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ABSTRACT

JoEllen McBride: Star Formation Histories of Southern Compact Groups
(Under the direction of Gerald Cecil)

Compact group galaxies are a common phase in galaxy evolution and provide insight into the process
that transforms galaxies from isolated, star forming late-type galaxies to passive galaxies in high density
environments. I mapped spectrally the central and middle regions of 40 galaxies in 10 Southern Compact
Groups and established group membership by redshift. Of the eight groups with all members observed,
I found that one galaxy is not in the group in four cases. I obtained ages and metallicities of the stellar
populations using the STARLIGHT code to summarize past star formation and current activity. Galaxies
that are part of a group showed both high-metallicity stellar populations, indicating rapid processing of
gas through multiple star formation episodes, and low-metallicity star formation. Thus, Southern Compact
Group galaxies have a wide range of stellar population properties, indicating that these groups are in different

stages of evolution.
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1: Introduction

1.1: Motivation

The most notable observed property of galaxies is the dependence of morphology on environment. In
hierarchical models, two mechanisms influence the formation of galaxies: the baryonic processes that occur
within each galaxy’s dark matter halo and the inevitable interactions and mergers between galaxies within a
common dark matter halo. How these two processes produce the morphology-environment dependence seen
today is one of the bigger questions in Astronomy.

Interactions and mergers have long been thought to influence star formation (SF) and the output of
supermassive black holes at the centers of galaxies. As galaxies interact within their combined dark matter
haloes, stellar orbits and gas are perturbed and often stripped from the parent galaxy. Gas can then be
pulled into the center of the more massive galaxy to trigger a burst of circumnuclear star formation and
often feed the central supermassive black hole to activate the nucleus of the galaxy [IL [2]. There have been
numerous studies of the central regions of interacting galaxies with interesting results. Observations reveal
two populations of active galaxies, those with enhanced nuclear activity and quiet outer regions and those
with their outer regions showing activity enhancement compared to the center, implying a time scale to star
formation and active nuclei (AGN) induced by interactions [3} [4].

The results of extensive galaxy surveys such as the Sloan Digital Sky Survey (SDSS) have enabled
researchers to obtain large samples of galaxy properties and to establish correlations with both internal and
external factors. Most properties of galaxies depend on their stellar mass[dl [6] [7]. High mass galaxies have
old stars, high mass-to-light ratios, high central light concentrations (C'), high stellar mass surface densities
and high likelihood of hosting an AGN, but low star formation rates (SFR) and dust. Low mass galaxies
have young stars, high SFR and dust content, but low mass-to-light ratios, low concentrations, low stellar
mass surface densities and rarely host an AGN. The aforementioned authors also find a characteristic mass

(~3x10'°M) at which the dependence of these properties on mass changes significantly.
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Figure 1.1: The relationship between surface mass density (i) (left) and concentration index (C'= R90/R50)
(right) and stellar mass for galaxies in density bins of 0-1 neighbor (cyan), 2-3 neighbors (green), 4-6 neighbors
(blue), 7-11 neighbors (black), 12-16 neighbors (red), > 17 neighbors (magenta). Neighbors are defined within
a 2 Mpc projected radius and £500 km/s velocity difference of a target galaxy. The solid curves are the
median values of surface mass density and concentration index for each mass bin and the dotted lines denote
the 10th and 90th percentiles.[8]
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Figure 1.2: The relationship between the median values of Dn(4000) (top left) and SFR/M, (top right)
and stellar mass for galaxies in previously defined density bins. Plots of the median value of Dn(4000) and
surface mass density (bottom left) and concentration index (bottom right) are also shown. [§]



The sample size of the SDSS allowed researchers to establish how these relations depend on environment[g].
The dependence on stellar mass of structural parameters (concentration and stellar mass surface density)
does not vary significantly with environment (Figure , whereas that on environmental parameters does
(Figure|1.2]). Both a galaxy’s stellar mass and the mass of the dark matter halo it resides in influences the
amount of star formation that the galaxy will undergo. AGN do not show much dependence on environment

except that the most powerful are found in the most massive galaxies (Figure [1.4)).
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Figure 1.3: Relation between star formation history properties SFR/M,, Dn(4000) and Hd4. Solid circles
are the median values, open and solid triangles are the 25th and 75th percentile and open and solid squares
are the 10th and 90th percentiles respectively. [§]
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distribution of [OIII] luminous AGNs in low and high density environments. [§]



Two mechanisms create elliptical galaxies according to these findings: 1) mergers cause stars to form
rapidly, which depletes the cold gas reservoir and suppresses its cooling and 2) the outer layer of cold gas is
ram pressure stripped by the massive dark matter halos, causing star formation to decline gradually. How
these two scenarios affect subsequent SF in the central and outer regions of galaxies could also explain the
two observed populations of active galaxies. Whether the merger scenario or the high mass halo scenario
plays a more important role at the transition from low to intermediate density environments is an important
question to address. This density transition stage is also where a significant change in the characteristic
stellar mass of galaxies occurs. To probe this transition, I chose compact groups of galaxies that lie in the

density regimes represented by the blue and green curves in the Kauffman et al. 2003 plots shown in Figures

[T and 21

1.2: Compact Groups

The first study of a compact group of galaxies, Stephan’s Quintet, was published in 1877[9]. More than
70 years passed before another was found[I0]. The focus then shifted to the compilation of atlases of galaxy
images showing peculiar shapes and interactions [T [12] [I3]. Compact groups did not re-enter the scene until
1973 when 30 compact groups were found by searching 200 Palomar Observatory Sky Survey (POSS)[14]
prints[15]. There are now over 350 Shakhbazian fields [16] and their properties are discussed in section 1.1.3.
A survey of 205 compact groups obtained from 69 POSS plates and 23 Yale-Columbia southern proper motion
survey plates[I7] was published in 1977[18]. Groups were chosen if three or more galaxies had blue magnitudes
brighter than 17.5 and a density enhancement with respect to the surrounding field of over 1000. A later
study of these groups, searching for diffuse light indicative of tidally stripped material from interactions,
turned up few examples, leading to the conclusion that these groups are transient configurations forming
within loose groups[19]. In 1982, Hickson published a sample of 100 compact groups found by searching red
POSS prints[20]. The selection criteria used in his search aimed to reduce biases in the Rose (1977) groups
whose magnitude limits[I8] created a distance dependent bias while surface density limits caused geometric
and kinematic biases (i.e. transient compact configurations or oblate structures viewed so that only a small
cross section is observed). The details of Hickson Compact Groups (HCGs) will be discussed in the next
section.

A major bias of the Rose and Hickson groups is that group members with large magnitude differences
are more difficult to detect when searching by eye, and faint groups are missed completely. Prandoni et

al. 1994 used an algorithm with the same selection criteria as Hickson, 198220} [2T]. Their search of the



digitized COSMOS /United Kingdom Schmidt Telescope (COSMOS/UKST) Southern Galaxy Catalog found
59 groups|22]. This algorithm was later altered to probe to fainter magnitudes and resulted in the 121 groups
found in the Southern Compact Groups (SCGs) by Iovino, 2002 discussed in section 1.1.2[23].

Another issue with compact groups is the high frequency of putative members with discordant redshifts.
Both Stephen’s Quintet and Seyfert’s Sextant have one as do 43 of 100 HCGs. To address this issue,
Barton et al. 1996 used a friends of friends algorithm to search a magnitude limited three dimensional
angle-redshift volume for compact groups[24]. Their algorithm discovered 89 groups known as the Redshift
Selected Compact Groups (RSCGs). These groups overlap with the HCGs in a few cases and have similar
physical properties. There are redshift dependent biases in this magnitude limited survey, but those are
easily quantified.

Recent large all sky surveys have provided a huge database in which to apply many different group-finding
algorithms to compact groups [25] 26] 27]. These algorithms tend to find more early-type galaxies than the
Hickson samples but still use his criteria to find groups.

The HCGs are by far the most studied compact group catalog and I summarize what has been learned
about them below. I then summarize work done on other compact group surveys. Finally, I focus on the
SCGs of Tovino, 2002[23] because this survey covers the southern hemisphere and the groups fit into the field

of the Goodman Spectrograph on the SOuthern Astrophysical Research (SOAR) Telescope[28].

1.2.1: Hickson Compact Groups

Hickson, 1982 used a hand lens to search POSS E-band (red wavelengths) prints and found 100 compact

groups of galaxies using the following criterial20]:

1. N >4 - number of galaxies within 3 mag of brightest group member in the POSS E-band. (Richness

constraint)

2. O > 30 - the angular diameter of the largest circle that contains no galaxies in the magnitude range
set by 1, 8, must be at least three times the smallest circle containing the centers of all group members,

f¢c (Isolation constraint)
3. pg < 26mag/arcsec? - total group surface brightness within § (Compactness constraint)

Galaxies in each group were classified as spiral (S), elliptical (E) or other. Spiral classification includes
irregular and blue compact dwarf galaxies. SO galaxies were classified as other. The fraction of spiral
galaxies in these compact groups is less than in the field and spirals appear to be preferentially in groups

near the compactness constraint. He found that there are fewer faint galaxies in groups and even fewer in



groups with a dominant elliptical galaxy. Many groups have a spiral as the dominant galaxy, which makes
them unlikely merger remnants. Group compactness does not correlate with the brightness of the dominant
galaxy.

By measuring redshifts, Hickson et al. 1992[29] found 92 groups with three accordant members and 69
groups with four. Later studies found 57 then 61 groups with four accordant members that still satisfy the
original criteria [30} B1]. Observationally, the physical characteristics of the discordant galaxies are consistent
with chance alignments [32] and discordant galaxies do not show a preferential projected location within the
originally defined group [33].

Kinematic and structural studies of group members show a wide range of interaction stages in most HCGs
[34, 35, 36, 37, [38, B39]. Ribeiro et al. 1998 categorized 17 groups into three dynamical stages with distinct

surface density profiles[35].
e loose groups
e core + halo
e compact groups

The core radius of groups decreases from loose to compact groups. There is also evidence that velocity
dispersion (o) plays an important role in group dynamics. Groups show clear trends between morphology
and velocity dispersion with late-type galaxies residing mostly in groups with low velocity dispersions and
early-types in groups with high velocity dispersions [40, [41]. However, this trend is not apparent in the
Ribeiro et al. 1998 data of 17 HCGs|35].

Authors also classify groups based on velocity dispersion, morphology and activity [38| 37, 4T, 42} 43].
e low o, lots of late-type, active SF or AGN

e intermediate o, lots of interacting/merging galaxies, some activity

e high o, lots of early-type, not active

These classifications are thought to be evolutionary stages of groups from low o to high o. Coziol et al. 1998
I and II[44, 45] studied the brightest galaxies in HCGs and found that most show some activity. AGN tend to
reside in the most luminous elliptical galaxies in the cores of groups. Half are actually low luminosity AGNs
(LLAGNs). When only group members are included in the study, the number of starburst (SB) galaxies
drops significantly and are found in the outer regions or halos of the groups. SB galaxies in HCGs are found
in mostly late-type spiral galaxies and have stronger activity than normal spirals (Mp < —19) [45]. They

also have lower metallicities than the other galaxies in the group, implying that they are in a less advanced



stage of evolution than the early-types. This suggested to the authors that early-type HCGs formed first
and more quickly because they reside in the center of the group and the late-type galaxies are pulled in from
the surrounding environment [44} [45] [43]. This scenario is also supported by reports that within HCGs low
o galaxies are younger [46], ellipticals have older stellar populations [47, [48] and older groups (i.e. more
early-type galaxies) have higher o and are more compact [49].

The AGN fraction in the nucleus of HCGs is higher than the SF fraction and what SF is present is
not enhanced compared to field galaxies [50]. This supports the idea that gas is processed rapidly at the
beginning of group formation, quickly turning late-type galaxies into quiescent early-types. Mid-infrared and
X-ray properties of HCGs show a strong bimodality between gas rich and gas poor compact group systems
51, 139, 52).

Evidence of interactions have been uncovered in infrared and X-ray wavelengths. There is evidence of
enhanced warm Hy emission in HCGs due to shock excitations from group member collisions [53]. Diffuse
X-ray emission has been linked to individual members of HCGs, emanating from star formation activity,
AGN or tidal tails [54].

The spectra of Mendes de Oliviera et al. 2005 find that ellipticals in HCGs have similar mean metallicity
and [F%E] as field galaxies[47], and many authors have noted that star formation activity in HCG spirals is
comparable to field spirals [45], 55, 56} 57, [50]. Many papers contradict the findings of Hickson et al. 1989[58]

that the ]}dFO ; f' is more enhanced in HCGs due to interactions than in isolated galaxies [59, 60} [61} 62] [63]

64, [49, [65].

There is ongoing discussion as to the reality of the HCGs. Many simulations have been run to predict
the frequency of chance alignments [66], 40, [67), 68, [69] and the lifetime of gravitationally bound groups
[0y [T, [72), [73, [74), [75], [76], [77]. Mamon, 1986 estimated that roughly half of the HCGs are chance alignments
in loose groups[66]. Hickson, Kindle and Huchra, 1988 simulations produced 35% of quintets with a single
discordant redshift[40] and Hickson and Rood, 1988[67] found the probability of chance occurrence in HCGs
to be 1% that found by Mamon, 1986. Walke and Mamon, 1989 ran semi-analytic models and confirmed the
high frequency of chance alignments in the Nearby Galaxy Catalog but only in groups less compact than
HCGs]68]. They also showed that although the chance alignments are a small effect, they can explain the
high number of discordant redshifts found in the HCGs. Using the Millenium simulation and the Hickson
criteria, Diaz-Gimenez and Mamon, 2010[69] found only half of indentified compact groups contain at least
four accordant redshifts compared to Hickson, Kindl and Huchra’s ~ 70%.

If compact groups are formed in the early universe, they would quickly virialize according to hierarchical
models of dynamical evolution [70]. Other mechanisms, such as the mass of group members, must play a

significant role in the merging process. Having a wide range of masses within a group can delay merging



up to 9 Gyrs [71]. It has also been shown that as the mass of the merging galaxies decreases, the merging
time is increased [72]. Many authors have suggested that compact groups are an on-going and frequent
process where secondary infall of new galaxies plays an important role[73] [75]. Aceves & Velazquez, 2002
ran simulations where groups are virialized but do not share a common primordial dark matter halo and
found that ~ 40% of groups can survive up to 10 Gyrs[77].

To verify group isolation, the environment surrounding the HCGs has been studied. A visual inspection
of the regions around all 100 HCGs returned a third of the groups having galaxies in their immediate
neighborhoods[78]. Ramella et al. 1994 found that 29/38 groups were actually part of looser, rich systems
of galaxies[79] and Rood and Struble, 1994 found HCGs associated with 36 loose groups and seven Abell
clusters[80]. In contrast, Palumbo et al. 1995 looked within 1.0h~'Mpc of 91 HCGs and found only 18%
of groups have concentrations within 0.5h~!Mpc[81] and Palumbo et al. 1993 found no alignments between
HCGs and Abell[82]. Evidence has also been presented indicating that HCGs are actually the compact core
of an elongated, loose group of galaxies [43] [83].

From the above studies, the following explanations have been proposed for the arrangement of compact

groups of galaxies [84].

e Transient, dense configurations

Isolated, bound, dense configurations

e Chance alignments in loose groups

Filaments seen end on [74]

Bound, dense configurations in loose groups

There is still much work to be done to understand the role that interactions play in the evolution of galaxies

in HCGs and how HCGs are related to their surrounding environments.

1.2.2: Recent Compact Group Surveys

The advent of large all-sky surveys has greatly advanced the study of compact groups. Two notable
catalogs of compact groups have come from the SDSS[25, 27]. The survey by McConnachie et al. 2009
has been used to compare the properties of compact groups to loose groups and the field. Compact group
galaxies are redder, smaller, more concentrated and have higher surface brightnesses than galaxies in loose
group or the field [85] 86]. Compact groups embedded in larger clusters contain galaxies that are distinct

from field galaxies while more isolated compact groups contain galaxies that are similar [87]. These findings



further support HCG studies that gas rich galaxies are very quickly transformed into early-type galaxies
in compact group environments. A survey of compact groups with complete spectroscopic redshifts was
released recently[27].

A compact group survey in the infrared, using the 2 Micron All Sky Survey (2MASS)[88], showed a
group’s proximity to larger systems affects the properties of the group’s galaxies [26]. Galaxies in embedded
compact groups are smaller and brighter than those that are isolated[89].

The majority of the surveys discussed thus far focus on compact groups in the Northern Hemisphere.
To utilize the facilities accessible at UNC-Chapel Hill, my study focuses on compact groups that are easily
observable by the SOAR Telescope.

1.2.3:  Southern Compact Groups

To overcome the incompleteness and bias introduced by the visual selection of groups in HCGs, Iovino,
2002[23] applied an automated algorithm and altered the selection criteria of Hickson, 1982. This algorithm
searched through galaxies in the COSMOS plate scans of the UKST SuperCOSMOS Sky Survey [22] and
probed one magnitude deeper than the Hickson survey. As discussed, the Hickson selection criteria reject
many possible groups due to projection effects but also include many that are actually part of a larger
structure. The new selection criteria are similar to the Hickson criteria because HCGs probe an interesting
class of galaxies at the brighter magnitudes of the survey and the changes are aimed at making the algorithm

less restrictive by modifying the definition of the isolation ring.
1. Richness: n >4 in magnitude interval Amagecomp = M faintest — Mirightest < 3mag in B; filter

2. Isolation: R;so > 3Ry, where R;g, is the distances from the center of the group to the nearest

nonmember within 0.35 magnitudes of the faintest group member.

3. Compactness: pgr < [iimit = 27.7mag/arcsec2

Modifying the isolation criteria results in 60% of rejections being part of a larger substructure and only
25% of those groups satisfying the isolation criteria are within 15’ of known clusters. Out of the 121 SCGs
found, 4 are also found in the HCGs (HCG 4, 21, 90, 91). The SCG reports for each group n the number of
galaxies in the group, Mmy,;ghtest the magnitude of the brightest galaxy in the group, Amagcom,p the difference
between the faintest and brightest group member, Amag;sor = Misoi — Mirightest the difference between the
brightest galaxy in the isolation ring and the brightest group member, p4, mean surface brightness within
a circle of radius Ry, and Apgy = ftext — pint the difference between the mean surface brightness within

the isolation ring and the group. Searching with both the Hickson and Iovino criteria and dividing the



results into three categories allowed them to compare the contamination rates (background and foreground
galaxies being included) of the SCGs with the HCGs. These three categories are defined by Amagcomp
and Amag;se;. Category A groups are found in both the HCGs and SCGs and have Amagcomp < 2.65 and
Amag;ser > 3. Category B groups are found in the SCGs but not in the HCGs and have Amagcomp < 2.65
and Amag;so; < 3. Finally, category C groups are found in the HCGs but not in the SCGs and have
Amagcomp > 2.65 and Amag;so; = 3. The results show that category C groups have the highest contamination
rate (750%) compared to categories A and B which have contamination rates of 25%. The density contrast
between the density of galaxies within Ry, and those outside the isolation ring reveal that the majority of
the groups reside in environments that are more than 10 times as dense as outside the isolation ring, with
half being in environments that are more than 20 times as dense.

The most extensive study of SCGs is that of Coziol, Iovino and de Carvalho, 2000[90]. They spectro-
scopically classify the types of emission-line acitivty of 193 galaxies located in 49 of the compact groups.
They did not examine stellar populations. Galaxies with and with out emission are identified and galaxies
with emission are further divided into AGNs, low-ionization nuclear emission-line regions (LINERS), SF
and LLAGN. They reported that ~ 31% of the SCGs observed could not be classified using the diagnostic
diagrams but of those that could be classified, 41% had characteristics of LINERS and Seyfert 2 galaxies.
The ambiguity in classifying the SCGs is attributed to an intermediate phase of activity where star formation
and AGNs coexist, known as HII nucleus galaxies[91]. When compared to the HCGs, the authors see simi-
lar trends in activity with luminosity (LLAGN and AGNs are in the most luminous galaxies, non-emission
and SF galaxies are less luminous) and activity with morphology (non-emission, LLAGN and AGNs are in
early-type galaxies, SF galaxies in late-type). The SCGs have more SF galaxies and LLAGN than the HCGs
and less galaxies without emission lines. More of the LLAGN SCGs are located in early-type spiral galaxies.
They also found variation in activity type with number of galaxies in the group. The number of star forming
galaxies decreases as the number of group members increases. These results show that the SCGs comprise
an interesting phase in galaxy formation and evolution.

A few SCGs, along with HCGs, were included in the HI content survey completed by Stevens et al.
2004]92]. The SCGs were not included in any plots because their optical properties were not confirmed.
The plots of HCGs revealed that galaxies with high masses tend to be HI deficient while galaxies with
low mass are not. The survey was not sensitive enough to probe the low mass compact groups. However,
Pompei, Dahlem and Iovino, 2007 completed a preliminary HI survey of 6 SCGs and found an average
group mass of 9.2 x 1012 Mg, which is similar to that of the HCGs[93]. The mean HI deficiency of the
groups was found to be 0.80 which is higher than for field galaxies; HI deficiency is defined as Def(HI) =
loglM(HI)pyeq] —log[M(HI)op). The predicted HI mass is determined by summing the HI mass of field
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galaxies with the same morphology as group members. Four galaxies with no observed HI are late-types.
The authors also note that HI is a good tracer of interaction effects.

If these galaxies are gravitationally bound, they will eventually merge to form an elliptical galaxy. My
goal is to study stellar populations and emission-line activity to uncover the process that removes gas as the

SCGs form.

1.3: Multi-object Spectroscopy

Long-slit spectroscopy restricts light from extended objects to a rectangular area to focus on specific
regions of nebulae and galaxies. To improve the efficiency of observations, it is possible to cut multiple slits
in a single mask and arrange them so the spectra do not overlap on the detector. If multiple galaxies are in
the field of view (FOV), one exposure can obtain simultaneous observations with careful alignment. Most
productive astronomical spectrographs have multi-object capabilities. This project used the multi-object

capabilities recently added to the Goodman Spectrograph[28] on the SOAR Telescope as an upgrade.

1.4: Integral Field Spectroscopy

Spatially detailed spectra are usually obtained through multiple long-slits. Recently, single fiber optic
cables have been employed for multi-object spectra but provide no spatial information within each target.
Monolithic integral field spectroscopy (IFS) systems comprised of either lenslets or fiber optics have also been
successfully used but only for nearby galaxies that fill the FOV. Lightly fusing multiple fibers into bundles
allows for full spatial sampling of multiple targets in the FOV to map spectrally more than one galaxy at a
time.

