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ABSTRACT
BENJAMIN R. SAVILLE: Bayesian Multilevel Models and Medical Applications.

(Under the direction of Dr. Amy Herring.)

Deciding which predictor effects may vary across subjects is a difficult issue. Standard

model selection criteria are often inappropriate for comparing models with different numbers

of random effects due to constraints on the parameter space of the variance components. We

propose a straightforward approach for testing random effects in the linear mixed model using

Bayes factors. We scale the random effects to the residual variance and introduce parameters

that control the relative contributions of the random effects. The resulting integrals needed to

calculate the Bayes factor are low-dimensional integrals lacking variance components and can

be efficiently approximated with Laplace’s method. Our method incorporates default priors

and can test multiple random effects simultaneously. We illustrate our method on data from a

clinical trial of patients with bipolar disorder and on data from an environmental study of water

disinfection by-products and male reproductive outcomes.

We extend our method for testing random coefficients to multilevel linear models. A major

contribution of our method is the ability to test several variance components from multiple

factors simultaneously, and to do so for nested, non-nested, or cross-nested multilevel designs.

We illustrate our method on a study investigating significant predictors of infant birth weights

in New York City.

Random effects are often used for jointly modeling distributions of correlated longitudinal

and survival outcomes. These methods generally require strong parametric assumptions and

can be difficult to implement. We propose a straightforward approach to evaluate the effect of a

treatment or baseline predictor on both longitudinal and survival outcomes simultaneously. We

define cutpoints of interest in the longitudinal outcome and time-to-event endpoints based on

time to reach a given cutpoint or the survival event, whichever comes first. We use multivariate

time-to-event methods on the resulting endpoints to evaluate the effect of the treatment or

baseline predictor. The method is particularly attractive in clinical trial settings in which the
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primary analysis must be specified a priori. We illustrate the method on data from a study of

chronic lung disease.
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CHAPTER 1

Literature Review

1.1 Introduction

1.1.1 Model uncertainty

Many researchers are interested in finding the “best” statistical model to make scientific in-

ferences. This usually involves determining the model class as well as which predictors to

incorporate in the model. The model class is the general model structure which determines the

relationship between the predictors and the outcome. In generalized linear models, the model

class is determined by the link function, such as the identity link in linear regression, or a logit

link in logistic regression. Although determining the model class may be straightforward for

some applications, there may be other situations in which there is potentially more than one

reasonable model class. For example, two possibilities for modeling a dichotomous outcome

include logistic regression and probit regression. Both model classes may reasonably explain the

data, yet in practice we often choose one model class (e.g. logistic) and ignore the other (e.g.

probit).

After identifying a model class, one must also decide which predictors and interactions to

include in the model. There has been substantial research on this topic. The emphasis on

variable selection in the literature has made the term “model selection” synonymous with the

term “variable selection.” The ideal study would begin with a small number of predictors

specified a priori, or before the data are collected. In practice, however, researchers often collect



data on as many variables as they can afford or manage and use the data to determine which

variables to include in the model used for inference. This may reflect their uncertainty in the

relationship between the outcome and the potential predictors. Due to sample size constraints,

it may not be possible to fit one model that incorporates all variables of interest. Hence one is

forced to determine which of all possible combinations of variables best explains the data.

An important element of choosing a good statistical model is the selection of an appropriate

covariance model. This structure can be implicitly defined by the choice of model class and

predictors or it can be manipulated within the context of a chosen model. In many model

classes there are a large variety of options in choosing a covariance structure. This leads to the

task of formally determining whether a chosen covariance structure is appropriate for the data.

1.1.2 The longitudinal linear mixed model

Covariance model selection can be especially difficult in the context of random coefficient mod-

els. These models incorporate random coefficients that vary by group, introducing intraclass

(i.e. within-group) correlation in the covariance structure. Consider a linear mixed model for

longitudinal data,

yi = Xiβ + Zibi + εi, (1.1)

in which yi = (yi1, . . . , yini
)′ is a ni × 1 vector of responses, Xi = (xi1, . . . , xip) is a ni × p

design matrix, Zi = (zi1, . . . , ziq) is a ni × q design matrix, β = (β1, . . . , βp)
′ is a p × 1 vector

of parameters, and bi = (bi1, . . . , biq)
′ is a q × 1 vector of random coefficients (Laird and Ware,

1982). The matrix Zi is usually considered to be a subset of Xi. It is assumed that εi ∼ N(0,R)

is independent of bi ∼ N(0,ψ), in which ψ is the q× q covariance matrix of the random effects.

A popular choice for R is σ2I, which assumes the observations are independent within a subject

given the random coefficients.

The random coefficients bi, often referred to as random effects, allow the estimated parame-

ters to vary by individual. This introduces intraclass correlation for observations within a given

individual. In the context of model selection, different combinations of random effects lead to

different covariance structures. For situations in which the covariance model is of primary inter-
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est, or the covariance model has a large impact on inference, one must carefully choose random

coefficients for inclusion in a model. This leads to the problem of formally testing whether a

random coefficient should be included in a model.

1.1.3 Frequentist methods for testing variance components

Testing whether a random effect should be included in a model involves the test of whether

the variance of that random effect, say ψ, is equal to 0. This can be written as H0 : ψ = 0

versus H1 : ψ > 0. Because the constrained variance component test lies on the boundary

of the parameter space, classical procedures such as the likelihood ratio test can break down

asymptotically (Pauler et al., 1999; Lin, 1997; Self and Liang, 1987; Stram and Lee, 1994). It

has been shown that tests for a single variance component can be carried out using mixtures of

chi-square distributions (Self and Liang, 1987). For a linear mixed model, Stram and Lee (1994,

1995) show that a likelihood ratio test of q versus q + 1 correlated random effects has a null

distribution of 0.5(χ2
q + χ2

q+1). For example, consider a linear mixed model for a response yij at

time tij, with a random intercept and a random slope for the effect of time,

yij = β0 + bi0 + (β1 + bi1)tij + εij, (1.2)

with bi ∼ N(0,ψ) independent of εij ∼ N(0, σ2). Suppose we wish to test for the presence of

the random slope bi1, or H0 : ψ22 = 0 versus H1 : ψ22 > 0. A model constraint placed by this

hypothesis is that the covariance of the random effects (ψ12) also equals 0. The likelihood ratio

test statistic is equal to twice the difference of the log likelihoods, or

TLR = −2{l(y|H0, θ̂0)− l(y|H1, θ̂1)}, (1.3)

in which l(y|H0, θ̂0) and l(y|H1, θ̂1) are the log likelihoods under the null and alternative hy-

potheses evaluated at their maximum likelihood estimates, respectively. It follows that TLR

asymptotically follows a 50:50 mixture of chi-square distributions with 1 and 2 degrees of free-

dom (Stram and Lee, 1994, 1995). The critical value for an α = 0.05 test using this mixture

distribution is 5.14, indicating one would reject H0 for TLR > 5.14.

3



Crainiceanu and Ruppert (2004) show that approximations to the null distribution using the

50:50 mixture of chi-square distributions can perform poorly in simulations. They argue that

the theory of Self and Liang (1987) only applies to linear mixed models in which the data vector

can be partitioned into a large number of independent and identically distributed subvectors

(e.g. subjects). This may be violated when the number of subjects is not sufficient to ensure

an accurate asymptotic distribution. For example, consider a cluster-randomized study with

50 patients randomized within each of 5 different hospitals (250 total patients). In this case

there are only 5 independent and identically distributed clusters (hospitals). Crainiceanu and

Ruppert (2004) and Crainiceanu (2005) derive the finite sample and asymptotic distribution of

the likelihood ratio test, and show that under general conditions the null distribution for testing

a single variance component is different from a 50:50 mixture of chi-square distributions. The

present a restricted likelihood ratio test based on the restricted maximum likelihood (REML),

and derive its exact null distribution. Using eigenvalues based on design matrices, they use a

simulation algorithm to derive the distributions of interest.

Note that these approaches using the likelihood ratio test are only applicable for testing a

single variance component. In more complex model comparisons (i.e. testing more than one

random effect), distributions of test statistics become more complex and are not easily applied

(Pauler et al., 1999; Feng and McCulloch, 1992). For example, a test of k uncorrelated variance

components ψm = 0 versus ψm > 0 (m = 1, . . . , k) has a null distribution that is a mixture of

the form (Molenberghs and Verbeke, 2007; Shapiro, 1988)

k∑

m=0

2−k




k

m


 χ2

m. (1.4)

Such mixtures can be calculated from a weighted average of p values corresponding to each of the

χ2 distributions. For a broad number of cases, determining the mixture’s weights is a complex

and possibly numeric task (Verbeke and Molenberghs, 2003). For addressing multiple variance

components, Crainiceanu (2007) suggests using the parametric bootstrap to approximate the null

distribution of the restricted likelihood ratio test. In cases that are computationally demanding,

the author proposes obtaining finite sample approximations according to Greven et al. (2008).
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Some alternative frequentist methods for testing a single variance component include score

tests (Lin, 1997; Commenges and Jacqmin-Gadda, 1997; Verbeke and Molenberghs, 2003; Molen-

berghs and Verbeke, 2007; Zhang and Lin, 2008), Wald tests (Molenberghs and Verbeke, 2007;

Silvapulle, 1992), and generalized likelihood ratio tests (Crainiceanu and Ruppert, 2004). Sim-

ilar to the likelihood ratio test, these alternative tests also have modified null distributions due

to the boundary constraint (i.e. these are modified forms of the usual asymptotic tests). For one

sided variance component tests, Molenberghs and Verbeke (2007) show that the null distribution

of the test statistics for the likelihood ratio, score and Wald tests are asymptotically equivalent.

Zhang and Lin (2008) conduct a simulation in the setting of generalized linear mixed models,

and show that the one-sided score test is slightly more powerful than the likelihood ratio test for

testing a single variance component. Additionally, their simulation showed that the likelihood

ratio test may suffer from numerical instability when the variance component is small and nu-

merical integration is high dimensional. Generally, the score and Wald tests are more difficult

to implement than the likelihood ratio test and require substantial programming in standard

statistical software packages (Molenberghs and Verbeke, 2007). As with the likelihood ratio

test, these alternative approaches are not easily extended for testing multiple random effects

simultaneously.

In more simple settings such as random effects ANOVA with balanced and complete data,

one sided tests of the variance components can be carried out using F tests (Neter et al., 1996,

pg. 959). However, in most applications the assumption of balanced and complete data is not

realistic.

A common frequentist method for choosing between competing random effects models is the

Akaike information criterion (AIC) (Akaike, 1973). Akaike suggested that one should choose

the model that minimizes the quantity

AIC = −2 log{p(y|θ̂)}+ 2d, (1.5)

in which d is the number of parameters and θ̂ is the MLE. The AIC is popular because the

models being compared need not be nested (although the test was originally developed for nested

models). Shibata (1976) and Katz (1981) (Kass and Raftery, 1995) show that the AIC tends to

5



overestimate the number of parameters needed. In random effects models, the AIC suffers from

ambiguity in the model dimension d.

Hence there are a lack of simple and efficient frequentist-based methods for testing variance

components, especially for testing multiple variance components simultaneously. As an alter-

native to these frequentist-based methods, we consider Bayesian methods for testing random

coefficients. Before we discuss specific challenges associated with such tests, we first introduce

Bayesian methodology in the context of model selection.

1.2 Bayesian methods for model selection

1.2.1 Introduction to Bayesian inference

We introduce Bayesian methods by considering a density function p(y|θ) for observed data y and

a parameter vector θ. The likelihood function in Bayesian inference is any function proportional

to p(y|θ), i.e.

L(θ) ∝ p(y|θ). (1.6)

In contrast to frequentist methods in which θ are fixed and unknown, Bayesian methods assume

that the parameter vector θ has a prior probability distribution π(θ), reflecting uncertainty in

the parameters θ. The word “prior” is used to denote that π(θ) is the density before the data

y are observed. The prior distribution allows the researcher to incorporate prior knowledge

about the behavior of θ before data are collected. Bayesian inference is primarily based on

the posterior distribution of θ given the observed data y. Using Bayes’ Theorem, the posterior

distribution can be written as

p(θ|y) =
p(θ,y)

p(y)
=

p(y|θ)π(θ)

p(y)
=

p(y|θ)π(θ)∫
p(y|θ)π(θ)dθ

, (1.7)

in which

p(y) =
∫

p(y|θ)π(θ)dθ (1.8)

6



is the marginal distribution of y, also known as the normalizing constant. In most inference

problems this quantity is not available in closed form. A common technique is to identify the

kernel density of p(θ|y) by recognizing that the posterior distribution of θ is proportional to

p(y|θ)π(θ), i.e.

p(θ|y) ∝ p(y|θ)π(θ). (1.9)

In cases in which the kernel is not identifiable, p(y) must be computed directly, unless more

advanced techniques are used (e.g. Markov chain Monte Carlo methods). If we can calculate

(or estimate) the posterior density p(θ|y), we can use various posterior summaries for inference

on the unknown parameters θ (e.g. the mean, mode, variance, and quantiles).

1.2.2 The Bayes factor

The Bayes factor is the posterior odds of one hypothesis versus another when the prior prob-

abilities of the two hypotheses are equal (posterior odds = Bayes factor * prior odds). From

Bayes’ theorem, we have

p(Hk|D) =
p(D|Hk)p(Hk)

p(D|H0)p(H0) + p(D|H1)p(H1)
, k = 0, 1, (1.10)

in which p(D|Hk) is the marginal likelihood of the data given hypothesis Hk and p(Hk) is the

prior probability that Hk is true. It follows that

p(H1|D)

p(H0|D)
=

p(D|H1)p(H1)

p(D|H0)p(H0)
, (1.11)

in which

B10 =
p(D|H1)

p(D|H0)
(1.12)

is the Bayes factor, or the ratio of the posterior odds of H1 to its prior odds divided by ratio

of the posterior odds of H0 to its prior odds (Kass and Raftery, 1995; Good, 1958). When the

two hypotheses H1 and H0 are equally probable a priori, (i.e. p(H1) = p(H0)), the Bayes factor
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is equal to the posterior odds in favor of H1 versus H0. The numerator and denominator of

equation (1.12) can be written as

p(D|Hk) =
∫

p(D|θk, Hk)π(θk|Hk)dθk, (1.13)

in which θk is a vector of parameters and π(θk|Hk) is the prior distribution of θk. The quantity

p(D|Hk) is known as the marginal likelihood, integrated likelihood, or predictive probability

of the data. One limitation of Bayes factors lies in the influence of the prior distribution. It

can be seen from equation (1.13) that the Bayes factor is a function of the prior distribution

imposed by the investigator. Hence, there are an infinite number of Bayes factors that arise

from different priors. Because only some priors may be appropriate for the data, not all Bayes

factors are scientifically meaningful. In parameter estimation, in which inference is based on the

posterior distribution p(θk|D, Hk), priors are often picked for convenience under the knowledge

that if the sample is large, the effect of the prior on the estimates is small. The same rationale

cannot be applied to hypothesis testing, because Bayes factors tend to be more sensitive to the

priors than estimates based on a posterior distribution (Kass and Raftery, 1995; Kass, 1993).

