported into the finite element anal-

ysis software COMSOL Multiphysics (COMSOL, Stockholm, Sweden) where finite element

analysis was used to calculate the distribution of the magnetic flux density along the gas-

flow-path by solving Maxwell’s equations. The parameters in the simulation were taken to

match exactly the experimental setup of the Polarean 9800 129Xe Hyperpolarizer.

The Helmholtz coil consisted of two 40.3 cm ID coils spaced 23.98 cm apart that were

made of 200 turns of 14 AWG copper wire. A current of 2.99 A was used in each coil to create

a field within the homogeneous region of approximately 20 G. The remnant flux density for

each permanent magnet was adjusted within the simulation until a center point magnetic

field of 2000 G was achieved. These field strengths were chosen to match, within 5%, the

field distribution experimentally measured on the polarizer system using a gauss meter.

Figure 3.4 shows the field maps for both permanent magnet designs along with magnetic

field lines along the inlet of the cold finger. As can be seen from the figure, the simulations

revealed significantly different field strengths and distributions for each permanent magnet

design. These simulations show that the new magnet, with an enclosed, steel front face, has

a much more symmetric and stronger field as compared to the original magnet design. The

field lines for the original magnet design indicate a dramatic change in field direction near

the top of the magnet. This change occurs when moving through the hole present in the

steel plate enclosing the top of the magnet.

Upon further inspection, the COMSOL simulations showed that the original permanent

magnet generates an arc-shaped region in which the magnetic field rapidly changes direction

and assumes values as low as 0.0138 G. This region is shown in Figure 3.5. According to

Equation 3.2.2, the rapidly changing direction and very low value of the magnetic field in this

region is likely to cause a large relaxation rate for hyperpolarized xenon. This is problematic

as the region is present in one of the top holes through which the gas enters and exits the

cold finger. Therefore, it is possible that this region is affecting xenon polarization both as

the gas enters the cold finger and is frozen and as the gas exits after thawing to be collected
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Figure 3.4: Strength of the magnetic field within the volume accessible, after thawing, to
the polarized gas, before it is dispensed in a plastic bag. Left: Magnetic field strength
and direction as generated by the new magnet design. Right: Magnetic field strength and
direction as generated by the original magnet design. Note the drastic change in the magnetic
field orientation present at the top of the original magnet design near the cold finger (spiral
vessel) outlet, which is a region in which the gas is allowed to diffuse after thawing.

for use.

Figure 3.6 shows the magnetic field strength in the cold finger within the hole at the top

of the original magnet. Somewhat fortunately, because of a slight twist and angle of the cold

finger as positioned in the permanent magnet, the gas flowing into the cold finger during

collection is minimally affected by the arc-shaped region of low magnetic field strength.

However, it can be seen that the outlet of the cold finger does have a portion which sits

within this arc-shaped region. This indicates that as gas is thawed and transferred to the

collection bag, it must pass through the region and may potentially be depolarized.

The COMSOL simulations of the magnetic field distribution for each magnet were es-

sential for identifying locations of potentially large longitudinal relaxation rates along the

gas-flow-path during continuous-flow SEOP. They cannot however attach a numerical value

to T1 for xenon spins diffusing within the cold finger. Therefore, other means to determine
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Figure 3.5: Surface plot showing the region, located within the hole at the top of the original
permanent magnet, in which the magnetic field rapidly changes direction and, in some places,
assumes a zero value. Left: Full view of the original magnet design with the location in which
the magnetic field rapidly changes direction and assumes negligible values highlighted. Right:
Close up view of the same region. The color scale represents the magnetic field strength in
gauss. Arrows represent the magnetic field lines.

a theoretical T1 value for the xenon gas must be used.

3.3.3 Theoretical T1 of HP 129Xe Gas in the Cold Finger After Thawing

The magnetic flux density components for each mesh point in the COMSOL simulations

were used to calculate a theoretical T1 value using a custom MATLAB (MathWorks, Natick,

MA, U.S.A.) script. The script performed Monte Carlo simulations of gas diffusion through

the computed magnetic field gradient to determine the depolarization of xenon nuclear spins

as the atom freely diffused throughout the region highlighted in red in Figure 3.2 after

xenon had been thawed. Within the script, the spatial components of the mesh created for

the COMSOL magnetic field simulations were used as the geometry for the Monte Carlo
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Figure 3.6: View of the magnetic field strength for the magnet design originally shipped
with the polarizer. The close up view shows the area of the cold finger outlet affected by
the region in which the field rapidly changes direction. A logarithmic color scale is used to
highlight the areas in which the field assumes negligible values.

simulations of gas diffusion. The four nearest neighbors for each point in the geometry

were used as possible locations for the spin’s next step as the mesh used in the COMSOL

simulations was tetrahedral. The time, t, of each diffusion step was calculated using the

mean-squared displacement in dimensions as follow:

t =
d2

6 ·D
(3.3.1)

where d is the distance the particle traveled in moving to the nearest neighbor location and

D is the diffusion coefficient of the gas.

The diffusion coefficient of xenon was calculated using the Fuller-Schettler-Giddings

equation (Fuller et al., 1966):

DAB =
1.00× 10−3T 1.75 (1/MA + 1/MB)1/2

p
[
(ΣAvi)

1/2 + (ΣAvi)
1/2
]2 (3.3.2)

where MA and MB are the molar masses of each molecule, p is the total gas pressure, and
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Table 3.1: Atomic Diffusion Volumes

Diffusion Volumes of Simple Molecules
He 2.88
N2 17.9
(Xe)a 37.9
aParentheses indicate that the value is based on only a few data points.

ΣAvi and ΣBvi are the sums of the atomic diffusion volume for each component i of the

molecule. The values for the atomic diffusion volumes of various molecules are tabulated

in Fuller et al. (1966) and values for the molecules of interest in this paper are included in

Table 3.1. A value for the the diffusion coefficient of pure xenon was determined to be 0.0132

cm2/s for a temperature of 293.15 K and a pressure of 63 psi. For each time step in the

simulation, an instantaneous relaxation rate, 1
T1

, was calculated using Equation 3.2.2 and

the magnetization was calculated as:

M(t+ ∆t) = M(t) · exp
(
−∆t

T1

)
, (3.3.3)

where M(0) was taken to be one. A time-averaged T1 value was calculated for each individual

spin and then a final average T1 value was calculated for an ensemble of 100 spins.

Based on the field distribution simulations, it was anticipated that the original magnet,

containing the region of very low magnetic field strength, was going to lead to faster xenon

relaxation than the new magnet. The MATLAB simulations supported this prediction. The

original magnet design generated a field distribution that relaxed spins with an average T1

of 591 ± 70 s while the new permanent magnet design produced a field distribution that

relaxed spins with an average T1 of 1644 ± 90 s.

3.4 Experimental Determination of T1 in the Cold Finger

In order to validate the simulations, experiments were performed to measure the T1 of

xenon diffusing within the cold finger after thawing for each permanent magnet design. The
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experiments were performed on the Polarean 9800 129Xe Polarizer system. The schematic of

the experimental setup and gas-flow-path within the polarizer system is shown in Figure 3.2.

The volume in which the gas freely diffuses after thawing is highlighted in red. The gas used

in the experiments consisted of a mixture of 1% xenon at natural abundance (26.4% 129Xe),

10% nitrogen, and 89% helium (Global Specialty Gases, Bethelehem, PA, U.S.A.). In this

system, the gas is pre-saturated with rubidium vapor within a pre-saturation column that is

maintained at 438 K and located right before the cell inlet (not shown in Figure 3.2). The

rubidium-saturated gas is then flowed at a rate of 1.5 SLM and at a total pressure of 60

psi into the optical pumping cell. The optical pumping cell is housed within an oven which

is temperature controlled to 358 K and is centered inside the Helmholtz coils previously

described in subsection 3.3.2. The optical cell is illuminated by a 60 W diode laser with a

center wavelength of 794.6 nm and FWHM of 0.2 nm (Spectra-Physics, Santa Clara, CA,

U.S.A.) in order to optically pump the rubidium vapor. An on-board NMR system, located

on the surface of the optical pumping cell, is used to monitor the 129Xe gas polarization

within the optical pumping cell in real time. From the optical cell, the gas flows to the cold

finger, located at the center of the permanent magnet region, where the gas is condensed

and stored for a total collection time of eleven minutes, yielding a total xenon gas volume of

165 ml. At the end of the collection time, the gas is immediately thawed and free to diffuse

within the region highlighted in red in Figure 3.2.

To measure the relaxation induced by magnetic field gradients generated by the two

permanent magnet designs, several batches of hyperpolarized gas were produced as previously

described and allowed to diffuse within the region highlighted in red in Figure 3.2 for varying

amounts of time after the freeze/thaw cycle. After the desired time of diffusion was reached,

the gas was dispensed into a Tedlar bag, which was quickly (1-2 s) placed on a calibrated

Polarean 2881 Polarization Measurement Station (Polarean Inc., Durham, NC, U.S.A.), to

measure the gas polarization level. Gas polarization level as a function of the free diffusion

time was then fit to a mono-exponential decay curve in Mathematica (Wolfram Research
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Inc., Champaign, IL, U.S.A.) to derive the mean T1 relaxation time for both permanent

magnet designs.