Here I describe two set-ups of the Goodman Spectrograph. The first involves CINDERS, which mounts
four bundles in actuators that can move in three dimensions around a 5’ x 9 FOV. A table of previous and
current IFS systems is listed below along with the CINDERS set-up for comparison. The second set-up is
the multi-slit addition to the Goodman Spectrograph. This has a 3’ x 5 FOV, which is still adequate for the

SCGs. Many questions concerning galaxy evolution can be addressed using these set-ups as outlined below.
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SAURON|[94] VENGA[95] DiskMass[96] PINGS|[97] SDSS[98]
(HR/LR)
Fiber properties lenslets fiber optics fiber optics/ lenslets fiber optics
lenslets
instrument SAURON VIRUS-P SparsePak/ PPAK
PPAK
# of fibers 1577 246 82/382 382 640
fiber diameter (”) 0.27/0.94 4.3 4.7/2.7 2.7 3
telescope aperture 4.2 2.7 3.5 3.5 2.5
(m)
wavelength 450-700 360-580 500-900 370-710 380-920
range (nm) 460-680
FOV 9" x 11"/ 1.7 x 1.7/ 74" x 65" 74" x 65" 70 x7°
33" x 41"
redshift < 0.01 low z low z z < 0.005 median=0.1
range
spectral sampling 1.1 2.2 0.13-0.28/ 0.2 3.2 1.5
(A/pixel)
spatial sampling () 0.27/0.94 4.3 4.7/2.7 2.7 3
spectral resolution 2.8/3.6 5 3.3/3.8 10.7 “3
(A)
velocity dispersion 90/105 120 148/220 600 70
(kkm/s)
grating 514 316/1200 V300
# galaxies 72 early 32 spiral 146 spiral 17 disk ~930,000

Table 1.1: Prior IFU Survey Properties
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CINDERS CALIFAS SAMI [100] HECTOR HERMES GIRAFFE MANGA
[99] [0 [102) 03] [104]
Fiber fiber optics lenslets fiber optics fiber optics fiber optics lenslets fiber optics
properties
instrument CINDERS PPAK SAMI HECTOR HERMES VLT+ SDSS
FLAMES
# of fibers 244 382 793 + 26 100*# 392 20
sky fibers in positioners
plug plate bundles
fiber 0.7-fiber 2.7 13 bundles 2 0.52
diameter (”) 6.3-bundles
telescope 4.2 3.5 3.9 3.9 3.9 8.2 2.5
aperture
(m)
wavelength 350-700 430-700 370-950 471-490
range (nm) 370-500 565-587
648-674
759-789
FOV 4.1 x9' 74" x 65" 1° 2°-3° 2° 3" x 2"
redshift 0.01-0.2 0.005—0.03 <1.2
range
spectral 0.87 1.3/0.64 1.03/0.57
sampling
(A /pixel)
spatial 0.7 2.7 1.6 2 0.52
sampling
()
spectral 4.5-blue 5.4/2.7 2.8/1.5 0.55/0.45
resolution 8.4-red
&)
velocity 150 300/200 173/67 30/22
dispersion
(km/s)
grating 400 V600/ 580V/ L04/L05
V1200 1000R
# galaxies 942 all 10% —10° 10°
Table 1.2: Current and Future IFS systems

The SDSS used a single fiber to obtain spectra of the central regions of millions of galaxies. The spectral
signatures of low luminosity AGNs are easily lost in the integrated light within the half light radius of a
galaxy and any small star forming regions would blend in too. The Sydney-AAQO Multi-object Integral field
feed for the dual-beam AAO-OMEGA spectrograph (SAMI) uses 13 bundles of fiber optic cables each with

61 fibers of 1.6” diameter to cover 15” diameter of a galaxy. The wide FOV of the Australia Astronomical
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Telescope (AAT) is enabling spectral maps of 3500 galaxies to reveal spatially detailed stellar population
and activity across the central 15” of each. The SDSS Mapping Nearby Galaxies at APO (MANGA) survey
is also deploying IFUs. The spatial variation of star formation history properties and stellar populations can
better constrain the timescales of the suppression of star formation and whether SF occurs throughout the

galaxy simultaneously or starts in the outer regions and moves inward.

1.5: Dissertation Outline

Chapter 2 describes the design of the dissertation program by detailing the history of the field and my
observing and data analysis strategy. Chapter 3 discusses the instrumentation process that I developed
for both CINDERS and the MOS on the Goodman Spectrograph. Chapter 4 presents the results of my

observations and analysis. Chapter 5 summarizes my conclusions and future work.
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2: Dissertation Design

2.1: Science Questions

My aim was to obtain spatially detailed spectra of the inner 7 arcsecond diameter of up to 44 SCG
galaxies in 10 groups using the deployable IFU module, CINDERS[I05], with the Goodman Spectrograph
on the SOAR telescope to answer the questions of how SF and AGN activity are affected by intermediate
density environments.

The clustering of the SCG galaxies on the sky is optimal for the narrow FOV spanned by CINDERS and
the minimum spacing of the probes (100 arcseconds). CINDERS spectra could provide a two dimensional
distribution of age, metallicity, SF and AGN emission in the central regions of these galaxies. The Lick
indices M gs and < Fe > could map the age and metallicity of the stellar populations that fall in our fibers.
When combined with the Balmer absorption lines (Hd, Hvy, Hf ) which trace star formation in the last
Gyr, tighter constraints could be put on the ages of the populations and the SFH of the galaxy. Older
ages show that SF has ceased in a galaxy but high metallicities would indicate rapid processing of elements
via enhanced SF due to an abrupt compression of cold gas. Any current or recent SF in the last 107 yrs
could be traced by Ha emission in our maps. Strong emission line ratios ([OIII]5007/H 3 vs [NII|6583/ H )
can classify the type of activity occurring in each fiber. If group membership influences central activity,
the central regions SCG galaxies should cluster in areas of a Baldwin, Phillips & Terlevich (BPT) diagram
distinct from field galaxies. Central regions showing enhanced SF compared to field galaxies could indicate
that the groups are undergoing a merger scenario as described by Kauffmann et al. 2004. Measured SF that
is lower than in field galaxies could indicate diminishing of SF in the massive halo scenario. If SF is the
same then either the dark matter halos of the galaxies in the compact groups have not merged yet or we are
seeing an intermediate stage following a period of enhanced SF.

The observations would also map kinematics of gas in the central regions. This could determine how
much external factors perturb gas motions in the central regions. Gas funneled into the center of the galaxy
would trigger circum-nuclear SF, which would show up in Ha emission maps.

The control sample would use the data from galaxies in the observed SCGs that have discordant redshifts.
By comparing activity and stellar populations of these field galaxies with our intermediate density groups,

I can begin to unravel the effects dynamics play in the evolution of groups members.
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2.2: Extra-galactic Stellar Populations

2.2.1: History of Stellar Population Analysis

Within the Milky Way, astronomers can study the spectra of individual stars to uncover the chemical
signatures of past star formation. For galaxies outside the Local Group, it is impossible to see individual
stars. Astronomers must use evolutionary population synthesis techniques to unmix stellar populations in a
galaxy’s spectrum. This method requires theoretical stellar evolution tracks that populate a Hertzsprung-
Russell (HR) diagram with a simple stellar population (SSP). An SSP is a population of stars that were
all born at the same time with the same initial chemical composition. A series of SSPs can be used to

approximate a galaxy’s star formation history.
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Figure 2.1: Color versus age for three types of metallicity[L06]. Higher V' — I values correspond to redder
colors.

Population synthesis aims to mitigate the age/metallicity degeneracy that affects star colors with ages > 1
Gyr. Older stars have redder colors but these colors can also be generated by increasing the metallicity of a
younger star. In Figure 2.1} the broad-band colors of stars are plotted against age for various metallicities.
As age increases, the stars get redder. As the metallicity is increased, the colors also become redder. Using
evolutionary population synthesis techniques avoids this issue by fitting a galaxy’s spectrum instead of relying

solely on colors.
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Figure 2.2: Theoretical HR diagrams from [I07]. Tracks follow how the luminosity and temperature of a
star at a given mass changes throughout its lifetime. The plot on the left is for low mass stars and the plot
on the right is for intermediate mass and massive stars. Stars in both plots have composition Y = 0.230 and
Z =0.0001. The mass of each star is indicated in solar masses next to each curve.

Stellar evolution tracks for our own Galaxy have been widely studied and can be altered to non-solar values
of metallicity using known relations between stellar parameters[108| [109] 110, 1111 112} 107, 113} 114, [115].
Figure shows the tracks a star of a given mass will follow on the diagram throughout its life. From these
theoretical HR diagrams, an isochrone can be traced for stars of different masses at a single age. At each
point on an isochrone, stellar mass differs with the star moving through different stellar evolution phases on

the HR diagram. An example of isochrones from theoretical HR diagrams is shown in Figure [2.3
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Figure 2.3: Isochrones derived from theoretical HR diagrams by [107]. Ages span from log(age/yr) =
6.8 —10.2 in intervals of 0.2.

The initial mass function (IMF), defines the number of stars born with masses between m + dm. There
are four commonly used IMFs[IT6]. The first two are the unimodal and bimodal IMFs. The unimodal is a

simple power law where o = 1.35 is the Salpeter IMF[117] defined for the solar neighborhood.

®(m) = fm 0.4< 2 <10 (2.1)
Mg

The bimodal IMF is based on observations of Scalo, 1986 and theoretical work of Kroupa et al. 1993]118] [119].

It combines different power laws for different mass ranges. The « values for the mass ranges are

0.035m= % 0.08 < 7= < 0.5
©
®(m)=10.019m22 0.5< - <1.0 (2.2)

0.019m=*7 1.0 < 57

Finally, work has been done to create a universal IMF. These are known as the Kroupa IMFs and the original

and revised versions are stated below[120], [121].
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Original:

m=%% 0.0 < 7= <0.08

®(m)oc{m=13 0,08 < - <05 (2.3)
—-2.3

m 0.5< MlQ

Revised:

m=%%0.01 < 7= <0.08
m~h®0.08 < 575 <05

m=*T 05< - <1.0

—-2.3 m

The final piece is observed template stellar spectra at various determined effective temperatures, surface
gravities, and metallicites, which are used to assign spectra to stars at the different evolutionary stages on
the HR diagram. The integrated flux of all of these stars mimics the spectral energy distribution (SED) of

this stellar population and is given by

Fr(t,2) = MMu (M2, 2)B(M)dM (2.5)

where F) is the flux per wavelength of a population of age ¢ and metallicity Z, the limits of the integration are
over the range of masses defined by the IMF (®(M)) and f) is the flux per wavelength of a given spectrum
for a star of mass M, age t and metallicity Z. The result is a library of SSPs at various stellar ages and
metallicities that can be fit to an observed galaxy spectrum|[122] [106]. We list the properties of some of the

most common template stellar spectra used currently from [123].
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Reference Resolution Spectral range Number of stars Comments

FWHM (A) (A
Spinrad (1962) Spectrophotometry
Spinrad & Taylor (1971) Spectrophotometry
Gunn & Stryker (1983) 20-40 3130-10 800 175
Kitt Peak (Jacoby, Hunter & Christian 1984) 4.5 3510-7427 161 Omly solar metallicity
Pickles (1985) 10-17 3600-1000 200 Solar metallicity except G-K giants
Lick/IDS (Worthey et al. 1994) 9-11 41006300 425 Not flux calibrated. variable resolution
Kirkpatrick. Henry & McCarthy (1991) 818 63009000 39 No atmospheric correction
Silva & Cornell (1992) 11 35108930 T2 groups Poor metallicity coverage
Serote Roos, Boisson & Joly (1996) 1.25 43009000 21
Pickles (1998) 1150-10620 131 groups Flux calibrated
Jones (1999) 1.8 38564476 ai4 Flux calibrated

47955465

ELODIE (Prugniel & Soubiran 2001) 0.1 41006800 T Echelle
STELIB (Le Borgne et al. 2003) 30 3200-9500 249 Flux calibrated
INDO-US (Valdes et al. 2004) 1.0 34600464 1273 Poor flux calibrated
MILES 23 35257500 985

Figure 2.4: Table 1 from [123] which lists the properties of the most commonly used stellar templates.

From these SSPs one can measure expected values of strong absorption lines to obtain model predictions.
These predictions are then compared to the measured indices in an observed spectrum. The lines used most
often for this are the 25 Lick/IDS lines, which use as models 460 stars with a wide range of atmospheric
parameters but at low resolution and signal to noise[124], [125], [126] 127, [128]. There are few young, hot stars
in this library, so these lines are adequate for early-type galaxies with older populations[122]. The observed
spectrum must be broadened to the Lick/IDS resolution, which degrades the original high resolution spectrum
considerably.

Evolutionary population synthesis techniques allow observers to retain high resolution spectra by using
the SSP libraries to fit an entire observed SED for a given galaxy. There are now extensive libraries of SSPs
[122, 116] and many codes that search parameter space for the best combination of SSPs that match the
observed spectrum[129] [130], 1311, 132} [133]. These techniques have been applied to galaxies in a wide range

of environments. I focus on the results of stellar population analysis of compact group galaxies.

2.2.2:  Compact Group Stellar Populations

Stellar population analysis of compact groups has largely focused on the HCGs. The first studies found
that HCG galaxies have a larger fraction of intermediate aged stars than their field counterparts[43] [134].
HCG galaxies that are not undergoing a star burst have metallicity values that compare to field galaxies but
tend to be higher than expected for their luminosity. The absorption lines caused by metals are narrower
than expected and the Balmer absorption is strong in HCG galaxies [45]. These observations led to the

conclusion that compact groups show enhanced processing due to their denser environments.
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More recent studies show that HCGs have higher rates of old and intermediate stellar populations than
field galaxies, especially those galaxies classified as early-type[I35]. Galaxies classified as late-type are more
likely to have similar ages to field galaxies, again, pointing to enhanced processing of cold gas in more
evolved galaxies[I36], 48, [135], [137]. The elliptical galaxies in HCGs have enhanced [Mg/Fe] ratios and

depleted [Z/H], suggesting that the cold gas was quenched to truncate the star formation[48].

2.2.3: STARLIGHT

My stellar population analysis used the STARLIGHT routine[I30]. STARLIGHT fits a spectrum syn-
thesized from many template stars to an observed spectrum, to constrain properties of the SP; it uses a
combination of simulated annealing, Metropolis and Markov Chain Monte Carlo techniques. There are four
steps to the fit. The first explores the parameter space. The second removes pixels that cannot be fit. The
third attempts a fit using all the bases provided. The final step tweaks the fit after discarding bases that do
not make a significant contribution.

The many parameters to set are discussed in the manual available on the STARLIGHT website. I used
the suggested values for my fits. STARLIGHT outputs a very detailed file that includes the normalized

input spectrum, the model, and the percent light and stellar mass contributed from each base.

Fit Analysis

For my base spectra I use the MILES (Medium Resolution Isaac Newton Telescope Library of Empirical
Spectra) of observed stellar spectra that range from 0.06 — 14.2 Gyr in age and —2.32—0.2 [M/H] in metallicity
[123]. The SSPs are created as described in Vazdekis et al. 2010, 1996[138| [116]. In summary, the models
determine the light distribution of stars from the isochrones of Girardi et al 2002[115] and use both power
law and multi-part power law IMFs to weight the light. Figure 2:.12shows the age coverage of MILES spectra

for different metallicities. I also include a plot of the metallicity properties of MILES[I39].
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Figure 2.5: MILES metallicity properties plotted over the Padova isochrones. MILES covers the lower main
sequence and RGB phases at both metallicities. [139]

There are complications in using the MILES (and other spectral libraries) that are extensively covered in
Conroy (2013), and mentioned briefly here. Coverage of the spectra in age, metallicity and regions of the
HR diagram, while better, are still not sufficient. The lack of hot, low-metallicity stars makes young ages
difficult to fit. There are issues when assigning stellar physical parameters to the stars in the libraries. The
errors associated with logg, Tesy and [Fe/H] propagate into the SSP models in a significant way. Finally,

there are known patterns in stellar abundances that are not usually corrected for in the SSPs[139].
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Figure 2.6: Examples of MILES template spectra with normalized flux. The plot on the left shows spectra
for different ages with solar metallicity. The plot on the right shows spectra for different metallicities at 1.0
Gyrs. Spectra are offset by a constant flux so spectral features can be seen.
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Figure shows examples of the MILES spectra used as base templates in STARLIGHT. Because these
spectra are flux calibrated, for each template I took 10%, 30%, 50%, 70% and 100% of the light and added
Poisson noise of 10, 20 and 30. This procedure is similar to that of Fernandes et al. 2005[130] hereafter
referred to as F05. As my priors, I combined two populations, an old+intermediate population and an
old+young population. Each population was taken at 50% and added to the other along with the noises
applied to the single population. Finally, I combined an old, intermediate and young population each taken
at 33% and added the noise. The populations all had the same metallicity, and the ages were chosen at

random.

Age and Metallicity Bins

I first used the fits to the single population templates to define my output age and metallicity bins. To
explore where the age and metallicity ranges might fall, I plotted the template ages and metallicities against

some commonly used Lick indices measured by MILES.
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Figure 2.7: Age vs Lick indice for 294 MILES templates.
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From this plot, I decided to vary the maximum value for the young SP range from 0.1 to 1.5 Gyrs. The
output ages and percent light values were averaged for all templates that fell in the young age ranges. I then

calculated the light weighted (x;) and mass weighted (1) ages and metallicities as suggested by FO5.

<logt, >1= ij loggt; (2.6)
J
<logt. >py= Zuj logygt; (2.7)
J
<Z>L=Z$j2j (2.8)
J
<Z>M:Z,uij (2.9)
J

Light weighted ages are expected to represent the younger populations because a galaxy’s light will be
dominated by younger stars. Mass weighted ages trace the older stars. I subtracted these averaged values
from the input values and determined which maximum value for the range returned the smallest deviation
from the input value. This analysis determined that the young range should run from Age < 0.1 Gyrs. I
then used this age as the lower end of the intermediate age bracket and varied the maximum value from 1.7
to 4 Gyrs. From this analysis, the intermediate age was found to range from 0.1 < age < 4.0 Gyrs. The old

age range was found to be age > 4.0 Gyrs.
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Figure 2.8: Age vs Lick indice plots showing young (blue squares), intermediate (green x) and old (red circle)
ranges for templates.
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I followed a similar procedure for the metallicity bins. The plots of the Lick indices revealed that the

values were already separated into three distinct ranges.
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Figure 2.9: Z vs Lick indice for 294 MILES templates. Blue vertical lines indicate where the low, mid and
high Z bins are located.

When running the analysis, I varied the maximum of the low and mid ranges. Metallicities did not
separate into brackets as cleanly as ages, most likely due to the large spacing between the different metallicity
values. A more continuous distribution would allow for better testing. Here I used the visually apparent

bins. My results are tabulated in Appendix

STARLIGHT Fits

FO05 suggest that STARLIGHT be used to obtain a robust idea of the stellar populations. Binning by age
and metallicity is the best way to achieve this. Template choice is important. Redundancy is not useful for
exploring parameter space. Because the ages have a pretty continuous distribution, I chose a few templates

from each bracket to span a range of index values. I then chose one of the metallicity values in each metallicity
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bin (in bold) and also kept the templates for the other metallicities. The following templates were used in

my analysis.

Age (Gyr) 0.0631, 0.0794, 0.1995, 0.5012,
1, 2.5119, 6.3096, 10

7 [M/H] -2.32, -1.71,-1.31,-0.7, -0.4,

0.00, 0.22

Table 2.1: Templates used for analysis.

I used these templates to fit the one, two and three population spectra. I then compared the different
population fits with all 294 templates, the bolded 24 templates and the full 56 templates. When looking at
the residuals (agein — ageout; Zin — Zout) there is not a substantial difference between the single population
fits and the mixed population fits. This is noted by the tables in Appendix [A-2] which list the average and
standard deviations of the residuals for each template fit. I also included tables of the residuals over all the
files, only separated by number of templates and noise in Appendix [A-3]

For the young populations (t; < 0.1 Gyrs), the light weighted output ages were on average 0.07 dex
younger than the input ages and did not vary with noise or templates used. For the old populations (¢; > 4.0
Gyrs), the mass weighted output ages were older than the input ages by 0.06 dex for the 294 template fits.
The difference was 0.13 dex for the 24 and 56 template fits.

The intermediate populations (0.1 <t; < 4.0 Gyrs) presented a challenge. My fits were showing very
high residuals. This turned out to be due to more than half of the models being fit with a combination of
young and old populations instead of an intermediate one. This pushed the overall light weighted average
age toward the input age. Over all population mixtures, it occurred in 78% of the fits. To account for this
in the analysis, I noted when a fit returned only young and old populations. I then used the total light
weighted and mass weighted average to calculate the residual age. When this was done, residuals were more
reasonable. I also determined how often this occurred in my templates with respect to the number of base
templates used, the percent light of the input population and the input noise added to the templates. I found
that only the number of base templates had substantial effect. When using the 24 or 56 base templates, all

were fit with young and old populations instead of an intermediate one.
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Number Fit | Number Not Fit

Total 2878 9956
% Total 22% 78%
% Light
10% 439 1577
30% 876 3093
50% 649 2168
70% 452 1564
100% 462 1554

Number of Templates

24 5 4273
56 7 4343
294 2866 1340

Input Noise

10 1117 3161
20 964 3314
30 797 3481

Table 2.2: Total templates fit and not fit by intermediate populations.

My data analysis had to take this into account. There are a few ways to do this: 1) I noted which
fits only return young and old populations and calculated the total light weighted average age, 2) I noted
which fits only return young and old populations and re-fit the spectrum with a base of only intermediate
populations, and 3) I added more intermediate population templates to my base to see if this resulted in
more intermediate templates being used.

For the Z analysis, the results were similar for the metallicity brackets and populations. I did not create as
many different mixed populations as with the age templates. This could have affected the mixed population
residuals. The residuals were similar between the single population Z residuals and the mixed populations
that had more than a few files in that Z bracket. I created the same tables as for the age analysis in the
Appendix.

From this analysis, I decided to use the 56 templates when running STARLIGHT on my observations.
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Comparison With Other Data

I carried out long slit observations of an early and a late-type galaxy whose central 1” regions were fit
with STARLIGHT by Cid Fernandes et al. [140] (hereafter CF04). They used galaxies with known stellar

population properties as their templates. They had four different classifications for their templates:

e NCGC 3367 and NGC 6217 are galaxies with young (< 107Gyr) populations. Their spectra have weak

metal absorption lines and the continuum is blue dominated.

e NGC 205 is a galaxy in the intermediate age range (10® —10°Gyr). High order Balmer absorption lines

(HOBLs) dominate the spectrum.

e NGC 221 and NGC 628 are galaxies with a mix of intermediate and old populations. The spectra show

a mix of HOBLs and strong metal lines.

e NGC 224, NGC 1023, NGC 2950 and NGC 6654 are dominated by old populations and show strong

metal lines.

After fitting the central 1”7 of NGC 660 and NGC 1052, they determined the percentage of light each
population contributed to the observed spectrum. Their analysis revealed that NGC 660 is mostly comprised
of intermediate (59.4%) and old (40.6%) populations. While NGC 1052 is dominated by older populations
(83%) but has a small population of young stars (16.5%) in its central regions. My observations used the
age bins described previously and the MILES templates. I fit using 56 and 294 templates to see if that had a
significant effect on the outcome. Because I used different templates as my bases, I expected to match their

percentages only broadly. As evident in the table below, my fits generally matched those of CF04 in stellar

population characteristics.

Galaxy NGC 660 NGC 1052
Templates CF04 | 56 | 294 | CF04 | 56 | 294
% Young 0.0 78 | 59 | 16,5 | 86 | 7.1

% Intermediate | 59.4 | 75.3 | 76.5 0.0 0.0 1.0

% Old 40.6 | 11.3 | 13.1 | 83.0 | 98.0 | 97.3

Table 2.3: Fraction of light due to young, intermediate and old template components.
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In these two examples, it appears that using more templates recovers a slightly higher percentage of interme-
diate aged populations. This should be analyzed in future work to determine how sensitive the intermediate

aged fits are to the number of templates used.

Future Work

More analysis should be done to ensure that STARLIGHT is accurately recovering the intermediate aged
populations. This would require galaxy spectra with known stellar population properties to find the best

combination of templates, then cycle through various combinations of templates to find the best match.

2.3: Emission Line Fitting

2.3.1: History of Emission Line Measurements

Emission lines in the optical spectra of galaxies are caused by two phenomena. When gas is photoionized
by young stars, Balmer lines are visible. The nucleus of a galaxy will show signs of activity when gas is
funneled into the supermassive black hole at the center to cause forbidden lines such as [OI], [OII], [OIII],
[NTI] and [SII] to appear at differing intensities depending on the nature and orientation of the nucleus. AGN
can be further divided into Seyfert and LINER nuclei. LINERS have lower luminosities than Seyferts and are

believed to be caused by shock heating due to star formation outside the nucleus or a heavily extinguished

AGN[IAT].
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Figure 2.10: BPT diagram classifications defined by [141]
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Galaxies tend to fall into three categories of activity - star forming, AGN, or neither. BPT diagrams

can divide galaxies by their activity[I42]. These diagrams utilize the ratio of emission from forbidden line

phenomena and star forming, most commonly [OI]/He, [SII|/Ha, [NII|/Ha and [OIII]/HpB. These

diagrams were revised by Osterbrock & Pogge, 1985 and Veilleux & Osterbrock, 1987 to further constrain

the activity types[143] [144]. Diagram divisions based on theoretical models were first proposed by Kewley

et al. 2001 with further modification to include composite galaxies in Kauffman et al. 2003[145] [7]. The

division between Seyfert and LINER activity is best defined by the classifications in Kewley et al. 2006[141].

We present the definitions of Kewley et al. 2006 here.