For an example, see Kass (1993), in which a sensitivity analysis reveals that the Bayes factor

varies more than the posterior mean estimate across a range of possible priors. Kass and Raftery

(1995) point out that choosing “non-informative” priors (as often done in Bayesian inference)

can force the Bayes factor to favor H0. As a result, in practice it is important to implement a

sensitivity analysis to determine the influence of a chosen prior.

The Bayes factor is a summary of evidence provided by the data of one hypothesis versus

another. Jeffreys (1961) suggests interpreting the Bayes factor according to the scale in Table

1.1 (Wasserman, 2000). For example, if B10 = 12, then H1 is 12 times more likely than H0

(given the data), indicating strong evidence for H1 relative to H0. If B10 = .08, then H0 is 12.5

(1/.08) times more likely than H1 (given the data), indicating strong evidence for H0 relative

to H1.
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1.2.3 Bayes factors versus Frequentist hypothesis tests

The common frequentist approach to model selection is to begin with a certain model class

and a potentially large number of predictor variables. Model selection methods (e.g. step-

wise selection) are used to determine which variables are most likely to be associated with the

outcome. A final model is chosen by including only the significant or important predictors

resulting from the selection method. Estimates and inference are based on this “best” model.

One problem with this approach is that the investigator chooses one model out of many

possibilities, and proceeds with inference as if it were the only model ever considered. By

choosing among several models, one is increasing the probability of finding “significant” variables

by chance alone. This can cause the p-values in the final model to be very misleading (Raftery,

1995; Miller, 1984; Freedman, 1983). For example, suppose a researcher collects data on one

outcome and 100 predictors, and the predictors are independent of each other. Suppose also

that the researcher uses a variable selection method to arrive at a final model that includes

5 “significant” predictors, all with p-values less than 0.05. One may want to interpret these

p-values as the probability of observing data as extreme or more extreme than the observed

data, given the null hypothesis of no association between the predictors and outcome. At the

alpha = 0.05 level, this would imply a statistically significant association between each of the five

predictors and the response. However, this interpretation of the p-values is no longer valid. Basic

laws of probability state that even if there is no association between any one of the predictors

and the response, on average 5 out of 100 variables will have p-values less than 0.05 by chance

alone. This suggests one can expect about 5 out of 100 variables to be statistically significant,

even when there is truly no relationship between any one of the predictors and the outcome.

This means that claims of an association between these 5 carefully chosen predictors and the

response may be completely false.

Another difficulty associated with frequentist approaches to model selection involves the

hypothesis test. In frequentist settings, it is assumed that a null hypothesis (H0) is true, and a

p-value indicates the degree of evidence against H0. If one were comparing two nested models,

an appropriate null hypothesis is that the effect of interest in the larger model is equal to 0. It

is generally understood that the effect cannot exactly equal 0, but can be close enough to 0 to
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be clinically meaningless. Raftery (1993, 1986a) argues that p-values ask the wrong question.

Instead of asking “Is the null model true?”, a better question is “Which model predicts the data

better?” A Bayesian approach using Bayes factors is designed to answer the latter question. The

Bayes factor is the ratio of posterior to prior odds, and measures how well one model predicts

the data compared to another model. This can be advantageous in the above example because

one does not need to assume that an effect is arbitrarily close to 0. In addition, if a frequentist

approach yields a non-significant p-value, it can be unclear whether there is evidence for the

null hypothesis or whether there are not enough data. In contrast, Bayes factors allow one to

assess the evidence for a null hypothesis versus the alternative hypothesis. In cases in which

there are not enough data, the evidence using Bayes factors is unlikely to be strong in either

direction, reflecting the uncertainty present in the data.

The differences between p-values and Bayes factors become more apparent in large samples.

Frequentist methods tend to reject H0 almost systematically in large samples while Bayes factors

do not. Frequentist approaches to this problem include adjusting the level of significance (e.g.

0.01 instead of 0.05) or simply ignoring the p-values and basing inference on other criteria that

appeal to common sense (Kass and Raftery, 1995). Because Bayes factors measure how well one

model predicts the data versus another, no adjustments are needed for large samples. In the

case of small samples, frequentist methods based on asymptotic theory may not be valid. Of

course exact methods, if they can be used, do not rely on asymptotics. Bayes factors, however,

do not require asymptotics for valid inference.

Frequentist approaches often assume there are only two possible hypotheses to entertain,

even though there may be additional hypotheses of interest. When multiple hypotheses are

compared, frequentist methods must make adjustments to the significance level in order to

correctly interpret the p-values, due to the independence assumed between each of the tests.

Additional complications arise if the hypotheses are non-nested. Bayes factors are well suited

for comparing many models, nested or non-nested. The interpretation of a Bayes factor does

not change in the presence of multiple testing, although one still may need to control for an

increased rate of false positives. To limit false positives that may arise in Bayesian multiple

testing, one can build information about correlated hypotheses into the prior distribution (e.g.

setting the probability that β = 0 in the prior).
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Bayes factors follow the likelihood principle, which says that if two distinct sampling designs

yield proportional likelihood functions, then inference about the parameters of interest will be the

same between the two designs. In other words, all of the information in a sample is contained in

the likelihood function. This provides flexibility in studies in which data are accrued sequentially

(e.g. clinical trials), in which certain aspects of the study can be modified without changing the

likelihood function. For example, one can conduct an unscheduled analysis of the data without

affecting the interpretation of the final analysis. This can allow one to modify the sample

size or even stop a clinical trial according to pre-specified criteria. In contrast, frequentist

methods generally do not follow the likelihood principle. As an example (taken from Ibrahim,

2005), consider 12 independent coin tosses, in which one observes 9 heads and 3 tails. We are

interested in testing the hypothesis H0 : θ = 1/2 versus H1 : θ > 1/2, in which θ is the true

probability of heads. Depending on the experiment, one could base the likelihood either on the

binomial distribution or the negative binomial distribution. If we let n = 12 be fixed beforehand,

and define x as the number of heads in 12 tosses, then x follows a binomial distribution. The

likelihood function in this experiment is

L1(θ) =




12

9


 θ9(1− θ)3. (1.14)

As an alternative experiment, suppose one continues flipping the coin until the third tail appears,

and x equals the number of heads required to complete the experiment, then x follows a negative

binomial distribution. In this case, the likelihood function is

L2(θ) =




11

9


 θ9(1− θ)3. (1.15)

The two likelihoods differ by a constant, meaning they are proportional to each other. From a

Bayesian perspective, the posterior distribution of θ is the same for both experimental designs,

i.e.

p(θ|x) ∝ θx(1− θ)12−xπ(θ) (1.16)
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for a chosen prior π(θ). Hence Bayesian inference (including those based on Bayes factors) will

be the same regardless of the experimental design. From a frequentist perspective, inferences

about θ are different under each design. The p-value for the binomial design is

p1 =
12∑

j=9




12

j


 θj(1− θ)12−j = 0.075, (1.17)

while the p-value for the negative binomial design is

p2 = 1−
8∑

j=1




2 + j

j


 θj(1− θ)3 = 0.0325. (1.18)

At a significance level of 0.05, we make two different conclusions depending on the distribution

of x. We reject H0 in the negative binomial design, yet fail to reject H0 in the binomial design.

Now suppose that interim analyses (both Bayesian and frequentist) were conducted before

all the coin flips were completed under the first experimental design. The complete likelihood

based on all the observed data would not be altered by this interim analysis (as long as the

experimental design is not changed). Hence conclusions based on Bayesian inference would not

be affected by the interim analysis. However, the frequentist p-value based on the complete

data would now have a different interpretation, because the type I error rate has been inflated

by performing two tests on the same data.

Many critics of Bayesian methods argue that Bayesian inference (and hence model selec-

tion) is subjective due to the elicitation of prior distributions on the unknown parameters.

These subjective prior distributions can have a large influence on inference through the poste-

rior distribution. When there is prior knowledge about a parameter, a Bayesian approach is

advantageous because it can incorporate the prior knowledge. In cases in which there is no prior

knowledge, it is desirable to formulate “non-informative” (i.e. well-spread out) priors that allow

the observed data likelihood to dominate the posterior distribution. There is a large literature

on challenges with prior selection as the prior distributions must be carefully defined.

Another major criticism of Bayesian methodology lies in the computational challenges associ-

ated with estimating posterior distributions and Bayes factors. There are only a few statistical
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software packages that offer Bayesian inference (e.g. WinBUGS, limited capabilities in SAS

PROCs BGENMOD, BLIFEREG, and BPHREG), meaning many Bayesian applications must

be programmed by the user. This requires a higher level of knowledge and more user time than

standard frequentist approaches. Frequentist methods do not incorporate prior distributions

and hence do not rely on subjective information. They also are straightforward to implement in

standard statistical software packages. Hence, despite some advantages of Bayesian approaches

to model selection, frequentist methods are most commonly implemented in practice.

1.2.4 Approximating the Bayes factor

The main limitation of Bayes factors is that the marginal likelihood (1.13) can be difficult to

calculate, especially when θk has many dimensions. For example, consider a simple logistic

regression model. Suppose yi, . . . , yn are independent Binomial(1, pi) random variables

pi =
exp{x′iβ}

1 + exp{x′iβ}
(1.19)

in which xi is a vector of predictors with corresponding parameters β. Suppose we specify an

non-informative improper prior π(β) ∝ 1. This suggests that β has a uniform prior distribution

on the entire real line, and that the odds ratio φ = eβ has a prior distribution p(φ) ∝ 1/φ on

the positive real line (which is not necessarily non-informative). Then the marginal likelihood

is

p(y) =
∫

p(y|x,β)dβ (1.20)

=
∫

exp

[
n∑

i=1

{yix
′
iβ − log (1 + exp{x′iβ})}

]
dβ, (1.21)

which does not have a closed form solution. Hence an alternative strategy is needed to compute

the marginal likelihood. Numerical methods of computing complex marginal likelihoods are not

efficient nor useful in most cases. However, there are some useful approximations that perform

well in certain settings.

Laplace’s approximation to the marginal likelihood (Tierney and Kadane, 1986) is derived

by assuming the posterior density, which is proportional to p(D|θ, H)π(θ, H), is highly peaked
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about its maximum θ̃ (the posterior mode). This is usually the case when the likelihood function

p(D|θ, H) is peaked near its maximum, as in large samples. Using the notation of Kass and

Raftery (1995), let l̃(θ) = log{p(D|θ, H)π(θ|H)}. Expanding l̃(θ) as a quadratic about θ̃ and

exponentiating gives the approximation

p(D|Hk) ≈ exp[l̃(θ)]
∫

exp{[1/2(θ − θ̃)T [−D2l̃(θ̃)](θ − θ̃)]}dθ. (1.22)

The integral in (1.22) takes the form of a normal density with mean θ̃ and covariance matrix

Σ̃ = [−D2l̃(θ̃)]−1, in which D2l̃(θ̃) is the Hessian matrix of second derivatives. After integrating

with respect to θ, the Laplace approximation is given by

p̂(D|Hk) = (2π)d/2|Σ̃|1/2p(D|θ̃, Hk)π(θ̃|Hk). (1.23)

The relative error of the Laplace approximation is of the order O(n−1). For adequate accuracy

using the Laplace approximation, Kass and Raftery (1995) recommend a sample size greater

than 20d, in which d is the dimension of θ. This will be sufficient in most “reasonable” problems,

in which the likelihoods are well-behaved and a good parameterization is used. A modification

of (1.23) is

p̂(D|Hk) = (2π)d/2|Σ̂|1/2p(D|θ̂, Hk)π(θ̂|Hk), (1.24)

in which θ̂ is the maximum likelihood estimate (MLE) of θ and Σ̂−1 is the observed information

matrix (Kass and Raftery, 1995; Kass and Vaidyanathan, 1992). This approximation also has a

relative error of order O(n−1), but may be less accurate than (1.23) when the prior is somewhat

informative relative to the likelihood. The advantage of (1.24) is that it is easily computed from

standard statistical output, because it only requires the MLE, the observed information matrix,

and the maximized likelihood.

A popular approximation to the log Bayes factor is the Schwarz Criterion (Schwarz, 1978;

Kass and Raftery, 1995), given by

S = log{p(D|θ̂0, H0)} − log{p(D|θ̂1, H1)} − 1

2
(d0 − d1) log(n), (1.25)
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in which θ̂k is the MLE under hypothesis Hk, dk is the dimension of θk, and n is the sample

size. This approximation is also known as the Bayesian information criterion (BIC) (Weakliem,

1999; Raftery, 1986a; Raftery, 1986b), formally defined as

BIC01 = −2S. (1.26)

The BIC approximation assumes an implied non-informative prior π(θ), and suggests that the

log marginal likelihood of a model can be approximated by

log{p̂(D|Hk)} = log{p(D|θ̂, Hk)} − d

2
log(n). (1.27)

It follows that the Bayes factor B10 can be approximated as

B10 ≈ exp
{

1

2
BIC01

}
. (1.28)

The Bayesian information criterion approximates the log Bayes factor with a relative error of

order O(1). Although the error of O(1) implies a crude approximation, empirical experience

has found the BIC to be more accurate in practice than the error term O(1) suggests (Raftery,

1995, 1996) . In fact, it has been shown that under certain conditions the BIC approximation

has a relative error of O(n−1/2) (Kass and Wasserman, 1995).

One argument against the BIC is that the Bayes factor derived from the BIC may not be close

to the Bayes factor derived from an appropriate prior set by the investigator (Weakliem, 1999).

The Bayes factor from the BIC corresponds closely to that derived from the unit information

prior, which is a prior with the amount of information equal to the amount of information

contained in one observation. More specifically, the unit information prior is a multivariate

normal prior with mean at the maximum likelihood estimate and variance equal to the inverse

of the expected information matrix for one observation. A simple example, taken from Raftery

(1999), illustrates the idea. Let Yi ∼ N(µ, σ2), iid for i = 1, . . . , n, with σ known, and consider

the test H0 : µ = 0 versus H1 : µ 6= 0. Then a unit information prior is µ ∼ N(ȳ, σ2), in which

ȳ is the mean of the data. Raftery (1999) points out that the unit information prior is usually

a well spread out prior as it covers the range of the data. It seems unlikely that an investigator
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would specify a prior outside the range of the data; hence any alternative prior imposed by an

investigator is likely to be less spread out than the unit information prior. The more spread out

a prior, the more it favors the null hypothesis of no effect. If the BIC favors an effect, then it is

likely that any alternative prior will also find evidence for the effect. If the BIC does not favor

an effect, then there still may be a justifiable prior that would show evidence for an effect. One

can still use the BIC as a baseline reference even when the unit information prior is not the

same as the prior chosen by the investigator (Raftery, 1999).