Figure 3.7: T1 relaxation curves of hyperpolarized xenon gas caused by the magnetic field
gradients generated by the two permanent magnets. For each magnet, five different batches
of polarized gas were produced. The gas was then allowed to freely diffuse for varying
amounts of time in the accessible volume highlighted in red in Figure 3.2. Left: Relaxation
curve for the new magnet with maximum polarization of 18.4% and T1 of 417 s. Right:
Relaxation curve for the original magnet with maximum polarization of 16.1% and T1 of 268
s.

When these T1 experiments were performed, a T1 value of 268 ± 14 s was measured for

the original magnet and a T1 value of 417 ± 40 s was measured for the new magnet design.

The experimental data and fit can be seen in Figure 3.7. The experimental relaxation values

are lower than those found using the simulations, which could be cause for concern, but

is expected. In the experiments, additional collisional relaxation contributions are present

from wall collisions and binary collisions between xenon atoms which will increase the longi-

tudinal relaxation rate and lower the T1. Both wall relaxation and relaxation due to binary

Xe-Xe collisions were ignored in the simulations giving rise to the difference between the

experimentally and theoretically determined T1 values.

As the collisional relaxation is a property of the cold finger, which was never changed

during the experiments, the collisional relaxation rates are expected to be the same for the

two different magnet designs. Therefore, the values for the collisional relaxation rate can be
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estimated by using the experimental relaxation rate and the computed relaxation rate due

to magnetic field inhomogeneities in the following fashion:

(
1

T1

)
EXP

=

(
1

T1

)
MFI

+

(
1

T1

)
CR

(3.4.1)

where EXP indicates the experimentally determined T1 value, MFI indicated the relaxation

contribution due to magnetic field inhomogeneities, and CR is the collisional relaxation

contribution consisting of wall relaxation and transient and persistent xenon dimer.

By using this relation, the estimate for the combined contribution of wall collisions and

binary collisions to the longitudinal relaxation time was on the order of 500 s for both

magnet designs (488 ± 70 s for the original magnet design and 558 ± 70 s for the new

magnet design). In pure xenon, Xe-Xe molecular relaxation is known to be the dominant

fundamental relaxation mechanism below 14 amagat, giving a relaxation time on the order of

hours (Chann et al., 2002). The experiments performed in this work were within this regime

at a calculated xenon density of 4 amagat. As such, it is reasonable to assume that the major

contribution to gas-phase relaxation, at least in this system, is likely to be wall collisions with

perfluoroalkoxy (PFA), which makes up most of the tubing that connects the cold finger to

the gas outlet, and uncoated Pyrex, which makes up the cold finger. Wall relaxation times

for uncoated Pyrex have been measured at temperatures of ∼80 °C to range from 200 s to as

high as 1300 s in exceptional cases (Zeng et al., 1983). Therefore, the number obtained here

for the T1 through wall relaxation is not in disagreement with the range of values previously

measured.

3.5 Conclusions

The experimental and simulation results shown here indicate that the crossing of regions

in which the magnetic field rapidly changes direction and assumes negligible values, such as

the arc-shaped region in Figure 3.5, can be a major relaxation mechanism and care should be
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taken to avoid creating such gradients within the hyperpolarized gas-flow-path. To this end,

the flux return on the new magnet design included in the Polarean 3777 upgrade module

represents a significant improvement over the previous design, eliminating such gradients

and thus better preserving the nuclear spin polarization.

In this chapter, the influence of strong magnetic field gradients on the relaxation of hy-

perpolarized xenon during continuous-flow SEOP was studied using a combination of finite

element analysis and Monte Carlo simulations. Simulation results were then compared to

experimental T1 values obtained from a commercially available polarizer system using two

different permanent magnet designs, which were able to generate significantly different mag-

netic field distributions within the gas-flow-path. Specifically, one of the magnets produced

a region in which the magnetic field rapidly changed direction, causing a faster relaxation of

xenon atoms diffusing from the cold finger to the collection bag.

The relative configuration and the geometry of the magnets used for continuous-flow

SEOP requires careful design in order to avoid the generation of regions in which the magnetic

field rapidly changes direction where the gas is able to diffuse and relax. While magnetic

field gradients should not be ignored during continuous-flow SEOP, this work suggests that,

in the absence of such strong gradients, wall collisions are the major contributing factor to

gas-phase spin relaxation.

In the context of noble gas hyperpolarization, mechanisms which cause increased re-

laxation are often avoided . However, when trying to generate image contrast in gradient-

recalled echo magnetic resonance imaging sequences, increased relaxation leads to increased

contrast. In the next chapter, results from an attempt to use the depolarization of xenon

gas in magnetic field inhomogeneities to increase the image contrast of xenon near super-

paramagnetic iron oxide particles are presented.
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CHAPTER 4: HP 129Xe RELAXATION IN MAGNETIC FIELD
GRADIENTS GENERATED BY SUPERPARAMAGNETIC

IRON OXIDE NANOPARTICLES 1

In this chapter, results from an investigation to assess the effects of superparamagnetic

iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized

xenon gas are presented. The known depolarization effect of xenon gas in magnetic field

gradients is leveraged in an attempt to increase MR sensitivity near the strong field gradients

generated by SPIONs. To this end, 3D Monte Carlo simulations are used to simulate the

signal decay and resulting image contrast of HP 129Xe gas near SPIONs. Simulations reveal

that signal loss near SPIONs is dominated by transverse relaxation, with little contribution

from longitudinal relaxation, while simulated image contrast and experiments show that

diffusion provides no appreciable sensitivity enhancement to SPIONs.

4.1 Introduction

As discussed in chapter 1, hyperpolarized noble gas MRI has been extensively developed

as a methodology to image the lung airspaces in place of conventional proton MRI. Proton

MRI in the lung, while possible, is difficult for a variety of reasons (Wild et al., 2012). The

lung provides intrinsically low MR signal because of the low density of water in the lungs and

because susceptibility differences between air and tissue create strong, local magnetic field

gradients that cause rapid dephasing of the 1H signal (Theilmann et al., 2009). Fortunately,

hyperpolarized noble gases are much less affected by the highly inhomogeneous magnetic

environment of the lungs due to their rapid diffusion (Chen et al., 1999).

1The work presented in this chapter was originally published in the Journal of Magnetic Resonance, see
Burant et al. (2018).
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Another contrast agent that has been of particular interest for in vivo applications is

SuperParamagnetic Iron Oxide Nanoparticles (SPIONs). These particles demonstrate high

compatibility with biological systems and their properties can be easily manipulated by

adjusting their size and their surface coating, or by surface functionalization (Chen et al.,

2010, 2011; Shah et al., 2016). Functionalized SPIONs have been used to target cells, like

tumor cells, and to enhance the sensitivity of conventional 1H MRI down to the single cell

(Smirnov et al., 2008). This sensitivity enhancement is possible thanks to the SPIONs’ large

magnetic moment, which affects both transverse and longitudinal relaxation time of nearby

1H spins in a manner that is fairly well understood (Shah et al., 2016; Chen et al., 2012).

While superparamagnetic iron oxide particles and hyperpolarized gases have been used

independently, for different applications, very few studies have tried to combine them (Vig-

naud et al., 2005; Branca et al., 2010). Vignaud et al. (2005) used SPIONs in combination

with HP 3He to decrease the tissue/air susceptibility mismatch and increase the transverse

relaxation time of HP 3He in the lungs. Years ago, our group proposed combining HP 3He

with SPIONs to increase sensitivity and specificity of MR to detect cancer cells in the lungs

(Branca et al., 2010). However, to our knowledge, no studies have yet been performed to

evaluate the effects of iron oxide on HP gases systematically, specifically to separate the

effects of SPIONs on the longitudinal and transverse relaxation times of hyperpolarized gas

spins as well as their effects on image contrast.

Therefore, the objective of this work is to separate and characterize the effects of SPIONs

on the transverse and longitudinal relaxation rates of hyperpolarized xenon under several

restricted diffusion regimes and evaluate the effect that SPIONs have on hyperpolarized

xenon image contrast in gradient-recalled echo sequences. This is accomplished by first

computing the field perturbation generated by various amounts of iron oxide nanoparticles.

Three-dimensional random walk simulations of spins diffusing and dephasing within the

magnetic field perturbation created by SPIONs are then used to analyze the contribution

of SPIONs to the longitudinal and transverse spin relaxation at different length scales while
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the magnetization decay within individual voxels is utilized to generate simulated gradient-

recalled echo MR images. Comparisons to previous experimental data are made and new

experimental work is performed to validate the simulations.