Star forming:

log(%ﬁ +1.3
log( [Oégl]> < W%ﬁ +1.30
ZOQ(Q%JF 1.33
Composite/Transition:
log( “X?J?;— TR [Oéél]> = oo [%?:?1
Seyfert:
log(%ﬁ +1.19
log( [Oégl]) > log([i(}iﬁ +1.30
a0
or
log(%} > —0.59
and
tog(10111), 1.8900g(15H) +0.76
Hp

1.18log(194) +-1.30
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LINER:

0.61
—mwm— +1.19
OIll o [N”
tog(12LL) 5, § tos T —0.47 (2.15)
Hﬂ 0.73 +1
log(9y 1050
ST1] O111] 0.72
1.8910g +0.76 < log( ) < +1.30 (2.16)
i) Hp log(5111y _0.32
or
[OI]
O11T] oI
log( T ) < 1.18109(—Ha )+ 1.30 (2.18)

Emission lines can also measure abundances of elements such as Oxygen, measure the temperature and
density of the gas being excited, and estimate internal reddening from the ratio of the recombination lines
Ha/HpS. Temperatures can be measured in the low density regime if an element is structured such that
it emits from different excitation energies in the same wavelength region. In our wavelength range, the

following lines could be observed

Jagso +jsoor _ T.9exp(3.29 x 10%/T)
J4363 1+4.5210~%n, /T1/?

(2.19)

Jesas +jesss _ 8.23exp(2.50 x 10*/T) (2.20)
J5755 1+4.42103n, /T1/? '

Electron densities are measured by looking for the effects of collisional deexcitation, by looking at emission
lines from the same ion that occur at similar excitation energies. This means that the excitation rates of
the levels only depend on collision strengths. Examples of lines that satisfy this in our wavelength range are
[O11]3729/3727 and [SII]6716/6731. The [OII] lines are too close together to be distinguished at my spectral
resolution[T46].

While the majority of SF studies of compact groups have been made at radio and infrared wavelengths
[92] B39 1], 52], Ho emission can estimate the current SFR in the galaxy. This line provides the number
of photons that are ionizing the gas surrounding newly formed O stars. Because these stars have short life
spans (~ 10yrs), their present number divided by their life span is their formation rate. The IMF provides

us with the number of O-A hydrogen ionizing stars to derive the star formation rate using a Salpeter IMF

SFR(Muyr—) =7.9x10"*2L(Ha) (2.21)
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with Ha in units of (ergs~1)[I46]. If one knows the stellar masses of the galaxies involved, the specific star

formation rate (sSFR) can be calculated for a galaxy by dividing the SFR by the stellar mass (M,).

2.3.2:  Compact Group Emission Line Results

HCG studies have shown that compact groups tend to have more AGN activity than SF activity[84]. HCG
16 is composed of 5 galaxies with one classified as Seyfert, two as LINERs and three are starbursting[147].
HCG 31 has five galaxies with recent star formation activity[I48], 57]. HCG 77, 92, 93 and 96 all have
Seyferts[84].

SCGs are spectrally classified as SF more often than the HCGs and the SF is concentrated in the nuclear
regions[90]. All SF galaxies have AGN activity and pure AGN galaxies are generally the more luminous
galaxies in the group[90]. One of the most studied compact groups, Stephan’s Quintet, has evidence for a
starburst in the intragroup medium [I49]. Another study found a compact group at high redshift falling into

a larger cluster with higher than expected Ha emission, implying enhanced SF activity[I50].

2.3.3: PYSPECKIT

I fit emission lines using the pyspeckit Python package[I5I]. This package allows both interactive and
automated fitting of emission and absorption lines. I fit all emission lines three times higher than the rms

noise in the wavelength region 4789 —4839A. A list of the lines are in the table below.
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Element | Wavelength(A) Measures
H) 4102.92 SF-F stars,reddening
H~ 4341.69 SF-A stars,reddening
[OIII] 4364.44 AGN,O abundance, T
Hp 4862.69 SF-B stars,reddening
[OIII] 4960.30 AGN,O abundance, T
[OII1I] 5008.24 AGN,O abundance, T
[O1) 5577.0 AGN,0O abundance
[NII] 5756.24 AGN,T
[OI] 6300.0 AGN,O abundance
NI 6549.84 AGN,T
Ha 6564.61 SF-0O stars,reddening
[NII] 6585.23 AGN,T
[SI1] 6718.32 AGN,n,
[SII] 6732.71 AGN,n,

Table 2.4: Emission lines potentially present in my spectra.

2.4: CINDERS Experiment Design

2.4.1:  Observing set-up

Due to fringing on the CCD, I could not trust line measurements at A > 720nm on the Goodman
Spectrograph. A 400 lines/mm grating was fabricated by the Goodman Lab at UNC to take advantage of
the CCD’s exceptional blue sensitivity. This grating covers the wavelength range 320-725nm and avoids the
fringing region of the CCD. Because the CCD is 4k x 4k and there are 244 fibers total, I allowed 14 pixels per
fiber along the spatial axis and each spectrum to span the majority of the 4000 pixels along the wavelength

axis. Below is a table of possible observation set-ups.

33



Table 2.5: Observation set-up

Telescope SOAR 4.1m
Instrument Goodman
FOV 9 x 4.5
spatial sampling 0.77”
bundle diameter 7.27
min bundle separation 100”

grating 400 lines/mm VPH

spectral sampling 58 A/mm (~ 52 km/s)

spectral resolution 4.2A @ 3650A and 8.3A @ 7250A

instrument dispersion ~ 150 km/s

3650 - 7200 A

wavelength coverage

Below are plots of the diagnostics lines of interest versus redshift. The black horizontal lines enclose our
wavelength range of interest. Many of these lines are necessary for absorption line indices measurements (i.e.

LICK/IDS or ROSE systems) and emission line diagnostics.
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Figure 2.11: Diagnostic Lines

2.4.2:  Sensitivity Analysis/Simulations

I downloaded many template spectra from the MILES Tune SSP Web Interface [I16]. I assumed that

these spectra have infinite S/N and re-sampled them to the SOAR spectral resolution, then applied atmo-
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spheric corrections, SOAR+GS transmission functions and reddening. The MILES template spectra span
the wavelength range 3540.5 — 7409.6A and have a spectral dispersion of O.9A/pixel with FWHM=2.5A.
The downloaded spectra assumed a Kroupa revised IMF with a slope of 1.30 for a range of metallicities and
ages, and have a spectral dispersion of 0.87 A /pixel and instrument dispersion of 150 km/s. The spectra are
reported in units of F,\L(TDIA_IM(SI.

For the signal-to-noise (S/N) predictions, I needed to choose which SSP best describes the flux through
the fibers from a particular area of a galaxy in our sample. Vazdekis et al. 2010[IT6] have plotted the
B-V color of their SSPs against their age for different metallicities. Below is a plot similar to Figure 19 in

Vazdekis et al. 2010 with g-r substituted for B-V.
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Figure 2.12: Color vs Age for SSPs with different metallicities.

I downloaded By (A= 3950 — 54004, TTTa-J + GG395) and SERC-R. (A = 5900 — 69004, TTTa-F + OG590)
filter images from the COSMOS UKST plate survey[22]. I measured the intensity within circular apertures of
the same size as our fiber diameters. I measured the surface brightness per arcsecond? along the semi-major
and semi-minor axis in two dithered positions each offset 2 arcseconds from the center of the galaxy. The
FITS files report density within each pixel because these are photographic scans of plates. I used a look
up table to determine the measured transmission in each pixel contained in each fiber (N. Hambly, private

L 0.3 . C o . . . -
communication). I = (%) converted this measured transmission into an intensity that is multiplied by 30
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photons/darkened grain [I52]. I multiplied the intensity by the ratio of the collecting areas of the SOAR
telescope (410 cm) and the UKST (124 cm), the ratio of the B; and g (AX = 1379A) bandpass or the R and
r (AX = 1382A) bandpass, the ratio of the SOAR (0.15 arcsec/pixel) and UKST (0.67 arcsec/pixel) pixel
areas and divided by the exposure time listed in the header. The g-r color within each fiber is represented as
a ratio of the g and r fluxes and used to choose the SSP spectrum that best represents the stellar population.
The g and r band fluxes for each SSP model were calculated from the template spectra after being multiplied
by their respective filter band passes. After choosing a template spectrum, I calibrated the flux in the g and
r filters to match the flux in each fiber. The corresponding regions of the spectrum were multiplied by the g
and r filter band passes to obtain a total flux for each filter. This flux was scaled to the flux within a fiber
by a constant determined from the ratio of the fiber flux and the template spectrum flux in each filter. This
converted the template spectrum flux from LélM@_ A7 to counts/s. The scale factor was applied to the
spectrum after it was reddened (e_((x?ﬁf (A))) to account for Galactic extinction. A4 and A, were obtained
from NED for each group field and I used the R=3.1 curve to estimate f(\).

Finally, I applied an atmospheric extinction to the spectra, using the Gemini telescope atmospheric
extinction curves given on their website and in Table [2.6] below. I converted these magnitudes into fluxes for
an average airmass of 1.5 and applied them to the template spectra. I interpolated to determine the values

for the atmospheric extinction at each re-sampled wavelengths.
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% Transmis=sian

wavelength (nm) | extinction (mag/airmass)
310 1.37
320 0.82
340 0.51
360 0.37
380 0.30
400 0.25
450 0.17
500 0.13
550 0.12
600 0.11
650 0.11
700 0.10
800 0.07
900 0.05

Table 2.6: Atmospheric Extinction over Mauna Kea
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Figure 2.13: SOAR throughput.

37



T applied the SOAR telescope+Goodman Spectrograph+detector+grating transmission function. I planned
to measure the throughput of the SOAR telescope+new collimator+bundles+grating+GS when CINDERS
was on the telescope, but for this calculation I estimated that the bundles had 50% throughput so the
transmission function reduced by half. The predicted resolution of the spectra was 0.87A /pixel and the
expected FWHM was 4.2A at the extreme blue end and 8.3A at the extreme red. I downloaded spectra from
the MILES database with a constant velocity dispersion of 150 km/s, which corresponds to the change in
FWHM I expected.

I only measured the flux along the semi-major and semi-minor axis for my initial analysis. Because I
am focusing on the galaxy centers, the S/N should be adequate for the analysis. The final step before any
S/N analysis was to add Poisson noise to the spectrum to simulate the CCD noise during an observation.
I needed to know the amount of time that I will be observing the galaxy because signal variance goes as
Vfluz xtime. 1 added the \/fluz *time to the total flux to account for Poisson variation. I calculated the

exposure time necessary to reach a S/N of 3 in the faintest fiber of the faintest galaxy in each field using

S total flux in central bandpass * time

N \/ total flux in central bandpass*time + sky flux* Ay s * Ay, * bandpass * time + dark * time + readnoise?
(2.22)

Acyy is the effective area of the telescope in em?, A fib is the area of the fiber in arcsec?, bandpass is the
width of the central bandpass for each indice and the sky flux is the average sky flux for either the g or r filter
within that bandpass obtained from Gemini South sky brightness measurements. All fluxes are in counts/s.
I chose the faintest member of each group based on the Iovino, 2002 classifications[23]. The faintest fiber
was determined from the faintest total spectral flux predicted from the described color matching.

I calculated the S/N for some of the various line indices I can measure, listed below, along with their
central band passes. If these indices were observable within the 2 hour observing time, I could easily attain
much higher S/N for any emission lines because emission lines are generally much brighter than absorption

lines.
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Indice Bandpass

Mgs 5154.125-5196.625

Hp 4847.875-4876.625

Feb270 | 5245.650-5285.650

Feb335 | 5312.125-5352.125

Héz 4083.500-4122.250

Hya | 4319.750-4363.500

2.4.3: Target Selection

My dissertation focuses on groups where all galaxy members can be observed by CINDERS. The above
analysis returned 45 groups containing 189 galaxies. Images of the groups from lovino, 2002 are in the

following table[23]. The black bar represents one arcsecond. I discuss their properties below.
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Table 2.7: Images of SCGs where all group members are observable.

Below is a plot of the environmental parameters of the groups where all members are observable with

CINDERS. The 45 SCGs appear to span the same range of parameters as the total SCG catalog. Each

parameter is described below.
® Myrightest- Magnitude of the brightest group member.
o [i4- Total magnitude of the groups members averaged over the circle defining the group.

o Ajigr- Difference between the mean surface brightness within the group and the mean surface brightness

within the isolation ring.
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e Amag;soi- Magnitude interval between the brightest group member and the brightest galaxy in the

isolation ring.
o Amagcomp- Magnitude interval between brightest and faintest group member.

® Rj.o = 3* Ry~ Definition of isolation ring.
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Figure 2.14: Environmental parameters.

I also plot luminosities and absolute magnitudes for the 10 brightest groups with redshift measurements

along with their colors.
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Figure 2.15: Group luminosity and color parameters.

In Appendix[B] I list the times when all group members are observable with my set-up and the total hours
and exposures necessary to complete observations assuming two to three dithers and 20 minutes of overhead.
I take the maximum exposure time for each dither. If the results of the S/N calculations require each dithered
observation to be carried out under different brightness conditions, I use the less bright condition for the
observations. Bolded times are the ones I planned to use.

From these 45 groups, I chose to focus on 10 of the brightest groups to test the capabilities of CINDERS

and increase the likelihood of finding previously collected data. Those 10 groups are listed in the table below.
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Field moon RA DEC hours
SCG2114-2301ACF  dark 21:17:41.9  -22:47:12.7 2.7
SCG2114-2301EDB  dark 21:17:49.1  -22:49:20.1 2.7
SCG2128-4614CAB  dark 21:31:56.2  -46:02:5.16 4
SCG2128-4614CED  dark 21:31:54.1  -46:01:53.5 4
SCG2316-2259DAC dark 23:19:8.48  -22:43:7.44 3.4

SCG2316-2259BA dark 23:19:9.10  -22:40:59.3 2.3
SCG0007-4642DAB dark 00:10:26.7  -46:25:52.1 4
SCG0007-4642DCB dark 00:10:29.2 -46:25:45.1 4
SCG0030-2553DAB grey 00:32:41.1 -25:36:42.1  3.7,2.4
SCG0030-2553DCB  grey 00:32:41.5  -25:36:50.1 3.7, 2.4

SCG0031-2143AB dark 00:34:13.8  -21:27:14.7 3.5
SCG0031-2143CD dark 00:34:16.0  -21:27:0.79 2.6

SCGO0031-2143ED dark 00:34:12.4  -21:27:22.3 3.5
SCG0301-5041ACB  dark 03:03:16.3  -50:29:46.6 2.2
SCG0301-5041CD dark  03:03:17.0  -50:29:36.8 3
SCG0316-5433ABC dark 03:17:43.1 -54:22:42.3 3.8
SCG0316-5433ADC dark 03:17:42.7  -54:22:54.0 3.8
SCG0537-2925DAB  grey  05:39:22.5  -29:23:38.5 3.4, 2.2
SCG0537-2925DCB  grey 05:39:22.7  -29:23:52.5 3.4, 2.2
SCG0540-2610CBA grey 05:42:10.1 -26:8:21.6 3.2, 2.1
SCG0540-2610CDA grey 05:42:10.2 -26:8:48.9 14,1

MOS Procedure
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Following tests on the telescope to be described, it became clear that CINDERS would not be debugged
adequately for this dissertation. Therefore science observations were conducted using conventional but novel
for SOAR multi-slits. Multi-object spectroscopy capabilities were added to the Goodman Spectrograph in
the fall of 2013. The user has the ability to control the placement, size and orientation of slits for many
objects within a 3 x 5 arcminute field. My observing set-up remained mostly unchanged. I used the same
grating, only the slit width was 1” to allow more light to enter the camera, and I binned along the slit spatial
axis in 1”7, 3”, 5”7 and 10” bins to recover some spatial information. With a larger hence more sensitive slit

aperture, it was possible to observe more groups with this set-up. Because the FOV is smaller with the



MOS, some of my target fields changed.
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3: Instrumentation Results
My dissertation has two components, a science goal and an instrumentation project. I outlined my science
goals in Chapter 2l In this chapter, I focus on the instrumentation projects I worked on to answer my science

questions.

3.1: CINDERS

We attempted to add a robotic fiber feed to the Goodman Spectrograph on the SOAR telescope called
CINDERS. This novel instrument is capable of positioning up to four fiber optic bundles each containing 61
fibers within a 9’ x 5 FOV. The bundles can be placed within 100” of each other and span a total diameter
of 77 with 0.77” individual fiber diameters. The user interface to position the bundles was developed in
Python. Additionally, a visualization aid was designed using Python so the user could see in real time where
the bundles were positioned on sky. Calibration and reduction of spectra obtained from CINDERS used a
script written in Python and Pyraf. CINDERS could not remain on the telescope due to significant hardware

issues but I include the process here for completeness.

3.1.1: CINDERS Design

The concept of adding fiber optic cables to spectrographs is not new, but assembling them into an IFU is.
SAMI, installed on the 4-meter Anglo-Australian Telescope at Siding Spring Observatory currently uses 13
fiber optic bundles [100]. The bundles are positioned before each observation using a plug-plate. This means
that plates must be designed and cut before each run. To bypass the lengthy process of designing and cutting
new plates every time a user needs to observe targets, these bundles could be placed on robotic positioners
that allow the user to position the bundles in real time during observations. This was the motivation for
CINDERS and will be implemented in the HECTOR instrument under design at the AAO.

Using SolidWorks, the majority of the parts can be designed and added to the SolidWorks rendering of
the Goodman Spectrograph. The Goodman Spectrograph utilizes volume-phase holographic gratings [I53]
with 0.15” /pizel scaling over a wavelength range of 320 — 850nm. The spectroscopic FOV of the Goodman
is 3’ x 5’ and the imagining FOV is 7.2’ in diameter. Currently, light from the 4-meter telescope is routed

into the f/16 collimator where it is collimated and passed through a grating, filter wheel and finally the
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camera. The fiber bundles for CINDERS would sit at the end of the collimator farthest from the camera.
The output end of the fibers route above the collimator and drop down into our own f/5 collimator, which
feeds light through the grating, filter wheel and camera as before. The custom f/5 collimator is necessary

because optical fibers must be fed by a fast telescope beam.

Figure 3.1: CINDERS positioning on the Goodman apparatus. 1) shows the CINDERS probes placed in
front of the slit mask assembly. The region to the right off the image is where the light input from the
primary telescope mirror is fed. 2) shows our f/5 collimator attached to the end of the current Goodman
collimator. The protruding cylinder is where the output ends of the bundles are placed. Our collimator is
fed through the grating, blue filter wheel and on into the camera, which is located to the left of the image.

The bundles have three dimensional motion via two types of actuators. The x-axis motion is controlled
by NEMA 11 Quicksilver Controls motors that power a linear ball-screw with < 0.15” on sky errors. There
are four rails mounted parallel to one another with 193mm range of motion. The IFU support and rail
positioner were designed and fabricated in-house. The y and z axis motions are handled by Firgelli actuator
models L12 and PQ12 respectively. The y motors have a 10cm range of motion and the z motors have a

2cm range of motion.
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/ z motion

Figure 3.2: Left image: SolidWorks rendering of the x, y and z motion apparatus. The ANDOR camera and
its field mirror are shown behind the rail positioner. Right image: Zoomed in on the z motion probe.

Mounted on top of the z-axis actuators is a probe, designed in-house, that attaches to each bundle.
Because the bundle faces point towards the floor of the Goodman spectrograph, within each probe sits a
6.25mm right angle mirror to redirect the light from the primary telescope mirror up into each bundle.
Before passing through the bundle the light hits a 6.5mm Edmund Optic achromatic doublet which reduces
the focal ratio of the light from f/16.63 to f/5.

The other end of the bundles is unfused and the fibers are arranged linearly in a glass block. After the
4-m long bundles are routed up over the support they hang down into a slit block holds each glass block
linearly with the short sides adjacent to one another. This slit block, designed in-house, sits on an opening in
our f/5 collimator to be switched with the current Goodman collimator. Inside our collimator, a fold mirror
redirects the light from the bundles into the collimator path where it passes through a super apochromat
flouride triplet from William Optics. After the light is collimated, it passes through the grating, filter wheel

and camera of the Goodman Spectrograph.
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Figure 3.3: SolidWorks rendering of the slit block attached to the collimator.

Because the collimator has to be replaced, the imaging mode of the Goodman Spectrograph is lost when
CINDERS is in use. Behind the IFU support, we attach an Andor EM-CCD camera which points down
towards an Edmund Optics 0.25x telecentric lens fed by a right angle Aluminum enhanced coated mirror.
The mirror peers between the probes and accesses a 1.7/ x 1.77 FOV which is used to help position each

probe. The camera and mirror are shown in the SolidWorks rendering of the x, y and z motion apparatus.

3.1.2: CINDERS Construction

We include here images of the completed parts described in the previous section.
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Figure 3.4: Left image: Front view of CINDERS. Right image: Front view of probes with prisms and lenses
installed.

Figure 3.5: Side view of CINDERS to show ANDOR camera and field mirror.
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Figure 3.6: Left image: Slit block assemble that attaches to collimator. Right image: Showing glass block
alignment.

Once parts were fabricated and assembled, we had to protect the exposed fibers at the slit block end of
the bundles. We purchased silk fabric into which I sewed four parallel sheaths that each bundle could be
carefully passed through. Once the fibers were safely covered, we passed the entire fabric protection sheath
through a flexible, incompressible metal tube. The ends of each tube were dipped in black Plasti Dip™ to

cover sharp edges.

Figure 3.7: Left image: Top end of silk sheath with bundles. Right image: Sheath and bundles inside
incompressible tube.

Once the bundles were protected, we epoxied the ends attached to the glass blocks to increase their stregth.
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Figure 3.8: Left image: Glass block ends of fibers epoxied to increase strength and help prevent breakage.
Right image: Bundle support for routing bundle and incompressible tube over gantry and collimator.

We developed a user interface to control the probes and ANDOR camera. We used Python software
that can move the probes in x, y and z and control the filter wheel and ANDOR camera. The upper left of
the GUI controls the exposure time and filter of the ANDOR camera. The resulting images are shown in
the large box at the bottom of the GUI. The probe motions are controlled in the white text box above the
position grid. The position grid tells you the probe’s current positions and the grid to the right tells you if a
probe is at its x-limit. I also developed a user interface for visualizing the positioning of probes on sky. This
program shows a box that represents the FOV of CINDERS overlaid onto a DSS image which takes into
account the rotation of the Goodman Spectrograph. Small 1.7/ x 1.7/ boxes are also drawn on the center
field and over targets to represent the ANDOR FOV. The program takes the x, y and z distances moved by

the probes and draws circles representing the bundle diameters at the correct on-sky positions.
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Figure 3.9: Left image: Image of probe control GUI. Right image: Output of CINDERS Field Viewer.

3.1.3: CINDERS Commissioning

Two commissioning runs were completed during October and November of 2013. During the October

engineering run, our goals were to
1. Set-up CINDERS in the SOAR lab for testing and assembly
2. Attach the metal fiber feed to the slit end of the incompressible tube
3. Put apoxied fiber blocks into manufactured slit block
4. Attach ANDOR camera and tension mount to IFU gantry
5. Attach fiber support block to gantry
6. Make sure probe and camera control software work on computer at SOAR
7. Test positional accuracy of x, y and z motors

8. Test focus of fibers on CCD

All of this had to be done before my observing runs on the 24th and 25th of October. I completed all tasks

except the last two. When CINDERS was put on Goodman, one of the probes fell off its y-axis motor. The

52



tension screws were worn and untrustworthy. So we removed CINDERS from Goodman and figured out a
new way to hold probes on motors. The new pieces could not be fabricated and installed by my observing
runs so I gave up that time. Eduardo Serrano, the head engineer at SOAR, fabricated and installed the

pieces in the following weeks. I returned to SOAR in November to continue commissioning.

Figure 3.10: Solid Works rendering of attachment to reliably hold probe onto y-motion assembly.

During the November engineering run, we compiled a list of tasks to complete before my November 29th
and December 8, 9 observing runs. Now that the probes were reliably attached we could pin down the
focus on the CCD camera and better understand probe motions. While testing the accuracy of the motor
positioning, it became apparent that the motions were not reliable. In many instances, the y and z motors
would not return to their starting positions at first command but would register that they had moved in
the control GUI. The x motions had additional movement after hitting their limit switches that needed
to be quantified. The tools necessary to do this were not available at SOAR. After placing CINDERS on
Goodman and making sure the motor control worked, we worked on pinning down the focus. This required
adjusting the distance between the collimator lens at the filter wheel end and the height of the fibers above
the collimator. The best focus achieved, unfortunately, required the fibers at the upper and lower edges of
the image to be out of focus due to a slight field curvature in the optics used in the collimator.