The BIC and Laplace approximations are based on the assumption that the dimension d

is fixed as the sample size n goes to infinity. However, in random coefficient models the di-

mension increases as the sample size increases. For example, consider a linear mixed model

with a subject-specific random intercept. For every additional subject added to the data, an

additional parameter is added for the subject-specific random coefficient. Stone (1979) observed

that the BIC can be inconsistent when the dimension of the parameter vector goes to infinity.

Berger et al. (2003) used Stone’s example to show that the BIC and Laplace approximation

may not be good approximations to the Bayes factor as the dimension and sample size both

tend to infinity. The authors propose a generalized Bayesian information criterion (GBIC) and

a Laplace approximation to the log Bayes factor as alternatives to approximating the Bayes

factor. Chakrabarti and Ghosh (2006) generalize the methods of Berger et al. (2003) to allow

distributions from the exponential family and show derivations that clarify the structure of the

GBIC.

For an excellent summary of other approximations available, see Kass and Raftery (1995).

These include a simple Monte Carlo method, in which the marginal likelihood in (1.13) is

estimated by averaging p(D|θ) over sampled values of θ, in which the samples are taken from

the prior distribution of θ. This method has been shown to be inefficient when the posterior

is concentrated relative to the prior (McCulloch and Rossi, 1991). The precision of the simple

Monte Carlo estimate can be improved by using importance sampling, which generates samples

of θ from a more complex density (Geweke, 1989). Another option is Gaussian quadrature, which

uses numerical analysis to evaluate integrals that are peaked around a dominant mode (Genz and

Kass, 1993). Other approaches discussed by Kass and Raftery (1995) involve simulating from the

posterior distribution. Such methods include direct simulation, rejection sampling, a weighted
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likelihood bootstrap (Newton and Raftery, 1994), and Markov chain Monte Carlo (MCMC)

methods, such as the Gibbs sampler or Metropolis-Hastings algorithm. Several variations of the

above methods have been proposed. See Han and Carlin (2001) for a more thorough review of

MCMC methods to approximate the Bayes factor. More recently, Raftery et al. (2007) proposed

a modified BIC approximation to the marginal likelihood based on MCMC output. Using the

harmonic mean identity and the fact that the posterior distribution of the log likelihood is

approximately a shifted gamma distribution, they introduce BICM (where M stands for Monte

Carlo), a posterior-based version of the BIC. One major disadvantage of this approach is the

need to fit each model with MCMC methods, which can be computationally demanding.

Several methods of approximating the Bayes factor are compared by Raftery (1996) in gen-

eralized linear models. Raftery concludes that exact analytic evaluation is the most accurate

approach, but is only useful for a limited class of models. The Laplace method gives accurate

approximations and is usually computationally efficient. In cases of modest dimensionality, the

adaptive quadrature method of Genz and Kass (Kass and Raftery, 1995; Genz and Kass, 1993)

is effective. Monte Carlo integration and importance sampling are less accurate and more com-

putationally intensive, but there may be few other options in complex models. MCMC methods

seem promising, but may be difficult to use because they can require large numbers of likeli-

hood evaluations. The Schwarz criterion (BIC) is the easiest approximation to use, and has the

advantage of not depending on a prior distribution imposed by the investigator. However, it

can perform poorly when the number of degrees of freedom is large (Kass and Raftery, 1995;

McCulloch and Rossi, 1991).

1.2.5 Bayes factors and prior distributions

An additional challenge to model selection via Bayes factors lies in the choice of prior distribu-

tions. It is well known that Bayes factors are sensitive to the choice of priors (Kass and Raftery,

1995; Kass, 1993). This is problematic in situations in which one has no prior information on

the parameters, and the goal is to choose the best model based on the data. In these situations,

it is common to use default “noninformative” priors, or prior distributions that accommodate

a wide range of choices for the prior mean. However, one must choose these default prior vari-
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ances with care, because as the prior variance increases toward infinity the Bayes factor will

increasingly favor the null model (Bartlett, 1957). It has been documented that normal priors

lead to aberrant behavior in model selection problems, leading Jeffreys (1961) to suggest the

Cauchy prior as a heavy-tailed and more robust alternative. This early work by Jeffreys was

extended by Zellner and Siow (1980) to develop a robust class of multivariate Cauchy priors

for variable selection problems. Zellner’s g-prior (Zellner, 1986) has been widely adopted in

linear models, and only requires the specification of one hyperparameter. Liang et al. (2008)

generalized Zellner’s g-prior by implementing a fully Bayes approach using mixtures of g-priors.

1.2.6 Latent variable methods

Random effects can be viewed as special cases of latent variables, generally defined as variables

not directly observed. Latent variables are commonly used in the social sciences to model

underlying characteristics such as self-esteem. In latent variable models, the BIC and Laplace

approximations to the Bayes factor can suffer in performance due to ambiguity of the model

dimension d. This can be especially problematic in Bayesian analyses and hierarchical models.

For example, in a Bayesian analysis one can increase the number of parameters of a given

model by incorporating hyperpriors, even though the marginal distribution of interest may

be unchanged. As a result, the model dimension d is not clearly defined for computing the

BIC and Laplace approximations. As a result, researchers have suggested using the “effective

model dimension” in place of the standard model dimension (Berger et al., 2003). The effective

model dimension is a measure of the complexity of the model that takes into account the latent

variables and unknown parameters. Defining the “effective model dimension” is a non-trivial

task, as the relationship between the latent variables influences the effective dimension of the

model. Additionally, the sample size n used to compute the BIC must be defined carefully. In

hierarchical models, this may depend on which parameters are being tested (Kass and Raftery,

1995).

Some alternative methods of Bayesian model selection have been developed for latent vari-

able models and show promise for random effects models. One such method is the deviance

information criterion (DIC), which is based on the posterior distribution of the deviance statis-
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tic,

D(θ) = −2 log{p(y|θ)}, (1.29)

in which p(y|θ) is the likelihood function for the observed data vector y given the parameter

vector θ (Spiegelhalter et al., 2002). The effective number of parameters is defined as

pD = D(θ)−D(θ̃), (1.30)

in which D(θ) = Eθ|y[D(θ)] is the posterior mean deviance, and θ̃ = θ̃(y) is an estimate of θ

based on the data (generally taken to be E(θ|y)). The measure pD is the difference between

the posterior mean of the deviance and the deviance at the posterior means of the parameters.

The deviance information criterion (DIC) is

DIC = D(θ) + pD (1.31)

= 2D(θ)−D(θ̄),

which is a measure of model fit penalized by the complexity of the model. The DIC can be

thought of as a Bayesian analogue to the AIC. Assuming that D(θ) is available in closed form,

the DIC is calculated after an MCMC run by taking twice the sample mean of the simulated

values of D(θ), minus the plug-in estimate of the deviance using the sample means of the

simulated values of θ. Celeux et al. (2006) introduce variations of the DIC that allow flexibility

in whether the latent variables are regarding as missing data or as parameters in the model.

One poor property of the DIC discussed by Spiegelhalter et al. (2002) is that pD can take on

negative values. Additionally, pD is not invariant to a model’s parameterization as it involves

the posterior mean θ̄. As a result, restructuring of the data can lead to different values of the

DIC. Another drawback of the DIC is the need to fit each model with MCMC methods, which

can be difficult when the number of models being compared is large.
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1.3 Multilevel linear models

1.3.1 Introduction

Many studies collect data that have hierarchical or clustered structures. Examples include

randomized studies in which patients are clustered within practices, educational studies in which

students are clustered in schools, or environmental studies in which individuals are clustered

in homes which are clustered in counties. An analysis that ignores the clustering in these

examples regards all observations as independent, resulting in incorrect model-based standard

errors that can lead to misleading scientific inferences. Multilevel models are used to account

for the correlation of observations within a given group by incorporating group-specific random

effects. These random effects can be be nested (e.g. repeated observations of students nested

in schools, with random effects at the student and school levels), cross-nested (e.g. repeated

observations of students nested in schools and neighborhoods, with random effects at the school

and neighborhood levels), or even non-nested (e.g. individuals clustered within job categories

and states, with random effects at the job and state level). For an introduction to multilevel

models, see Gelman and Hill (2007) or Fitzmaurice et al. (2004).

1.3.2 Nested models

There can be many levels to a data hierarchy in nested multilevel modeling. A longitudinal linear

mixed model is an example of a two-level model, in which the level 1 units are the repeated

observations and the level 2 units are the subjects. A two-level model can be expressed as

Yij = x′ijβ + z′ijbj + εij, (1.32)

in which i indexes the the first level (e.g. repeated observations) and j indexes the second

level (e.g. individuals), xij is a p × 1 vector of predictors with corresponding parameters β,

and zij is q × 1 vector of predictors with corresponding random effects bj. The vector zij is

formed as a subset of the vector xij. It is assumed that the bj ∼ N(0,ψ) are independent

of εij ∼ N(0, σ2). This notation can be generalized to accommodate a three-level model (e.g.

repeated measurements clustered within patients which are clustered within practices). Let k
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index the third level, and let

Yijk = x′ijkβ + z
′(3)
ijk b

(3)
k + z

′(2)
ijk b

(2)
jk + εijk, (1.33)

in which xijk is a p × 1 vector of predictors with corresponding fixed effects β, z
(3)
ijk is q3 × 1

vector of predictors with corresponding random effects b
(3)
k , and z

(2)
ijk is q2×1 vector of predictors

with corresponding random effects b
(2)
jk . Independence is assumed between b

(3)
k , b

(2)
jk , and εijk

with distributions b
(3)
k ∼ N(0,ψ(3)), b

(2)
jk ∼ N(0,ψ(2)), and εijk ∼ N(0, σ2). The predictors z

(3)
ijk

vary across level 2 and level 1 units, while the z
(2)
ijk vary across level 1 units. The superscripts

attached to b
(3)
k and b

(2)
jk denote the levels at which the random effects vary (levels 3 and 2 in

this case, respectively). Models with more than 3 levels can be written using similar notation.

A key feature of multilevel modeling is the incorporation of covariates xijk that can be

measured at any level of the hierarchy. This allows one to address the effect of a given covariate,

say at the individual level, while controlling for the effect of a higher level covariate, say at the

school level. However, greater care is required in the interpretation of regression parameters,

because some covariates can operate at many different levels.

For example, consider a multi-center study of 229 male patients from 3 sites (Raleigh, NC;

Memphis, TN; and Galveston, TX), in which investigator’s are interested in evaluating the

effect of disinfection by-products (DBP’s) in drinking water on male reproductive outcomes

in presumed fertile men. DBP exposure was measured using water system samples and data

collected on individual water usage. Three exposure variables of interest for the outcome percent

normal sperm are brominated haloacetic acids (HAA-Br), brominated trihalomethanes (THM-

Br), and total organic halides (TOX). Our focus is to evaluate the DBP exposure effects on

sperm quality (% normal sperm) using a multilvel model. In assessing the impact of DBPs on

sperm quality, it is of interest to assess the heterogeneity among study sites with respect to

the overall mean of percent normal sperm (i.e. intercept) and each DBP effect (i.e. slope). It

may be the case that study site is a surrogate for unmeasured aspects of water quality or other

unmeasured factors of interest.

We can analyze these data using a two-level model, in which the level-1 units are the male

subjects (indexed by i), and the level-2 units are the study sites (indexed by j), which are
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Raleigh, Memphis, and Galveston. Let Yij denote the response for subject i in study site j. For

a given water exposure xij, a random intercepts model can be written as

Yij = β0 + β1xij + b
(2)
j + εij, (1.34)

in which b
(2)
j represents the random intercept of study site j. It is assumed that b

(2)
j ∼ N(0, σ2

2)

is independent of εij ∼ N(0, σ2), such that the correlation of two observations within study site

j is given by ρ = σ2
2/(σ

2
2 + σ2). Note that in the longitudinal linear mixed model, we used i

to index the subjects, or the level-2 units. In multilevel models, we change this notation and

let i index the level-1 units, j index the level-2 units, k index the level-3 units, etc., even when

individuals are at higher levels in the hierarchy.

Suppose that we also collect information on the county that each subject lives in, and we

think that the sperm morphology may vary by county within a given study site. Reasons for

this may be different environmental risk factors or demographics in each of the different counties

for a given site. We extend our notation to a 3-level model by incorporating random intercepts

at the county and site level, where counties are nested within sites. In this setup, i indexes the

subject, j indexes the county, and k indexes the study site. Let n3 equal the number of level-3

units (i.e. n3 = 3 study sites). Each of the sites (for k = 1, ..., n3) is composed of n2k level-2

clusters (i.e. counties), and each of the level-2 clusters is composed of n1jk level-1 units (i.e.

subjects). Let Yijk denote the response for subject i in county j in study site k. The model can

be written as

Yijk = β0 + β1xijk + b
(3)
k + b

(2)
jk + εijk, (1.35)

in which b
(2)
jk is the random intercept for county j (nested within the kth study site), b

(3)
k is the

random intercept for site k, and xijk is the water exposure predictor for subject i in county j

in site k. It is assumed that b
(3)
k ∼ N(0, σ2

3), b
(2)
jk ∼ N(0, σ2

2), and εijk ∼ N(0, σ2), such that the

correlation of two observations within county j in site k is given by ρ = (σ2
3 +σ2

2)/(σ
2
3 +σ2

2 +σ2).

We can extend this model to allow the water exposure effect (i.e. slope) to vary by county
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and by study-site. Let

Yijk = β0 + b
(3)
k0 + b

(2)
jk0 + (β1 + b

(3)
k1 + b

(2)
jk1)xijk + εijk, (1.36)

in which b
(2)
jk0 and b

(2)
jk1 are the random intercept and slope for county j (nested within study site),

and b
(3)
k0 and b

(3)
k1 are the random intercept and slope for study site k, respectively. It is assumed

that b
(3)
k = (b

(3)
k0 , b

(3)
k1 )′ ∼ N(0, ψ(3)), b

(2)
jk = (b

(2)
jk0, b

(2)
jk1)

′ ∼ N(0,ψ(2)), and εijk ∼ N(0, σ2). This

model allows the intercept and water exposure effect to vary at both the county and site levels.

1.3.3 Non-nested models

In multilevel linear models, it is also possible to have non-nested random coefficients. For

example, suppose investigators are interested in modeling grade point average (GPA), Yi, for

subjects (i) nested in types of extra-curricular activities (j) and schools (k). Possible categories

for extra-curricular activities are sports, band, drama, debate, student council, etc. In this case

the subjects are nested within activities and schools, but neither activities nor schools are nested

within each other.

To illustrate, we consider a simple model with no predictors, and the focus is to determine

whether there is variability in GPA across schools and across extra-curricular activities. We

modify our notation somewhat to account for the non-nested structure. The model can be

written in terms of Yi as

Yi = β0 + αj[i] + bk[i] + εi, (1.37)

with αj[i] ∼ N(0, σ2
α), bk[i] ∼ N(0, σ2

b ), and εi ∼ N(0, σ2). The random effects in this example

(αj[i] and bk[i]) are non-nested because neither activities (j) nor schools (k) are subsets of the

other. We use the notation j[i] and k[i] to denote that the level-1 units (i) are nested in the

level-2 units (j and k).