4.2 Transverse and Longitudinal Relaxation in Magnetic Field Gradients

In this section, the theory behind transverse and longitudinal relaxation of nuclear spins

in magnetic field gradients is introduced. First, transverse relaxation in uniform magnetic

field gradients, including the three main regimes of transverse magnetization decay based on

three characteristic length scales is described. Then the most up to date theory on transverse

relaxation in non-uniform magnetic field gradients, including various approximation regimes

like the static dephasing regime, Gaussian phase approximation, and weak field approxima-

tion is introduced. Finally, a refresher on longitudinal relaxation of nuclear spins in magnetic

field gradients is provided.

4.2.1 Transverse Magnetization Decay in Uniform Magnetic Field Gradients

The effect of magnetic field gradients on the transverse relaxation time, T2, of water has

been studied for decades. In the 1960’s, Robertson (1966) developed an approximation for the

spin echo decay of spins diffusing in magnetic field gradients within a region bounded in one

spatial dimension. Hazlewood et al. (1974) studied the transverse relaxation times of water

protons in the gastrocnemius muscle of rats. They observed that the value of T2 for cellular

water in the muscle was 40-fold shorter than that for pure water and performed experiments

to determine the effect from diffusion across local magnetic field gradients. The effect was

shown not to account for the difference, but it did reveal that cellular water is affected by

the macromolecular interfaces and the susceptibility gradients generated by these interfaces

increase relaxation rates. Yablonskiy & Haacke (1994) were the first to develop a theory for

signal behavior in non-uniform magnetic field gradients with work done in biological systems

with spatially varying magnetic susceptibility. Jensen & Chandra (2000) continued work
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in non-uniform gradients to develop a theory in systems of weak magnetic field gradients.

Unfortunately, previous work on transverse relaxation in magnetic field gradients was either

solved for the overall magnetization in the system or performed for nuclear spins with with

very low diffusion coefficients like water.

Magnetic field inhomogeneities are known to produce a spatial variation of the Larmor

frequency, causing a loss of phase coherence between the spins and a decrease in signal

intensity. In the presence of uniform gradients, the behavior of the magnetization is often

described based on the relative size of three characteristic length scales: the diffusion length,

the structural length, and the dephasing length. The diffusion length, which is related to the

mean-squared displacement, is defined as the distance that a particle can diffuse in a given

time, τ :

lD =
√

2 · q ·D · τ , (4.2.1)

where q is either 1, 2, or 3 depending on the dimension of diffusion and D is the diffusion

coefficient of the molecule. This length scale depends exclusively on the diffusion coefficient

of the molecule under study and on the time between signal excitation and detection, which

for a gradient-recalled echo sequence corresponds to the echo time. The structural length is

a measure of the dimension of the restriction in which the spin is allowed to diffuse and is

defined, in three dimensions, by the volume to surface ratio

ls =
V

S
. (4.2.2)

Finally, the dephasing length is the distance a particle has to diffuse to acquire a total phase

shift of 2π. For a linear magnetic field gradient, this distance is defined as (de Swiet & Sen,

1994):

lg =

(
D

γg

) 1
3

, (4.2.3)

where γ is the gyromagnetic ratio of the nuclear spin, and g is the strength of the linear

gradient.
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Depending on the relative size of these length scales, three main regimes of transverse

magnetization decay have been identified which are the free diffusion regime, the localization

regime, and motional narrowing regime. The free diffusion regime occurs when only a small

number of molecules are interacting with the walls of the structure and the gradient is

sufficiently weak such that the diffusion length is the shortest length scale (lD < ls, lg). In

this case, the magnetization decay is described by Hurlimann et al. (1995):

M (g, τ)

M0

= exp

(
−2

3
γ2g2Dτ 3

)
. (4.2.4)

The motional narrowing regime is found when the structural length is the shortest char-

acteristic length scale (ls < lD, lg). In this regime, the spins appear to experience a mean

dephasing. This is caused by the molecules’ appearing to be in their mean position at the

center of the boundaries causing the molecules to approach an averaged state. It is impor-

tant to note that this approximation is valid when the structural length is the shortest, it

begins to breakdown, because of diffraction-like effects in the attenuation function, when

lD ∼ lg and must be described by a different diffusion regime. However, the dephasing of the

magnetization in the motional narrowing regime is described, for restricted diffusion between

two planar boundaries, by Robertson (1966):

M (g, τ)

M0

= exp

(
− 1

120

γ2g2l4s2τ

D

)
. (4.2.5)

Other structural geometries will have a similar expression but with different numerical

factors in the exponent. The last restricted diffusion regime occurs when the gradient length

is shortest (lg < lD, ls) and is known as the localization regime. In the localization regime,

spins that are far from the walls become completely dephased and no longer contribute to

the signal leading to edge-enhancement effects. The enhancement near the edges is caused

by a reduction in spin dephasing near the walls caused by the restricted diffusion. The

localization regime was studied by de Swiet & Sen (1994) who found at long echo times
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between parallel plane boundaries that the magnetization decay is described by:

M (g, τ)

M0

= c
D

1
3

γ
1
3 g

1
3 ls
exp

(
−a1γ

2
3 g

2
3D

1
3 τ 3
)
, (4.2.6)

where c = 5.8841 and a1 = 1.0188.

As can be seen from these examples, for relatively simple geometries in the presence of

linear gradients, simple analytical expressions of the magnetization decay can be obtained.

However, most of the magnetic field gradients in MRI experiments are non-uniform. Exam-

ples include the magnetic field gradients present in the lung airspaces or those generated by

SPIONs. In this case, the dephasing length will acquire a spatial dependence and must be

described by other means than the three presented above.

4.2.2 The In-between case of the Linear Gradient Approximation

When the dephasing length becomes spatially dependent, a fourth characteristic length

scale, as previously described by Valckenborg et al. (2003), can be introduced which is known

as the magnetic-field curvature length. The magnetic field curvature length, lB, is a measure

of the non-linearity of the magnetic field gradient and is defined as (Valckenborg et al., 2003):

lB(x) =

∣∣∣∣ g(x)

C(x)

∣∣∣∣ , (4.2.7)

where g(x) is the local gradient, which in one dimension is,

g(x) ≡
∣∣∣∣∂B∂x

∣∣∣∣ , (4.2.8)

and C(x) is the curvature of the local magnetic field,

C(x) ≡
∣∣∣∣∂2B

∂x2

∣∣∣∣ . (4.2.9)

When the magnetic-field curvature length is larger than lg, the spins do not experience
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the non-linearity of the magnetic field gradient and the description of the magnetization

decay in uniform gradients still holds. However, when lB is comparable to the local lg, the

description of the magnetization decay becomes much more complicated Valckenborg et al.

(2003).

4.2.3 Approximation Regimes for Transverse Relaxation in Non-uniform Mag-
netic Field Gradients

In the presence of non-uniform magnetic field gradients, the magnetization decay can no

longer be easily described by simple, analytical expressions. To predict magnetization decay

in non-uniform gradients, multiple numerical models have been developed including the static

dephasing regime, the Gaussian phase approximation, and the weak field approximation. It

has been shown that these approximation regimes accurately predict the behavior of the

magnetization when specific criteria are satisfied. These regimes and the criteria under

which they hold will be discussed in the section.

Yablonskiy & Haacke (1994) studied signal behavior in biological tissues and near a

ferrite contrast agent in the presence of static magnetic field gradients. They developed a

method to model the magnetization decay in what is known as the static dephasing regime

where diffusion phenomena may be ignored. In this regime, diffusion is unable to average

out the phases of different nuclei faster than the time needed for their dephasing. The static

dephasing regime for gradients produced by spherical SPIONs has been shown to hold true

if:

δω · ξ
1
3R2

0

6 ·D
� 1, (4.2.10)

where R0 is the average radius of the iron oxide particles, ξ is the volume fraction of iron

oxide, and δω is the characteristic frequency shift. For spheres, the characteristic frequency

shift is defined as:

δω =
γ(m0 −m)

3
, (4.2.11)
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where m0 and m are the magnetization densities of the iron oxide and medium, respectively.

Sukstanskii & Yablonskiy (2004) studied signal formation in the presence of structure-

specific magnetic field inhomogeneities of mesoscopic scale resulting from differences in mag-

netic susceptibility in biological systems. The mesoscopic scale refers, in MRI, to the scale

which is smaller than the voxel size but greater than the atomic scale. The geometries stud-

ied included distributions of impermeable spheres and infinitely long cylinders. The work

provided a description for the magnetization decay in the Gaussian phase approximation

regime. The criterion for validity in this regime is:

ξDd

γ∆χB0R2
0

> 1, (4.2.12)

where d is a geometrical factor equal to three for spheres. ∆χ is the magnetic susceptibility

difference between iron oxide and the medium in which the spins are diffusing and B0 is the

external magnetic field strength.