Despite all this, I attempted to observe on November 29. I discovered that the ANDOR camera field was
not aligned with the SOAR field. This meant that the camera had to be raised by placing pieces of cork
board under the camera. The screw that attached the camera to the gantry was no longer aligned so the
camera had to be clamped in place. This meant we could not rotate the spectrograph so had to observe
stars for the night. When looking at a standard, I realized that the probes were not facing straight down

the light path so were not uniformly illuminated. The only fix was to take CINDERS off the spectrograph,
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again, and use lasers and mirrors to properly align them. The tools needed to do this were not available
at SOAR. T also did not have a way to reliably align the probes onto their targets, because I did not know
where the center of the prism was in relation to the circuit board on the back. To fix this, I determined the

size of the probe entrance and painted a square on the circuit board with white out.

Figure 3.11: Probe entrance indicated on back of circuit board with white out.

I made one final attempt to observe remotely from UNC-Chapel Hill on December 8 and 9, 2013. T spent
both nights trying to align the probes on the brightest galaxies in group SCG0540-2610. The mis-alignment
of the probes made it difficult to tell if I was actually on the centers of my targets. There was considerable
glint in the spectra, perhaps due to the collimator cap not being on, before the grating. The ANDOR
camera was also off center by 10” East and 24” North. The engineers had raised the camera by 11 inches
and attached it to the gantry but this was apparently not enough.

Initial throughput measurements for the observed standard star are inadequate to do science. A plot of the
throughput for bundle 3 is shown. Clearly, the probes are not aligned to the light path. The reconstructed
image shows that we are pointed on the star, but the throughput estimates are significantly lower than

expected.
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Figure 3.12: Left image: Throughtput for Bundle 3 on standard star HR3454. Right image: Reconstructed
image of Bundle 3.

3.1.4: CINDERS Status

The CINDERS gantry and probes could not remain on the Goodman spectrograph indefinitely. The
gantry can be lifted so the probes are out of the way of the slit mask assembly and guide probe but the
height of the bundles prevented this from happening. The alignment of the probes needs to be adjusted by
attaching CINDERS to an optics bench and using a system of mirrors and lasers. The unreliability of the
probe positioning made the instrument impossible to use. I suggest buying more reliable y and z motion
actuators. The movement of the x positioning at the limit switches needs to be accurately quantified as well.

Because we cannot see through the probes, their positions must be reliably known.

3.2: MOS

Because CINDERS was unusable in the time necessary for me to complete my dissertation, I aided in

the commissioning of the multi-object capabilities that were being added to the Goodman Spectrograph.

3.2.1: MOS Design and Construction

The Goodman Spectrograph is the most used instrument on SOAR. The Goodman Spectrograph utilizes

volume-phase holographic gratings [I53] with 0.15”/pizel scaling over a wavelength range of 320 — 850nm.
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The spectroscopic FOV of the Goodman is 3’ x 5 and the imagining FOV is 7.2’ in diameter. Currently,
light from the 4-meter telescope is routed through a slit mask assembly into the f/16 collimator where it is
collimated and passed through a grating, filter wheel and finally the camera. The slit mask assembly houses
numerous slit masks which can be installed the same day as observations.

Masks are designed by the observer using software developed at UNC-Chapel Hill. The observer can
specify slit position and position angle of the mask. The observer must also designate three alignment stars
to align the mask before taking an observation. Masks are submitted to SOAR at least one month prior to

the observing run.
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Figure 3.13: Screenshot of MOS Slit Designer tool.

The masks are installed into the slit mask assembly the day before your observations.

3.2.2:  MOS Commissioning and Status

During February and March 2014, we used on sky time to test the alignment procedure of the slit masks.
I chose some HCG galaxies to observe. The alignment procedure from positioning the slit mask to taking
the first spectrum takes 15-30 minutes. Once the mask is in place, no further alignment is needed, even if
switching between comparison lamps and the field during your observations.

The observer must first take images of the mask and the field for which the mask was designed. After
opening the Multislit Alignment Tool on the Goodman LabView interface, the observer locates the alignment

stars in the field image. The observer must then click on the mask tab and locate the alignment boxes on
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the mask image. Once these are input, the alignment tool calculates the x, y and rotation offset necessary
to align mask with field. Generally, one does this once, then a subsequent xy offset is usually necessary and

can be done by hand.
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Figure 3.14: Screenshot of MOS Alignment tool.

After testing my observing strategy which involved switching between the field and comparison lamps
after each 15 minute exposure, we deemed MOS commissioning a success and I proceeded to obtain data on

the SCGs.
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4: Data and Results

4.1: Data

I obtained data from the Goodman Spectrograph on the SOAR telescope during six nights over 2014-
2015. 12 full groups and two partial groups were observed. Four groups could not be processed for this
dissertation due to insufficient calibration data. In the following analysis, I focused on eight full groups and
two partial groups. I used the 400 lines/mm grating, which provides spectral coverage from 3600 — 7200A.
I binned both the spectral and spatial axes by two, which resulted in a spectral resolution of 1.98A /pixel.
Dome flats were taken for each mask with the dome lamp at 100% as well as zero second exposures (bias)
with the shutter closed the afternoon before observations. I used the Atmospheric Dispersion Corrector
(ADC) for all of my observations. The ADC corrects the aberrations caused by shorter wavelengths of light
being refracted more than longer wavelengths by the atmosphere. Exposure times ranged from 30 minutes

to 1.5 hours depending on the magnitude of the targets and the phase of the Moon.
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Group Galaxy | Magnitude Total Date Group Galaxy | Magnitude Total Date
(Bj) exposure Observed (Bj) exposure Observed
(s) (s)
SCGO07 A 14.897 1800 Aug 2014 SCG68 A 10.026 5400 Nov 2015
B 10.836 1800 Aug 2014 B 15.530 5400 Nov 2015
SCGO08 A 14.107 1800 Aug 2014 C 11.840 5400 Nov 2015
B 14.382 1800 Aug 2014 D 15.818 5400 Nov 2015
C 10.484 1800 Aug 2014 E 16.429 5400 Nov 2015
D 10.985 1800 Aug 2014 F 16.458 5400 Nov 2015
SCGT2 A 14.219 1800 Aug 2014 SCG69 A 14.590 5400 Jan 2015
B 10.586 1800 Aug 2014 B 16.525 5400 Jan 2015
C 10.528 1800 Aug 2014 C 16.561 5400 Jan 2015
D 11.211 1800 Aug 2014 D 17.436 5400 Jan 2015
SCG13 A 14.729 5400 Aug 2014 SCG82 A 9.969 3600 Jul 2015
B 14.616 5400 Aug 2014 B 15.304 3600 Jul 2015
B 14.616 1800 Aug 2014 (@] 16.939 5400 Jul 2015
C 15.363 1800 Aug 2014 D 17.048 5400 Jul 2015
D 12.821 1800 Aug 2014 SCG83 A 9.850 1800 Aug 2014
SCG60 A 8.804 3600 Nov 2014* B 10.637 2700 Aug 2014
B 9.255 3600 Nov 2014* (@] 16.332 2700 Aug 2014
C 9.221 3600 Nov 2014* C 16.332 3600 Aug 2014
D 16.373 3600 Nov 2014* D 15.264 1800 Aug 2014
SCG61 A 9.414 3600 Nov 2014* E 16.464 3600 Aug 2014
B 10.031 3600 Nov 2014* SCG88 A 10.119 1800 Aug 2014
C 11.113 5400 Nov 2014* B 12.252 1800 Aug 2014
D 15.176 5400 Nov 2014* C 16.258 5400 Aug 2014
SCG62 A 9.772 1800 Dec 2015 D 16.487 5400 Aug 2014
B 11.280 5400 Dec 2015 SCG106 A 15.189 1800 Aug 2014
D 16.238 5400 Dec 2015 B 15.923 1800 Aug 2014
SCG65 A 9.645 4500 Jan 2015 C 16.536 3600 Aug 2014
B 9.474 5400 Jan 2015* D 16.655 3600 Aug 2014
C 10.267 5400 Jan 2015
D 11.389 4500 Jan 2015

Table 4.1: SCG observations. Observations with * were not used in this analysis.

Individual exposures were 15 minutes so that HgAr comparisons were stable. Comparison lamp spectra
were taken between each 15 minute exposure. I also took spectrophotometric standards each night for flux

calibration.
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Standard Date Observed

CD34241 Aug 2014

HR1996 | Nov 2014,Dec 2015

LTT3218 Jan 2015
LTT9239 Jul 2015
LTT1788 Nov 2015

Table 4.2: Table of spectrophotometric standard observations.

4.2: Reduction and Processing

Data reduction and processing followed the procedure outlined below.

1. Note which regions of my images I do not want to include in the final spectrum and determine where

each slit is located on my image using the IMPLOT task in Pyraf.
2. Note which slit is the sky slit, if one is present.
3. Bias subtraction using CCDPROC
4. Cosmic Ray removal using a Python version of Pieter van Dokkum’s L.A.Cosmic algorithm[I54].
5. Separate each slit from the image for all the science, flat and comparison files.

6. If the galaxies observed cover the entire slit so that there is no pure sky regions, process the sky slit

first.

(a) Combine dome flats using FLATCOMBINE (average)

(b) Normalize combined dome flat using TWODSPEC.LONGSLIT.RESPONSE
(c) Divide from sky slit images and comparison images using CCDPROC

(d) Combine consecutive comparison files

(e) Find wavelength solution using TWODSPEC.LONGSLIT.IDENTIFY, REIDENTIFY, FITCO-
ORDS & TRANSFORM

(f) Combine different sky slit images into one file using IMCOMBINE (average)

7. If there is a standard star observed, process it and determine the flux calibration.
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(a) Combine dome flats using FLATCOMBINE (average)

(b) Normalize combined dome flat using TWODSPEC.LONGSLIT.RESPONSE
(c¢) Divide from standard images and comparison images using CCDPROC

(d) Combine consecutive comparison files

(e) Find wavelength solution using TWODSPEC.LONGSLIT.IDENTIFY, REIDENTIFY, FITCO-
ORDS & TRANSFORM

(f) Subtract the sky from the standard spectra using TWODSPEC.LONGSLIT.BACKGROUND
(g) Extract the standard spectra TWODSPEC.APEXTRACT.APALL
(h) If there are multiple images of the standard, average them together.

(i) Calculate extinction and derive sensitivity function using ONEDSPEC.STANDARD & SENS-
FUNC

8. Now for each slit with a galaxy, I follow this process

(a) Combine dome flats using FLATCOMBINE (average)

(b) Normalize combined dome flat using TWODSPEC.LONGSLIT.RESPONSE
(¢) Divide from galaxy images and comparison images using CCDPROC

(d) Combine consecutive comparison files

(e) Determine the FWHM of the comparison lamp lines using SPLOT and fitting Gaussians to the
lines and averaging. Do this for central row in all comparison files for a single galaxy. There will

most likely be one comparison file for each separate 15 minute exposure.

(f) Find wavelength solution using TWODSPEC.LONGSLIT.IDENTIFY, REIDENTIFY, FITCO-
ORDS & TRANSFORM

(g) Perform sky subtraction:

i. If sky is present in the slit, use TWODSPEC.LONGSLIT.BACKGROUND

ii. If sky is not present in slit, I take the sky slit and divide it into two halves which I place above
and below the galaxy spectrum. This allows me to use TWODSPEC.LONGSLIT.BACKGROUND
to fit the background.

(h) I create a new fits file with just the galaxy spectrum, excluding any part of the slit that just has

sky.
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(i) Now it is time to bin up the spectra along the slit axis in 1”7, 3”7, 5” and 10” bins and add up all
our observations:
i. Determine where the brightest part of the galaxy is (center)
ii. Create the first bin centered here
iii. If there is room above or below create subsequent bins until we reach the edge of the galaxy
on either side of the central bin
iv. Because there is more than one observation, for each exposure the new bins are added to the
previously created bins until we loop through all the exposures.
v. Resample each bin for each image 100 times and determine the standard deviation in each

pixel. Use these to determine the error in each pixel for the summed spectra.
vi. Save the first 25 sampled spectra to feed into STARLIGHT to get errors later on.
(j) Extract the spectrum using TWODSPEC.APEXTRACT.APALL
(k) Flux calibrate each summed bin and extracted galaxy spectra:
i. If there is a standard star observation, flux calibrate using ONEDSPEC.CALIBRATE on
each bin
ii. If there is not a standard star observation, flux calibrate using a fiducial sensitivity func-
tion derived from the Goodman Throughput, CTIO extinction curve, the energy at a given
wavelength and the area of SOAR.
iii. Do this same process on the errors.
(1) Use NED to get the Ay value for the galaxy.

(m) Deredden each summed bin using this value and ONEDSPEC.DEREDDEN. Apply to errors also.

(n) Redshift correct each summed bin and extracted spectrum by identifying the Calcium H&K lines
and passing the determined redshift to ONEDSPEC.DOPCOR for each bin. Also correct errors.

(0) Resample each summed bin and extracted spectrum to 1A for STARLIGHT using ONEDSPEC.DISPCOR.

Also resample errors.

(p) Smooth each MILES template from 2.5A to the observed resolution using Python Gaussian filters.

Also smooth errors.

(q) Flag emission lines and regions where the spectrum is < 0 in each summed bin so STARLIGHT

ignores them.

(r) Create the text files for each summed bin and extracted spectrum to feed into STARLIGHT. If

more than 1/3 of the spectrum is flagged, do not create an text file.
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(s) Fit each summed bin and extracted spectrum with STARLIGHT. Then fit the Gaussian sampled

files to get errors.

(t) When finished, I check the residuals of each fit and update the redshift correction if necessary
using ONEDSPEC.DOPCOR.

(u) Once I have all the spectra fit, I feed each spectrum to PYSPECKIT to fit the emission lines.

i. Subtract the model spectrum from the observed spectrum to create an emission spectrum.

ii. Errors for emission spectrum are determined via propagation of error

o =yJo3+02 (4.1)

iii. Fit the lines listed in Table if the flux in the region +10A around the line center sums to

5 times the rms noise in the wavelength region 4730 — 4780A.

iv. For errors, we create 25 Gaussian sampled emission spectra and fit each of those separately.

The standard deviation of the fits is the error on the final emission spectrum.

4.3: Analysis

I seek the effect that group membership has on the stellar populations and activity of galaxies in SCGs.
To study the stellar populations, I took the weighted average of the ages and metallicities reported by
STARLIGHT as outlined in Chapter 2.2.3] For each age and metallicity bin I also took the weighted average
of the corresponding metallicities and ages. This provided the average metallicity and average age of the
young, intermediate and old populations. I plotted the weighted average of the age or metallicity of the
population considered versus its calculated average in metallicity or age respectively. The averages for the
ages and metallicities were weighted by the fraction of light and mass contributed to the model by each
template at the flux normalization wavelength described in Equations [14()]. Because these are not
actual light and mass fractions, contributions are not required to sum to 100%. Light weighted averages are
dominated by the younger populations and mass weighted averages are dominated by the older populations.
When analyzing results, I took this into consideration. For example, the metallicities of older populations
were taken from the mass weighted averages in preference to the light weighted averages.

I only considered measurements made on spectra with S/N > 20 in the blue region (A < 5400A) of the
observed spectrum. Other authors have used S/N ratios smaller than this (S/N > 5[I35]), but because I am
binning along the slit, the bins very quickly reach regions dominated by noise. In those cases, the summed

flux is averaged, so the signal is quite low. S/N > 20 guarantees adequate STARLIGHT fits and that I am
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analyzing actual signal.
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Figure 4.1: The top two plots are of the x? values for our fits as a function of S/N in the blue and red regions

of the observed spectrum. The bottom two plots show the percent deviation of the fitted model IO%S/L\I as

a function of S/N. The percent deviations are level starting at around a S/N of 15.

From the SP analysis, I can determine when the most recent episode of SF occurred and the metallicity

of the gas used to create those stars. Stars with low-metallicity imply that the galaxy is fed unprocessed,

cold gas from the intergalactic medium. Mid and high-metallicity stars indicate that the stars were created

using preprocessed gas. Young stars mean that the last episode of SF occurred < 0.1 Gyrs ago, intermediate

stars mean that the last episode occurred between 0.1 —4 Gyrs ago and, old stars >4 Gyrs ago. I provide a

flow chart outlining the conclusions I can draw from these plots.
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Galaxy in group
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5F < 0.1 Gyrs SF:0.1- 4 Gyrs SF: > 4 Gyrs still has outside supply multiple SF episodes

To study activity, I created BPT diagrams as discussed in Chapter 2.3.1] Emission lines were measured
if flux in a £10A window surrounding the line center summed to 5 times the rms noise in the wavelength

region 4730 —4780A. An example of an emission spectrum from the central 3” region of a galaxy in SCGO08

is provided below.

Figure 4.2: Flowchart for determining SP properties.
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Figure 4.3: Emission spectrum and fit for SCG08 Galaxy A. The black line is the observation and the red
line is the fit. The bottom plot shows the residuals of the fit, note vertical scale change.
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My analysis focused on each group individually, organized by bin size, and noted the difference between
galaxies that are actual members of the group, as defined by our group criteria, and those that are not.
A galaxy is a member if the difference between its redshift and the redshifts of other possible members is
< 500 km/s. This number was chosen because it guarantees that the galaxies are close enough to have
a gravitational influence on one another. On each plot, the values are represented by the group member
designation (A, B, C, etc.) and are a larger font size if the galaxy is in the group. To study any radial effects
on the parameters, I divided each galaxy into thirds based on the semi-major axis length and color coded
each point based on the location of the spectrum along the spatial axis as shown in Figure [23]. Errors
are indicated by translucent ellipses under each member’s name. To reduce clutter on plots, I ignored values
with errors in age or emission greater than 1.5 dex because those errors spanned the age and emission ranges

and did not provide useful information.

B center
center+middle
middle

Bl middle+edge

Bl cdge

I all

Figure 4.4: Region color coding.

In this dissertation, I include for each group my new results: a table of redshift differences between group
members, an image of the group with sizes of 1”7, 3”, 5” and 10” bins superimposed, a three dimensional plot
of the galaxy distributions in space with the member designation sized as semi-major diameter measured
by Iovino (2002) and converted to kiloparsecs, plots of the ages and metallicities of the stellar populations,
and BPT diagrams for each bin size. I summarize the analysis of the stellar populations and activity
in tables following the plots. In these tables, I abbreviate the age and metallicity designations as young
(Y), intermediate (I), old (O), low (L), mid (M) and high (H), and the region designations as central (c),
central+middle (cm), middle (m), middle+edge (me), edge (e) and all (a). In my analysis, only the all,

central and middle regions met all requirements to be plotted.
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4.3.1: Examples of Spectra

Before I discuss my results, I first show examples of the observed spectrum, the fitted STARLIGHT
model, and their residuals for various bin sizes, exposure times and morphologies. In all plots, the dark gray

line is the observed spectrum, the green line is the fitted model and the red line is the residual after removing

the model from the observation.

Elliptical Galaxies

Below are the observed, model and residual spectra for early-type galaxies SCG88B and SCG6S8A.
SCG88B had a 30 minute exposure and SCG68A had a 1.5 hour exposure.
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Figure 4.5: Central extractions for SCG88 B.
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SCGB8 Galaxy B Second 1" bin
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Figure 4.6: Outer extractions for SCG88 B.
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Figure 4.7: Central extractions for SCG68 A.
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Figure 4.8: Outer extractions for SCG68 A.

Spiral Galaxies

Below are the observed, model and residual spectra for late-type galaxies SCGO8A and SCG13B. SCGO8A

had a 30 minute exposure and SCG13B had a 1.5 hour exposure.
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Figure 4.9: Central extractions for SCG08 A.
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Figure 4.10: Outer extractions for SCG08 A.
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SCG13 Galaxy B Extracted Spectrum
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Figure 4.11: Central extractions for SCG13 B.
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Figure 4.12: Outer extractions for SCG13 B.

Irregular Galaxies

Below are the observed, model and residual spectra for irregular galaxies SCGO8C and SCG62D. SCG08C

had a 30 minute exposure and SCG62D had a 1.5 hour exposure.
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Figure 4.13: Central extractions for SCGO08 C.
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Figure 4.14: Outer extractions for SCGO08 C.
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SCG62 Galaxy D Extracted Spectrum
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Figure 4.15: Central extractions for SCG62 D.
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Figure 4.16: Outer extractions for SCG62 D.
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4.3.2: SCGO8

This group is comprised of four late-type galaxies with two members (A and C) showing signs of a recent

interaction.

. SQG 0018-485

Figure 4.17: Group SCGOS.

All four galaxies have velocity dispersions that include them in this group.

Az(km/s) B C D
A —47.19 | —36.9 | 106.74
B 10.29 | 153.93
C 143.64

Table 4.3: Derived redshift differences for group SCGOS.
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I also plot the galaxy positions in RA, DEC and redshift to get an idea of their 3d locations

the galaxies all appear to be at the edge of the group.
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Figure 4.18: Galaxy distribution for SCGO8.

. From this plot,

In the fully extracted spectrum, only galaxies B, C and D had S/N high enough and/or errors small enough

to be analyzed. For Galaxy B, I found intermediate populations with low metallicity and old populations with

enhanced metallicity. The low metallicity populations are intermediate and old while the

high metallicity

populations are old. Galaxy C has young populations with low metallicities and old populations with

mid-metallicities. The low and mid-metallicity populations are old. Galaxy D has mid-metallicity young

populations and low-metallicity intermediate and old populations. The low and high metallicity SPs are

dominated by intermediate populations.
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Figure 4.19: Age and metallicity plots for the extracted spectra of galaxies in SCGOS.

Galaxy C was the only galaxy with a 10” spectrum. The populations showed similar features as the extracted

spectrum.
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s SCGO08 10.05” bins S/N > 20.0
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Figure 4.20: Age and metallicity plots for the 10” bin spectra of galaxies in SCGO8.

Galaxies B and C had 5” bins that could be analyzed and Galaxy C had them in multiple regions. Galaxy B
showed that all populations have low metallicities except the old populations which have mid-metallicity. The
low and high metallicity populations are old. The central regions of Galaxy C have a low metallicity old and
young population and a mid-metallicity intermediate population. The low, mid and high-metallicity popula-
tions have intermediate ages. The mid-regions of the galaxy have young populations with low metallicity and
old populations with mid-metallicity, while the low metallicity population is young and the mid-metallicity

population is old.
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s SCGO08 4.95” bins S/N > 20.0
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Figure 4.21: Age and metallicity plots for the 5” bin spectra of galaxies in SCGO08.

In the 3” bins, the central regions of Galaxies B, C and D were analyzed. The young and old populations
in Galaxy B have mid-metallicity while the intermediate populations have low-metallicity. The low and
high-metallicity populations are old and the mid-metallicity population is young. In Galaxy C, the young
populations have a low metallicity and the intermediate and old populations have a mid-metallicity. The
low-metallicity population are young and mid-metallicity populations are intermediate and old aged. Finally,
for Galaxy D, the young and old SPs have low metallicities and the intermediate SPs have mid-metallicities.

The low-metallicity SPs are intermediate and old ages and the mid-metallicity SPs have intermediate ages.
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SCGO08 3.0” bins S/N = 20.0
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Figure 4.22: Age and metallicity plots for the 3” bin spectra of galaxies in SCGO08.

The central regions of all the galaxies appear in the 1”7 bin analysis. Galaxy A’s young population has a mid-
metallicity, the intermediate population has a low metallicity and the old population has a high metallicity.
The low metallicity populations has intermediate and old ages, the mid-metallicity populations are young and
the high metallicity populations are old. The young population in Galaxy B has a low metallicity while the
intermediate and old populations have low through high metallicities. All the metallicity bins are dominated
by intermediate and old ages. Galaxy C has young populations with low metallicity, intermediate populations
with low to mid-metallicity and old populations with low and high metallicity. The low metallicity population
spans young and intermediate ages and the high metallicity populations are old. In Galaxy D the young and
old populations have low metallicity while the intermediate population has mid-metallicity. The low and

mid-metallicity populations are old.
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s SCGO08 1.05" bins S/N > 20.0
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Figure 4.23: Age and metallicity plots for the 1” bin spectra of galaxies in SCGO08.