Now suppose that investigators conduct an assessment test prior to the school year, and are

interested in assessing the effect of the test score on the students’ GPA, and whether hetero-

geneity exists across schools for this effect. Let xi be the test score for subject i. We can fit the
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model

Yi = β0 + αj[i] + b0k[i] + (β + b1k[i])xi + εi, (1.38)

in which bk[i] = (b0k[i], b1k[i])
′ denotes the random intercept and random slope for the kth school

corresponding to subject i (respectively), and bk[i] ∼ N2(0,ψb). This model has a random

intercept and slope for school as well as a random intercept for activity, allowing heterogeneity

in the mean GPA among activities and schools and heterogeneity in the effect of the test score

among schools.

1.3.4 Notation

Because multilevel linear models can have nested, cross-nested, and non-nested random coeffi-

cients, we need notation that encompasses these various types of data structures. We define the

general multilevel linear model with q factors as

Yi = x′iβ + z′ib[i] + εi, (1.39)

= x′iβ +
q∑

h=1

z′ihbh[i] + εi,

in which Yi is the response for observation i, i = 1, . . . ,m, xi is a p× 1 vector of predictors with

corresponding fixed effects β, b[i] = (b′1[i], . . . , b
′
q[i])

′, zi = (z′i1, . . . , z
′
iq)

′, zih is a dh × 1 vector

of predictors with corresponding random effects bh[i] in which [i] indexes the group in factor h

pertaining to the ith observation, and bh[i] ∼ N(0,ψh) independent of ε ∼ N(0, σ2), with bh[i]

independent of bh′[i] for h 6= h′.

To illustrate, consider the water exposure study and the nested model given in (1.36). This

model can be written as

Yi = β0 + b10[i] + b20[i] + (β1 + b11[i] + b21[i])xi + εi, (1.40)

in which b10[i] and b11[i] are the random intercept and slope for the study site corresponding to

subject i, and b20[i] and b21[i] are the random intercept and slope for the county corresponding
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to subject i. It is assumed that b1[i] = (b10[i], b11[i])
′ ∼ N(0, ψ1), b2[i] = (b20[i], b21[i])

′ ∼ N(0,ψ2),

and εi ∼ N(0, σ2).

For a non-nested illustration, consider the GPA example with non-nested random coefficients.

We can express model (1.38) as

Yi = β0 + b1[i] + b20[i] + (β1 + b21[i])xi + εi, (1.41)

in which b1[i] is the random intercept for the activity corresponding to subject i, b2[i] = (b20[i], b21[i])
′

denotes the random intercept and random slope for the school corresponding to subject i. We

assume b2[i] ∼ N2(0,ψ2), b1[i] ∼ N(0, ψ1), and εi ∼ N(0, σ2).

1.3.5 Model selection in multilevel models

Testing whether a random coefficient should be included in a multilevel model involves the test

of whether the variance of that random coefficient is equal to 0. This is problematic because the

null hypothesis lies on the boundary of the parameter space. Such issues are addressed in the

literature in the context of linear mixed models (e.g. Stram and Lee, 1994), but there is very little

research specifically for testing variance components in the broader class of multilevel models.

Berkhof and Snijders (2001) proposed three score tests for variance components in multilevel

models and compare their method via simulation to the likelihood ratio test, fixed F test, and

Wald test. However, their simulations only consider two level models and it is not clear whether

generalizations to a larger number of levels are possible. Fitzmaurice et al. (2007) proposed a

permutation test for variance components in multilevel generalized linear mixed models. They

apply their method to two-level generalized mixed models and suggest strategies for multilevel

models with greater than two levels. However, their strategy cannot be directly applied to

multilevel models with crossed random effects and can only test one variance component at

a time. Frequentist methods for testing variance components in the linear mixed model are

useful to some extent in nested multilevel models for testing single variance components (e.g.

Crainiceanu and Ruppert, 2004; Verbeke and Molenberghs, 2003), but the null distributions are

not easily obtained for testing multiple variance components, and it is not clear whether these

methods can be applied to non-nested variance components. Also, Bayesian MCMC methods for
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testing variance components in the linear mixed model (e.g. Cai and Dunson, 2006; Kinney and

Dunson, 2008) may be generalizable to multilevel models, but these methods generally suffer

from computational constraints and rely on subjective choice of hyperparameters.

1.4 Joint modeling of longitudinal and time-to-event out-

comes

1.4.1 Introduction

Many clinical trials evaluate the efficacy of a treatment on correlated longitudinal and time-to-

event outcomes. For example, consider a randomized clinical trial evaluating the effectiveness

of a treatment drug versus a control in 2,000 patients with a chronic respiratory disorder. The

investigators recorded the time to death within 3 years of randomization, as well as repeated

measurements at 6 month intervals of respiratory lung function FEV, or postbronchodilator

forced expiratory volume at 1 second. Because these patients suffer from a chronic condition,

lung function is expected to deteriorate over time and ultimately result in death. Clearly,

lung function and survival are expected to be highly correlated. There are well-established

methods for analyzing these longitudinal and survival outcomes separately, including the linear

mixed model for longitudinal data (Laird and Ware, 1982) and the Cox proportional hazards

model for survival data (Cox, 1972). However, the analysis of these longitudinal and survival

outcomes separately may be inefficient or even inappropriate when the longitudinal variable is

correlated with the survival endpoint (Guo and Carlin, 2004). Such approaches ignore important

information in the other outcome as well as potentially informative dropout in the longitudinal

process. This has led to a growing literature on jointly modeling distributions of correlated

longitudinal and survival endpoints. For additional reviews of joint modeling methods, see

Hogan and Laird (1997b), Tsiatis and Davidian (2004), and Yu et al. (2004).

There are many reasons to consider a joint model of longitudinal and event outcomes. Such

reasons include describing the trajectory of the longitudinal process over time subject to infor-

mative censoring and how this is affected by baseline covariates; determining how the probability

of an event outcome is influenced by the longitudinal process; evaluating whether the longitudi-
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nal process can be used as a surrogate endpoint for the event outcome; or making predictions of

future event times for subjects who are censored. Whatever the purpose is, a general strategy

of joint models is to base inference on the joint distribution of the longitudinal and survival

outcomes.

Hogan and Laird (1997b) discuss joint models from the perspective of repeated measures

with missing, possibly non-ignorable, observations. They broadly classify the joint models as

either selection models or mixture models (see also Little, 1993). A selection model is obtained

by specifying the joint density function fy,d as a product of the conditional distribution of the

failure time di given the longitudinal measure yi, and the unconditional distribution of yi (i.e.

fy,d = fd|yfy). A mixture model is given by by first conditioning yi on di, such that fy,d = fy|dfd.

Hogan and Laird (1997b) point out that modeling the joint distribution of longitudinal and

survival outcomes is a global strategy that does not depend on which outcome is the primary

endpoint. Another broad view classifies joint model approaches as either a two-stage approach

or a likelihood-based approach (Yu et al., 2004). In a two-stage approach, estimates are imputed

for the longitudinal process at all time points, and the estimates are treated as true values of the

longitudinal process for the event outcome model. As an alternative, a likelihood-based approach

bases estimation and inference on the likelihood from a joint model of both the longitudinal

and event outcomes. The likelihood approaches simultaneously estimate parameters from both

outcome models, and are generally more accurate and efficient at estimating the relationship

between the longitudinal and event outcomes compared to two-stage approaches (Yu et al.,

2004).

We adopt the notation of Hogan and Laird (1997b) such that yo
i and ym

i denote the vectors

of observed and missing outcomes in yi, respectively. Let di be the time at which subject i

experiences an event, which may be right censored by Ci (independent of di). The time-to-event

data for subject i is given by (d̃i, δi), in which d̃i = min(di, Ci), and δi = I(di ≤ Ci). Let Xi

be additional (and complete) covariate information for subject i. The observed data are then

given by the set {(yo
i , d̃i, δi,Xi) : i = 1, . . . , N}.

From a repeated measures perspective, a joint model should take into account the nature of

the missing data on the longitudinal process. Little and Rubin (1987) discuss various definitions

of missing data mechanisms. Missing data in a response yi is missing completely at random
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(MCAR) when the probability of missing does not depend on yi. It is missing at random

(MAR) when the probability of missing depends on the observed data yo
i but not on the missing

data ym
i . Under MCAR and MAR, one can obtain unbiased parameter estimates based on the

likelihood of the observed data. Hence the missing data mechanisms are said to be ignorable. In

contrast, missing not at random (MNAR) mechanisms are non-ignorable, because the probability

of missing depends on the unobserved data ym
i . Diggle and Kenward (1994) define informative

dropout as that which induces MNAR. In the context of joint models for longitudinal and

event outcomes, we focus on models that account for informative dropout in the longitudinal

process but not in the survival endpoints. In other words, it is assumed that the censoring Ci

is independent of the event time di given the covariates in the model.

1.4.2 Mixture models

A mixture model is given by by first conditioning yi on di, such that fy,d = fy|dfd. Two types

of mixture models are pattern mixture models and random effects mixture models. In pattern

mixture models, each possible outcome of di corresponds to a different model for the longitudinal

process. Little (1993) proposes modeling the longitudinal process as a multivariate normal

distribution conditional on dropout time. The marginal distribution f(yi) is straightforward

to estimate, but informative dropout can be difficult to detect using this formulation. As an

alternative, random effects mixture models assume the conditional distribution of yi given di

can be modeled using a linear mixed model with di as a (possibly censored) covariate. This is

done by specifying distributions for (yi|bi, di), (bi|di), and (di|θd), such that the event outcome

is related to the longitudinal outcome through the random effects bi. The joint distribution

p(yi, di) is obtained by integrating over the random effects bi.

Wu and Bailey (1988, 1989) propose a random effects mixture model by specifying the

random slope as a linear function of dropout time, and calculate ordinary least squares estimates

using weighted least squares methodology. Wu et al. (1994) extend this approach to provide

robust variance estimation using bootstrap methods. Mori et al. (1992) modify the approach of

Wu and Bailey (1989) to estimate the adjusted slope using empirical Bayes methodology. These

mixture model approaches can be implemented in software with linear mixed model capabilities.
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However, a drawback of these approaches is that the dropout times must be fully observed

(i.e. no censored events). Hogan and Laird (1997a) propose maximum likelihood estimation

(MLE) that allows censoring in di. Their model assumes p(yi|di) is multivariate normal and

can accommodate non-parametric and semi-parametric forms for the cumulative distribution

function Fd of d. The authors regard the distinct outcomes of di as categories in a multinomial

distribution and use the EM algorithm to obtain maximum likelihood estimates.

Mixture models are useful when the primary goal is inference about the unconditional sur-

vivor rates or the association between the survival time and the longitudinal process. A limi-

tation of these models is there must be enough observed events (i.e. high levels of dropout) to

reliably estimate the parameters in the longitudinal model. It can also be difficult to account

for non-ignorable missing data in the longitudinal process.

1.4.3 Selection models

The majority of the literature on joint models for longitudinal and event outcomes can be classi-

fied as selection models, in which one first conditions di on yi, such that fy,d = fd|yfy. One type

of selection model is an outcome-dependent selection model (Hogan and Laird, 1997b), in which

di depends on both the observed data yo
i and the missing data ym

i . For example, an AIDS clini-

cal trial may define death as the event outcome and CD4 counts as the longitudinal measure. A

person experiencing death at time tk will not have observed values for CD4 counts at tk, although

the probability of death may depend on the unobserved CD4 count at tk. Diggle and Kenward

(1994) define the probability of dropout at time tk as a function of both outcome history prior

to tk, Hik = (yi1, . . . , yi,k−1), and the unobserved yik. The longitudinal outcomes are modeled

with a linear model and the probability of dropout is modeled via a logistic regression model.

Diggle and Kenward (1994) suggest that one can formally test for MAR, MCAR, and MNAR

structures by testing the coefficients in the dropout model (although this is controversial).

In some cases the missing data may be more directly related to a trend over time as opposed

to the actual longitudinal data. In these situations it is reasonable to relate the missing data

mechanism to an underlying disease or illness progression related to yi. For example, in an

AIDS clinical trial we may be interested in modeling the relationship of CD4 cell count and
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survival times. One can use subject-specific random effects to model this underlying process.

Consider the linear mixed model of Laird and Ware (1982), with the complete data y subset

into observed yo
i and missing ym

i data. In this setting, we can define the probability of dropout

as a function of yo
i and ym

i through the unobserved random effects bi, i.e.

f(di|yi, bi, θd|y) = f(di|bi,θd|y). (1.42)

Informative dropout, or non-ignorable missing data, occurs when di depends on ym
i , conditional

on yo
i . If the probability of missing depends on the random effects bi, then

f(di|yo
i ,y

m
i ) =

∫

bi

f(di|bi, y
o
i , y

m
i )f(bi|yo

i ,y
m
i )dbi (1.43)

=
∫

bi

f(di|bi)f(bi|yo
i , y

m
i )dbi. (1.44)

Note that f(di|yo
i ,y

m
i ) only depends on ym

i because f(bi|yo
i , y

m
i ) depends on ym

i . In other words,

the probability of missing only depends on the missing data ym
i through the random effects bi.

A more general class of selection models that incorporates random effects is a shared param-

eter model (Hogan and Laird, 1997b). These models treat the random effects bi as parameters

in the model for yi, and as predictors in the model for the event outcome. Follman and Wu

(1995) discuss shared parameter models in the setting of generalized linear models and use

likelihood-based estimates that can accommodate right-censored values of di. Wu and Carroll

(1988) develop a less general shared parameter model that assumes a multivariate normal model

for the longitudinal data and a probit regression model for the probability of dropout.

Other approaches to shared parameter selection models include that of Schluchter (1992) and

DeGrutolla and Tu (1994), who specify a multivariate normal distribution on (bi, di). Schluchter

(1992) is motivated by a longitudinal study with dropouts and considers a monotone transfor-

mation h(di) on the event outcome, such that a transformation of event time is modeled as a

linear combination of the random effects. The authors assume that the subject-specific slopes

are linear functions of dropout time (see also Wu and Bailey, 1988, 1989). DeGrutolla and Tu

(1994) is motivated by using CD4 cell counts as a marker for survival in AIDS patients. The

authors model the survival time di as a linear function of the random effects, in which a non-zero
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coefficient of the random effects indicates a longitudinal process can serve as a biomarker of the

event process.