The last approximation regime, aptly named the weak field approximation, is applicable

when the magnetic field inhomogeneities are weak in magnitude and the diffusion length is

large in comparison to the gradient length. This regime was originally studied by Jensen &

Chandra (2000) for a model of randomly distributed magnetized spheres and then used to fit

experimental data from biological systems including red blood cell suspensions and samples

of human gray matter and rat liver. The weak field approximation is valid for spherical iron

oxide particles when:

γ∆χB0R
2
0

3D
� 1. (4.2.13)

These approximation regimes for magnetization decay in non-uniform magnetic field

gradients along with the description of magnetization decay in uniform gradients all de-

scribe the signal loss caused by transverse relaxation, but the nuclear spins will also undergo
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longitudinal relaxation at the same time.

4.2.4 Longitudinal Relaxation in Magnetic Field Inhomogeneities

As previously discussed in chapter 3, magnetic field inhomogeneities are known to cause

increased longitudinal relaxation rates. For water molecules, this effect is typically small

and confined to the water molecules that are able to diffuse around the iron oxide nanopar-

ticles and experience a fluctuation of the transverse component of the magnetic field a the

Larmor frequency. However, for rapidly diffusing spins such as hyperpolarized noble gases,

whose diffusion coefficient is three orders of magnitude higher than water, the effect can be

significant, as shown in section 3.4. In addition, while water spins typically experience signal

enhancement from field inhomogeneities in T1-weighted sequences, diffusion in magnetic field

inhomogeneities causes permanent loss of signal in hyperpolarized noble gas spins because

of the non-renewable nature of the nuclear spin polarization. As a reminder, the effect of

magnetic field gradients on the longitudinal relaxation rate can be described by the following

relation:

1

T1

= D
|∇BT |2

B2
0

, (4.2.14)

where ∇BT is the transverse component of the spatially-dependent gradient of the mean

magnetic field, B0.

The effect of magnetic field inhomogeneities on the longitudinal relaxation is important

in this work as one of the goals is to analyze the conditions under which SPIONs can give

rise to longitudinal relaxation.

4.3 Simulated HP 129Xe Image Contrast

In this section, the methods used to simulate the effects of SPIONs on the longitudi-

nal and transverse relaxation of HP 129Xe gas are discussed. First, finite element analysis

simulations to compute the magnetic field distribution around given amounts of SPIONs

are presented, including comparisons to distributions with analytic solutions as a test of the
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method. Then, Monte Carlo simulations used to simulate the nuclear spins’ magnetization

decay in the field generated by the SPIONs are described. Finally, these results are used to

produce simulated magnetic resonance images to assess potential sensitivity enhancement of

xenon near SPIONs and for comparison to experimental magnetic resonance images.

4.3.1 Test of Finite Element Analysis Accuracy for Model Systems

A multitude of numerical methods have been developed to determine the magnetic field

inhomogeneity caused by spatial variations of the magnetic susceptibility. Bhagwandien

et al. (1994) present a numerical technique based on the finite difference method to calculate

the magnetic field distribution in three dimensions around an object magnetized by a strong,

homogeneous magnetic field. The method matches nicely with distributions that have an-

alytical solutions and is extended to application for cylinders with varying ratios of length

and diameter. Salomir et al. (2003) use a first order perturbation approach to Maxwell’s

magnetostatic equation, along with Fourier transformation to solve the partial differential

equations to obtain the magnetic field perturbations. The method matches data from dis-

tributions with analytical solutions to 1% precision as well as experimental data. Marques

& Bowtell (2005) extended the work on Fourier-based methods to calculate magnetic field

inhomogeneities caused by differences in magnetic susceptibility to calculations in biological

systems. They used the method to evaluate the magnetic field inhomogeneity in the human

head caused by variations in the magnetic susceptibility with tissue type. While these tech-

niques are sufficient at determinng the magnetic field distibution, they suffer from a limited

field of view and become computationally intensive at high spatial resolutions.

Therefore, for the work presented here, finite element analysis using COMSOL Multi-

physics software was performed to compute the magnetic field perturbation caused by given

amounts of iron oxide nanoparticles. The use of COMSOL to calculate the magnetic field

allows for a large field of view to be analyzed without loss in spatial resolution, as the mesh

size of the simulations can be easily decreased with minimal increases in computation time.
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Table 4.1: Internal and external field changes for simple geometries, including the effect of
the sphere of Lorentz

Geometry Internal Field Change Internal Field Change for External Field Change External Field Change For
Parameters Used Here (ppm) Parameters Used Here (ppm)

Sphere χe/3 -0.12 χe/3 -0.12
Infinite Cylinder χi/3 -0.24 χe/3 -0.12
(axis parallel to B0)
Infinite Cylinder χe/2− χi/6 -0.06 χe/3 -0.12
(axis perpendicular to B0)

To test the accuracy of COMSOL for computing the magnetic field perturbation, the re-

sults from the numerical simulations were compared to the analytical results for distributions

with known analytical solutions. The two susceptibility distributions that were tested were

the case of an infinite cylinder (oriented parallel and perpendicular to the applied magnetic

field) at the center of a cubic region and the case of a sphere in an applied magnetic field

at the center of a cubic region. In all cases, the radius was taken to be 12 mm, the internal

susceptibility, χi was taken to be −0.72 ppm, the external susceptibility in the cubic region,

χe , was taken to be −0.36 ppm, and the applied magnetic field, B0, was taken to be 1 T.

These values were chosen for comparison to the Fourier-based methods used by Marques &

Bowtell (2005). Table 4.1 shows the expected values of the field change for these geometries

along with the values for the parameters selected. For the external field change, the value

which is approached asymptotically is included when applicable.

Figure 4.1 shows the results from both Marques & Bowtell (2005) and our simulations

in COMSOL compared to the analytical solution. The results match up very well in both

cases showcasing how COMSOL can be used in the same way as the Fourier-based methods

to calculate the magnetic field perturbation. In fact, through the ability to increase spatial

resolution by decreasing the mesh size within COMSOL, the results from COMSOL more

closely match the analytical results near the edges of the sphere. Figure 4.2 shows the results

for the infinite cylinder from COMSOL compared to the analytical results. These results

indicate that COMSOL can accurately predict the field change in a region with spatial

variations of the magnetic susceptibility. Therefore, COMSOL will be sufficient to compute

the field distribution caused by various amounts of iron oxide nanoparticles for the different
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geometries used in this work.

Figure 4.1: Field perturbation in ppm for a sphere of radius 12 mm with an internal magnetic
susceptibility of -0.72 ppm placed in a cubic region with an external magnetic susceptibility
of -0.36 ppm. The magnetic field was applied in the z-direction and the plot shows the
variation of the z-component of the field change along a line through the center of the
sphere. Left: Results reproduced from Marques & Bowtell (2005) using a Fourier-based
method to calculate the field perturbation. Right: Results from our work using COMSOL
Multiphysics to solve for the field perturbation using finite element analysis.

Figure 4.2: Field perturbation in ppm generated by infinite cylinders of radius 12 mm with
an internal magnetic susceptibility of -0.72 ppm placed in a cubic region with an external
magnetic susceptibility of -0.36 ppm. The magnetic field was applied in the z-direction.
Left: Variation of the z-component of the field change with y-position along a line through
the center of the cylinder with the axis of the cylinder parallel (along z) to the applied
field. Right: Variation of the z-component of the field change with y-position along a line
through the center of the cylinder with the axis of the cylinder perpendicular (along x) to
the magnetic field.
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4.3.2 Longitudinal and Transverse Relaxation During Restricted Diffusion in a
Cubic Geometry

Following the simulations to test the accuracy of COMSOL in determining the magnetic

field change, simulations were performed to characterize the effects, during restricted diffu-

sion, of structural size and iron oxide concentration on the relaxation rates of hyperpolarized

xenon. A simple geometry was used initially involving a cubic structure, shown in Figure 4.3,

which represented the region in which the xenon gas was allowed to diffuse, with iron oxide

particles placed at its center. A cubic mesh was used to guarantee equal distance between

mesh points.

Figure 4.3: Cubic model used for COMSOL simulations. The large volume highlighted in
red shows the region in which spins are allowed to freely diffuse. The purple volume at the
center represents the impermeable volume occupied by iron oxide nanoparticles. The side
lengths of both regions were changed proportionally to keep the volume fraction of iron oxide
constant while increasing the structural length of the region of free diffusion

Five different side lengths, 0.02 cm, 0.04 cm, 0.2 cm, 0.4 cm, and 2 cm, were used for

the large cube and the side length of the iron oxide was changed proportionally to maintain
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a constant volume fraction of iron oxide. The volume fraction, ξ, was defined simply as:

ξ =
L3
IO

L3
C

, (4.3.1)

where LIO is the side length of the iron oxide and LC is the side length of the cubic, diffusion

region. To examine the various diffusion regimes, three different iron oxide volume ratios

were tested: 1 ppm, 15.625 ppm, 125 ppm.

The magnetic field perturbation produced by these iron oxide particles was computed

assuming a magnetic field strength of 9.4 T oriented along the z-direction as defined in

Figure 4.3. The material chosen, in this case for the iron oxide was a non-linear magnetic

material with a saturation magnetization of 146,000 A/m, roughly a factor of three less than

the saturation magnetization of bare magnetite. The cubic region was taken to be xenon

and the volume magnetic susceptibility of the region was chosen to be 0 ppm.