The activity for the extracted spectra reveal that Galaxies A, C and D are all SF galaxies while Galaxy

B is a borderline Seyfert.
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Figure 4.24: BPT diagrams for the extracted spectra of galaxies in SCGOS.
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Only galaxies A and C had 10” bin measurements. They are confirmed as SF.
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Figure 4.25: BPT diagrams for the 10” bin spectra of galaxies in SCGO8.

All galaxies except D had 5” bin measurements. Galaxy A has SF. Galaxy B is a borderline Seyfert. Galaxy

C has a LINER in the center with SF in its mid-regions.
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Figure 4.26: BPT diagrams for the 5” bin spectra of galaxies in SCGOS.
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The central regions of Galaxy A are a combination of SF and LINER according to the 3” bin measurements.

Galaxy B is still a borderline Seyfert. Galaxy C has SF in the center and in it’s mid-regions. Galaxy D is

mostly SF in the center plus a LINER.
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Figure 4.27: BPT diagrams for the 3” bin spectra of galaxies in SCGO8.

In the 1” bins, the central regions of Galaxy A show a combination of SF and LINER. The central regions

of Galaxy B show a Seyfert with some traces of SF. The center and mid-regions of Galaxy C are SF with a

LINER in the center and Galaxy D is SF as well.

86



T
HAi )

Logl &

L5 SCG081.05” bins

10

0.0

—0.5

—1.0

AGN

Copmbpositg

Star Forming

Star Forming

Star Forming

L L
} —0.5

Y SR i . . | .
—J?,l')—?,(lfl.r)*l.(l—{],l') 0.0 0.5 10 —1.5 —1.0 —05 0.0 05 10 —25 —20 —1.5 —1.0 0.0
Loyf%) Lf’!ﬂ%) Loyf%)

Figure 4.28: BPT diagrams for the 1” bin spectra of galaxies in SCGO0S.

Table [£.4] summarizes the stellar population and activity that my fits derived for each galaxy. For the

SFH construction, I focus on the SP results in the 5” and 3” bins and the activity information from the 1”

bins.
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Figure 4.29: Stellar population results for the 5” and 3” bins and activity information for the 1” bins for
SCGO08.

Galaxy A shows composite spectral characteristics in its central regions and SP information in the 17
bins. The activity seems to be a combination of SF and LINER.

Galaxy B is a Seyfert galaxy with some SF in its central regions. There are low-metallicity young and
intermediate populations suggesting that the current SF episode is using low-metallicity gas. The old SPs
have mid and high metallicities suggesting multiple SF episodes which rapidly processed gas > 4 Gyrs ago.
SF only shows up in the smallest bins suggesting that the current episode of SF is using up the last of the
low-metallicity gas after its supply was shutoff when entering the group. Gas is being funneled towards the
central black hole creating a Seyfert.

Galaxy C is a SF galaxy in its central and mid-regions. The current SF is using low-metallicity gas and
there is evidence of a previous episode of SF, between 0.1 —4 Gyrs ago, using preprocessed gas revealed by

the intermediate and old SPs with mid-metallicities. The previous episode of SF could have occurred before
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Galaxy C entered the group. Once Galaxy C entered the group, it could have interacted with another galaxy
which cut off the cold gas supply and funneled the remaining pristine gas towards the center, fueling the
current episode of SF.

Galaxy D is further from the other members but still in the group. It may still have its cold gas supply
as evidenced by the current, central SF and the low-metallicity young populations. There may have been
a previous episode of SF 0.1 —4 Gyrs ago using preprocessed gas which would create the mid-metallicity

intermediate populations but there is not much evidence of a mid or high-metallicity old population.

Population ‘ full ‘ 10” ‘ 57 ‘ 3” ‘ 17 Population ‘ full ‘ 10” ‘ 57 ‘ 3” ‘ 1”
Galaxy A Galaxy C
Young M-c Young L-a L-c L-¢/m L-c L-c
Intermediate L-c Intermediate M-c M-c L/M-c
Old H-c Old M-a | L-c L-c,M-m L-c L/H-c
Low 1/0-c Low O-a | O-c Y-m,I-c Y-c Y/I-c
Mid Y-c Mid O-a I-c,0-m 1/0-c
High O-c High I-c O-c
Star Forming X-a X-c X-c X-c X-c Star Forming X-a X-c X-m X-c/m | X-¢/m
Seyfert X-c Seyfert X-c
LINER X-c X-c LINER X-c
Galaxy B Galaxy D
Young L-c M-c L-c Young M-a L-c L-c
Intermediate L-a L-c L-c L/M/H-c Intermediate L-a M-c M-c
Old H-a M-c | M-c M/H-c old L-a L-c L-c
Low 1/0-a O-c O-c I/0-c Low I-a 1/0-c O-c
Mid Y-c Y-c Mid I-c O-c
High O-a O-c O-c I/0-c High I-a
Star Forming X-c Star Forming X-a X-c X-c
Seyfert X-a X-c X-c X-c Seyfert
LINER LINER X-c

Table 4.4: Stellar population and activity analysis summary for SCGO8. I abbreviate the age and metal-
licity designations as young (Y), intermediate (I), old (O), low (L), mid (M) and high (H), and the region
designations as central (c), middle (m), and all (a).

4.3.3: SCGI13

SCG13 has four late-type galaxies. Galaxies A and B show signs of past perturbations to their structure.
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Figure 4.30: Group SCG13.

The velocity dispersions of the group members show that Galaxies A, B and C are all members of the group

but D is outside the redshift difference cut off.

Az(km/s) B C D
A 189.51 | 108.18 | 2213.31
B —81.33 | 2023.8
C 2105.13

Table 4.5: Derived redshift differences for group SCG13.

It is also clear from the distribution plot, that Galaxy D is not a member of this group. Galaxies A, B and

C are all at similar redshifts and do not appear to have a central member.

90



0033

0.032

0.031

0030z
0.029
028

0027

_____

5qc =
0.519 —99.64 &F’%

Figure 4.31: Galaxy distribution for SCG13.

The fully extracted spectrum for Galaxy A shows young and intermediate aged populations with low-
metallicity and low metallicity populations with intermediate ages. Galaxy B has a young population with
low-metallicity, an intermediate aged population with high-metallicity and an old population with a mid-
metallicity. The low and high metallicity populations show intermediate and old ages. The young and
intermediate populations of Galaxy C have mid-metallicities and the old populations have high-metallicities.
All the metallicity bins are old and the low-metallicity SPs also have intermediate ages. Galaxy D did not

have enough S/N to be plotted.
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Figure 4.32: Age and metallicity plots for the extracted spectra of galaxies in SCG13.

Galaxies A and B had 10” bins. In this binning, Galaxy A has a young population with a mid-metallicity and
an intermediate population with a low-metallicity. The low-metallicity population indeed has an intermediate
age while the high-metallicity population is young. Galaxy B has similar metallicities and ages as in the

fully extracted spectrum.
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Figure 4.33: Age and metallicity plots for the 10” bin spectra of galaxies in SCG13.

In the 5”7 bins, the young and intermediate populations in the central and middle regions of Galaxy A have
low-metallicities. This is confirmed by the low-metallicity populations in the central and middle regions
showing intermediate ages. For Galaxy B, the central regions show a low-metallicity young population and
a high-metallicity intermediate and a high-metallicity old population. The mid-regions of Galaxy B have
mid-metallicity young and intermediate populations and a low/mid-metallicity intermediate population. The
central regions of Galaxy B have a low-metallicity population with intermediate and and old, high-metallicity
population. The mid-regions have mid and high-metallicity populations with intermediate ages. Galaxy C
has a low-metallicity intermediate population and a mid-metallicity old population in it’s central regions.
The low-metallicity populations in the central regions have an intermediate age while the high-metallicity

populations are old.
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Figure 4.34: Age and metallicity plots for the 5” bin spectra of galaxies in SCG13.

The 3” bins in the central regions of Galaxy A have a young population with low and mid-metallicities and an
intermediate population with low-metallicity. The mid-regions have low-metallicity, young and intermediate
populations. The low-metallicity populations in the central and mid-region has an intermediate age while
the high-metallicity population in the center is young. The central regions of Galaxy B house a wide range in
metallicity. The young populations have a low-metallicity and the intermediate and old populations have mid
and high metallicities. The mid-regions house low-metallicity, young populations. The central regions are old
for all metallicity populations and the central and mid-regions house intermediate ages in the low-metallicity
populations. Galaxy C shows intermediate and old populations with high-metallicity in its central regions.

All the low and high-metallicity populations are old in the central regions.
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Figure 4.35: Age and metallicity plots for the 3” bin spectra of galaxies in SCG13.

Ounly the central regions of Galaxies A, B and D had high enough S/N for the 1” bins. Galaxy A has a
young population with low to mid-metallicity and an intermediate population with low-metallicity. The low-
metallicity population has intermediate ages and the high-metallicity population is young. For Galaxy B,
the young population has low to mid-metallicity, the intermediate population has mid and high-metallicity
and the old population has high-metallicities. The low and high-metallicity populations are intermediate
and old and the mid-metallicity populations has intermediate ages. Galaxy D has an old population with a

low-metallicity.
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Figure 4.36: Age and metallicity plots for the 1” bin spectra of galaxies in SCG13.

The activity in the extracted spectra shows that all galaxies in the group (A, B, C and D) are star

forming.
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Figure 4.38: Activity plots for the 10” bin spectra of galaxies in SCG13.
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All galaxies show SF in their central regions in the 5” bins, which D having some evidence for a Seyfert

AGN. The mid-regions of Galaxy B show some SF as well.
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Figure 4.39: Activity plots for the 5” bin spectra of galaxies in SCG13.

Galaxy A, B and D show SF in their centers in the 3” bins. Galaxy B also shows SF in its mid-regions.
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SCG13 3.0” bin:

Lok AGN | L Seyfert | L Seyfert |

1)

T
Ha

0.0

Log(

—0.5

—1.0

Star Forming Star Forming Star Forming
15 IR N | | . | | | | |
—25-2.0-1.5-1.0-0500 05 1.0 —1.5 —1.0 —p5 00 05 1.0 —25 —20 —1.5 —1.0 —05 0.0
M S o1
Lo_qu) Log( He ) Lo_qf”")

Figure 4.40: Activity plots for the 3” bin spectra of galaxies in SCG13.

In the 1” bins, All galaxies show SF in their central regions. Galaxy B has SF in its mid-region and Galaxy

D has evidence of a LINER in its center.
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s SCG13 4.95” bins S/N > 20.0
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Figure 4.42: Stellar population results for the 5” and 3” bins and activity information for the 1” bins for
SCG13.

Galaxy A is a SF galaxy in its central regions. This is supported by the young and intermediate aged SPs in
its central and middle regions. The young SPs in the central regions have low and mid-metallicity and in the
middle regions are low-metallicity. The intermediate populations in both the central and middle regions have
low-metallicity. The young and intermediate populations throughout show a low-metallicity which indicates
that the outside supply of gas is still present. There is evidence of the current SF episode using preprocessed
gas by the mid-metallicity young populations in the center. I do not see an old population in Galaxy A
which implies a very recent SF episode that is overpowering the light from the older populations.

Galaxy B is also a SF galaxy in its central and middle regions. This is supported by the young populations
present in its central and middle regions. The young SPs have low and mid-metallicity in the center and
middle regions and the old and intermediate SPs have mid and high-metallicity in those same regions. This

implies the current SF episode is using both preprocessed and low-metallicity gas. The high-metallicity
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intermediate and old stars suggest that a SF episode 0.1 —4 Gyrs ago used preprocessed gas. These SF
episodes could have been initiated by an interaction because Galaxy B also has a disturbed morphology.
This interaction could have funneled the remaining low-metallicity gas towards the center.

Galaxy C has a composite spectrum which is mostly dominated by SF but its young SPs only show up
in the extracted spectrum and have mid-metallicity. The intermediate and old populations have enhanced
metallicities and any low-metallicity populations show intermediate ages. This implies that Galaxy C lost
its cold gas supply between 0.1 — 4.0 Gyrs ago.

Galaxy D has a composite spectrum with evidence of a LINER. But redshift shows that it is not part of

this group and its SP information is only recorded in the 1” bins.

Population ‘ full ‘ 10” ‘ 57 3” 1”7 Population ‘ full ‘ 10”‘ 57 ‘ 3” ‘ 1”7
Galaxy A Galaxy C
Young L-a M-c L-c/m L/M-c,L-m L/M-c Young M-a
Intermediate L-a L-c L-c/m L-c/m L-c Intermediate M-a L-c H-c
Old Old H-a M-c | H-c
Low I-a I-c I-c/m I-c/m I-c Low I/0-a I-c O-c
Mid Mid O-a O-c
High Y-c Y-c Y-c High O-a O-c O-c
Star Forming X-a X-c X-c X-c X-c Star Forming X-a X-c X-c
Seyfert Seyfert
LINER LINER
Galaxy B Galaxy D
Young L-a L-c L-¢,M-m L-c/m L/M-c Young
Intermediate H-a H-c H-c,L/M-m M/H-c M/H-c | Intermediate
Oold M-a M-c M-c,H-m M/H-c H-c Old L-c
Low I/O-a | I/O-c 1/0-c, I-m I-c/m, O-c 1/0-c Low O-c
Mid I-m O-c I-c Mid
High O-a O-c O-¢,I-m O-c 1/0-c High
Star Forming X-a X-c X-c/m X-c/m X-c/m | Star Forming X-a X-c | X-c
Seyfert Seyfert X-c
LINER LINER X-c

Table 4.6: Stellar population and activity analysis summary for SCG13. Same codes as in Table

4.3.4: SCG68

SCG68 is comprised of six galaxies with early-type morphologies.
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Figure 4.43: Group SCG68.

All the galaxies are within the velocity dispersion cutoff with Galaxy A. Galaxy D is only within the cutoff

with Galaxy A, it does not meet the crieria when compared with the other galaxies in the group.
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Az(km/s) B C D E F
207.57 | 14271 | —402.21 | 319.95 | 213.51

—64.86 | —609.78 | 112.38 5.94

—544.92 | 177.24 70.8

722.16 | 615.72

=10 |lQ|®

—106.44

Table 4.7: Derived redshift differences for group SCG6S.

The distribution plot allows us to see how these galaxies are distributed in redshift space and that Galaxy

B could be central to the group.
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Figure 4.44: Galaxy distribution for SCG68.

Galaxies A and B have high-metallicity old populations from their extracted spectrum. Galaxies C, E

and F show high-metallicity intermediate and old SPs and old high-metallicity populations. Galaxy D has
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low-metallicity young SPs and high-metallicity old SPs.

SCG68 full S/N = 20.0
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Figure 4.45: Age and metallicity plots for the extracted spectra of galaxies in SCG6S.

In the 5” bins, Galaxies A and B have high-metallicity old SPs. Galaxy C has high-metallicity intermediate

and old SPs. Galaxy D shows a low-metallicity young population and a high-metallicity old population.
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Figure 4.46: Age and metallicity plots for the 5” bin spectra of galaxies in SCG68.

Similar results are seen for the 3”7 bins as with the 5” bins with Galaxy E adding an intermediate aged

mid-metallicity population. All measurements are from the central regions of the galaxies.

106



SCG68 3.0” bins S/N = 20.0
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Figure 4.47: Age and metallicity plots for the 3” bin spectra of galaxies in SCG68.

In the 17 bins there is further detail revealed about the central regions. Galaxy A has evidence of a young
population with low-metallicity along with high-metallicity old populations. Galaxy B has high-metallicity
intermediate and old SPs for its high-metallicity populations. Galaxy C still shows high-metallicity old pop-
ulations with a high-metallicity intermediate aged SP. Galaxy D continues to show a low-metallicity young
SP in its center with old and intermediate SPs with high-metallicities. Galaxy E shows high-metallicity in-
termediate and old SPs with intermediate and old mid and high-metallicity populations respectively. Galaxy

F has high-metallicity intermediate and old SPs with old high-metallicity populations.
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s SCG68 1.05” bins S/N > 20.0
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Figure 4.48: Age and metallicity plots for the 1” bin spectra of galaxies in SCG68.

The activity for the fully extracted spectra show AGN activity for all galaxies with Galaxy C and E

being classified as a Seyfert.
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Galaxies A, B, C and D all show AGN in their 5” bin spectra with Galaxy C again being classified as a

Seyfert.
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Figure 4.49: Activity plots for the extracted spectra of galaxies in SCG68.
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Figure 4.50: Activity plots for the 5” bin spectra of galaxies in SCG68.

All galaxies show AGN in their 3”7 spectra of the central regions with Galaxies C and E again being classified
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as Seyfert. Galaxy D shows signs of being a composite galaxy.
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In the 1”7 bin spectra, all galaxies again show AGN in their central regions with C and E being Seyferts.
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4.51: Activity plots for the 3” bin spectra of galaxies in SCG68.
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Galaxy D is a composite while Galaxy F shows evidence for LINER characteristics.
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Figure 4.52: Activity plots for the 1” bin spectra of galaxies in SCG68.
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_ SCG68 4.95” bins S/N > 20.0
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Figure 4.53: Stellar population results for the 5” and 3” bins and activity information for the 1” bins for
SCG68.

The galaxies in SCG68 show many of the classic signs of early-type spectra, old aged populations. Galaxies
A, B, C, E and F are all AGN and Galaxy D is a composite. This is supported by the old ages and high
metallicities of the galaxies and Galaxy D’s detection of a young low-metallicity population. This also
provides evidence that Galaxy D may still have its cold gas supply along with the galaxy being at the
outermost edges of the group. All of the other galaxies show high-metallicity old populations which suggests
multiple episodes of SF >4 Gyrs ago and the removal of the cold gas supply early in their lives. These

galaxies may have been part of this group for a long time.
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Population ‘ full ‘ 10”7 ‘ 5” ‘ 3” ‘ 17 Population ‘ full ‘ 10” ‘ 57 ‘ 3” ‘ 1”7
Galaxy A Galaxy D
Young L-c Young L-a L-c L-c L-c
Intermediate Intermediate H-c
Old H-a H-c | H-c | H-c Old H-a H-c H-c H-c
Low Y-c Low Y-a Y-c
Mid O-a Mid
High O-a O-c O-c O-c High O-a O-c O-c | O-c
Star Forming Star Forming
Seyfert Seyfert
LINER LINER
AGN X-a X-c X-c X-c AGN X-a X-c
Comp Comp X-c X-c
Galaxy B Galaxy E
Young Young
Intermediate H-c Intermediate H-a H-c H-c
Old H-a H-c H-c H-c Old H-a H-c H-c
Low Y-c Low Y-c
Mid Mid I-c I-c
High O-a O-c O-c O-c High O-a O-c | O-c
Star Forming Star Forming
Seyfert Seyfert X-a X-c X-c
LINER LINER
AGN X-a X-c X-c | X-c AGN
Comp Comp
Galaxy C Galaxy F
Young Young
Intermediate H-a H-c H-c H-c Intermediate H-a H-c
Old H-c H-c H-c Old H-a H-c
Low Low
Mid Mid
High O-a O-c O-c O-c High O-a O-c
Star Forming Star Forming
Seyfert X-a X-c X-c X-c Seyfert
LINER LINER X-c
AGN AGN X-a X-c
Comp Comp X-c

Table 4.8: Stellar population and activity analysis summary for SCG68. Same codes as in Table

4.3.5: SCGT72

SCGT2 is comprised of four galaxies. Three have late-type morphologies and one has early-type. Two

may show evidence of disturbed morphology.
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SCG 2104-253

Figure 4.54: Group SCGT72.

According to the velocity dispersion analysis, Galaxy C is not part of this group gravitationally. Galaxies

A, B and D, however, are most likely gravitationally bound.

Az(km/s) B C D
A —518.4 | —1270.5 | —180.3
B —752.1 338.1
C 1090.2

Table 4.9: Derived redshift differences for group SCG72.

This is also clear from the distribution plot. Galaxy B is barely outside of the redshift cutoff with Galaxy A

but both are included with Galaxy D. Galaxy D could be the most central member of this group.
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Figure 4.55: Galaxy distribution for SCG72.

The SP analysis of the fully extracted spectrum has been plotted for Galaxies A, B and D. Galaxies A,

B and D show a high-metallicity for its old SPs and old ages for all the metallicity populations. Galaxy A

has old low-metallicity populations.
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SCG72 full S/N = 20.0
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Figure 4.56: Age and metallicity plots for the extracted spectra of galaxies in SCGT72.

In the 10” bin spectra, Galaxies B and D had spectra that fit within our noise and size limits. Here, Galaxy
B has a low-metallicity young SP plus old, high-metallicity populations. Galaxy D shows intermediate aged,

high-metallicity populations and a low-metallicity old population.
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s SCG72 10.05” bins S/N > 20.0

0.5 T T T T
D D
0.0k = 0.0 - B .
—0.5 F 1 —05F .
N —1.0F e —1.0F =
i ¥] D
—15F = —1.5 .
—2.0F = —2.0F =
B
—o5 ] I I I | —95] I I I L
7.5 8.0 8.5 9.0 95 10 105 7.5 8.0 8.5 9.0 9.5 0.0 106
< Logl(t.) >1 < Loglt.) =
0.5 T T T T T 1.5 T T T T
10.0 |- 4 1wt B B 1
) 1
j_\; 0.5 D _i 0.5 - D b
v .
= 0.0 —L; 0.0 .
) s
=L Y
W 85 1v 85 n
8.0 8.0
B
7.5 L 1 L L L 75 L L L L L
-25 -20 —15 —-10 —05 0.0 0.5 —25 —20 —-15 —10 —05 0.0 0.5
< Z = < Z =M

Figure 4.57: Age and metallicity plots for the 10” bin spectra of galaxies in SCGT72.

Galaxy A shows a low-metallicity young SP in its central regions with high-metallicity intermediate popu-
lations and mid and high-metallicity old populations. Galaxies B and D have a high-metallicity old SP and
old ages of all metallicities in their central regions. Galaxy C has similar SPs to Galaxies B and D except

the low-metallicity population has intemediate ages instead of old.
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s SCGT72 4.95” bins S/N > 20.0
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Figure 4.58: Age and metallicity plots for the 5” bin spectra of galaxies in SCG72.

In the 3” bins, Galaxy A shows a low-metallicity young populations and high-metallicity old populations.
Galaxy B shows a high-metallicity young population but its low-metallicity population is young. The old
populations have high-metallicities. Galaxy C has a high-metallicity old population. Galaxy D shows high-

metallicities for its intermediate and old SPs.
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SCG72 3.0” bins S/N = 20.0
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Figure 4.59: Age and metallicity plots for the 3” bin spectra of galaxies in SCG72.

Galaxy A’s 1”7 bin spectra of its central regions shows a young, low-metallicity SP and high-metallicity
intermediate and old SPs. The mid and high-metallicity populations are old. Galaxy B has a low-metallicity
young SP and high-metallicity old SPs. The intermediate and old populations have high-metallicity for
Galaxy C. The high-metallicity populations are old. Galaxy D has young populations with mid-metallicity,
intermediate populations with low and high-metallicities and old populations with high-metallicities in its

central regions. The low and high metallicity populations are old.
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s SCG72 1.05” bins S/N > 20.0
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Figure 4.60: Age and metallicity plots for the 1” bin spectra of galaxies in SCG72.

In the fully extracted spectra, Galaxy A is SF, Galaxies B and C are composites and Galaxy D is either
a Seyfert or a LINER.

121



SCGT72 full

Lok AGN | L Seyfert | L Seyfert |

L)

|
AT oo .
=
I~
—0.5 g
—1.0 Cpmposityg

Star Forming Star Forming Star Forming

5 | | I | | I | | | |

15 Ll . .
Z25 2.0-1.5-1.00050.0 05 1.0 —15 —1.0 —05 00 05 10 —25 20 —1.5 —1.0 —0.5 0.0
NI ETE o
Log( 4L Log( ) Log(7t)

Figure 4.61: Activity plots for the extracted spectra of galaxies in SCG72.

In the 10”7 spectra, Galaxies B and D are LINER galaxies.