Tsiatis et al. (1995) use a similar AIDS study motivation to propose a semiparametric pro-

portional hazards model on the survival data as a function of individual trends in the progression

of CD4 cell counts. The authors use a linear mixed model on the longitudinal data, and then use

empirical Bayes (EB) estimates of the random effects as predictors in the proportional hazards

model. This is referred to as a two-stage approach (Yu et al., 2004), in which the strategy is to

impute estimates of the longitudinal process at all time points, and treat the estimates as true

values of the longitudinal process for the event outcome model. In Tsiatis et al. (1995), the

hazard of death at time t takes the form

λ(t|bi) = λ0(t) exp{φ(b0i + b1it)}, (1.45)

in which λ0(t) is the baseline hazards at time t, and φ quantifies the relationship between the

the event time and the CD4 counts. Bycott and Taylor (1998) propose a two-stage approach

similar to Tsiatis et al. (1995), in which they incorporate a Browning motion error term in

the longitudinal model. Dafni and Tsiatis (1998) investigate the two-stage approach of Tsiatis

et al. (1995) by simulation and find that the use of empirical Bayes estimators in the survival

model may exhibit bias due to violated normality assumptions of the yi (see also Tsiatis and

Davidian, 2001). Dafni and Tsiatis (1998) propose an alternative two-stage approach that allows

a different random intercept and slope model for k different treatments.

Wulfsohn and Tsiatis (1997) use an EM algorithm for a joint model that uses a mixed model

on the longitudinal data and a proportional hazards model on the survival data. Henderson et al.

(2000) use a related approach, but incorporate a mean-zero stochastic process independent of

the random effects and baseline covariates. Their longitudinal model takes the form

yij = x′1i(t)β1 + W1i(tij) + εij (1.46)

for times ti1, . . . , tini
, in which x′1i(t)β1 is the mean response (with possibly time-varying pre-

dictors), W1i(t) = z′1i(t)bi incorporates subject-specific random effects, and εij ∼ N(0, σ2). The
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event outcome model for a proportional hazards model takes the form

λi(t) = λ0(t) exp{x′2iη2 + W2i(t)}, (1.47)

in which λ0(t) is the baseline hazards at time t, x′2i(t) may be a subset of x′1i(t), and W2i(t)

is specified similar to W1i(t). The authors assume Wi(t) = (W1i(t),W2i(t))
′ to be a non-zero

Gaussian process independent across subjects with distribution N(0,Σ). For their application,

they recommend a longitudinal process with a random intercept and slope,

W1i(t) = bi0 + bi1t, (1.48)

and a survival model

W2i(t) = γ0bi0 + γ1bi1 + γ2(bi0 + bi1t) + bi2, (1.49)

in which the bi2 are independent frailty terms, modeled as N(0, σ2
2) variables, independent of

the (bi0, bi1)
′, which have variances σ2

0 and σ2
1 and correlation ρ. The parameters γ0, γ1, and γ2

in the survival model measure the association between the two models induced by the random

intercepts, slopes, and fitted longitudinal value W1i(t). Guo and Carlin (2004) develop a fully

Bayesian version of Henderson et al. (2000) via Markov chain Monte Carlo (MCMC) methods.

They implement their methods using the software WinBUGS and compare their results to a

frequentist implementation of Henderson et al. (2000).

Lin et al. (2002) use a similar framework to Henderson et al. (2000), but employ shared

dependency in the models through a latent class variable. The latent class membership is

determined through a multinomial logistic model, and allows underlying population heterogene-

ity. The longitudinal and survival outcomes are modeled independently given the latent class

membership. Song and Davidian (2002) consider Wulfsohn and Tsiatis (1997), but relax the

assumption of normality of the random effects. They instead assume that the random effects

have a distribution with a “smooth” density.

Faucett and Thomas (1996) specify a joint model similar to Wulfsohn and Tsiatis (1997)

using a Bayesian approach via Monte chain Monte Carlo (MCMC) methods. They assume
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the baseline hazards function is a step function, and employ Gibbs sampling to sample from

the posterior distributions of the unknown parameters. Xu and Zeger (2001a) generalize this

approach to allow a stochastic process in the longitudinal model. Wang and Taylor (2001) use

a similar framework to implement a Bayesian MCMC approach. Brown and Ibrahim (2003b)

suggest a semiparametric Bayesian joint model in which the random effects are modeled non-

parametrically. Brown and Ibrahim (2003a) and Law et al. (2002) propose Bayesian joint

models that account for cured fraction. For a more thorough review of Bayesian joint models,

see Ibrahim et al. (2001).

Tsiatis and Davidian (2001) focus on estimation of the parameters in the hazards model.

They use a set of unbiased estimating equations that yield consistent and asymptotically normal

estimators without specifying distributional assumptions on the random effects. Faucett et al.

(2002) and Xu and Zeger (2001b) focus on inference on the marginal event time distribution,

incorporating the longitudinal data as auxiliary information. More recent developments include

Tseng et al. (2005), in which the authors propose an accelerated failure time model on the

event outcome. They use a Monte Carlo EM algorithm to estimate the unknown parameters

and the baseline hazard function. Hsieh et al. (2006) examine the robustness of maximum

likelihood estimates against departure from the normal random effects assumption. They also

discuss a profile likelihood approach, and suggest using bootstrap methods to obtain reliable

variance estimates. Yu et al. (2004) formulate a joint model to account for the cured fraction,

and consider estimates from the Monte Carlo EM algorithm and MCMC methods.

1.4.4 Limitations of joint models

Joint modeling methods can be computationally demanding, difficult to implement, and may

require specialized software (Hogan and Laird, 1997b). Many of the joint model approaches

make strong parametric assumptions regarding the longitudinal and survival processes (Tsiatis

and Davidian, 2004; Yu et al., 2004). These assumptions may not be obvious and can be difficult

to validate.

One strong assumption commonly made in joint models, though not required, is that the

missing data ym
i are ignorable (Yu et al., 2004). However, in many instances this assumption
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is not reasonable and may lead to biased inference. For example, consider the study of chronic

lung disease, in which investigators are interested in assessing the effect of treatment on FEV

and survival. A person with rapidly decreasing FEV values may die at time tij, but as a result

of death will not have an FEV measurement at time tij. It may even be the case that the last

FEV measurement prior to death showed reasonably good values and provided no indication

of decreasing lung function. In this case the probability of death depends on the unobserved

FEV value at time tij, resulting in non-ignorable missing data. If one is interested in evaluating

baseline covariates as predictors of FEV measurements and survival, a joint model would be

appropriate. However, it would need to account for the non-ignorable missing data in the FEV

measurements.

In many settings such as clinical trials, the primary effect of interest may be a baseline

covariate such as a treatment effect. Fitting a marginal model on either the longitudinal or

survival outcomes separately ignores important information in the other outcome. Many joint

models are too complex and computationally demanding to implement in practice, and make

strong assumptions regarding the longitudinal and survival outcomes. An ideal joint model

would incorporate information from both longitudinal and survival outcomes in a simple manner

that is straightforward to implement and makes limited distributional assumptions.
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TABLE 1.1: Grades of evidence of Bayes factors

Bayes factor Interpretation

B10 < 1/10 Strong evidence for H0

1/10 < B10 < 1/3 Moderate evidence for H0

1/3 < B10 < 1 Weak evidence for H0

1 < B10 < 3 Weak evidence for H1

3 < B10 < 10 Moderate evidence for H1

B10 > 10 Strong evidence for H1
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CHAPTER 2

Testing Random Effects in the Linear

Mixed Model Using Approximate

Bayes Factors

2.1 Introduction

The linear mixed model with random effects (Laird and Ware, 1982) is a popular method for

fitting longitudinal data. In such models it is often of interest to test whether certain random

effects should be included the model. Testing whether a random effect should be included

in the model involves the test of whether the variance of that random effect is equal to 0.

Because this test lies on the boundary of the parameter space, classical procedures such as

the likelihood ratio test can break down asymptotically (Pauler et al., 1999; Lin, 1997; Self

and Liang, 1987; Stram and Lee, 1994). It has been shown that tests for a single variance

component can be carried out using mixtures of chi-square distributions (Self and Liang, 1987;

Stram and Lee, 1994). In more complex model comparisons (i.e. testing more than one random

effect), distributions of test statistics are more complex and are not easily applied (Pauler et al.,

1999; Feng and McCulloch, 1992; Shapiro, 1988). Some alternative frequentist methods include

score tests (Lin, 1997; Commenges and Jacqmin-Gadda, 1997; Verbeke and Molenberghs, 2003;

Molenberghs and Verbeke, 2007; Zhang and Lin, 2008), Wald tests (Molenberghs and Verbeke,

2007; Silvapulle, 1992), and generalized likelihood ratio tests (Crainiceanu and Ruppert, 2004),



but these methods also require modified asymptotic null distributions for tests on the boundary

of the parameter space.

Bayesian sampling-based estimation approaches for calculating Bayes factors can also en-

counter numerical problems on the boundary of the parameter space. Markov chain Monte

Carlo (MCMC) methods such as the Gibbs sampler or data augmentation can fail for certain

choices of default priors on the random effects (Gilks and Roberts, 1996). Some MCMC methods

have been suggested to test variance components (Sinharay and Stern, 2001; Chen and Dunson,

2003; Cai and Dunson, 2006; Kinney and Dunson, 2008), but these methods are generally time

consuming to implement, require special software, and rely on subjective choice of hyperpa-

rameters which are difficult to elicit. The most widely used approximation to the Bayes factor

is based on the Laplace approximation (Tierney and Kadane, 1986), resulting in the Bayesian

information criterion (BIC) (Schwarz, 1978) under certain assumptions. However, the required

regularity conditions of the Laplace approximation fail when the parameter lies on the boundary

(Pauler et al., 1999; Hsiao, 1997; Erkanli, 1994). Pauler et al. (1999) proposed estimating Bayes

factors for model comparison using an importance sampling approach and a boundary Laplace

approximation. Their methods are relatively complex and are only applied in the context of

simple variance component models.

Because random effects involve a distinct parameter for every individual, linear mixed models

can have a very large number of dimensions. This is problematic in calculating Bayes factors,

because high dimensional integrals are needed to calculate marginal likelihoods. Generally these

integrals are not available in closed form, and one must consider approximations. Numerical

integration methods are not efficient nor useful in such high-dimensional integrals (Kuonen,

2003). Monte Carlo integration and importance sampling methods are generally recommended

for approximating high-dimensional integrals, but these methods lack accuracy and are compu-

tationally demanding. The Laplace and BIC approximations also suffer in performance from

high-dimensionality (Kass and Raftery, 1995). In addition, it is not entirely clear how to define

the dimensional penalty, or “effective dimension”, in the BIC approximation (Spiegelhalter et

al., 2002).

An additional challenge to model selection via Bayes factors lies in the choice of prior dis-

tributions. It is well known that Bayes factors are sensitive to the choice of priors (Kass and
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Raftery, 1995). This is problematic in situations in which one has no prior information on the

parameters, and the goal is to choose the best model based on the data. In these situations, it is

common to use default priors, which can be chosen based on the data without subjective inputs

and that result in good frequentist and Bayesian operating characteristics. However, one must

choose these default prior variances with care, because as the prior variance increases toward

infinity the Bayes factor will increasingly favor the null model (Bartlett, 1957). It has been

documented that normal priors lead to aberrant behavior in model selection problems, leading

Jeffreys (1961) to suggest the Cauchy prior as a heavy-tailed and more robust alternative. This

early work by Jeffreys was extended by Zellner and Siow (1980) to develop a robust class of

multivariate Cauchy priors for variable selection problems. Zellner’s g-prior (Zellner, 1986) has

been widely adopted in linear models, and only requires the specification of one hyperparameter.

Liang et al. (2005) generalized Zellner’s g-prior by implementing a fully Bayes approach using

mixtures of g-priors.

We propose a simple approach for conducting approximate Bayesian inferences on testing

whether to include random effects in the linear mixed model using Bayes factors. Our approach

involves a re-parameterization of the linear mixed model, and allows for accurate approximations

to the Bayes factor via Laplace’s approximation. In Section 2 we introduce our method in

the context of a repeated measures ANOVA model, and conduct a simulation to evaluate its

performance in testing a subject-specific intercept. In Section 3 we generalize our approach to

the linear mixed model, and in Section 4 we illustrate our method using two data examples. We

conclude with a discussion in Section 5.

2.2 Testing a random intercept

2.2.1 ANOVA model

We start by considering a simple ANOVA model with a random subject effect

M
(1)
1 : Yij = µ + λbi + εij, (2.1)
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in which Yij is the jth response for subject i, µ is an intercept, bi ∼ N(0, σ2) is a scaled

random effect multiplied by a parameter λ > 0, and εij ∼ N(0, σ2) is the disturbance term for

i = 1, . . . , n and j = 1, . . . , ni. This is an ANOVA model with a random effect variance equal to

λ2σ2, in which λ is a parameter controlling the level of within subject correlation. The utility of

this variance component decomposition will later become clear. The notation M
(a)
k represents

parameterization (a) for model k. We distinguish models parameterized in different ways in order

to consider the impact of parameterization on the accuracy of the Laplace approximation to the

marginal likelihood. The implied covariance matrix of yi = (Yi1, . . . Yini
)′ is σ2(Ini

+ λ21ni
1′ni

),

in which Ini
is the ni × ni identity matrix, and 1ni

is a ni × 1 vector of 1’s. It follows that the

implied correlation between Yij and Yis for j 6= s is

ρ(Yij, Yis) =
λ2

1 + λ2
. (2.2)

Our initial focus is to compare the ANOVA model to a model with no random subject effect,

M0 : Yij = µ + εij, (2.3)

in which µ is an overall mean and εij ∼ N(0, σ2). We are interested in estimating Bayes factors

to determine which model has the largest posterior odds given equal prior odds, given by

B
(a)
10 =

p(Y |M (a)
1 )

p(Y |M0)
, (2.4)

in which Y = (y′1, . . . , y
′
n)′. Estimating the Bayes factor implies deriving estimates of p(Y |M (a)

k ),

or

p(Y |M (a)
k ) =

∫
p(Y |θ(a)

k ,M
(a)
k )π(θ

(a)
k |M (a)

k )dθ
(a)
k , (2.5)

in which p(Y |θ(a)
k ,M

(a)
k ) is the data likelihood, θ

(a)
k is the vector of model parameters, and

π(θ
(a)
k |M (a)

k ) is the prior distribution of θ
(a)
k . For clarity, let M

(a)
0 = M0, i.e. only one parame-

terization of M0 will be considered. For M
(a)
1 and M0, the marginal likelihoods are not generally

not available in closed form for common choices of prior distributions. Let θ
(a)
1 = (ζ

′(a)
1 , b′, σ2)′

39



and θ
(a)
0 = (ζ

′(a)
0 , σ2)′, such that the vector ζ

(a)
k denotes all parameters other than the random

effects b and residual variance σ2. We specify an inverse gamma prior on σ2 with parameters

v, w, in which the mean of σ2 is w/(v− 1) for v > 1. By marginalizing out b and σ2 in M
(1)
1 and

σ2 in M0, it can be shown that (Y |µ, λ,M
(1)
1 ) and (Y |µ,M0) follow multivariate t-distributions

with the general form

p(Y |ζ(a)
k ,M

(a)
k ) =

Γ
(

2v+m
2

) ∏n
i=1 |wv Σi|−1/2

(π2v)m/2Γ(2v/2)
(2.6)

×
{

1 +
1

2v

n∑

i=1

(yi − µi)
′
(

w

v
Σi

)−1

(yi − µi)

}− 2v+m
2

,

in which m =
∑n

i=1 ni is the total number of observations. In our ANOVA setup, µi = µ1ni

in both M0 and M
(1)
1 , Σi = Ini

in M0, and Σi = (Ini
+ λ21ni

1′ni
) in M

(1)
1 . After specifying a

suitable prior on µ, the Laplace method can be used to integrate over (µ, λ) in M
(1)
1 and µ in M0.