Upon completing the magnetic field simulations, Monte Carlo simulations were per-

formed to determine the depolarization and dephasing of an ensemble of spins within the

cubic structure. The MATLAB script from subsection 3.3.3 was modified for use in this

context. First, the script was parallelized, which allowed for a much larger ensemble of spins

to be used for these simulations. As such, 100,000 spins were simulated diffusing within the

cubic structure. For each time step in the simulations, which was calculated using Equa-

tion 4.2.1, the instantaneous theoretical T1 relaxation value for each spin was computed using

Equation 4.2.14, in the exact same manner as in subsection 3.3.3. In addition, the spin phase

for each time step was determined using the z-component of the magnetic flux density. This

allowed us to calculate the transverse magnetization decay in the following manner:

MT (t+ ∆t) = MT (t) · exp(−iγBz∆t). (4.3.2)

In all cases, M(0) was taken to be one.

Temporal resolutions for each side length are listed in Table 4.2. The temporal resolutions
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Table 4.2: Calculated temporal resolutions for each structural length of the cubic geometry.

Structural Length (cm) Temporal Resolution (µs)
0.02 0.0144
0.04 0.0825
0.2 1.44
0.4 8.37
2 135

were determined using the mean-squared displacement in three dimensions along with the

average distance to the six nearest neighbors. As previously described, a cubic mesh was

used to ensure equal distance between all mesh points, this also ensured that each time step

in the simulations would be the same. Equal time steps were required as simulated images

were generated, at specified times, by summing the magnetization of spin, with its acquired

phase, for each of the 10 × 10 voxels in which the simulated cubic volume was partitioned.

Simulated water images were produced by assuming a static dephasing regime for the

water protons, where diffusion is ignored and only transverse relaxation contributes to signal

loss. For the hyperpolarized xenon gas where diffusion could not be neglected, the diffusion

coefficient was determined using the Fuller-Schettler-Giddings equation (Equation 3.3.2 for

a temperature of 293.15 K and pressure of 100,000 Pa and determined to be 0.117 cm2/s.

These simulations will provide useful information on the relaxation of hyperpolarized

xenon in various restricted diffusion regimes along with a way to separate the effects of

SPIONs on the longitudinal and transverse relaxation of xenon, but the geometries cannot

be reproduced and tested experimentally for validation. In the next section, simulations of

a phantom which can be used to experimentally validate this work are discussed.

4.3.3 Generating Simulated MR Images in a Conical Phantom

Simulations were performed for a 15 ml conical centrifuge tube (Thermo Fisher Scientific,

Waltham, MA, U.S.A.) with 1.5 mg of ferric oxide taped to the outside of the tube. First, a

full-scale, rectangular model of the tube and iron oxide was created using the CAD software

SolidWorks. A rectangular model was used instead of a cylindrical model so that a cubic
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mesh could be used to partition the entire volume for the Monte Carlo simulations and

generate simulated images. The CAD model was imported into COMSOL Multiphysics

which calculated the field perturbation produced by the iron oxide when placed in a 9.4 T

uniform magnetic field oriented along the longitudinal axis of the tube. The volume magnetic

susceptibility of the ferric oxide was taken to be 5300 ppm, giving a magnetization of 39,500

A/m. This value was used to match the field perturbation produced experimentally at 9.4 T

by the iron oxide nanoparticles placed on the surface of the centrifuge tube. The experimental

determination of the iron oxide magnetic susceptibility is described in subsection 4.4.2.

The volume magnetic susceptibility of the empty space inside the tube was chosen to be

0 ppm to simulate xenon, while the value of the magnetic susceptibility was taken to be -9.04

ppm to simulate water for comparison (Schenck, 1996). The volume magnetic susceptibility

of the 1 mm thick plastic wall of the phantom tube and the volume surrounding the tube and

iron oxide was taken to be zero in all cases. Once the field was generated, the same MATLAB

script used in subsection 4.3.2 was employed to calculate the longitudinal relaxation rate and

magnetization for an ensemble of 100,000 spins with a temporal resolution of 70 µs. Data

from MATLAB was used to generate simulated magnetic resonance images with a spatial

resolution of 2 mm by 2 mm and a slice thickness of 1.65 cm (the width of the 15 ml phantom

model) to match the imaging parameters used experimentally.

These simulations provided a method to validate the simulations experimentally, but

they did not provide any information on how the hyperpolarized gas would be affected

in a biological system. Therefore, simulations were performed on a biological model for

comparison to previously acquired experimental data.

4.3.4 Simulated Magnetic Resonance Images of a Mouse Lung Model

Simulations were performed on a simplified mouse lung model, designed to simulate the

alveolar space of mouse lungs, composed of a matrix of 341 empty spheres with a radius of 40

µm and a surface thickness of 4 µm, packed in a face-centered cubic structure. The airspace
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of the alveoli were treated as air and had a magnetic susceptibility value of 0 ppm, while the

surface was taken to be tissue and given a magnetic susceptibility of -7.79 ppm (Hopkins &

Wehrli, 1997). To simulate cancerous tissue targeted by iron oxide nanoparticles, the central

alveolus was filled with iron oxide mixed in water at varying concentrations. Simulations

were performed for various molarities of iron oxide nanoparticles with a volume magnetic

susceptibility of 5300 ppm.

The field distribution was determined in each case with COMSOL using the methods

described previously. Monte Carlo simulations for an ensemble of 100,000 spins, randomly

distributed among the 42 nearest alveoli surrounding the iron oxide, were performed using

the MATLAB script. For these simulations, the temporal resolution was 4 ns. At each

time step, the total magnetization from each spin was summed and normalized by the total

number of spins to determine the overall magnetization decay within the 42 alveoli.

4.4 Experimental Validation of 129Xe Image Contrast near SPIONs

In this section, the experiments used to generate magnetic resonance images for compar-

ison to the simulated MR images are discussed. First, the hardware used for the experiment

is described. Then, the experiments performed to determine the volume magnetic suscepti-

bility of the iron oxide particles used in this work are presented, and the imaging parameters

used to generate images from a conical phantom with iron oxide present on the outside of the

phantom are provided. Finally, a description of experiments performed in vivo on ventilated

mice is discussed.

4.4.1 MRI Hardware

The scanner used in this work is located in the Small Animal Imaging suite of the

Biomedical Research Imaging Center at the University of North Carolina at Chapel Hill.

The scanner is a Bruker Biospec 94/30 USR (Bruker Biospin, Billerica, MA, U.S.A.) with a
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magnetic field strength of 9.4T controlled via a console running ParaVision software. Pro-

ton and xenon images were obtained using a 35 mm inner diameter dual-tuned 1H/129Xe

volume coil (m2m Imaging Corp., OH, U.S.A.), resonant at 400 MHz and 110.7 MHz, re-

spectively. For xenon images, phantoms were connected to a custom-built, hyperpolarized

gas-compatible ventilator that enabled pumping of hyperpolarized xenon into the centrifuge

tube at a constant rate. Hyperpolarized 129Xe gas, with a polarization of 16% and with a

26.4% 129Xe isotopic abundance, was produced using our lab’s Polarean 9800 129Xe Hyper-

polarizer system.

4.4.2 Experimental Determination of Iron Oxide Magnetic Susceptibility

In order to ensure that the simulated images could be compared to those images gener-

ated experimentally, it was necessary to determine the actual volume magnetic susceptibility

of the iron oxide used in the experiments. To this end, experiments were performed to de-

termine the frequency offset generated by the iron oxide that was taped to the outside of the

conical phantom filled with water. Initially, the phantom was placed on the cradle so that

the iron oxide was directly at the top of the 15 ml centrifuge tube and taped into position.

Proton images were acquired using a spin echo sequence in the sagittal slice orientation with

a field of view of 6.4 × 3.2 cm and a matrix size of 64 × 32. A frequency map was obtained

by collecting images using unbalanced spin echo sequences with unbalanced times of 50 µs,

150 µs, 250 µs, 350 µs, and 450 µs.

Once all the images were acquired, the phase of each time point could be used to calculate

the frequency offset for each voxel. A custom MATLAB script was developed for this purpose.

The script took in the free induction decay information from each acquired image and Fourier

transformed the data to find the phase from each voxel at each time point. The phase for

each voxel was unwrapped and then plotted as a function of time by using the known time

interval between images. The plot can then be fit to a line via linear regression and the

slope of this line is the frequency offset from the resonance frequency. This data was used to
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make a color map of the frequency difference for comparison to data generated in COMSOL.

Figure 4.4 shows the color maps of the frequency offset from the experimental data and the

COMSOL simulations. The magnetic susceptibility of the iron oxide in the simulations was

varied until it closely matched the experimental data. Using this method, a volume magnetic

susceptibility of 5300 ppm was found for the iron oxide used here.