, 5CG7210.05" bins

Lok AGN 1

0.5 =
3=
atl 0.0 =
=
3
3

—0.5

10 Cpmposity

Star Forming Star Forming Star Forming
15 TR i L L ! L L L L L
29520 156 100500 05 LO 15 10 05 00 05 L0 —25 —20 15 10 —05 0.0
NII SiI i
Log( %) Log(5H) Log(&E)

Figure 4.62: Activity plots for the 10” bin spectra of galaxies in SCG72.
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Galaxy A is SF, Galaxies B and C are composites and Galaxy D is a LINER in the 5” bins.
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Figure 4.63: Activity plots for the 5” bin spectra of galaxies in SCGT72.

In the 3” bins, Galaxies B and C are still composite galaxies with Galaxy B possibly being a LINER. Galaxy

D is some kind of AGN.
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Figure 4.64: Activity plots for the 3” bin spectra of galaxies in SCGT72.

All of the galaxies appear to show composite spectra in the 1” bins with C showing LINER characteristics

and B and D showing both Seyfert and LINER. characteristics.
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Figure 4.65: Activity plots for the 1” bin spectra of galaxies in SCGT72.
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s SCGT72 4.95” bins S/N > 20.0
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Figure 4.66: Stellar population results for the 5” and 3” bins and activity information for the 1” bins for
SCGT72.

In my summary of the SPs, Galaxy C, which is not a member of this group, shows signs of having lost its cold
gas supply between >4 Gyrs ago. This is indicated by the high-metallicity old populations. This also indi-
cates multiple episodes of SF. Galaxy A has a composite spectrum which is supported by its low-metallicity
young populations. This implies that Galaxy A still has its cold gas supply. The old and intermediate popu-
lations show high-metallicities which indicates multiple SF episodes between 0.1 —4 Gyrs ago which rapidly
processed gas. Galaxy B has young and old populations with both high and low metallicities, suggesting
that it too still has access to a cold gas supply. Both galaxies A and B appear to be at the edges of the group
from the 3d plots. Galaxy D has high-metallicity old populations, so its cold gas supply was most likely cut

off > 4 Gyrs ago, after which, it underwent multiple episodes of SF rapidly processing its gas.
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Population ‘ full ‘ 10”7 ‘ 57 ‘ 3”7 ‘ 17 Population ‘ full ‘ 10” ‘ 57 ‘ 37 ‘ 17
Galaxy A Galaxy C
Young L-c L-c L-c Young H-c
Intermediate H-c H-c Intermediate
Old H-a M/H-c | H-c | H-c Oold H-c H-c H-c
Low O-a Y-c Y-c | Y-c Low I-c
Mid O-c O-c Mid O-c
High O-a O-c O-c O-c High O-c O-c O-c
Star Forming | X-a X-c Star Forming X-a X-c/m
Seyfert Seyfert
LINER LINER X-c/m
AGN X-c X-c AGN X-a X-c X-c/m X-c
Comp X-c Comp X-m | X-¢/m | X-¢/m
Galaxy B Galaxy D
Young L-c H-c L-c Young M-c
Intermediate Intermediate H-c H-c L/H-c
Old H-a H-c H-c H-c H-c Old H-a L-c H-c H-c H-c
Low Y-c O-c Y-c | Y-c Low O-c O-c O-c
Mid O-c Mid
High O-a | O-c O-c O-c O-c High O-a I-c O-c O-c O-c
Star Forming | X-a X-c X-c Star Forming
Seyfert X-c Seyfert X-a X-c X-c
LINER X-c X-c X-c LINER X-a X-c X-c X-c X-c
AGN X-a X-c X-c | X-c AGN X-c
Comp X-c | X-c Comp X-c

Table 4.10: Stellar population and activity analysis summary for SCG72. Same codes as in Table

4.3.6: SCG82

SCG82 is comprised of four galaxies with one showing late-type morphology and the other three appearing

more early-type.
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A ScG 2174-2314

Figure 4.67: Group SCGS82.

The redshift analysis reveals that all galaxies are members of this group with all galaxies showing very low

velocity dispersions.

Az(km/s) B C D
A —114.72 | —128.28 | —27.15
B —13.56 87.57
C 101.13

Table 4.11: Derived redshift differences for group SCG82.
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We get an idea of how the galaxies are distributed with respect to each other in the following figure. There

doesn’t appear to be a central member for this group.
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Figure 4.68: Galaxy distribution for SCG82.

The SP analysis could only be completed on Galaxies B, C and D for this group. In the fully extracted
spectra, the intermediate and old populations for Galaxy B have high-metallicities while the high-metallicity
populations are old. Galaxy C has low metallicities for all ages but its low-metallicity population is dominated
by intermediate and old ages. The young population for Galaxy D has low-metallicity, the intermediate
population has low and high-metallicity and the old populations have mid-metallicity. The low metallicity

population has intermediate and old ages and the high-metallicity population is old.
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Figure 4.69: Age and metallicity plots for the extracted spectra of galaxies in SCGS82.

Only Galaxy B could be analyzed in the 5” bins and its SPs reflect the extracted spectra.
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Figure 4.70: Age and metallicity plots for the 5” bin spectra of galaxies in SCG82.
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In the 3” bins, Galaxy B still has the same SPs as in the previous two analyses. Galaxy C has low-metallicity
intermediate and old populations. Galaxy D has similar SP characteristics as in the extracted spectrum

except its intermediate aged population is described by low and mid metallicities.
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Figure 4.71: Age and metallicity plots for the 3” bin spectra of galaxies in SCGS82.

Galaxies B and D had S/N high enough in their 1” spectra to be analyzed. Galaxy B still shows the same SP
characteristics except now I see evidence of a young, low-metallicity population in its central region. Galaxy

D continues to have the same SPs as in its 3” spectra except its old SPs have a high-metallicity.
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Figure 4.72: Age and metallicity plots for the 1” bin spectra of galaxies in SCG82.

In the activity plots for the fully extracted spectra, Galaxy A is a Seyfert AGN, Galaxy B is a LINER
and Galaxies C and D are SF.
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Figure 4.73: Activity plots for the extracted spectra of galaxies in SCGS82.

In the 10” and 5” spectra, Galaxy A is still a Seyfert AGN.
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Figure 4.74: Activity plots for the 10” bin spectra of galaxies in SCG82.
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Figure 4.75: Activity plots for the 5” bin spectra of galaxies in SCG82.

In the 3” spectra, the activity analysis is the same as in the extracted spectra only Galaxy B now shows a

LINER in its mid-regions and some AGN activity in its central regions.
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Figure 4.76: Activity plots for the 3” bin spectra of galaxies in SCG82.

At the smallest bin size, Galaxy A remains a Seyfert and Galaxy B remains a LINER in both its central and

mid-regions but Galaxy C becomes a composite/SF galaxy and D becomes a LINER/SF galaxy.
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Figure 4.77: Activity plots for the 1” bin spectra of galaxies in SCG82.
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Figure 4.78: Stellar population results for the 5” and 3” bins and activity information for the 1” bins for
SCG82.

Spiral galaxy A did not have any SP information that could be analyzed and registers as a Seyfert and SF
on its BPT diagrams. Galaxy B has high-metallicity intermediate and old populations which implies that it
underwent multiple SF episodes > 4 Gyrs ago that processed its gas. Galaxy C has an irregular morphology
and is a composite with low metallicities in its intermediate and old populations. This implies that it still
had low-metallicity cold gas between 0.1 —4 Gyrs ago. Galaxy D is SF with low-metallicity young and
intermediate populations. It also shows mid and high-metallicity intermediate and old populations which

suggests that a SF episode occurred a 0.1 —4 Gyrs ago using preprocessed gas but the current episode of SF

is using low-metallicity gas.
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Population ‘ full ‘ 10” ‘ 57 ‘ 37 ‘ 1”7 Population ‘ full ‘ 10” ‘ 57 ‘ 37 ‘ 1”7

Galaxy A Galaxy C
Young Young L-a
Intermediate Intermediate L-a L-c
Old Oold L-a L-c
Low Low 1/0-a I1/0-c
Mid Mid
High High
Star Forming Star Forming X-a X-c X-c
Seyfert X-a | X-¢c | X-c X-c X-c Seyfert
LINER LINER
AGN AGN X-c
Comp Comp X-c
Galaxy B Galaxy D
Young L-c Young L-a L-c L-c
Intermediate | H-a H-c H-c H-c Intermediate | L/H-a L/M-c | L/M-c
Old H-a H-c H-c H-c Old M-a M-c H-c
Low Y-c Low I1/0-a I/0-c 1/0-c
Mid Mid
High O-a O-c O-c O-c High O-a O-c O-c
Star Forming Star Forming X-a X-c X-c
Seyfert Seyfert
LINER X-a X-m | X-c/m LINER X-c
AGN X-c X-c AGN
Comp Comp

Table 4.12: Stellar population and activity analysis summary for SCG82. Same codes as in Table

4.3.7: SCG83

SCG83 is made up of five galaxies with two showing early-type morphologies and three having late-type.

Galaxies A and C show signs of tidal streams from a previous interaction.
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SCG 2128-4644

Figure 4.79: Group SCGS83.

All galaxies are members of this group according to our velocity dispersion analysis.

Az(km/s) B C D E

153.69 —-9.24 | 283.95 | 111.63

B —162.93 | 130.26 | —42.06
C 293.19 | 120.87
D —172.32

Table 4.13: Derived redshift differences for group SCG83.
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The distribution of galaxies in redshift space is plotted below. Galaxies A, C and E appear to be near the

edges of the group and Galaxy B may be the most central member.
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Figure 4.80: Galaxy distribution for SCG83.

Galaxy C could not be plotted in this analysis. The SPs of the extracted spectra reveal that Galaxy A has
a low-metallicity young population and high-metallicity intermediate and old populations. The low metallic-
ity populations have intermediate ages while the mid and high-metallicity populations are old. Galaxy B has
old populations with high-metallicity. Galaxy D has mid-metallicity young SPs, low-metallicity intermediate
SPs and high-metallicity old SPs. The mid and high-metallicity populations are old and the low-metallicity
populations are intermediate. Galaxy E has low-metallicity young SPs and mid-metallicity old SPs. The

low-metallicity populations are intermediate and the mid and high-metallicity populations are old.
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Figure 4.81: Age and metallicity plots for the extracted spectra of galaxies in SCGS83.

Only Galaxy A has a 10” spectrum which shows low-metallicity young SPs and high-metallicity intermediate
and old SPs.
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s SCG83 10.05” bins S/N > 20.0

0.5 T T T
A A
00t g 0.0 A .
—0.5 | B —0.5 —
N L0 Ty 1O .
v v
15 4 —15FfF .
a0t 4 —20f .
A
a5 L L . L _ag! L L . .
7.5 8.0 8.5 0.0 0.5 10.0 10.5 7.5 8.0 8.5 0.0 0.5 10.0 10.5
< Logl(t.) >1 < Loglt.) > um
10.5 T T T T T 10.5 T T T T
10.0 |- 4 wof .
A A
Noosk 17 osF 1
M A
i A e
= 1% 90r .
g o
=L Y
W 85 1v 85 n
8.0 8.0
'}'_5 L 1 1 L 1 75 1 1 1 1 L
25 —20 -15 —10 —g5 00 05 “95 —20 -15 —10 —05 00 05
< Z = < Z =M

Figure 4.82: Age and metallicity plots for the 10” bin spectra of galaxies in SCG83.

In the 5”7 spectra, Galaxy A has young, low-metallicity SPs and old, mid and high-metallicity populations.
Galaxy B shows the same SPs as in its extracted spectrum with an added old mid-metallicity population.
Galaxy E has a low-metallicity young SP, a high-metallicity intermediate SP and a mid-metallicity old SP.

The low, mid and high-metallicity SPs are old.
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s SCG83 4.95” bins S/N > 20.0
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Figure 4.83: Age and metallicity plots for the 5” bin spectra of galaxies in SCGS83.

Galaxy A has low-metallicity young SPs and high-metallicity old SPs in its 3” bins. All the metallicity
populations are old. Galaxy B has the same SP properties as the 5” bins. Galaxy D has low-metallicity
young SP and high-metallicity old SPs. The low and high-metallicity SPs are old. Galaxy E has high-
metallicity intermediate populations and mid-metallicity old populations. The low and high-metallicity

populations are old.
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SCG83 3.0” bins S/N = 20.0
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Figure 4.84: Age and metallicity plots for the 3” bin spectra of galaxies in SCG83.

In the 1”7 bins, Galaxy A has high-metallicity intermediate and old SPs. The low and high-metallicity SPs
are old. Galaxy B continues to have the same SPs as discussed above. Galaxy D has the same SPs as the 3”
bins with an added mid-metallicity population with old ages and low-metallicity SP with intermediate ages.
Galaxy E has high metallicity intermediate SPs and mid old SPs. The low and mid-metallicity SPs are old

and the high-metallicity SPs are intermediate and old.
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s SCG83 1.05” bins S/N > 20.0
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Figure 4.85: Age and metallicity plots for the 1” bin spectra of galaxies in SCG83.

Galaxies A and B show AGN activity in their fully extracted spectra. Galaxies C and D are SF.
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Figure 4.86: Activity plots for the extracted spectra of galaxies in SCG83.
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Galaxy A shows AGN activity in its 10” spectrum.
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Figure 4.87: Activity plots for the 10” bin spectra of galaxies in SCG83.

In the 5”7 spectra, Galaxy A shows a SF and composite spectrum, Galaxy B shows a composite spectrum

and Galaxy C is SF.
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Figure 4.88: Activity plots for the 5” bin spectra of galaxies in SCG83.

In the 3” spectra, Galaxy A is a composite galaxy, Galaxy B is a Seyfert, Galaxy C is a LINER, Galaxy D

is SF and Galaxy E is SF in its central and mid-regions.
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Figure 4.89: Activity plots for the 3” bin spectra of galaxies in SCG83.

Finally in the 1” spectra, Galaxy A is SF and AGN, Galaxy B is a LINER, Galaxy C is SF and LINER and
Galaxies D and E are SF.
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Figure 4.90: Activity plots for the 1” bin spectra of galaxies in SCG83.

149



_ SCG83 4.95” bins S/N > 20.0
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Figure 4.91: Stellar population results for the 5” and 3” bins and activity information for the 1” bins for
SCGS3.

According to the SP analysis, Galaxies A, D and E may still have their cold gas supplies as evidenced by
their low-metallicity young SPs. Galaxy A has an active nucleus with recent SF in its central regions. It
also has evidence of a SF episode between > 4 Gyrs ago using preprocessed gas. The old populations with
high-metallicity support this. An interaction may have also funneled low-metallicity cold gas into the center,
which is fueling the current episode of SF. Galaxy B appears to have lost its cold gas supply >4 Gyrs ago,
most likely cut off via strangulation and used up during multiple episodes of SF. Galaxy C has a disturbed
morphology and is a SF galaxy but does not have SP information. It is at the same redshift as Galaxy
A so is a good interaction candidate for Galaxy A. Galaxies D and E appear to still have their cold gas
supplies because they are both SF at their centers and have low-metallicity young SPs. They both also
have high-metallicity older populations suggesting multiple, rapid episodes of SF quickly processed the gas

between >4 Gyrs ago.
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Population ‘ full ‘ 10” ‘ 57 ‘ 37 ‘ 1” Population ‘ full ‘ 10” ‘ 57 ‘ 3”7 1”
Galaxy A Galaxy D
Young L-a L-c L-c Young M-a L-c L-c
Intermediate H-a | H-c H-c Intermediate L-a
Old H-a | H-c H-c | H-c | H-c Old H-a H-c H-c
Low I-a Y-¢c | Y-¢c | O-c | O-c Low I-a O-c I1/0-c
Mid O-a O-c O-c Mid O-a O-c
High O-a | O-c | O-c | O-c O-c High O-a O-c O-c
Star Forming X-c Star Forming X-a X-c X-c
Seyfert Seyfert
LINER LINER
AGN X-a | X-c X-c AGN
Comp X-c X-c Comp
Galaxy B Galaxy E
Young Young L-a L-c
Intermediate Intermediate H-c H-c H-c
Old H-a H-c H-c H-c Old M-a M-c M-c M-c
Low Low I-a O-c O-c O-c
Mid O-c | O-c O-c Mid O-a O-c O-c
High O-a O-c | O-c | O-c High O-a O-c O-c I1/0-c
Star Forming Star Forming X-c/m X-c
Seyfert X-c Seyfert
LINER X-c LINER
AGN X-a AGN
Comp X-c Comp
Galaxy C
Young
Intermediate
Old
Low
Mid
High
Star Forming X-a X-c X-c
Seyfert
LINER X-¢c | X-c
AGN
Comp

Table 4.14: Stellar population and activity analysis summary for SCG83. Same codes as in Table

4.3.8: SCGS88

SCGS88 is comprised of four galaxies. Two are early-type galaxies and two are late-type galaxies. Galaxy

A appears to have had an encounter in its past.
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Figure 4.92: Group SCGSS.

Galaxy A is not a part of this group. The other three galaxies are within the velocity dispersion limits I set.

Az(km/s) B C D
A 14032.77 | 13730.67 | 14015.67
B —302.1 —-17.1
C 285.0

Table 4.15: Derived redshift differences for group SCGS8S.

This is also clear from the distribution plot. Galaxies B, C and D do not have a clear central member.
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Figure 4.93: Galaxy distribution for SCGS88.

In the extracted spectra, Galaxies B and D both have low-metallicity old populations and their low and

mid-metallicity populations are old. Galaxy D has intermediate ages for its high-metallicity SPs.
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Figure 4.94: Age and metallicity plots for the extracted spectra of galaxies in SCGS8S.

In the 5” spectra, Galaxies A and B show mid-metallicity old SPs and old low and high-metallicity SPs.
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Figure 4.95: Age and metallicity plots for the 5” bin spectra of galaxies in SCGS88.
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Galaxy B has low-metallicity intermediate SPs and high-metallicity old SPs. The low and high-metallicity
SPs are old and the mid-metallicity SPs have intermediate ages. Galaxy D has mid-metallicity old SPs and

old, low and mid-metallicity populations. All measurements are for the central regions.
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Figure 4.96: Age and metallicity plots for the 3” bin spectra of galaxies in SCGS8S.

The central regions in the 1” bins for Galaxy B has low, mid and high-metallicity intermediate SPs and high-
metallicity old SPs. The low-metallicity populations have intermediate ages and the mid and high-metallicity
populations have intermediate and old ages. For Galaxy D, the intermediate SPs have high metallicities and
the old populations have mid-metallicity. The low and mid-metallicity SPs are old while the high-metallicity

populations have intermediate and old ages.
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Figure 4.97: Age and metallicity plots for the 1” bin spectra of galaxies in SCGS88.

The activity in the fully extracted spectra shows that Galaxies B and D are SF galaxies.
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Figure 4.98: Activity plots for the extracted spectra of galaxies in SCGS88.
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In the 10” bin plot, Galaxy A is SF.
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Figure 4.99: Activity plots for the 10” bin spectra of galaxies in SCG8S.

Galaxies A and B are both SF in the 5” spectra.
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Figure 4.100: Activity plots for the 5” bin spectra of galaxies in SCG8S.

Galaxies A, B and D are all SF in the 3” spectra.
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Figure 4.101: Activity plots for the 3” bin spectra of galaxies in SCGS8S.
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In the 1”7 spectra, Galaxies A, B and D are all SF in their centers. Galaxy A shows evidence of a LINER in

its center and SF in it’s mid-regions. Galaxies C and D have composite spectra in their central regions.
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Figure 4.102: Activity plots for the 1” bin spectra of galaxies in SCG8S.
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Figure 4.103: Stellar population results for the 5”7 and 3” bins and activity information for the 1” bins for
SCGSS.

All galaxies except C show evidence of being SF galaxies in their BPT diagrams but do not have any young
SPs in their central regions. Galaxy A is not in the group and has an irregular morphology. Its SPs are
dominated by older stars of low and mid-metallicities. Galaxy B has old and intermediate aged populations
with low and mid-metallicities so could still have its cold gas supply or it was shut off between 0.1 —4 Gyrs
ago when this SF episode began. Galaxy D is made up of mostly low and mid-metallicity old populations
with some low-metallicity old populations as well. This could indicate a rapid processing of gas through
multiple episodes of SF between 0.1 —4 Gyrs ago. Galaxy C has no SP analysis and shows a composite
spectrum. Ultimately, this group needs longer exposures. The SF could be happening in the outer regions

of the galaxies so my SP analysis is missing those regions because the S/N is too low.
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4.3.9:

Population ‘ full ‘ 10” ‘ 57 ‘ 3” 1”7
Galaxy A
Young
Intermediate
Old M-c
Low O-c
Mid
High O-c
Star Forming X-c | X-c | X-c X-c/m
Seyfert
LINER X-c
AGN
Comp
Galaxy B
Young
Intermediate L-c | L/M/H-c
Old L-a M-c H-c H-c
Low O-a O-c O-c I-c
Mid O-a I-c 1/0-c
High O-c | O-c 1/0-c
Star Forming | X-a X-c X-c X-c
Seyfert
LINER
AGN
Comp

Table 4.16: Stellar population and activity analysis summary for SCG88. Same codes as in Table

SCG106

Population ‘ full ‘ 10” ‘ 57 ‘ 3” ‘ 1”

Galaxy C

Young

Intermediate

Old

Low

Mid

High

Star Forming

Seyfert

LINER

AGN

Comp

Galaxy D

Young

Intermediate

H-c

Old

L-a

M-c

M-c

Low

O-a

O-c

O-c

Mid

O-a

O-c

O-c

High

1/0-c

Star Forming

X-a

X-c

Seyfert

LINER

AGN

Comp

X-c

The four galaxies that make up SCG106 appear to all be early-type galaxies.
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Figure 4.104: Group SCG106.

My redshift analysis reveals that Galaxy D is not a part of this group. The other members have very low

velocity dispersions.

Az(km/s) | B C D

A 89.7 | 127.8 | 624.0
B 38.1 | 534.3
C 496.2

Table 4.17: Derived redshift differences for group SCG106.

The distribution of galaxies in redshift space is plotted below. Galaxies A, B and C do not have a clear

center but C is at a higher redshift than A and B so may be at the edge of the group.
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Figure 4.105: Galaxy distribution for SCG106.

Galaxy A has low-metallicity intermediate SPs and high-metallicity old SPs in its extracted spectrum.
Galaxy B has high-metallicity old SPs. Galaxy C has mid-metallicity old SPs and its low and high-metallicity
SPs are old. Galaxy D has mid-metallicity intermediate and old populations. Its low and high-metallicity

populations are old.
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Figure 4.106: Age and metallicity plots for the extracted spectra of galaxies in SCG106.

In the 5” bins, Galaxy A has high-metallicity intermediate and old SPs. The high-metallicity SPs are old.
Galaxy B has the same SP properties as its extracted spectrum. Galaxy C has mid-metallicity intermediate
and old SPs. The low-metallicity population are old. Galaxy D has mid-metallicity old populations and its

low-metallicity populations are old.
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s SCG106 4.95” bins S/N > 20.0
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Figure 4.107: Age and metallicity plots for the 5” bin spectra of galaxies in SCG106.

Galaxy A shows high-metallicity old populations in its 3” spectra. Galaxy B has high-metallicity intermediate
and old populations. Galaxy C has mid-metallicity intermediate populations and low and high-metallicity

old populations. Galaxy D has low and mid-metallicity old populations.
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s SCG106 3.0" bins S/N > 20.0
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Figure 4.108: Age and metallicity plots for the 3” bin spectra of galaxies in SCG106.

In the 1”7 spectra, Galaxy A has high-metallicity intermediate and old ages. Its low-metallicity populations
are young and its mid and high-metallicity populations are old. Galaxy B still has high-metallicity old SPs
and old ages for its mid and high-metallicity populations. Galaxy D has mid-metallicity old SPs and old

ages for its low and high-metallicity SPs.
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s SCG106 1.05” bins S/N > 20.0
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Figure 4.109: Age and metallicity plots for the 1” bin spectra of galaxies in SCG106.

In the fully extracted spectra, Galaxy B shows AGN activity and Galaxies C and D are star forming.
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Figure 4.110: Activity plots for the extracted spectra of galaxies in SCG106.
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Galaxies A and D are a SF galaxies and Galaxy B is a Seyfert type in the 5” spectra.
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Figure 4.111: Activity plots for the 5” bin spectra of galaxies in SCG106.