We then use the resulting marginal likelihood estimates to estimate the Bayes factor B
(1)
10 . Note

that the vector µi and the matrix σ2Σi are the mean and covariance matrix of yi marginalized

over the random effect bi. For additional details regarding these multivariate t-distributions, see

the Appendices.

The Laplace approximation is based on a linear Taylor series approximation of l̃(ζ
(a)
k ) =

log{p(Y |ζ(a)
k ,M

(a)
k )π(ζ

(a)
k |M (a)

k )}. The marginal likelihood p(Y |M (a)
k ) for model k and parame-

terization (a) is estimated by

p̂(Y |M (a)
k ) = (2π)d/2|Σ̃(a)

k |1/2p(Y |ζ̃(a)
k ,M

(a)
k )π(ζ̃

(a)
k |M (a)

k ), (2.7)

in which Σ̃
(a)
k is the Hessian matrix of l̃(ζ

(a)
k ) evaluated at the posterior mode ζ̃

(a)
k . Because

the Laplace approximation is based on a linear Taylor series approximation, it requires certain

regularity conditions. When the posterior mode lies on the boundary of the parameter space

these regularity conditions fail. The Laplace method can perform poorly even if the mode is

close to the boundary of the parameter space; hence estimating the marginal likelihood in M
(1)
1

via Laplace can be problematic because of the restricted parameter space of λ > 0. If the

posterior mode λ̃ is close to 0, this can cause problems with the accuracy of the approximation.
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Hence we consider an alternate parameterization of equation (2.1),

M
(2)
1 : Yij = µ + eφbi + εij, (2.8)

in which φ = log(λ). Note the parameter space of φ is unrestricted, ensuring that the posterior

mode falls within the boundaries of the parameter space. Because the posterior mode of φ

will not violate the regularity conditions of the Laplace approximation, the estimated marginal

likelihoods based on M
(2)
1 may be more accurate than those based on M

(1)
1 . Following the steps

outlined previously, it can be shown that (Y |µ, φ, M
(2)
1 ) follows a multivariate t-distribution with

density (2.6), with µi = µ1ni
and Σi = (Ini

+ e2φ1ni
1′ni

). We use the Laplace approximation to

integrate over (µ, φ), and use the resulting estimate of the marginal likelihood to estimate the

Bayes factors B
(2)
10 .

2.2.2 Prior choice

It is well understood that a Bayes factor is sensitive to the choice of prior distributions (Kass and

Raftery, 1995). As the prior variance of the random effect increases toward infinity, the Bayes

factor will increasingly favor M0 over the random effects model. It is therefore of interest to

suggest default priors that yield robust tests with respect to model selection. In our model, we

have introduced a parameter λ (or eφ) that controls the contribution of the random effect, free of

the scale of the data. We propose default priors of λ ∼ log N(κ = 0, τ = 1) and φ ∼ N(0, 1), in

which κ and τ denote the mean and variance of the log-normal distribution on the log scale. The

priors on λ and φ are “equivalent” priors, meaning they lead to the same marginal likelihood.

Any differences in the estimated marginal likelihoods between M
(1)
1 and M

(2)
1 should be a result

of differences in the accuracy of the Laplace approximation under different parameterizations.

In choosing a prior distribution for λ(> 0), we want to avoid a prior that is concentrated

around the null value of 0. Given that the the random effects are scaled to the residual error,

a log N(0, 1) prior on λ is a reasonable default prior for model selection. After marginalizing

out σ2, this log normal prior is heavy-tailed and covers most reasonable mean values of the

parameter.
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2.2.3 Simulation study

We conducted a simulation study to evaluate the performance of parameterization M
(2)
1 and

M
(1)
1 in correctly identifying models with or without random effects. We simulated 100 data

sets based on parameterization (2.1), with n = 25, 50, 100, 500, 1000, 5000, ni = 3 and σ2 = 1.

The parameter λ was varied to allow different degrees of correlation in the simulated data, or

correlations of 0, 0.14, 0.33, 0.5, 0.69. In order to implement the Laplace approximation, we

estimated the posterior mode using an algorithm by Nelder and Mead (1965). We used prior

distributions µ ∼ N(0, 1) and σ2 ∼ InvGam(1, 1). Estimates of the Bayes factors B
(1)
10 and B

(2)
10

were calculated for each data set for a given correlation, and were interpreted according to the

scale given by Wasserman (2000) and Jeffreys (1961). Table 2.1 includes the percent of times

that the estimated Bayes factors fell into the respective categories, indicating weak, moderate,

or strong evidence in favoring a given model.

Both parameterizations performed well in favoring the correct model, but accuracy depended

on both the sample size and the simulated correlation. In general, as ρ increased our method

increasingly favored M
(a)
1 over the null model. As the sample size increased, our method more

accurately detected the absence of a random slope for ρ = 0, and more accurately detected the

presence of a random slope for ρ > 0. For small sample sizes, we observed reasonably good

performance with zero or moderate correlation (ρ = 0, ρ ≥ 0.33). However, larger sample sizes

were needed in order to detect smaller correlations close to the boundary. Figure 2.1 shows

box plots of log B̂
(1)
10 for ρ = 0, 0.33. The dotted black line represents a log Bayes factor of 0

(i.e. Bayes factor equal to 1). As n goes toward infinity the estimated log Bayes factor B
(1)
10

goes to infinity for ρ = 0.33, and goes to negative infinity for ρ = 0, showing that our method

increasingly favors the correct model as n increases.

The estimated Bayes factors comparing M
(a)
1 to M0 were very similar across parameteriza-

tions, even close to the boundary. We also considered the use of numerical integration to more

effectively compare the parameterizations. For finite integrals of low dimension, adaptive nu-

merical integration is an accurate and efficient method for calculating integrals. We employed

transformations on the parameters (λ, φ, µ) to map the infinite integral in (2.5) to a finite

integral, and implemented Genz’ (1991) adaptive numerical integration routine for sample sizes
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n = 25, 50. We did not find either parameterization to outperform the other. In fact, the Laplace

approximations from the two parameterizations were so close that it was difficult to compute

a numerical integration approximation with enough precision to distinguish between the two

parameterizations. Hence, given the similarities between the two parameterizations, it is fairly

evident that the boundary issue of λ is not a major problem with the Laplace approximation in

this model.

2.3 Testing a random slope

2.3.1 Linear mixed model

We generalize our approach for testing random effects by considering a linear mixed model

(Laird and Ware, 1982) of the form

yi = Xiβ + Zibi + εi, (2.9)

in which yi = (Yi1, . . . , Yini
)′ is a ni × 1 vector of responses, Xi = (xi1, . . . , xip) is a ni × p

design matrix, Zi = (zi1, . . . , ziq) is a ni × q design matrix, β = (β1, . . . , βp)
′ is a p × 1 vector

of parameters, and bi = (bi1, . . . , biq)
′ is a q × 1 vector of random coefficients. The matrix Zi

is usually considered to be a subset of Xi. It is assumed that εi ∼ N(0,R) is independent of

bi ∼ N(0,ψ), in which ψ is the q× q covariance matrix of random effects. A popular choice for

R is σ2I, which assumes the observations are independent within a subject given the random

coefficients.

We choose bih ∼ N(0, σ2), and introduce a parameter λh that controls the relative contri-

bution of the hth random effect of subject i. Let M
(a)
k refer to model k and parameteriza-

tion a. Similar to the approach of Chen and Dunson (2003) (but without the assumption of

b0,i ∼ N(0, I)), our reparameterized model takes the form

M
(1)
0 : yi = Xiβ + Z0,iΛ

(1)
0 Γ0b0,i + εi, (2.10)

in which Z0,i = (zi1, . . . , ziq), b0,i = (bi1, . . . , biq)
′, Λ

(1)
0 is a positive diagonal matrix with
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diagonal elements λ
(1)
0 = (λ1, . . . , λq)

′, and λ
(1)
0 ∼ log N(0q, Iq) as an extension of the “default”

prior suggested in 2.2.2. Let Γ0 be a lower triangular matrix with 1q along the diagonal, and

lower off-diagonal elements γ0 which induce correlation between the respective random effects.

Our focus is to test whether to include an additional random effect bi(q+1). Let Z1,i, Λ
(1)
1 , Γ1,

and b1,i be equal to their counterparts from (2.10), but including the elements corresponding

to the additional random effect bi(q+1). The full model including the additional random effect

takes the form

M
(1)
1 : yi = Xiβ + Z1,iΛ

(1)
1 Γ1b1,i + εi, (2.11)

in which Z1,i = (zi1, . . . , zi(q+1)), b1,i = (bi1, . . . , bi(q+1))
′, Λ

(1)
1 is a positive diagonal matrix

with diagonal elements λ
(1)
1 = (λ1, . . . , λq+1)

′ and λ
(1)
1 ∼ log N(0q+1, Iq+1), and Γ1 is a lower

triangular matrix with 1q+1 along the diagonal and lower off-diagonal elements γ1.

As demonstrated with the ANOVA model, we also consider an alternate parameteriza-

tion of (2.10) and (2.11), by setting λ
(2)
k = φk = log λ

(1)
k , with λ

(2)
0 ∼ N(0q, Iq) and λ

(2)
1 ∼

N(0q+1, Iq+1). We define Λ
(2)
0 as a diagonal matrix with diagonal elements eλ

(2)
0 = (eφ1 , . . . , eφq),

and Λ
(2)
1 as a diagonal matrix with diagonal elements eλ

(2)
1 = (eφ1 , . . . , eφq+1). Let M

(2)
0 denote

the reduced model and M
(2)
1 denote the full model under this parameterization.

2.3.2 Approximating the marginal likelihoods

In order to implement the Laplace approximation, we first marginalize out b and σ2. Let

σ2 ∼ InvGam(v, w). It can be shown that the marginal distribution p(Y |β,λ
(a)
k ,γk,Mk) fol-

lows a multivariate t-distribution with density (2.6), in which µi = Xiβ and Σi = (Ini
+

Zk,iΛ
(a)
k ΓkΓ

′
kΛ

′(a)
k Z ′

k,i). Integrating out all random effects simultaneously dramatically decreases

the dimension of the integral needed for the marginal likelihoods. After specifying suitable pri-

ors for β and γk, we use the Laplace method to integrate over (β,λ
(a)
k ,γk) to approximate the

marginal likelihoods p(Y |M (a)
k ) used to evaluate the Bayes factor B

(a)
10 . For additional details

regarding these multivariate t-distributions, see the Appendices.

As previously discussed, many of the existing methods for testing variance components are

only applicable in simple settings, e.g. testing a single variance component. One major ad-
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vantage of our approach is we can test multiple random effects simultaneously by modifying

equation (2.11) such that the Z1,i, Λ
(a)
1 , Γ1, and b1,i correspond to a model with several addi-

tional random effects. Incorporating default priors on the β coefficients, one can simultaneously

compare models with varying numbers of both fixed and random effects.

2.3.3 Simulation study

We conduct a simulation study to test for the presence of a random slope. We define one

predictor based on time, such that xi = (1, 2, . . . , J)′, Xi = (1,xi), and β = (β0, β1)
′. Consistent

with our previous notation, let M1 refer to the random intercept model and M2 refer to the

random intercept and slope model. Letting Z1,i = 1J , λ
(a)
1 = λ

(a)
0 , and b1,i = bi0, we have

M
(a)
1 : yij = β0 + λ

(a)
0 bi0 + β1xij + εij (2.12)

for the random intercepts model. Letting Z2,i = (1J ,xi), λ
(a)
2 = (λ

(a)
0 , λ

(a)
1 )′, and b2,i = (bi0, bi1)

′,

we have

M
(a)
2 : yij = β0 + (λ

(a)
0 + γ12xijλ

(a)
1 )bi0 + (β1 + λ

(a)
1 bi1)xij + εij (2.13)

for the random intercept and slope model. Our focus is to compare model M
(a)
2 to M

(a)
1 . After

integrating out b and σ2 to produce marginal multivariate t-distributions, the integrals needed

to calculate the marginal distributions p(Y |M (a)
1 ) and p(Y |M (a)

2 ) only have 3 or 5 dimensions,

respectively. Hence the Laplace method can effectively be used to integrate over (β0, β1, λ
(a)
0 ) in

M
(a)
1 and (β0, β1, λ

(a)
0 , λ

(a)
1 , γ12) in M

(a)
2 .

We simulated 100 data sets based on a random intercept and slope model under the standard

notation of Laird and Ware (1982) as shown in (2.9), i.e.

Yij = β0 + bi0 + (β1 + bi1)xij + εij. We set β0 = 0, β1 = 0.5, J = 10, σ2 = 1, and we generated

the random effects from a multivariate normal distribution bi ∼ N2(0,ψ), in which ψ11 = 1

and ψ12 = ρ(bi0, bi1)
√

ψ11ψ22 = −0.3. We considered different combinations of the random

slope variance component and sample size by varying
√

ψ22 = 0, 0.04, 0.08, 0.15, 0.25 across

n = 25, 50, 100, 500, 1000, 5000. For implementing the Laplace approximation to the marginal
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likelihoods, we used prior distributions β ∼ N(0, I), σ2 ∼ InvGam(1, 1), and γ12 ∼ N(0, 1).

As illustrated in Table 2.2, our method performed well in favoring the correct model, but

accuracy depended on both the sample size and the simulated variance of the random slope.

In general, as the standard deviation of bi1 increased, our method increasingly favored M
(a)
2

over M
(a)
1 . As the sample size increased, our method more accurately detected the absence of

a random slope for
√

ψ22 = 0, and more accurately detected the presence of a random slope

for
√

ψ22 > 0. For smaller sample sizes, our method generally detected the random slope for

√
ψ22 ≥ 0.15, indicating our method is useful even for small sample sizes with moderate to large

random effects. Figure 2.2 shows box plots of log B̂
(1)
21 for

√
ψ22 = 0 and

√
ψ22 = 0.08. As n

goes to infinity the estimated log Bayes factor B̂
(1)
21 goes to infinity for

√
ψ22 = 0.08, and goes

to negative infinity for
√

ψ22 = 0. This indicates the estimated Bayes factor increasingly favors

the correct model as n increases.