Figure 4.4: Color maps of the frequency offset which were used to estimate the magnetic
susceptibility of the iron oxide particles used for the experiments in this work. Left: Color
map of data taken from COMSOL for iron oxide with a magnetic susceptibility of 5300 ppm.
Right: Color map of experimental data from the conical centrifuge tube with 1.5 mg of iron
oxide taped to the side.

4.4.3 Experimental Imaging of Conical Centrifuge Tube

To generate phantom images, phantoms were placed on a cradle so that the iron oxide

was directly at the top of the 15 ml centrifuge tube and the taped into position. The cradle

was placed such that the iron oxide was at the center of the sensitive region of the volume
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coil. For xenon images, the acquisition was triggered 100 ms after fresh, polarized xenon

gas was flowed into the centrifuge tube. Proton and xenon images were acquired using a

gradient-recalled echo sequence in the sagittal slice orientation with a field of view (FOV) of

6.4 × 3.2 cm, a matrix size of 64 × 32, flip angle (FA) of 30° , and echo times (TE) of 2.7

ms, 5.4 ms, 8.1 ms, 10.8 ms, 13.5 ms, and 16.2 ms.

4.4.4 In vivo MRI of Mouse Lungs in the Presence of SPIONs

In vivo animal studies were conducted under an animal protocol approved by the Insti-

tutional Animal Care and Use Committee (IACUC) at the University of North Carolina at

Chapel Hill. For these experiments, two 10 month old, male C57/B6 mice were used. Prior to

imaging, mice were anesthetized with an intraperitoneal injection of 75 mg/kg of pentobar-

bital (Nembutal, Abbott Laboratories, IL, U.S.A.), intubated and mechanically ventilated

at a rate of 60 breaths per minute. The ventilation gas mixture consisted of 75-vol% N2 and

25-vol% O2 to generate a total tidal volume of 0.20 ml. During xenon imaging, the 75-vol%

N2 was switched to 75-vol% hyperpolarized xenon. Mice were then placed supine on the

cradle and positioned such that the lungs were at the center of the sensitive region of the

dual-tuned 1H/129Xe volume coil.

In vivo proton images were acquired using an ultra-short echo time (UTE) sequence with

a field of view of 3.5 × 3.5 × 4.5 cm, flip angle of 3.57°, 1 average, repetition time (TR) of

4 ms, and an echo time of 0.012 ms. Xenon images were acquired using a gradient-recalled

echo sequence for six slices in the coronal slice orientation with a field of view of 2.5 × 2.5

cm, a matrix size of 32 × 32, flip angle of 90°, slice thickness of 2 mm, 4 averages (NA), and

an echo time of 2.7 ms. Xenon signal acquisition was triggered to the 400 ms breath hold.

After the initial proton and xenon images were acquired, one mouse received an injection of

75 µl of saline solution with a concentration of 0.1 mg/ml of carboxymethyl-dextran-coated

iron oxide nanoparticles into the lungs while the other mouse received an injection of 1 µl of

saline solution with a 17 mg/ml concentration of carboxymethyl-dextran-coated iron oxide
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Table 4.3: Calculated values for criteria of validity in the static dephasing regime, Gaussian
phase approximation, and weak field approximation.

Volume Volume Volume Volume Volume Volume Volume Volume Volume Centrifuge
fraction fraction fraction fraction fraction fraction fraction fraction fraction tube
125 ppm 125 ppm 125 ppm 15.6 ppm 15.6 ppm 15.6 ppm 1 ppm 1 ppm 1 ppm

Structural length (m) 0.0002 0.002 0.02 0.0004 0.004 0.04 0.0004 0.004 0.04 0.025
Static dephasing 2.8E-3 0.285 28.5 1.4E-4 0.142 14.2 9.1E-5 0.00911 0.911 247
criterion

δω · ξ
1
3R2

0

6·D � 1
Gaussian approximation 1.5E-4 1.5E-6 1.5E-8 1.9E-5 1.9E-7 1.9E-9 7.7E-6 7.7E-8 7.7E-10 1.8E-8
criterion

ξDd
γ∆χB0R2

0
> 1

Weak field 0.424 42.4 4240 0.424 42.4 4240 0.0678 6.78 678 20,600
criterion
γ∆χB0R2

0

3D
� 1

nanoparticles near the very edge of the lungs. Each mouse was separately repositioned within

the magnet and proton and xenon images were acquired using the same parameters as the

pre-injection images.

4.5 Results and Discussion

Criteria of validity for the static dephasing regime, Gaussian phase approximation, and

the weak field approximation were tested for relevant parameters of all simulated geome-

tries, including those of the 15 ml centrifuge tube. A summary of the calculated values for

each approximation regime is show in Table 4.3. From these calculations, it is shown that

none of these theories are sufficient to model the overall magnetization decay for any of the

cubic geometries simulated. While these results indicate that the static dephasing regime

may describe the overall magnetization decay in the centrifuge tube, it cannot be used to

describe the decay within individual voxels. More importantly, at large structural lengths,

the signal decay of individual voxels, which ultimately determines the image contrast, can

vary significantly based on the voxel’s proximity to the iron oxide.

The effect of diffusion on transverse relaxation was analyzed using simulations of multiple

structural length and iron oxide volume fractions. Simulated 129Xe images for two different

structural lengths but the same iron oxide volume fraction are shown in Figure 4.5. As can

be seen from the figure, at a structural length of 400 µm, adding a boundary around the iron
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oxide prevents the xenon from diffusing near the iron oxide and experiencing the strongest

dephasing, considerably reducing the relaxation effects of the iron oxide nanoparticles. We

can tell that the relaxation is reduced with the addition of the boundary through the decrease

in contrast generated by the hyperpolarized xenon. However, at a length scale of 4000 µm

this is no longer true. At this larger scale, the contrast generated by the iron oxide with and

without the boundary is nearly identical.

When the relative contribution of T1 and T ?2 to the signal decay is analyzed, it is clear

that, in both cases, the main contribution to the signal decay is from transverse relaxation

as seen in Figure 4.6. For both structural lengths, there is a negligible contribution to the

magnetization decay from longitudinal relaxation. While the T1 effect can be decreased

slightly with the addition of a boundary, the overwhelming majority of magnetization loss

arises from the dephasing of the spins near the iron oxide, which is only slightly enhanced

in the absence of a boundary.

Figure 4.7 shows simulated xenon and proton images for an echo time of 2.7 ms. From

this figure, it is clear that structural length plays a major role in the contrast generated

by the iron oxide nanoparticles. For the 1 ppm and 125 ppm iron oxide volume fractions,

diffusion is only apparent at small length scales (hundredths of centimeters). It is important

to note that while the contrast enhancement in both cases is not equivalent, as the color bars

vary from image to image, contrast “wash-out” is apparent for both volume fractions. This

contrast “wash-out” is the result of spins being in the motional narrowing regime where spins

have sufficient time to lose their individuality defined by their initial positions. However, at

the largest length scales (centimeters), the effect of diffusion completely disappears. For the

intermediate length scale, the effect of spin diffusion is observed only near the edges of the

dark spot.

Of course the type of contrast generated depends on the echo time at which the images

are acquired. At very short echo times, the diffusion length can be much shorter than the

structural and dephasing lengths. In this case, the spins behave as expected in the free
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Figure 4.5: Simulated hyperpolarized 129Xe MR images showing a slice in the XZ plane
(modeled by translucent slice in cartoon to the left) at different echo times displaying the
effect of a boundary around the iron oxide on image contrast. Top: Diffusion region with
a side length of 400 µm and iron oxide with a side length of 10 µm. Adding a boundary
causes a noticeable difference in contrast enhancement. Bottom: Diffusion region with a side
length of 4000 µm and iron oxide with a side length of 100 µm. Adding a boundary causes
no noticeable change in contrast enhancement.

diffusion regime. However, at longer echo times, for small structural lengths the spins soon

move into the motional narrowing regime as shown in Figure 4.8.