The 3” spectra reveal that Galaxy A is a composite galaxy, Galaxy B shows characteristics of both a LINER

and Seyfert, Galaxy C has SF and composite properties and Galaxy D is SF.
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Figure 4.112: Activity plots for the 3” bin spectra of galaxies in SCG106.

In the 1”7 spectra, Galaxy B is a LINER, Galaxy C has a LINER and SF in its central regions and SF in its

mid-regions and Galaxy D is SF.
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Figure 4.113: Activity plots for the 1” bin spectra of galaxies in SCG106.
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s SCG106 4.95” bins S/N > 20.0
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Figure 4.114: Stellar population results for the 5”7 and 3” bins and activity information for the 1”7 bins for
SCG106.

Galaxies A, B and C all have evidence for rapid processing of gas via SF and not having a cold gas supply.
Galaxy A has SPs with mostly high-metallicity intermediate and old SPs indicating it lost its outside gas
supply before the SF episode that occurred 0.1 —4 Grys ago. Galaxy B is a LINER and is mostly comprised
of high-metallicity old SPs suggesting its low-metallicity gas was used up >4 Gyrs ago. Galaxy C is a
composite galaxy with evidence of a LINER and old populations of all metallicities and low and mid-
metallicity intermediate populations. This implies the outside gas supply was shut off 0.1 —4 Gyrs ago.
Galaxy D is not in the group and has more evidence for SF than the others. It has old populations with low
and mid-metallicities. This could indicate that the processing of gas is proceeding more slowly than in the

group environment, but we need environment information for Galaxy D to be sure.
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Population ‘

full ‘ 10”7 ‘

w [ | o

Galaxy A

Young

Intermediate

L-a

H-c

H-c

Old

H-a

H-c

H-c H-c

Low

O-c

Y-c

Mid

O-c

High

O-c

O-c

Star Forming

X-c

Seyfert

LINER

AGN

Comp

Galaxy B

Young

Intermediate

H-c

Old

H-c

Low

Mid

O-c

High

O-c

Star Forming

Seyfert

LINER

AGN

Comp

Table 4.18: Stellar population and activity analysis summary for SCG106

4.3.10:

I only observed three of the members of SCG62 due to time constraints. I picked the three galaxies that

SCG62

Population ‘ full

[ [ [ ]

17

Galaxy C

Young

Intermediate

M-c

M-c

Old

M-a

M-c

H-c

Low

O-a

O-c

O-c

Mid

High

O-a

Star Forming

X-a

X-c/m

Seyfert

LINER

AGN

Comp

Galaxy D

Young

Intermediate

M-a

Old

M-a

M-c

M-c

M-c

Low

O-a

O-c

O-c

O-c

Mid

High

O-a

O-c

Star Forming

X-a

X-c

Seyfert

LINER

AGN

Comp

were closest together on the sky. All galaxies have a late-type morphology.
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N SCG 0459-340

|

Figure 4.115: Group SCG62.

All three galaxies are members of this group.

Az(km/s) B D
A —264.36 | —58.11
B 206.25

Table 4.19: Derived redshift differences for group SCG62.

Below is the redshift distribution of the galaxies.
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Figure 4.116: Group SCG62.

The extracted spectrum for Galaxy B indicates that the old populations have low-metallicity. For Galaxy

D, the intermediate SPs have high-metallicity and the old SPs have mid-metallicity. The low and high-

metallicity populations are both old.
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Figure 4.117: Age and metallicity plots for the extracted spectra of galaxies in SCG62.

In the 10” spectra, Galaxy A shows a mid-metallicity intermediate population and Galaxy B shows old

populations with low-metallicity.
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s SCG62 10.05” bins S/N > 20.0
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Figure 4.118: Age and metallicity plots for the 10” bin spectra of galaxies in SCG62.

Galaxy A has mid-metallicity intermediate SPs and low-metallicity old SPs in its 5” spectra. The low and
high-metallicity populations show old ages. Galaxy B continues to show low-metallicity old populations.

Galaxy D shows similar SPs as in its extracted spectrum.
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Figure 4.119: Age and metallicity plots for the

In the 3” spectra, the young SPs for Galaxy A have low and mid-metallicities, the intermediate populations
have mid-metallicities and the old populations have low metallicities. There are low-metallicity populations
with young and old ages and mid and high-metallicity populations with intermediate ages. Galaxy B has

low-metallicity young SPs and high-metallicity intermediate SPs. The old populations again show a low-

< Z =y

5” bin spectra of galaxies in SCG62.

metallicity. Galaxy D has old SPs of both high and low metallicity.
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Figure 4.120: Age and metallicity plots for the 3” bin spectra of galaxies in SCG62.

Galaxy B has high-metallicity intermediate SPs and low-metallicity old SPs in its 1” spectra. Galaxy D
has low and mid-metallicity young SPs and mid and high-metallicity intermediate and old SPs. The low-
metallicity populations are intermediate and old ages and the mid and high-metallicity populations are

old.
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Figure 4.121: Age and metallicity plots for the 1” bin spectra of galaxies in SCG62.

In the 10” spectra, Galaxy A has SF in its central and mid-regions. Galaxy B shows both LINER and

SF characteristics in its central regions.
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Figure 4.122: Activity plots for the 10” bin spectra of galaxies in SCG62.

Galaxy A again has SF in its central and mid-regions in the 5” spectra but it also has evidence of a LINER

in its central regions. Galaxy B has SF and Seyfert activity in its mid-regions.
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In the 3”7 spectra, Galaxy A shows SF in its central regions and Galaxy B shows SF in its central and

mid-regions.

T
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Figure 4.123: Activity plots for the 5” bin spectra of galaxies in SCG62.
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SCG62 3.0” bin:
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Figure 4.124: Activity plots for the 3” bin spectra of galaxies in SCG62.

Galaxy A shows signatures of SF, Seyfert and LINER activity in its central regions of the 1” spectra. Galaxy
B has SF in its central and mid-regions as well as Seyfert activity in its central regions. Galaxy D shows

evidence of a LINER in its central regions.
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Figure 4.125: Activity plots for the 1” bin spectra of galaxies in SCG62.

Galaxies A and D appear to be interacting. Galaxy A is a SF galaxy in its central and mid-regions. The
SPs of all ages span the metallicity bins which implies rapid processing of gas via multiple SF episodes and
that the outside gas supply was shut off very recently, < 0.1 Gyr ago. This could be due to interactions with
Galaxy D. Galaxy D is a LINER with high metallicity intermediate and old aged populations. This implies
a SF episode between 0.1 —4 Gyrs ago ago using preprocessed gas. Both galaxies show signs of having lost
their cold gas supply before these multiple episodes of SF began. Galaxy B is a SF galaxy with a Seyfert
nucleus, which is common. It has low-metallicity old SPs and high-metallicity intermediate populations. This
implies a SF episode between 0.1 —4 Gyrs ago with preprocessed gas. The cold gas supply was likely shut
off before this SF episode began. All three galaxies have at least one measurement of low-metallicity young

populations, implying that the low-metallicity gas is currently being consumed in on-going SF episodes.

183



Population ‘ full ‘ 10”7 ‘ 5” ‘ 3” ‘ 17 Population ‘ full ‘ 10”7 ‘ 5” ‘ 3” ‘ 1”7
Galaxy A Galaxy D
Young L/M-c Young L/M-c
Intermediate M-c M-c M-c Intermediate H-a H-c M/H-c
Old L-c L-c Old H-a H-c | H-c H-c
Low O-c Y/O-c Low O-a O-c | O-c 1/0-c
Mid I-c I-c Mid O-c
High O-c I-c High O-a O-c O-c O-c
Star Forming X-c/m | X-¢/m X-c X-c/m Star Forming
Seyfert X-c Seyfert
LINER X-c/m X-c LINER X-c
AGN AGN
Comp Comp
Galaxy B
Young L-c
Intermediate H-c H-c
Old L-a L-c L-c L-c L-c
Low O-a O-c O-c/m O-c O-c
Mid
High I-c I-c
Star Forming X-c X-m X-¢/m | X-c¢/m
Seyfert X-m X-c
LINER
AGN
Comp

Table 4.20: Stellar population and activity analysis summary for SCG62. Same codes as in Table

4.3.11: SCGO7

I only observed Galaxies A and B in SCG07 due to time constraints. Both galaxies have a late-type

morphology.
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Figure 4.126: Group SCGOT7.

These galaxies are gravitationally bound according to my velocity dispersion analysis.

Az(km/s) B

A —110.58

Table 4.21: Derived redshift differences for group SCGO7.

Below is the redshift distribution of the galaxies.
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Figure 4.127: Group SCGOT7.

In the extracted spectra for Galaxy A, there are low-metallicity young SPs and high-metallicity old SPs.
The mid and high-metallicity populations are old. For Galaxy B, the young and old SPs have mid-metallicity
and the intermediate SPs have high-metallicity. The low-metallicity populations have intermediate and old

ages and the high-metallicity populations have intermediate ages.
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Figure 4.128: Age and metallicity plots for the extracted spectra of galaxies in SCGO07.

The SPs in Galaxy A for the 10” bins are similar to the extracted spectrum. For Galaxy B, the young
SPs have low-metallicity, the intermediate SPs have high-metallicity and the old SPs have mid-metallicity.
The low-metallicity SPs have intermediate and old ages, the mid-metallicity SPs are young and the high-

metallicity SPs are old.

187



s SCGO07 10.05” bins S/N > 20.0
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Figure 4.129: Age and metallicity plots for the

10” bin spectra of galaxies

in SCGO7.

In the 5” bins, Galaxy A has similar SP characteristics as above. Galaxy B has young SPs with low-metallicity

and intermediate and old SPs with high-metallicity. The low and high-metallicity SPs have intermediate

ages.
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Figure 4.130: Age and metallicity plots for the 5” bin spectra of galaxies in SCGOT7.

Galaxy A again has similar SP properties in its 3” bins. Galaxy B, however, has intermediate SPs with
high-metallicity and old SPs with low-metallicity. The low-metallicity SPs are old and the high-metallicity

SPs have intermediate ages.
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Figure 4.131: Age and metallicity plots for the 3” bin spectra of galaxies in SCGOT7.

Only Galaxy A had measurements in the 1” bin and they are similar to the properties in the other bins.
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Figure 4.132: Age and metallicity plots for the 1” bin spectra of galaxies in SCGOT.
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In the extracted, 10”, 5” and 3” bins, both Galaxies A and B are SF galaxies.
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Figure 4.133: Activity plots for the extracted spectra of galaxies in SCGOT7.
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Figure 4.134: Activity plots for the 10” bin spectra of galaxies in SCGO7.
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Figure 4.135: Activity plots for the 5” bin spectra of galaxies in SCGO7.
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Figure 4.136: Activity plots for the 3” bin spectra of galaxies in SCGO7.

In the 17 spectra, Galaxy A shows evidence of a composite spectrum with LINER, activity and Galaxy B

show evidence of both SF and LINER activity.
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Figure 4.137: Activity plots for the 1” bin spectra of galaxies in SCGO7.

Galaxy A is a SF galaxy with low-metallicity young populations and mid and high-metallicity old popu-
lations. This implies that the current episode of SF is using low-metallicity gas but the galaxy has undergone
rapid processing of gas via SF >4 Gyrs ago. Galaxy B is also a SF galaxy with low-metallicity populations
of all ages implying that it too still has its cold gas supply. There is also evidence of mid-metallicity young

and old populations and high-metallicity intermediate populations which points to multiple episodes of SF

using preprocessed gas. Galaxy B has a disturbed morphology.

Population ‘ full ‘ 10” ‘ 57 ‘ 3” ‘ 1”7 Population ‘ full ‘ 10” ‘ 57 ‘ 37 ‘ 1”
Galaxy A Galaxy B
Young L-a L-c L-c L-c L-c Young M-a L-c L-c
Intermediate Intermediate H-a H-c H-c | H-c
Old H-a H-c H-c H-c H-c Old M-a M-c H-c L-c
Low Y-a | Y¢c | Y¢c | Y-¢c | Y-c Low 1/0-a | I/O-c I-c O-c
Mid O-a | O-c | O-c O-c O-c Mid Y-c
High O-a | O-c | O-c O-c O-c High I-a O-c I-c I-c
Star Forming X-a X-c X-c X-c X-c Star Forming X-a X-c X-c X-c X-c
Seyfert Seyfert
LINER X-c LINER X-c
AGN AGN
Comp X-c Comp

Table 4.22: Stellar population and activity analysis summary for SCG07. Same codes as in Table

194




4.3.12: All Galaxies

The intermediate density configurations of compact groups appear to be a common phase in galaxy
evolution so it is important to look at how this stage affects all the galaxies in compact groups. It has been
noted in previous studies in Chapter [I| that groups with higher velocity dispersions tend to have more early-
type galaxies. This trend is also present in my data set. In Table , I provide the average velocity dispersion
and the morphological make-up of each group. Studies also show that late-type galaxies tend to reside at the
edges of groups. Groups SCG08, SCG13, SCG82, SCG83, SCG8Y and SCG106 all have late-type member
galaxies. Many of these groups (SCG08, SCG13, SCG82 and SCG88) do not show a clear central galaxy,
implying they have recently approached this configuration. The groups with a mix of morphologies (SCG83
and SCG106) generally show evidence that the early-type members reside closer to the center of the group
and the late-type members are at the edges.

Figure [£.138] plots the SP properties for all galaxies that are members of a compact group separated
by bin size. Many of the galaxies show high metallicity intermediate and old populations, which implies
multiple SF episodes processing the gas. There are more young populations with low-metallicity than with
mid-metallicity, which indicates that many of the galaxies undergoing SF are using low-metallicity gas. This
could indicate that the cold gas supply was recently shutoff or is still present in many of these galaxies,

suggesting that these are recently formed groups.
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Figure 4.138: Age and metallicity plots for all galaxies in a group.
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Figure 4.139: BPT diagrams for all galaxies in a group.

Figure [£.140] plots the SP properties for the 5” and 3” bins for all SF galaxies in a group. There is a
noticeable trend in age and metallicity. As age increases, so does metallicity. The old populations span the

entire metallicity range, which is expected if these galaxies are going through multiple SF episodes in their
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lifetimes, but are more concentrated in the high metallicity bin.
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Finally, Figure [£.141] plots the SP properties in the 1” bins for all galaxies that show activity other than

SF. In the Composite galaxies I see a similar trend as the SF galaxies, which makes sense because they are a

combination of SF and AGN. The galaxies that are classified as AGN, LINER, or Seyfert have intermediate

and old stars that span the metallicity range but the young stars are only found in low-metallicity bins.

Young and intermediate stars are found in both SF and AGN galaxies.
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Figure 4.141: SP properties for all active galaxies other than SF in a group.

To determine the likelihood of a galaxy having been through an interaction that triggered SF, I assign a
score based on characteristics that are expected in those systems. Points were given to galaxies that are in a
group (+1), have a disturbed morphology (DM, +1), have a neighbor < 150 km/s (M., +1 for each galaxy),
have a neighbor within 150 — 300 km/s (My,, +0.5 for each galaxy), have measured SF activity (41), have
detected young populations in their 3” bins (SP,, +1), have similar young, intermediate or old populations
as the other neighbors indicating similar SF epochs (SP,., SP,, +1 for each galaxy). I can populate this
table as more data is acquired. Deep photometry and kinematic analysis will help populate the disturbed

morphology column.
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Table 4.23: Interaction code for each galaxy.

Group |Mem |In Grp| DM | M. | M,, |SF|SP, |SP.|SP, | Total Group |Mem |In Grp| DM | M. | M, | SF |SP, |SP.|SP, |Total
SCGo7| A 1 0 1001 1 1 0 5.0 SCG82 | A 1 1 3 /00| 1 0 0 0 6.0
SCGo7| B 1 1 1 (001 0 1 0 5.0 SCG82 | B 1 0 3 100 1 0 4 0 9.0
SCGo8| B 1 1 21051 1 3 3 12.5 SCG82 | C 1 0 3 100] 1 0 4 0 9.0
SCGOo8| A 1 1 31001 0 0 0 6.0 SCG82 | D 1 0 3 /00| 1 1 4 0 10.0
SCGo8| D 1 0 2 105]|1 1 3 3 11.5 SCG83 | A 1 1 2 10| 1 1 1 3 11.0
SCGo8| C 1 1 31001 1 6 0 13.0 SCG83 | D 1 0 1 |15] 1 1 1 3 9.5
SCG13| A 1 1 1051 1 1 2 8.5 SCG83 | B 1 0 2 |10] 1 0 2 1 8.0
SCG13| B 1 0 11051 1 2 2 8.5 SCG83 E 1 0 3 /05| 1 0 2 1 8.5
SCG13| D 0 0 0]00]|0 0 0 0 0.0 SCG83 | C 1 1 2 10| 1 0 0 0 6.0
SCG13| C 1 0 21001 0 3 0 7.0 SCG88 | B 1 0 1 (00| 1 0 1 0 4.0
SCG62| B 1 1 11051 1 1 3 9.5 SCG88 | A 0 0 0 ]00]| O 0 0 0 0.0
SCG62| D 1 1 0]1.0]0 0 0 2 5.0 SCG88 | C 1 0 0 05| 0 0 0 0 1.5
SCG62| A 1 1 1 (051 1 3 3 11.5 SCG88 | D 1 0 1 05| 1 0 1 0 4.5
SCG68| A 1 0 1 (101 0 1 2 7.0 SCG106| A 1 0 2 100] O 0 2 0 5.0
SCG68| D 1 0 01]10.0]|0 1 0 0 2.0 SCG106| B 1 0 2 100 1 0 3 0 7.0
SCG68| E 1 0 21051 0 2 2 8.5 SCG106| D 0 0 0 |]00]| O 0 0 0 0.0
SCG68| B 1 0 3105]1 0 3 1 9.5 SCG106| C 1 0 2 100] 1 0 3 0 7.0
SCG68| F 1 0 3 105|0 0 3 1 8.5 Total 36.0 |11.0{60.0{14.0{30.0|14.0

SCG68| C 1 0 3 105]|1 0 3 2 10.5

SCG72| D 1 0 01]05]|1 0 0 1 3.5

SCG72| A 1 0 01]105]|0 1 0 1 3.5

SCG72| B 1 0 01001 1 0 0 3.0

SCG72| C 0 0 0]00]|0 0 0 0 0.0

The average score for members with DM is 8. I use this value as the dividing line between galaxies that

have interaction induced SF and those that do not. Members with scores above this value that do not show a

DM are good candidates for follow-up broad-band photometry. Members with low scores and a DM warrant

narrow-band photometry to verify the SPs.

SCGO08 and SCG13 both had SFH summaries that suggested past interactions inducing SF. SCGO08 has

three members with high interaction scores. SCG13 only had two members (A and B) with scores at the

cut-off, suggesting that Galaxy C is not the harasser that induced their SF. SCG68 is a group comprised of

early-type galaxies yet four of its members have interactions scores at or above the cut-off. Galaxies A and

D in SCG62 appear in Figure [4.115|to be in the process of interacting but only Galaxy A’s interaction score

is high. These four groups warrant further study with deep broad-band photometry to look for interaction

effects on the stars, narrow-band photometry to confirm the SPs and deeper spectroscopy to study the radial

distribution of the SPs and SF activity.
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5: Summary and Future Work

In Chapter I summarized my motivations. The most notable observed property of galaxies is the
dependence of morphology on environment. Morphology is defined by the SFH of a galaxy which also
depends on environment. Compact groups of galaxies probe the intermediate density environment to uncover
the mechanisms that remove cold gas from galaxies as they transition from low-density to high-density
environments. Proximity on sky and low velocity dispersions are what sets them apart from other groupings
of galaxies. In this dissertation, I focus on the Southern Compact Groups (SCG) of galaxies discovered by
Tovino, 2002 because they show an interesting distribution of morphology and fit in the FOV of the Goodman
Spectrograph.

In Chapters [2] and [3] I described the two set-ups for my project and the instrumentation results. The
first set-up used the deployable IFU module, CINDERS, with the Goodman Spectrograph on the SOAR
telescope. Because CINDERS was a new instrument, I created a back-up observing strategy using the MOS
capabilities recently added to the Goodman Spectrograph. I would bin along the slit axis in 1”7, 3”, 5” and
10” bins to recover some spatial information.

The CINDERS gantry and probes could not remain on the Goodman spectrograph indefinitely. The
unreliability of the probe positioning on sky made the instrument impossible to use and the movement of
the x axis probe at the limit switches must be accurately quantified. Because we cannot see through the
probes, their positions must be reliably known.

To obtain SP information in the MOS spectra, I used the simple stellar population (SSP) fitting routine
STARLIGHT[130]. STARLIGHT fits a spectrum synthesized from many observed template stars to an
observed spectrum, to constrain properties of the SP. I used 56 MILES SSP template spectra that spanned
their expected age and metallicity ranges of my data as my base[I23]. The activity information (SF or AGN)
is measured from the emission lines after the STARLIGHT model is subtracted from the observed spectrum.
I fit emission lines using PYSPECKIT[I51].

In Chapter [4 I described how I used the MOS on the Goodman Spectrograph to obtain slit spectra on
40 galaxies in 10 SCGs. I complete SP analysis on spectra with S/N in the blue region > 20. To study
the SPs, I binned my results into a 3 x 3 grid of ages and metallicities[I30]. Young populations have ages
< 0.1 Gyrs, intermediate populations have ages 0.1 <t < 4 Gyrs and old populations have ages > 4 Gyrs.

Low metallicity populations have metallicities < —1.31 [M/H], mid-metallicity populations have metallicities
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—0.7< Z < —0.4 [M/H] and high metallicity populations have metallicities > 0.0 [M/H]. I plotted the light
and mass weighted averages of the ages versus the light and mass weighted averages of their metallicities. I
also plotted the light and mass weighted metallicities versus the light and mass weighted averages of their
ages. Light weighted averages focus on the younger populations and mass weighted averages focus on the
older populations. Activity properties were determined using BPT diagrams with the emission lines Hc,
Hp, [NII], [OIII], [SII] and [OI]. The plots were divided into regions where we expect to find SF, AGN,
Seyfert and LINER type galaxies[I41]. If a galaxy had a velocity dispersion > 500 km/s from the rest of the
group members, it was considered out of the group.

From the SP and activity analysis, I constructed a crude SFH for all the groups. I provide snapshots of
the groups that had all members observed. In the snapshots, is a summary of the SP properties from the 5”

or 3” bins and the AGN properties for the 1” bins for group members.
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Figure 5.1: Summaries for group members. I abbreviate the age and metallicity designations as young (Y),

intermediate (I), old (O), low (L), mid (M) and high (H), and the region designations as central (c), middle
(m), and all (a).
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My analysis shows that compact groups with late-type galaxies have much to tell about their SFH through

their stellar populations. Many have high metallicities for their SPs indicating rapid processing of gas via

SF. Most either still have their cold gas supplies or had it shut-off recently, supported by the low-metallicity

young SPs. Every galaxy I observed shows SF or AGN activity. Half of the groups where I observed all

members had at least four accordant members, versus ~ 70% found in the HCGs.

More observations are needed to fully understand these groups. Many of the galaxies did not meet my

S/N criteria and all analyzed did not have high enough S/N in their edges. There are ways to verify the

SP properties I measure with STARLIGHT. One method would involve taking narrow-band images of the

galaxies. In contrast to the age/metallicity /reddening degeneracy of broad-band colors, narrow-band filters
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focus on specific wavelength regions that are dominated by a single population of stars. Another way to
verify ages and metallicities would be to measure the absorption lines found in the composite model spectrum
fit by STARLIGHT. Instead of looking at the properties of the templates that make up the spectrum, I
would attempt the more perilous exercise of analyzing the spectrum as if I did not know the underlying
populations. The model spectrum can also be used to determine stellar masses by looking at the D,,(4000)
and Hd 4 absorption features[dl [6]. Deep photometry in broad-band filters would enable fits to the surface
brightness profiles to the galaxies. Unfortunately, galaxies are too sparse in groups to identify the dynamical
center without X-ray maps.

Much work is needed to understand the SFHs of compact group galaxies. I summarize future work below.