As noted previously, the approximations to the marginal likelihoods do not seem to vary

a great deal across parameterizations. Similar patterns were found in this simulation, with

most differences extremely small. Occasionally we did observe large differences between the

marginal likelihood estimates of M
(2)
2 and M

(1)
2 for simulated variances close to the boundary

for n = 5000. It appears that this situation was due to occasional poor convergence of the

maximization routine for the λ
(2)
k parameterization, and not due to the Laplace approximation

itself.

2.4 Illustrative examples

2.4.1 Hamilton Rating Scale for Depression

To illustrate our method, we consider a clinical trial of patients with bipolar I disorder (Cal-

abrese et al., 2003), GlaxoSmithKline study SCAB2003. The investigators concluded that the

treatment drug, lamotrigine, significantly delays the time to intervention for a depressive episode

compared to placebo. The investigators also collected repeated measurements on the Hamil-

ton Rating Scale for Depression (HAMD), a numerical measure of the severity of depressive

symptoms. As a secondary analysis, we wish to determine if lamotrigine is effective in reducing
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depressive symptoms during the first year after randomization as measured by the HAMD-17

summary score. Larger HAMD-17 scores reflect higher levels of depression.

We consider 275 patients (160 lamotrigine 200/400 mg/day, 115 placebo) with at least one

outcome measurement and complete covariate data. The number of repeated measurements per

subject ranges from 1 to 17, and HAMD-17 scores range from 0 to 35, with a mean value of

7. To better approximate normality, we used a square root transformation of HAMD-17 (sqrt-

HAMD-17). We fit a linear mixed model with sqrt-HAMD-17 as the response, predicted by

sqrt-HAMD-17 at screening and baseline, time (in years), treatment, gender, age (< 30, 30-40,

40-50, ≥ 50), and the number of depressive or mixed episodes in the last year (1-2 vs. ≥ 3).

Screening refers to the time at enrollment, and baseline refers to the time of randomization

(after stabilization).

In assessing the impact of lamotrigine on HAMD-17 scores, it is also interesting to assess

the variability among patients with regards to the overall mean and slope. One might expect

patients to have different patterns of depressive episodes across time, perhaps resulting from

biological mechanisms or individual responses to drug treatment. This leads to the task of

testing whether to include random effects in our model. Our focus is to compare models with

varying combinations of a random intercept and slope, i.e. M0: a model without random effects;

M1: a model with a random intercept; and M2: a model with a random intercept and slope.

Based on the scale of both the response and the explanatory variables, we use vague priors on

the fixed effects β and residual variance σ2 that accommodate a wide range of reasonable mean

values. We define these priors as β ∼ N9(0, 10I) and σ2 ∼InvGamma(0.01, 0.01).

The estimated log Bayes factors for the respective comparisons are log β̂21 = 61.0, log β̂20 =

348.5, log β̂10 = 287.5. These estimates show strong evidence for M2 versus the other models,

indicating the intercepts and slopes vary significantly by individual. We fit the preferred model,

M2, using MCMC methods based on 15,000 samples, with a burn-in of 10,000. Figure 2.3 shows

the predicted overall mean for each treatment group and the predicted individual sqrt-HAMD-

17 for 50 random subjects. The predicted overall mean is based on a 40-50 year old female with

1-2 depressive episodes in the past year, and average values of sqrt-HAMD-17 at screening and

baseline (2.2 and 4.8, respectively). There is large variability in the subject specific intercepts

and slopes. Lamotrigine use, age, and sqrt-HAMD-17 at screening and baseline all appear to
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be significant predictors of the outcome. A one unit increase in sqrt-HAMD-17 at baseline is

associated with a 0.63 (95% CI = 0.51, 0.74) increase in mean sqrt-HAMD-17, and a one unit

increase in sqrt-HAMD-17 at screening is associated with a 0.22 (95% CI = 0.02, 0.48) increase

in mean sqrt-HAMD-17. On average, patients 30-40 years old have sqrt-HAMD-17 values 0.18

(95% CI = −0.20, 0.56) units greater than patients < 30 years old, patients 40-50 years old have

sqrt-HAMD-17 values 0.47 (95% CI = 0.13, 0.82) units greater than patients < 30 years old, and

patients ≥ 50 years old have sqrt-HAMD-17 values 0.39 (95% CI = 0.05, 0.73) units greater than

patients < 30 years old. As the main association of interest, sqrt-HAMD-17 values for subjects

on lamotrigine are on average 0.33 units lower (95% CI = −0.54,−0.10) than sqrt-HAMD-17

values for subjects on placebo. The 95% credible interval does not contain 0, indicating that

lamotrigine may be effective at reducing depressive symptoms. These conclusions reinforce the

time-to-event analysis of Calabrese et al. (2003).

2.4.2 Exposure of disinfection by-products in drinking water and

male fertility

A multi-center study of 229 male patients from 3 sites (A, B, C) was conducted to evaluate

the effect of disinfection by-products (DBP’s) in drinking water on male reproductive outcomes

in presumed fertile men. DBP exposure was measured using water system samples and data

collected on individual water usage. Three exposure variables of interest for the outcome percent

normal sperm are brominated haloacetic acids (HAA-Br), brominated trihalomethanes (THM-

Br), and total organic halides (TOX).

Our focus is to model the response (% normal sperm) using the three DBP exposure vari-

ables. Because we are interested in each exposure’s effect independent of the other exposure

variables, we fit three separate models, one for each DBP exposure. In each model we control

for the following baseline covariates using indicator variables: male age (< 25, 25-30, 30-35,

> 35), education (high school or less, some college, graduated college), and the abstinence in-

terval before taking the sample (2-3 days, 4-8 days, or > 8 days). We scale each predictor by

subtracting the overall mean of the predictor and dividing by a constant c (c = 10 for HAA-Br

and THM-Br, and c = 100 for TOX) to allow for better computational efficiency. We use a
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probit transformation of percent normal sperm and multiply the result by 5, so the tranformed

response has a range of -10.5 to -1.8, a mean of -5.6, and a variance of 1.8.

In assessing the impact of DBP’s on sperm quality, it is also of interest to assess the variability

among study sites with regards to the overall mean of percent normal sperm (i.e. intercept) and

each DBP effect (i.e. slope). It may be the case that study site is a surrogate for unmeasured

aspects of water quality or other unmeasured factors of interest. For each DBP exposure,

we define three models based on the inclusion of random effects, i.e. M0 : a model without

random effects; M1 : a model with a random intercept; and M2 : a model with a random slope

and intercept. Based on the scale of both the response and the explanatory variables, we use

vague priors on the fixed effects β and residual variance σ2 that accommodate a wide range of

reasonable mean values. We define these priors as β ∼ N9(µ,Σ) and σ2 ∼InvGamma(0.01, 0.01),

with µ = (−5.5,0′8)
′ and Σ a diagonal matrix with diagonal elements (100, 10× 1′8).

For HAA-Br, we observe moderate evidence for M1 versus M2 (B̂12 = 6.9) and strong

evidence for M1 versus M0 (log B̂10 = 15.3). For THM-Br, we observe strong evidence for M1

versus both M2 (B̂12 = 10.5) and M0 (log B̂10 = 19.2). For TOX, we observe weak evidence for

M1 versus both M2 (B̂12 = 1.1) and strong evidence for M1 versus M0 (log B̂10 = 12.9). Hence

the random intercepts model M1 is favored by the Bayes factor for all three DBP exposures. For

comparison, we fit both models M1 and M2 using MCMC methods based on 40,000 samples,

with a burn-in of 40,000 for each model. We plot the predicted mean response based on M2, for

a 30-35 year old male who has graduated college and has abstained for 2-3 days (Figure 2.4). For

each of the three exposure models, one can see that there is some separation of the intercepts

and varying degrees of agreement between the slopes. Although the point estimates of the slopes

(based on the posterior means) appear to be quite different, the large variability associated with

these estimates suggests that the slopes do not vary by study site. Hence we conclude that M1

is the preferred model for each of the predictors. Based on M1, both HAA-Br and THM-Br have

posterior distributions centered near 0, indicating little association between these DPB’s and

percent normal sperm. The posterior distribution of TOX tends to be centered below 0, with a

posterior mean of -1.20 (95 % CI = -3.67,0.47); however, the 95% credible interval contains 0.

49



2.5 Discussion

We recommend our approach as a simple and efficient method in testing random effects in the

linear mixed model. Our approach avoids issues with testing on the boundary of the param-

eter space, uses low-dimensional approximations to the Bayes factor, and incorporates default

priors on the random effects. We have shown Laplace’s method to be an effective approach to

estimating Bayes factors, even in cases in which the variance of the random effect lies on the

boundary. By scaling the random effects to the residual variance and introducing a parame-

ter that controls the relative contribution of the random effects, we can effectively integrate

out the random effects and reduce the dimensionality of the marginal likelihood. The scaling

of the random effects to the residual variance makes the log N(0, I) and N(0, I) distributions

reasonable default priors for λ
(1)
k and λ

(2)
k , respectively. Simulations suggest that these priors

have good small sample properties and consistency in large samples. Incorporating reasonable

default priors on the fixed effects, our method can be used for comparing a large class of random

effects models with varying fixed and random effects.

Alternative procedures for allowing default priors for model selection via Bayes factors are

discussed by Berger and Pericchi (1996). These include the authors’ proposed intrinsic Bayes

factors, the Schwarz approximation (Schwarz, 1978), and the methods of Jeffreys (1961) and

Smith and Spiegelhalter (1980). Gelman (2006) discusses various approaches to default pri-

ors specifically for variance components. Common approaches include the uniform prior (e.g.

Gelman, 2007), the half-t family of prior distributions, and the inverse-gamma distribution

(Spiegelhalter et al., 2003). These prior distributions can encounter difficulties when the vari-

ance components are close to 0. Other discussions of selecting default priors on variance compo-

nents include Natarajan and Kass (2000), Browne and Draper (2006), and Kass and Natarajan

(2006).
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TABLE 2.1: Testing a random intercept, B̂
(a)
10

Parameterization (1) Parameterization (2)
Favor null Favor random int. Favor null Favor random int.

n ρ < 0.1 0.1-0.33 0.33-1 1-3 3-10 > 10 < 0.1 0.1-0.33 0.33-1 1-3 3-10 > 10

25 0 6 67 22 4 0 1 7 71 18 3 0 1
0.14 0 31 35 22 9 3 0 36 31 21 9 3
0.33 0 1 12 20 25 42 0 1 14 18 25 42
0.5 0 0 0 4 7 89 0 0 1 3 7 89
0.69 0 0 0 0 0 100 0 0 0 0 0 100

50 0 23 50 18 7 2 0 27 51 13 7 2 0
0.14 2 22 34 16 14 12 4 25 30 18 11 12
0.33 0 0 7 4 8 81 0 0 7 5 8 80
0.5 0 0 0 0 0 100 0 0 0 0 0 100
0.69 0 0 0 0 0 100 0 0 0 0 0 100

100 0 43 43 12 2 0 0 52 36 10 2 0 0
0.14 3 12 18 21 15 31 6 13 15 22 15 29
0.33 0 0 1 0 3 96 0 0 1 0 4 95
0.5 0 0 0 0 0 100 0 0 0 0 0 100
0.69 0 0 0 0 0 100 0 0 0 0 0 100

500 0 75 18 7 0 0 0 82 14 4 0 0 0
0.14 0 0 0 1 1 98 0 0 0 1 1 98
0.33 0 0 0 0 0 100 0 0 0 0 0 100
0.5 0 0 0 0 0 100 0 0 0 0 0 100
0.69 0 0 0 0 0 100 0 0 0 0 0 100

1000 0 84 14 2 0 0 0 86 12 2 0 0 0
0.14 0 0 0 0 0 100 0 0 0 0 0 100
0.33 0 0 0 0 0 100 0 0 0 0 0 100
0.5 0 0 0 0 0 100 0 0 0 0 0 100
0.69 0 0 0 0 0 100 0 0 0 0 0 100

5000 0 96 3 1 0 0 0 96 3 1 0 0 0
0.14 0 0 0 0 0 100 0 0 0 0 0 100
0.33 0 0 0 0 0 100 0 0 0 0 0 100
0.5 0 0 0 0 0 100 0 0 0 0 0 100
0.69 0 0 0 0 0 100 0 0 0 0 0 100

* Table includes the percent of times that the estimated Bayes factors fell into
the respective categories
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TABLE 2.2: Testing for a random slope, B̂
(a)
21

Parameterization (1) Parameterization (2)
Favor null Favor random slope Favor null Favor random slope

n
√

ψ22 < 0.1 0.1-0.33 0.33-1 1-3 3-10 > 10 < 0.1 0.1-0.33 0.33-1 1-3 3-10 > 10

25 0 97 2 1 0 0 0 97 2 1 0 0 0
0.04 98 1 1 0 0 0 98 1 1 0 0 0
0.08 85 6 5 3 1 0 85 6 5 3 1 0
0.15 11 5 6 4 9 65 12 4 7 3 9 65
0.25 0 0 0 0 1 99 0 0 0 0 1 99

50 0 100 0 0 0 0 0 100 0 0 0 0 0
0.04 97 2 1 0 0 0 98 1 1 0 0 0
0.08 65 11 8 7 1 8 65 11 8 7 1 8
0.15 0 3 0 0 4 93 0 3 0 0 5 92
0.25 0 0 0 0 0 100 0 0 0 0 0 100

100 0 99 1 0 0 0 0 100 0 0 0 0 0
0.04 98 2 0 0 0 0 98 2 0 0 0 0
0.08 37 11 14 10 9 19 37 11 15 9 10 18
0.15 0 0 0 0 0 100 0 0 0 0 0 100
0.25 0 0 0 0 0 100 0 0 0 0 0 100

500 0 100 0 0 0 0 0 100 0 0 0 0 0
0.04 93 2 2 0 2 1 93 2 2 0 2 1
0.08 0 0 1 1 0 98 0 0 1 1 0 98
0.15 0 0 0 0 0 100 0 0 0 0 0 100
0.25 0 0 0 0 0 100 0 0 0 0 0 100

1000 0 100 0 0 0 0 0 100 0 0 0 0 0
0.04 77 11 8 2 1 1 78 11 7 2 1 1
0.08 0 0 0 0 0 100 0 0 0 0 0 100
0.15 0 0 0 0 0 100 0 0 0 0 0 100
0.25 0 0 0 0 0 100 0 0 0 0 0 100

5000 0 100 0 0 0 0 0 100 0 0 0 0 0
0.04 2 4 3 3 4 84 2 5 2 3 4 84
0.08 0 0 0 0 0 100 0 0 0 0 0 100
0.15 0 0 0 0 0 100 0 0 0 0 0 100
0.25 0 0 0 0 0 100 0 0 0 0 0 100

* Table includes the percent of times that the estimated Bayes factors fell into
the respective categories
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CHAPTER 3

Testing Variance Components in

Multilevel Linear Models using

Approximate Bayes Factors

3.1 Introduction

Many studies collect data that have hierarchical or clustered structures. Examples include ran-

domized studies in which patients are clustered within practices, educational studies in which

students are clustered in schools, or environmental studies in which individuals are clustered in

homes clustered in counties. An analysis that ignores such clustering assumes all observations

are independent, resulting in incorrect model-based standard errors that can lead to misleading

scientific inferences. Multilevel models are used to account for the correlation of observations

within a given group by incorporating group-specific random coefficients. These random coeffi-

cients can be be nested (e.g. repeated observations of students nested in schools, with random

coefficients at the student and school levels), cross-nested (e.g. repeated observations of students

nested in schools participating in different extra-curricular activities, with random coefficients

at the school and activity levels), or even non-nested (e.g. individuals clustered within job cat-

egories and states, with random coefficients at the job and state level). For an introduction to

multilevel models, see Gelman and Hill (2007), Fitzmaurice et al. (2004), Sullivan et al. (1999),

and Bryk and Raudenbush (1992).