At larger length scales, similar to those probed by current MRI techniques, xenon spins

that are far away from the iron oxide nanoparticles appear to be in the free diffusion regime,

whereas spins near the iron oxide nanoparticles appear to be in the localization regime. This
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Figure 4.6: Longitudinal and transverse relaxation curves for two different diffusion regions
with the same iron oxide volume fraction showing that the overwhelming majority of relax-
ation arises from transverse spin dephasing. Top: 400 µm side length diffusion region. While
only a very small difference is seen in longitudinal relaxation when adding a boundary, a
noticeable difference is seen in transverse relaxation. Bottom: 4000 µm side length diffusion
region. In this case, the addition of a boundary has a negligible effect on both longitudinal
and transverse relaxation.

behavior is confirmed by an analysis of the magnetization decay as shown in Figure 4.9. At

short length scales, the magnetization decay, both near and far from the iron oxide, has a

linear dependence on time. According to Equation 4.2.5 and Equation 4.2.6, this could mean

that the region is within the motional narrowing or localization regimes. Figure 4.7 shows

that the regime is most likely motional narrowing because of the reduction in magnetization

decay for both volume fractions at the smallest length scale. However, at large length

scales, the magnetization decay exhibits vastly different characteristics. Far from the iron

oxide, the magnetization decay displays a cubic dependence on time, which according to

Equation 4.2.4 is indicative of the free diffusion regime. Near the iron oxide, where the

magnetic field gradients are highly non-uniform, and at short time scales, the magnetization

decay is linear, indicating that spins have not yet experienced the non-linearity of the gradient

and are effectively in the localization regime. At longer echo times, as the spins experience

the non-linearity of the gradients, the behavior becomes chaotic and can no longer be defined

by any of the restricted diffusion regimes described for uniform or non-uniform magnetic field
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Figure 4.7: Simulated xenon and water MR images at TE=2.7 ms for two different iron
oxide volume fractions, at various length scales. Top: Iron oxide volume fraction of 125
ppm. While the effect of diffusion is noticeable at small length scales, at large length scales
it becomes undetectable. Bottom: Iron oxide volume fraction of 1 ppm. While the smaller
amount of iron oxide used in these simulations produces a significantly smaller signal decay,
the same trend holds true; the effect of diffusion is only apparent at very short length scales.
Proton images appear the same at all length scales because diffusion at these length scales
can be ignored. Cubes to the left are for reference but are not shown to scale.

gradients.

In order to validate the methodology used to compute the effect of iron oxide on hyper-

polarized xenon images, simulations and experiments were conducted on a gas phantom in

the presence of a given amount of iron oxide. In this case, the value of the saturation mag-

netization was chosen based on the field perturbation produced and measure experimentally

by the iron oxide on the same phantom filled with water, as described in subsection 4.4.2. As

can be seen from Figure 4.10, the experimental image contrast nicely matches the simulated

image contrast.

These simulations also show that, at the large length scales typically probed by MRI,

xenon diffusion provides no sensitivity enhancement to iron oxide. The lack of contrast en-

hancement arising from diffusion of xenon is evident when xenon images are compared to

proton images acquired from the same phantom filled with water. The contrast produced by
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Figure 4.8: Simulated xenon MR images at various length scales for an iron oxide volume
fraction of 1 ppm. Top: While at extremely short echo times the spins are in the free
diffusion regime, as the echo time increases thet quickly move into the motional narrowing
regime. Center: At intermediate length scales, the effect of diffusion becomes apparent at
longer echo times (milliseconds). Bottom: At large length scales, the effect of diffusion is
undetectable even at longer echo times (tenths of a second).

iron oxide in the proton images looks very similar to the contrast produced by the same iron

oxide particles in the xenon images acquired at a fourfold longer echo time, Table 4.4 shows

the gyromagnetic ratios for various nuclei used in MRI including many used in hyperpolar-

ized gas MRI. As can be seen from the table, the ratio of gyromagnetic ratios for 1H and

129Xe is ∼3.6. This indicates that, in the absence of diffusion-mediated sensitivity enhance-

ment caused by xenon’s three orders of magnitude higher diffusion coefficient and knowing

that magnetization decay is caused mostly by transverse relaxation, the proton images are

expected to appear the same as the xenon images acquired at a fourfold longer echo time.

Figure 4.11 shows that, in the case of this centrifuge tube, while the dephasing length

still has a spatial dependence, voxels far from the iron oxide, are still in the free diffusion
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Figure 4.9: Simulated xenon magnetization decay for an iron oxide volume fraction of 125
ppm for small and large length scales. Top: For the smallest diffusion region, the magne-
tization decay both near and far from the iron oxide exhibits a linear dependence on time,
indicating that spins are in the motional narrowing regime and have lost their individuality
defined by their initial positions. Bottom: For large diffusion regions, more than one diffu-
sion regime exists. While spins far from the iron oxide are in the free diffusion regime, as
indicated by the cubic time dependence on the log of the magnetization, near the iron oxide
the log of the magnetization decay is linear for short echo time, indicative of the localization
regime. However, as the spins continue to evolve they experience the non-linearity of the
dephasing gradients and the magnetization decay becomes chaotic.

regime. However, near the iron oxide, where the magnetic field gradients are highly non-

uniform and the magnetic-field curvature length is on the order of the diffusion length, the

magnetization decay quickly becomes chaotic and cannot be described analytically by any

of the restricted diffusion regimes. In addition, Figure 4.11, shows that, while the overall

magnetization decay may have an analytical expression, the magnetization decay can vary

significantly from voxel to voxel. Therefore, even though the conical centrifuge tube meets

the criterion of validity for the static dephasing regime and the overall decay can be predicted

by a simple exponential decay, the static dephasing regime cannot predict the magnetization

decay for individual voxels in this geometry and, more importantly, cannot predict the image

contrast generated for this setup.
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Figure 4.10: Experimental (top) and simulated (bottom) xenon and water MR images of a
15 ml conical centrifuge tube (shown on left with red outline indicating slice size) with 1.5
mg of iron oxide taped on the outer wall (right side of tube). As the echo time increases,
the effect of xenon gas diffusion is unnoticeable in both the simulations and experiments.
At large length scales, the contrast generated by iron oxide particles in the xenon images is
similar to that observed in water images (far right) at a fourfold shorter echo time.

While the experiments performed in phantoms were able to compare the effect of SPI-

ONs on the transverse relaxation of water and xenon, these same comparisons cannot be

made in the lungs. The T ?2 effect of iron oxide on water protons cannot be used because

of the significantly lower concentration of water in healthy functioning lungs and the strong

magnetic field gradients present in the lungs caused by susceptibility variations. A more ap-

propriate comparison of the effects of iron oxide would be between the T ?2 effect for xenon in

gradient-recalled echo images, which is a halo effect from the dipolar field, to the T1 enhance-

ment for water protons in ultra-short echo time images, which is a short range effect. Such
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Table 4.4: Gyromagnetic ratios of specific nuclei used in MRI

Nucleus Gyromagnetic Ratio
(MHz/T)

1H 42.577
3He -32.434
13C 10.708
19F 40.052

129Xe -11.777

Figure 4.11: Magnetization decay for the 15 ml conical centrifuge tube with 1.5 mg of iron
oxide taped on the outer wall. While the overall magnetization decay may be described
analytically using a monoexponential function, individual voxels exhibit very different mag-
netization decay. Similar to the large length scale cubic simulations, spins far away from the
iron oxide nanoparticles are found in the free diffusion regime. This shows that, even though
iron oxide generates a non-linear magnetic field gradient, if the field is not too strong, such
that the dephasing length is the shortest length throughout the volume, the free diffusion
regime is still achievable. Near the iron oxide, at very short echo times, the decay is linear.
However, at longer echo times, as spins experience the non-linearity of the gradient the decay
becomes non-linear.

a comparison was attempted experimentally without much success as, when a given amount

of iron oxide in solution was injected into the lungs, the signal defect generated in xenon

images by the reduction in T ?2 could not be differentiated from ventilation defects caused

by the obstruction of the airways (Figure 4.12). At the same time, a signal enhancement in

the water images caused by the reduction in T1 could not be differentiated from the injected

suspension in the lungs.

As a final method of validation for our simulations, comparison to previously obtained

experimental data in biological systems was performed. Hyperpolarized gases combined
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Figure 4.12: Coronal mouse lung images showing the effect of iron oxide when injected into
the lungs. Top two rows are 1H ultrashort-echo time (UTE) images acquired prior to (pre)
and after (post) injection of iron oxide nanoparticles dissolved in saline at 0.1 mg/ml. The
proton images acquired after injection show a localized enhancement close to the apex of
the lungs, where the solution was injected. The bottom two rows show the HP 129Xe images
acquired on the same mouse before (pre) and after (post) the injection. The post-injection
images show a complete occlusion of signal from the left lung indicating a ventilation defect
rather than contrast enhancement in this case.

with functionalized SPIONs have been proposed to increase the sensitivity of MRI to cancer

nodules in the lungs as computed tomography, the imaging modality used most frequently

to provide anatomical information on lesions, is often unable to differentiate benign and

malignant cells in the lungs (Branca et al., 2010; Coleman, 1999). The ability of MRI

to detect cancer nodules in the lungs depends on the contrast enhancement provided by
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SPIONs on the hyperpolarized gas. To test the effects of iron oxide on the longitudinal and

transverse relaxation of xenon diffusing in the lung airspace, simulation were performed on a

simplified model of the mouse lungs. Figure 4.13 shows the magnetization decay of the alveoli

surrounding the alveolus containing iron oxide nanoparticles and water. Interestingly, at low

iron oxide concentrations, the relaxation of the magnetization of nearby alveoli is reduced as

the susceptibility mismatch between air and tissue is reduced, similar to the results previously

obtained experimentally in mouse lungs by Vignaud et al. (2005) using hyperpolarized 3He.