1. Use the Ha and Hf emission lines to estimate reddening. This would give us an idea of how much

gas is still present.
2. Narrow-band photometry would be useful to verify the SPs I am measuring with STARLIGHT.

3. Fitting the absorption lines directly in the model spectrum would give us another measure of metallicity

and ages for the SPs.

4. The D, (4000) and Hé 4 absorption features in the extracted model spectrum will give us estimates of

the M,.

5. Narrow-band Hc« imaging combined with measurements from Ha and Hf line fluxes will provide an

estimate of the mass of ionized Hydrogen.
6. Environmental information for the discordant members. If they are isolated, use them for comparison.

7. We need to do a similar analysis to isolated and cluster galaxies to see how compact groups fit into
galaxy evolution. 950 isolated galaxies can be found in the Catalog of Isolated Galaxies (CIG)[I55].
A galaxy with diameter D is considered isolated when none of its neighbors with diameters d lie
closer than 20d of the considered galaxy. The Analysis of the interstellar Medium of Isolated GAlaxies
(AMIGA) survey further defined the isolation criteria and found 666 galaxies. They analyzed POSS-IE
images of the CIGs and excluded any with neighbors that fell within a minimum radius of 0.5Mpc[I56].
Once we have mass and morphology classifications for our SCG sample, we can define a comparable
sample of CIGs to use in our analysis. The SDSS has spectra of the CIGs and we can find galaxies

with similar S/N to our 3” bins.

8. We also need deeper spectroscopy to get adequate S/N at the edges of these galaxies. The edges are

most likely to be affected by interactions and gas removal by ram pressure stripping as a galaxy enters
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10.

a dense environment.
It may be possible to get stellar kinematic information.

Deep surface photometry would allow us to fit surface brightness profiles to the galaxies. This would
reveal if a galaxy has a disturbed morphology indicating a past interaction. I am currently working
with undergraduate students to take deep photometry of the observed groups using the PROMPT
array to look for visible signs of interactions. These observations use the Sloan filters and maximum
exposure times of the telescopes. The resulting images are bias subtracted, flat fielded, sky subtracted
and stacked to increase the signal in the faint edges of the galaxies. We rely on SExtractor background
estimation to remove the sky. An example of before and after stacked images using dithered and non-
dithered observations are provided. It is clear that dithering the images is superior at removing the

sky background.
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Figure 5.3: Examples of stacked PROMPT images. The left images are a single bias subtracted and flat
fielded image and the images on the right are stacked. The top two images are for SCG15 and use the dithering
method to remove the sky background. The bottom two images are for SCG68 and use SExtractor.

Using an IFS would help with this work. The SAMI survey may have observed some of these galaxies
and our galaxies would fit nicely in their FOV.

This dissertation showed that the SPs of compact groups can provide insight into the SFHs of galaxies
in these intermediate density environments. Fully understanding this important stage in galaxy evolution
requires high S/N spectra combined with deep photometry. Combined with the spectra discussed here,
a much clearer picture of how compact groups fit in the transition from isolated to cluster galaxy should

emerge.
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A.1:

Al.1:

A: STARLIGHT Analysis Results

Age and Z Single Population Bracket Analysis

Young Age Bracket Analysis

Young <logt. >p, <logt.« >nr

Average | Stddev | Noise [10,20,30] | Average | Stddev | Noise [10,20,30]
T<0.1 0.07 0.06 [0.07,0.08,0.08] 0.07 0.06 [0.07,0.08,0.08]
T<02| 02 | 016 | [0.25,025025 | 025 | 016 | [0.25,0.25,0.25]
T7<03 0.32 0.2 [0.32,0.33,0.33] 0.32 0.2 [0.32,0.33,0.33]
T<04| 04 0.25 [0.4,0.4,0.4] 0.4 0.25 [0.4,0.4,0.4]
T<0.5 0.42 0.26 [0.42,0.43,0.43] 0.42 0.26 [0.42,0.43,0.43]
T<0.6 0.47 0.29 [0.47,0.48,0.48] 0.47 0.29 [0.47,0.48,0.48]
T<0.7 0.5 0.3 [0.5,0.5,0.5] 0.5 0.3 [0.5,0.5,0.5]
T<08 0.55 0.33 [0.55,0.55,0.55] 0.55 0.33 [0.55,0.55,0.55]
T<09 0.57 0.35 [0.57,0.58,0.58] 0.57 0.35 [0.57,0.58,0.58]
T<1.0 0.57 0.35 [0.57,0.58,0.58] 0.57 0.35 [0.57,0.58,0.58]
T<11| 06 0.36 [0.6,0.6,0.6] 0.6 0.36 [0.6,0.6,0.6]
T<13 0.65 0.39 [0.65,0.65,0.65] 0.65 0.39 [0.65,0.65,0.65]
T<14 0.65 0.39 [0.65,0.65,0.65] 0.65 0.39 [0.65,0.65,0.65]
T <15 0.67 0.4 [0.67,0.68,0.68] 0.67 0.4 [0.67,0.68,0.68]

Table A.1: Age residuals for young age brackets. Values are in dex.
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A.1.2:

Intermediate Age Bracket Analysis

<logty >p, <logty >

Intermediate | Average | Stddev Noise [10,20,30] Average | Stddev Noise [10,20,30]

01<T<1.7 0.32 0.4 [0.29,0.33,0.33] —0.65 0.85 [—0.44,—0.63,—0.87]
01<T<19 0.33 0.42 [0.3,0.35,0.35] —0.62 0.86 [—0.42,—0.6,—0.85]
01<T<22 0.34 0.45 [0.31,0.36,0.36] —0.6 0.86 [—0.39,—0.58,—0.83]
0.1<T <25 0.34 0.49 [0.29,0.36,0.36] —-0.59 0.85 [—0.38,—0.57,—0.8]
01<T <32 0.29 0.59 [0.22,0.3,0.34] —0.57 0.83 [-0.4,-0.55,—0.75]
0.1<T <35 0.29 0.59 [0.22,0.3,0.34] —0.57 0.83 [-0.4,-0.55,—0.75]
0.1<T<40| —0.08 0.76 [-0.18,-0.06,—0.01] | —0.67 0.7 [—0.61,—0.64,—0.74]

Table A.2: Age residuals for intermediate age brackets. Values are in dex.

A.1.3: Old Age Bracket Analysis
<logt. >, <logt. >
Old Average | Stddev | Noise [10,20,30] | Average | Stddev | Noise [10,20,30]
T>401| -0.06 0.41 [0.01,-0.07,—0.1] | —0.06 0.41 [0.,—0.08,—0.1]
Table A.3: Age residuals for old age bracket. Values are in Gyrs.
A.1.4: Low Z Bracket Analysis
Low Average | Stddev | Noise [10,20,30] | Average | Stddev | Noise [10,20,30]
< Zy>[ < Zy>M
Z < =17 0.3 0.31 [0.3,0.3,0.3] 0.3 0.3 [0.3,0.3,0.3]
Z<-13| 054 0.42 | [0.53,0.54,0.54] | 0.52 042 | [0.5,0.53,0.54]

Table A.4: Z residuals for low Z brackets. Values are in [M/H].
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A.1.5: Mid Z Bracket Analysis

< Zy>p <Zi>Mm
Mid Average | Stddev Noise [10,20,30] Average | Stddev Noise [10,20,30]
~13<Z<-07| —012 | 026 |[-0.19,-0.14,—0.03] | —0.11 | 026 | [0.19,—0.13,—0.03]
-13<Z2<-04 | —0.02 0.21 [-0.02,—-0.01,-0.02] | —0.03 0.21 [—0.03,—-0.02,—0.03]
-13<2<0.0 0.14 0.32 [0.12,0.14,0.15] 0.12 0.33 [0.11,0.12,0.13]

Table A.5: Z residuals for mid Z brackets. Values are in [M/H].

A.1.6: High Z Bracket Analysis

<Z.>p <Zi>Mm
High | Average | Stddev | Noise [10,20,30] | Average | Stddev | Noise [10,20,30]
Z>0.0 0.06 0.14 [0.07,0.06,0.05] 0.06 0.14 [0.06,0.06,0.05]

Table A.6: Z residuals for high Z bracket. Values are in [M/H].
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A.2: Single and Mixed Population Analysis

A.2.1: Single Population All Age and Z Residuals

294 24 56
Age <logts« >,
Average 0.56 0.58 0.56
Stddev 0.64 0.64 0.64
Noise Average [0.54,0.56,0.56] [0.58,0.58,0.58] [0.56,0.56,0.56)
Noise Stddev [0.64,0.64,0.64] [0.64,0.64,0.64] [0.64,0.64,0.64]
<logts« >
Average —1.01 —1.09 —1.08
Stddev 0.65 0.64 0.64

Noise Average

[—0.97,—1.02,—1.02]

[~1.09,—1.09, —1.09)]

[—1.08,—1.08,—1.08]

Noise Stddev [0.65,0.64,0.64] [0.64,0.64,0.64] [0.64,0.64,0.64]
Z < Zi>p
Average 1.03 0.54 1.03
Stddev 0.86 0.86 0.86
Noise Average |  [1.03,1.02,1.03] [0.54,0.54,0.54] [1.03,1.03,1.03]
Noise Stddev 0.86,0.86,0.86] 0.86,0.86,0.86] [0.86,0.86,0.86]
<Zi«>M
Average —-0.34 —0.46 —0.36
Stddev 0.89 0.86 0.87

Noise Average

[—0.30,—0.36, —0.35]

[—0.46, —0.46 — 0.46]

[—0.37,—0.36,—0.36]

Noise Stddev

0.92,0.88,0.86]

[0.86,0.86,0.86]

[0.87,0.87,0.87]

Table A.7: Residuals for single populations. Ages are reported as Log(t), Z is in [M/H].
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A.2.2:

Two Population All Age and Z Residuals

294 24 56
Age <logt. >p,
Average 0.33 0.32 0.27
Stddev 0.46 0.47 0.48
Noise Average [0.32,0.34,0.34] [0.32,0.32,0.33] [0.28,0.27,0.27]
Noise Stddev [0.46,0.46,0.46] [0.47,0.47,0.47] [0.49,0.48,0.48]
<logts« >nr
Average —-1.24 —1.35 —1.37
Stddev 0.46 0.47 0.48

Noise Average

[—1.19,—1.24,—1.27)

[—1.35,—1.35,—1.34]

[—1.37,—1.37,—1.37]

Noise Stddev [0.46,0.45,0.46] [0.47,0.47,0.47] [0.48,0.48, 0.48]
Z < Z¢>L
Average 1.01 0.5 0.96
Stddev 0.88 0.89 0.91
Noise Average [1.02,1.01,1.01) [0.49,0.5,0.5] [0.96,0.96,0.96]
Noise Stddev [0.88,0.87,0.88] [0.89,0.89,0.89] [0.91,0.91,0.91]
<Zi>M
Average —0.35 —0.51 —0.44
Stddev 0.91 0.9 0.91
Noise Average | [—0.32,—0.37,—0.36] [—0.52,-0.5,—0.5] [—0.47,—-0.43,—0.42]
Noise Stddev | [0.95,0.89,0.88] [0.90,0.90,0.89] 0.90,0.92,0.91]

Table A.8: Residuals for two populations. Ages are reported as Log(t), Z is in [M/H].
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A.2.3:

Three Population All Age and Z Residuals

294 24 56
Age <logt. >p,
Average 0.59 0.53 0.45
Stddev 0.59 0.61 0.62
Noise Average [0.58,0.59,0.59] [0.53,0.53,0.53] [0.45,0.45,0.45]
Noise Stddev [0.60,0.58,0.59] [0.61,0.61,0.61] [0.62,0.62,0.62]
<logts« >nr
Average —0.99 —-1.14 —1.19
Stddev 0.59 0.61 0.62

Noise Average

[—0.95,-0.99, —1.02]

[~1.13,—1.14,—1.14]

[~1.19,-1.19,—1.19]

Noise Stddev [0.59,0.58,0.59] [0.61,0.61,0.61] [0.62,0.62,0.62]
7 < Z¢>L
Average 1.03 0.55 1.04
Stddev 0.86 0.86 0.85
Noise Average [1.04,1.03,1.03] [0.55,0.55,0.55] [1.04,1.04,1.04]
Noise Stddev [0.85,0.86,0.86] [0.86,0.86,0.86] [0.85,0.86, 0.86]
<Zi>M
Average —-0.34 —0.45 —0.36
Stddev 0.88 0.86 0.86

Noise Average

[—0.33,-0.36,—0.34]

[—0.46, —0.45, —0.45]

[—0.38,—0.35,—0.34]

Noise Stddev

0.91,0.88,0.86]

[0.86,0.86,0.86]

[0.86,0.86,0.86]

Table A.9: Residuals for three populations. Ages are reported as Log(t), Z is in [M/H].
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Number of Base Templates Analysis

Age Residuals

Young 294 24 56
<logty >p,
Average 0.07 0.07 0.07
Stddev 0.05 0.05 0.05
Noise Average | [0.07,0.07,0.07] | [0.07,0.07,0.07] | [0.07,0.07,0.07]
Noise Stddev | [0.06,0.05,0.05] | [0.05,0.05,0.05] | [0.05,0.05,0.05]
<logt. >nm
Average 0.07 0.07 0.07
Stddev 0.05 0.05 0.05
Noise Average | [0.07,0.07,0.07] | [0.07,0.07,0.07] | [0.07,0.07,0.07]
Noise Stddev | [0.06,0.05,0.05] | [0.05,0.05,0.05] | [0.05,0.05,0.05]

Table A.10: Residuals for all young populations. Ages are reported as Log(t).

Intermediate 294 24 56
<logty >,
Average -0.1 0.49 0.47
Stddev 0.77 0.48 0.48
Noise Average | [—0.2,—0.08,—0.03] [0.49,0.49,0.49] [0.47,0.48,0.47)
Noise Stddev [0.76,0.76,0.78] [0.48,0.48,0.48] [0.48,0.48,0.48]
<logty >nm
Average —0.68 —-1.17 —1.16
Stddev 0.71 0.48 0.48
Noise Average | [—0.62,—0.66,—0.78] | [-1.17,—1.18,—1.18] | [-1.16,—1.17,—1.17]
Noise Stddev [0.72,0.72,0.69] [0.48,0.48,0.48] [0.48,0.48,0.48]

Table A.11: Residuals for all intermediate populations. Ages are reported as Log(t).
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Old 294 24 56
<logt, >p,
Average —0.07 —0.13 —0.14
Stddev 0.37 0.1 0.1

Noise Average

[~0.02,—0.09,—0.11]

[—0.13,-0.13,—0.13]

[—0.13,—0.14,—0.14]

Noise Stddev 0.61,0.1,0.1] [0.1,0.1,0.1] [0.1,0.1,0.09]
<logts« >
Average —0.08 -0.13 -0.14
Stddev 0.36 0.1 0.1

Noise Average

[—0.02,—0.09,—0.11]

[~0.13,—0.13,—0.13]

[—0.14,—0.14,—0.14]

Noise Stddev

(0.61,0.1,0.1]

[0.1,0.1,0.1]

0.1,0.1,0.0]

Table A.12: Residuals for all old populations. Ages are reported as Log(t).

7 Residuals

Low 294 24 56
< Zi>L
Average 0.54 —0.07 0.54
Stddev 0.42 0.42 0.42
Noise Average | [0.53,0.54,0.54] | [—0.07,—0.07,—0.07] | [0.54,0.54,0.54]
Noise Stddev | [0.42,0.42,0.42] |  [0.42,0.42,0.42] | [0.42,0.42,0.42]
<Zi«>M
Average 0.52 —0.07 0.54
Stddev 0.43 0.42 0.42
Noise Average | [0.5,0.53,0.54] | [—0.07,—0.07,—0.07] | [0.54,0.54,0.54]
Noise Stddev | [0.44,0.42,0.42] |  [0.42,0.42,0.42] | [0.42,0.42,0.42]

Table A.13: Residuals for all low Z populations. Zs are in [M/H].
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Mid 294 24 56
< Zi>L
Average —0.02 —0.15 —0.02
Stddev 0.21 0.15 0.17

Noise Average

[~0.03,—0.01,—0.01]

[—0.15,—0.15,—0.15)

[—0.02, —0.02,—0.02]

Noise Stddev 0.24,0.21,0.17] 0.15,0.15,0.15] 0.18,0.17,0.16]
<Zi>wMm
Average —0.03 -0.15 —0.04
Stddev 0.21 0.15 0.17

Noise Average

[~0.03,—0.02, —0.03]

[~0.15,—0.15,—0.15]

[—0.04, —0.04,—0.04]

Noise Stddev

0.24,0.21,0.17]

0.15,0.15,0.15]

0.18,0.17,0.16]

Table A.14: Residuals for all mid Z populations. Zs are in [M/H].

High 294 24 56
< Zi>p
Average 0.06 0.1 0.07
Stddev 0.14 0.12 0.14
Noise Average | [0.07,0.06,0.05] [0.09,0.1,0.1] [0.07,0.07,0.06]

Noise Stddev

[0.14,0.14,0.14]

[0.13,0.12,0.12]

[0.14,0.14,0.14]

< Ze>M
Average 0.06 0.1 0.07
Stddev 0.14 0.12 0.14
Noise Average | [0.06,0.06,0.04] | [0.09,0.1,0.1] | [0.07,0.07,0.06]
Noise Stddev | [0.14,0.14,0.14] | [0.13,0.12,0.12] | [0.14,0.14,0.14]

Table A.15: Residuals for all high Z populations. Zs are in [M/H].
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B: CINDERS Observations

Table B.1: First pass of observations

Field Exposure time (min) Month to If need bundle for sky
(bright,grey,dark) observe
SCG2114-2301 ACF 82 Jul 20 - Aug 30 AD 98
EDB , .95 CB 114,73
EF —, 82
SCG2200-2241 AB 105 Aug 1 - Sep 15
CD —,-,120
SCG0007-4642 DAB , 118 Sep 10 - Oct 10 AB -, 118
DCB 118 DC -, 118
SCG0018-4854 CDA 101 Sep 15 - Oct 1 DA 120
CBA —, 86 CB 101
SCG0030-2553 DAB 111,72 Sept 5 - Oct 15 AB 1156
DCB 111,72 DC 111,71
SCG0141-3429 BAC —, 94 Sept 25 - Nov 5 BA 112
ED -, 111 BC 94
ED 111
SCG0301-5041 ACB 101,65 Oct 1 - Nov 30 BA —,,120
CD -, 115 CD 115
SCG0316-5433 ABC 115 Oct 10 - Dec 1 AB 117,76
ADC 108,70 DC 108,69
SCG0537-2925 DAB —,108,69 Nov 20 - Jan 20 AB --,117
DCB —,108,69 DC 108,69
SCG0540-2610 CBA 120,59,38 December BA 86,56
CDA 105,67 CD 105,67

Total hours

dark: 2790-4185

grey: 1204-1806

Total exposures dark: 28-42
grey: 12-18
Total galaxies 43




Table B.2: Second pass of observations

Field Exposure time (min) Month to If need bundle for sky
(bright,grey,dark) observe
SCG2128-4614 CAB —-,119 Jul 25 - Aug 25 AB 115,74
ABCDE CED -, 116 CB 119
ED 115
SCG2159-2241 BA ,,103 Aug 1 - Sep 10
ABCDE CA 88,57
DA 101
EA 111
SCG0031-2143 AB 104 Sept 5 - Oct 15
ABCDE CD 107
ED 106
SCG0131-3851 BA —,-,109 Sept 20 - Oct 31
ABCDE CD 107
ED -, 112
SCGO154-2020 ABC -, 81 Sept 30 - Oct 2 AB 83
ABCD DBC 108 DC -, 108
SCG0319-5426 CA 114 Oct 10 - Dec 1
ABCDE DE 89,57
DB 111
SCG0533-5057 AB —82,53 December
ABCD CD —,-,117
SCG0609-4458 BA , .92 Dec 1 - Jan 15
ABCD DC, 118

Total hours

dark: 4206-6309

Total exposures

dark: 42-63

Total galaxies

37
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Table B.3: Remaining observations.

Field Exposure time (min) Month to If need a bundle for sky
(bright, grey, dark) observe
SCG2101-3536 ACB —,,110 Jul 15 - Aug 30 AD 110
ABCD BCD —, 110 BC 110
SCG2104-2539 BA 97,47,31 Jul 15 - Aug 30
ABCD CD 118
SCG2110-3806 AB 113 Jul 20 - Aug 30
ABCD DC 92
SCG2123-2159 CBA 116 Jul 25 - Aug 30 DA 106
ABCD BAD-, 106 CB .96
SCG2124-2314 DAB 103 Jul 25 - Sep 1 DA 103
ABCD CAB 115 CB 115
SCG2136-5854 AC —-—,103 August
ABCD BD , 88
SCG2140-4329 ABD 102 Aug 1-Sep 5 AB -, .82
ABCD ADC 102 CD —,,102
SCG2147-4631 CB -89 Aug 5 - Sep 5
ABCD DA —,,96
SCG2203-2812 ADB -, 119 Aug 1 - Sep 15 AB-, 87
ABCD CDB —,,119
SCG2217-5521 AB 116 Aug 1 - Sep 15
ABCD CD 115,73
SC(2226-3546 EDB 95 Aug 5 - Sep 15 AB ,,103
ABCDE CA —,99.64 CB 99,64
ED —, .95
SCG2254-4301 BDA —,,120 Aug 15 - Sep 20 BA -, 114
ABCD CBD —,-,120 CD —-,120
SCG2315-2125 DBA —, 113 Aug 20 - Sep 25 BA —, 119
ABCD DCA —,.113 DC -, 113
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SCG2316-2259 DAC --,103 Aug 20 - Sep 30 BA —-,109,70
ABCD BA -,109,70 DC ——,120
SCG2345-2824 AB 97,63 Aug 20 - Oct 5
ABCD DC -,-,98
SCG2358-4339 ACB -, 81 Sep 1 - Oct 5 AB --88
ABCDE DBE —-,114 CB --81
DE -,,114
SCG0002-3558 CDA —-,95 Sep 1 - Oct 10 BA -, 113
ABCD CBA —,-,117 CD -,-,117
SCG0007-3753 ACD ——,119 Sep1-0Oct 10 | AB-,-,98 CD —,,119
ABCD ADB --,119
SCG0009-5713 BCA -,-,110 Sep 1 - Oct 10 AB -85
ABCD BCD 81 CD -—,110
SCG0012-2421 BCD -,-,105 Sep 1 - Oct 10 BA —,,104
ABCD BAD 105 CD -,-,99
SCG0028-2254 CA --115 Sept 5 - Oct 15
ABCD BD -, 115
SCG0045-2043 BCA ——,99 Sept 15 - Oct 15 BA 102
ABCDE EDC -,-,96 BC --,99
ED -,-,95
SCG0045-4831 BA -0 Sept 15 - Oct 5
ABCD BC -,-,106
BD -,,110
SCG0048-3242 ADB - 113 Sept 5 - Oct 25 AB -,110
ABCD CDB -,-,113 CD -,-,113
SCG0050-3517 ABE —-,109 Sept 10 - Oct 25 AB 120
ABCDE DC -,-,113 DC —-,113
BE —,-,109
SCG0100-2208 DCA ——112 Sept 15 - Oct 25 BA -,-,107
ABCD BC -,,116 DC 112
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SCG0102-4714 BC 115,74 Sept 20 - Oct 15
ABCDE BE —,-,98
CA 115,74
SCGO0105-1747 BAD ——,107 Sept 20 - Oct 20 BD -,—,107
ABCD CBA --,107 CA ——107
SCG0106-4722 DAB —,-115 Sept 20 - Oct 15 AB 107,52,34
ABCD DAC —-,115 DC 115
SCGO0121-3521 BA —,69,45 Sept 15 - Oct 31
ABCD CD —,-,101
SCG0147-2506 BCA —-117 Sept 25 - Nov 5 BA 75,49
ABCDE DEA -,-,120 CD —,-,113
ED —,-,115
SCG0156-5629 BA —-,85 October
ABCD CD —,112,72
SCGO0549-3447 CA - 111,71 Nov 20 - Jan 20
ABCD DB ——-,94
SCG0608-4734 CAD —,-,104 Dec 10 - Jan 10 CA 114
ABCDEF CBD —,—,104 CB --,114
CFE —,-,107 DE —,-,112
FE --,107
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