By further increasing the iron oxide concentration in the central alveolus, the susceptibility

mismatch is recreated, causing a decrease in the transverse relaxation time and an increased

signal decay rate. However, the iron oxide concentration necessary to create an appreciable

increase in signal decay is 93.6 µmol/L using iron oxide with a saturation magnetization of

39,500 A/m. This corresponds to a concentration of iron oxide in tissue of 15 mg/g, which

is approximately fifty times higher than the achievable concentration of 0.3 mg/g (Sadhukha

et al., 2013; Leftin et al., 2017). This indicates that in order to create a significant dephasing

effect from SPIONs targeting single alveoli filled with cancer cells in xenon lung images,

nanoparticle targeting efficiency and saturation magnetization must increase.

4.6 Conclusions

In this chapter, the effect of SPIONs on the longitudinal and transverse relaxation rates of

hyperpolarized xenon during restricted diffusion was analyzed using Monte Carlo simulations.

These simulations revealed that xenon signal loss near SPIONs is due mainly to transverse

spin relaxation with no appreciable effect on longitudinal spin relaxation at any of the length

scales analyzed and for reasonable amounts of iron oxide particles, such as those expected in

targeted tissues. While the longitudinal relaxation does increase with decreasing structural

length, the length scales at which a noticeable effect would occur are in the micrometer

range. At larger length scales, near the iron oxide particles, simulations showed that xenon

appears to be in a regime which cannot be described by conventional restricted diffusion
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Figure 4.13: Magnetization decay for the 42 alveoli (highlighted in blue) surrounding the
central alveolus (highlighted in red) containing a mixture of water and iron oxide at differ-
ent concentrations. First, the relaxation is relatively small, less than 1% even after 20 ms.
Second, the magnetization decay (right) shows a similar trend to the experimental decay
observed by Vignaud et al. (2005) for helium gas in the mouse lungs. Initially, at increas-
ing iron oxide concentration, the magnetization decay rate decreases, but for iron oxide
concentrations >47 µmol/L, there is an increase in signal decay rate.

regimes, including approximations for non-uniform magnetic field gradients.

Simulations and experiments also revealed that xenon diffusion does not provide a sensi-

tivity enhancement to iron oxide at the length scales achievable by current MRI techniques.

Gradient-recalled echo images of water protons for the same iron oxide distribution at an

echo time four times shorter than that used to acquire xenon images were virtually identical

in simulations and experimentally. Therefore, in order to increase sensitivity to iron oxide, it

is necessary to consider using gases with higher gyromagnetic ratios and diffusion coefficients

compared to xenon, such as 3He or fluorinated gases.
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CHAPTER 5: CONCLUSIONS & OUTLOOK

This dissertation has presented new characterizations of depolarization mechanisms

which are often ignored in continuous-flow spin exchange optical pumping and a way to

use depolarization in magnetic field gradients as a new source of image contrase. In this

final chapter, the contributions to the field are summarized and some guidelines for manu-

facturing continuous-flow hyperpolarizers, based on the work presented in this dissertation,

are offered.

5.1 Fluid Flow in Continuous-flow Optical Cells

In chapter 2, results from fluid dynamics and heat transfer simulations to characterize the

fluid flow within continuous-flow spin exchange optical cells were presented. Two different

cell designs were tested, exhibiting vastly different flow regimes over a wide range of flow

rates. The simulations reveal that many assumptions previously made while modeling the

final xenon polarization need to be reevaluated. The results showed that using a plug flow to

model the fluid flow leads to incorrect velocities and inaccurate flow fields inside the optical

cell. More importantly, the residency times in the optical cell were shown to be much shorter

than what is often calculated by using the volumetric flow rate and volume of the optical

cell. Specifically, the computed residency times are not long enough to provide sufficient

time for spin exchange to occur and xenon to become fully polarized. This could be the

major cause for the discrepancy between theoretically predicted xenon polarizations and the

values that are currently achieved by continuous-flow SEOP. These results indicate a need to

change the way that the theoretical polarization is calculated to account for the distribution

of residency times for xenon.
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5.2 Depolarization in Magnetic Field Gradients

Work measuring the effect of magnetic field gradients on the depolarization of HP 129Xe

gas during continuous-flow SEOP was presented in chapter 3 and results from our attempt

to leverage this depolarization effect to increase image contrast in HP 129Xe MRI near su-

perparamagnetic iron oxide nanoparticles was discussed in chapter 4.

Magnetic field gradients have long been known to affect the nuclear spin polarization

of hyperpolarized noble gases. Helmholtz coils are used to generate the low, polarizing

field necessary for spin exchange optical pumping due to the highly homogeneous field they

create. These gradients are carefully avoided in batch method hyperpolarization but are

often ignored in continuous-flow hyperpolarizers. However, continuous-flow hyperpolarizers

include the Helmholtz coil for spin polarization and a much larger magnet in which the

gas is stored in the frozen state during the collection process. Depending on the relative

configuration of these two magnetics, it is possible that the gas, traveling from the optical cell

to the cold trap, flows through a region where the magnetic field rapidly changes direction.

Therefore, the influence of strong magnetic field gradients on the relaxation of HP 129Xe

during continuous-flow SEOP was studied using both finite element analysis and Monte

Carlo simulations which were compared to experimentally determined longitudinal relaxation

values. The results indicated that the crossing of regions in which the magnetic field rapidly

changes direction or assumes values very close to zero can cause significant relaxation. As

such, care should be taken to avoid such gradients within the gas flow path. Large field

gradients can be avoided through the use of various magnet designs for the polarizing field and

the field necessary to prevent solid state relaxation. Coil designs, such as the Lee-Whiting

coil can generate much larger homogeneous regions compared to a traditional Helmholtz

pair (Lee-Whiting, 1957). Also, the use of a Halbach array magnet could provide better

flux return for the permanent magnet and could contain the magnet field above and below

the array better than other permanent magnet designs (Bjork et al., 2008). However, in the

absence of such large gradients, wall relaxation is the major contributing factor to gas-phase
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spin relaxation.

Superparamagnetic iron oxide particles are able to generate powerful magnetic field

gradients due to their large magnetic moment. This, along with their high compatibility in

biological systems, has made them a particularly interesting contrast agent for in vivo MR

applications. SPIONs and HP gases have been used independently for different applications,

but very few studies have tried to combine them. To our knowledge, before this work, no

studies had been performed to systematically evaluate the effects of iron oxide on HP gases

and separate the effects of SPIONs on the longitudinal and transverse relaxation times of

hyperpolarized gas spins as well as their effects on image contrast.

The effects of SPIONs on the longitudinal and transverse relaxation of hyperpolarized

xenon under various restricted diffusion regimes were characterized using simulations and

experimental work. This work revealed that xenon signal loss near SPIONs is due mainly

to transverse spin relaxation with no appreciable effect of the longitudinal relaxation. It

is possible to increase the longitudinal relaxation rate of xenon near SPIONs by decreas-

ing the structural length, but the length scales at which a noticeable effect occurs are in

the micrometer range. These are much smaller length scales than can be observed with

hyperpolarized gases using current MRI techniques. In addition, xenon diffusion added no

sensitivity enhancement near SPIONs, so in order to increase sensitivity near iron oxide,

it becomes necessary to use nuclei with higher gyromagnetic ratios, like 3He or fluorinated

gases.

5.3 Future Outlook

The work presented in this dissertation provides many opportunities for continued study

as well as new avenues of interest. The most obvious continuation from here would be the

addition of laser heating to the fluid dynamics models. This would provide a more complete

picture of fluid flow in the optical cell and assist in the understanding of continuous-flow

SEOP. Along these same lines, mapping the rubidium density distribution throughout the cell
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would be very helpful. The xenon polarization is directly related to the rubidium polarization

so a non-uniform distribution of rubidium, particularly in the case of rubidium collecting on

the side of the optical cell opposite of laser incidence, could significantly affect the overall

xenon polarization level. As most people who model the theoretical xenon polarization during

continuous-flow assume a uniform rubidium density throughout the entire cell, mapping the

rubidium density distribution would determine the accuracy of such an assumption.

Finally, these results would provide an avenue to improve the current model of xenon

polarization. First, the rubidium density distribution, in conjunction with temperature

and pressure data from the simulation, would provide the means to calculate a real-time,

local rubidium spin exchange rate and spin destruction rate. This could be used to more

accurately predict the local rubidium polarization in the optical cell from which the final

xenon polarization can be estimated, potentially leading to more efficient cell designs.

The work in this dissertation has already provided some guidelines for the design of

optical cells used in continuous-flow SEOP. For horizontally-oriented optical cells, the place-

ment of the inlet should be at the bottom of the cell to increase the residency time of xenon

in the optical cell through the introduction of recirculation near the inlet. The length of

the optical cell should be as long as the homogeneous region of the Helmholtz pair allows.

The simulations suggest that doubling the length of the current optical cell (15 cm) should

increase the average residency time to over ten seconds, for both cell designs, at a volumet-

ric flow rate of 1.5 SLM. This increase in residency time could lead to a doubling of the

final xenon polarization. Additional work on various optical cell designs could provide more

precise principles for the design of continuous-flow optical cells.
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