Birth records were obtained for all live births in New York City in 2003 and linked to

the hospital discharge data from the Statewide Planning and Research Cooperative System

by the New York State Department of Health. These data include information on mother’s

demographic characteristics, previous births, smoking, weight gain during pregnancy, maternal

birth outside the U.S., and infant’s gender, birth weight, and gestational age (Savitz et al.,

2008), all collected from the birth certificate. These data were also linked to U.S. Census

data to obtain additional demographic information at the census tract level. Investigators are

interested in identifying significant predictors of birth weight among term births adjusting for

gestational age. To address this, we use a multilevel linear model of infant’s birth weight,

predicted by infant gestational age, gender, maternal race, parity, smoking status, age, weight

gain, nativity, and the neighborhood deprivation index. The neighborhood deprivation index

(NDI) is a standardized score of various socioeconomic factors in which higher scores represent

higher levels of deprivation, and is measured at the census tract level rather the individual level.

In New York City, it is common for individuals with similar demographic characteristics to live

in close proximity, resulting in social as well as biological similarities between subjects. Because

of these shared characteristics, we consider random coefficients for census tracts in our model.

Research has shown a persistent racial disparity in birth outcomes in the United States

(Osypuk and Acevedo-Garcia, 2008). Although individual and community-level covariates have

been shown to account for some of the racial risk in low birth weight (Buka et al., 2003; Roberts,

1997; Rauh et al., 2001; OCampo et al., 1997), much of this disparity remains unexplained.

Howard et al. (2006) found substantial variability in the risk of preterm birth and low birth

weight among black race subgroups defined by maternal ancestry (African, American, Asian,

Cuban, European, Puerto Rican, South and Central American, and West Indian and Brazilian).

They also found nativity (U.S. or foreign born) to be a significant predictor that varied by

ancestry. In addition to race, the NYC birth data has additional information available on

maternal country of origin and nativity. We consider random coefficients in our model to allow

heterogeneity in birth weights across ethnic ancestries (62 categories), and to allow the effect

of race to vary by ancestry. For example, the effect of black race may depend on whether the

mother has North African or Jamaican ancestry. In order to determine whether heterogeneity

exists in birth weights across ancestries and census tracts, one must be able to test whether
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these random coefficients should be included in the model.

Testing whether a random coefficient should be included in a multilevel model involves the

test of whether the variance of that random coefficient is equal to 0. This is problematic because

the null hypothesis lies on the boundary of the parameter space. Such issues are addressed in

the literature in the context of linear mixed models (e.g. Stram and Lee, 1994), but there is

very little research specifically for testing variance components in multilevel models. Berkhof

and Snijders (2001) proposed three score tests for variance components in multilevel models

and compared their method via simulation to the likelihood ratio test, fixed F test, and Wald

test. However, their simulations only considered two level models, and it is not clear whether

generalizations to a larger number of levels are possible. Fitzmaurice et al. (2007) proposed a

permutation test for variance components in multilevel generalized linear mixed models. They

applied their method to two-level generalized mixed models and suggested strategies for mul-

tilevel models with greater than two levels. However, their strategy cannot be directly applied

to multilevel models with crossed random effects and can only test one variance component at

a time. Frequentist methods for testing variance components in the linear mixed model are

useful to some extent in nested multilevel models for testing single variance components (e.g.

Crainiceanu and Ruppert, 2004; Verbeke and Molenberghs, 2003), but the null distributions are

not easily obtained for testing multiple variance components, and it is not clear whether these

methods can be applied to non-nested variance components. Also, Bayesian MCMC methods for

testing variance components in the linear mixed model (e.g. Cai and Dunson, 2006; Kinney and

Dunson, 2008) may be generalizable to multilevel models, but these methods generally suffer

from computational constraints and rely on subjective choice of hyperparameters.

The potential complexity of multilevel linear models with multiple nested or non-nested ran-

dom coefficients makes an approach using Bayes factors particularly challenging. In particular,

one must address issues arising from testing on the boundary of the parameter space, poor

performance of approximations to the Bayes factor resulting from high-dimensionality, and the

specification of default non-informative priors on the random coefficients. We propose to extend

the approach of Saville and Herring (2008) by scaling the random coefficients to the residual

variance and introducing parameters that control the relative contribution of the random coef-

ficients. After integrating over the random coefficients and variance components, the resulting
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integrals needed to calculate the Bayes factor can be efficiently approximated with Laplace’s

method. The method also incorporates default prior distributions that were shown to have good

frequentist properties in the linear mixed model (Saville and Herring, 2008).

We present the multilevel model and Bayesian model selection problem in Section 2. We

discuss methods for approximating the marginal likelihoods in Section 3. We conduct simulation

studies in Section 4 and apply our method to the NYC birth data in Section 5. We conclude

with a discussion in Section 6.

3.2 Testing random coefficients in multilevel linear mod-

els

We define the general multilevel linear model with q random factors as

Yi = x′iβ + z′ib[i] + εi, (3.1)

= x′iβ +
q∑

h=1

z′ihbh[i] + εi,

in which Yi is the response for observation i, i = 1, . . . ,m, xi is a p× 1 vector of predictors with

corresponding fixed effects β, b[i] = (b′1[i], . . . , b
′
q[i])

′, zi = (z′i1, . . . , z
′
iq)

′, zih is a dh × 1 vector

of predictors with corresponding random effects bh[i] in which [i] indexes the group in factor h

pertaining to the ith observation, and bh[i] ∼ N(0,ψh) independent of εi ∼ N(0, σ2), with bh[i]

independent of bh′[i] for h 6= h′. A key feature of multilevel modeling is the incorporation of

covariates xi that can be measured at any level of the hierarchy. This allows one to address the

effect of a given covariate, say at the individual level, while controlling for the effect of a higher

level covariate, say at the census level. However, greater care is required in the interpretation

of regression parameters, because some covariates can operate at many different levels.

To illustrate, consider the NYC birth data for 2003, in which there are 104,710 observations

within 62 ethnic ancestries and 2,128 census tracts. The aims of our analysis are to identify

significant predictors of infant birth weight and to determine whether there is heterogeneity

across ancestry groups and census tracts. To start, we will consider the predictor maternal

weight gain during pregnancy, which has been linked to infant birth weight. Because of social
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and biological characteristics shared by persons of the same ancestry, the effect of maternal

weight gain may vary by ancestry. This can be evaluated with a non-nested multilevel linear

model, with a random intercept and slope (for weight gain) at the ancestry level and a random

intercept at the census level. The model is

Yi = β0 + xiβ1 + b10[i] + b11[i]xi + b20[i] + εi, (3.2)

in which Yi is the weight of infant i, xi is the weight gain of the ith mother, β0 is the model

intercept, β1 is the parameter corresponding to weight gain, b10[i] is the random intercept and b11[i]

the random slope corresponding to the ancestry of mother i, and b20[i] is the random intercept

corresponding to the census tract of mother i. There are a total of 2 × 62 = 124 random

coefficients at the ancestry level and 2,128 random coefficients at the census level. In order to

test whether there is heterogeneity in birth weights across ancestries (h = 1) or census tracts

(h = 2), one can conduct a test of whether the variance of the respective random coefficients

is equal to 0. This corresponds to a test of H0 : ψh = 0, which lies on the boundary of the

parameter space.

3.2.1 Bayes factors

From a Bayesian perspective, we can test H0 : ψh = 0 by calculating the Bayes factor, or

posterior odds of M1 versus M0 given equal prior odds, given by

B10 =
p(Y |M1)

p(Y |M0)
, (3.3)

in which M0 is model corresponding to the null hypothesis and M1 is the model corresponding

to the alternative hypothesis. Calculating the Bayes factor requires the marginal likelihood

p(Y |Mk) =
∫

p(Y |θk,Mk)π(θk|Mk)dθk, (3.4)

in which p(Y |θk,Mk) is the data likelihood for model Mk, θk is the vector of model parameters,

and π(θk|Mk) is the prior distribution of θk. Multilevel models typically have a large number
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of parameters due to the inclusion of random coefficients. This is problematic in calculating

Bayes factors because high dimensional integrals are needed to calculate marginal likelihoods.

Generally these integrals are not available in closed form, and one must consider approximations.

Monte Carlo integration and importance sampling provide alternatives, but these methods lack

accuracy and are computationally demanding. The Laplace and Bayesian Information Criterion

(BIC) (Schwarz, 1978) approximations also suffer in performance from high-dimensionality (Kass

and Raftery, 1995), and it is not clear how to define the penalty for dimensionality in the BIC

(Spiegelhalter et al., 2002).

It is well known that Bayes factors can be sensitive to the choice of prior distributions (Kass

and Raftery, 1995). This is challenging in model selection problems in which one has no prior

information on the parameters. In these situations it is common to use default priors that

do not require subjective inputs. However, one must choose these default priors with care,

because as the prior variance increases the Bayes factor will increasingly favor the null model

(Bartlett, 1957). Our goal is to propose a method that incorporates default priors on the random

coefficients that result in good frequentist properties with respect to power and Type I error.

Also, we aim to avoid issues with the boundary of the parameter space and high-dimensional

approximations to the Bayes factor.

3.3 Approximating the marginal likelihood

3.3.1 Reparameterization

To introduce our method, we first give a modified notation for the multilevel linear model. Let

Yi = x′iβ + w′
ib + εi (3.5)

= x′iβ +
q∑

h=1

w′
ihbh + εi

in which wi = (w′
i1, . . . , w

′
iq)

′, wih is an (rh×1) vector of predictors with corresponding random

effects bh, and rh = dhch is the total number of random coefficients for factor h (dh is the

number of random coefficients for one observation for factor h, and ch is the total number of
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classifications for factor h). More specifically, wih = [δi ⊗ zih], in which δi is a (ch × 1) vector

of indicator variables (equals 1 if yes, 0 if no) for group membership of observation i in each of

the ch classifications, and ⊗ denotes the left Kronecker product. The dimension of wi is (r× 1),

with r =
∑q

h=1 rh the total number of random coefficients in the model. Also, b = (b′1, . . . , b
′
q)
′,

in which bh = (b′h1, . . . , b
′
hch

)′ is the vector of all random coefficients for factor h. We assume

bhl ∼ Ndh
(0dh

, ψh) independent of εi ∼ N(0, σ2).

Extending the work of Saville and Herring (2008), we scale the random coefficients to the

residual variance such that b̃hl ∼ N(0, σ2I). We then express the model as

Yi = x′iβ + w′
iΦΓb̃ + εi, (3.6)

in which b̃ is the vector of scaled random coefficients, Φ = diag(exp(φ′∗
1 , . . . , φ′∗

q )) with φ∗
h =

(1ch
⊗ φh), and φh = (φh1, . . . , φhdh

)′ are parameters that control the relative contribution of

the random coefficients. Also, Γ = blockdiag(Γ∗1, . . . ,Γ
∗
q) with Γ∗h = (Ich

⊗ Γh), in which Γh is

a lower triangular matrix with 1dh
along the diagonal, and lower off-diagonal elements γh that

induce correlation between the random coefficients within factor h. We can also express the

model in the form

Y = Xβ + WΦΓb̃ + ε, (3.7)

in which Y = (Yi, . . . , Ym)′, W = (w1, . . . , wm)′, X = (x1, . . . , xm)′, and ε = (ε1, . . . , εm)′.

Let σ2 ∼ InvGam(v, w). By integrating out b̃ and σ2 from the posterior distribution, the

marginal posterior p(Y |β,φ,γ) can be shown to have the multivariate t-distribution given by

p(Y |β, φ, γ) = Γ
(

2v + p

2

)
(π2v)−p/2|Σ|−1/2

Γ(2v/2)

{
1 +

1

2v
(Y −Xβ)′Σ−1(Y −Xβ)

}− 2v+p
2

, (3.8)

in which Γ() denotes the gamma function and Σ = (WΦΓΓ′Φ′W ′ + Im). We assume the

default prior φhl ∼ log N(log(0.3), 2) suggested by Saville and Herring (2008), and use the

Laplace method to integrate over (β,φ,γ) to obtain the marginal density p(Y ). This default

prior was shown to have good frequentist properties in simulation studies in the linear mixed

model.
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3.3.2 Computational considerations

Product of likelihoods

For studies with large sample size m, the covariance matrix Σ may be too large to handle compu-

tationally. For example, in applying model (3.2) to the complete 2003 NYC data (m =104,710),

the covariance matrix Σ is (104,710 × 104,710). We note that this matrix has the potential to

be extremely sparse, and even with very large m may be computationally feasible using sparse

matrix computations. However, when the matrix is large and not sufficiently sparse, it may be

advantageous to work with the product of independent likelihoods (conditional on the random

coefficients) as opposed to the likelihood of the vector of response variables. To illustrate, the

marginal distribution can be written as

p(Y |β,φ, γ) =
∫

p(Y |β,φ,γ, b̃, σ2)π(b̃)π(σ2)db̃dσ2 (3.9)

=
∫ [

m∏

i=1

p(Yi|β,φ, γ, b̃, σ2)

]
π(b̃)π(σ2)db̃dσ2

=
Γ

(
2v+m

2

)
|A|−1/2

(π2v)m/2Γ(2v/2)

{
1 +

1

2v

(
f(Y )−C ′A−1C

)}− 2v+m
2

with A = {Ir + Γ′Φ′ (
∑m

i=1 wiw
′
i)ΦΓ}, C = Γ′Φ′ {∑m

i=1 wi(Yi − x′iβ)}, and f(Y ) =
∑m

i=1(Yi −
x′iβ)2, in which Ir denotes the identity matrix with dimension (r × r).

Using this approach, it should be computationally possible to approximate the marginal

likelihood regardless of the size of m. The computation is limited, however, by the total number

of random coefficients r. If r is very large, it may not be feasible to compute the inverse and

determinant of the (r× r) matrix A (or may be very computationally expensive). For example,

in applying (3.2) to the NYC data, r = 2, 252. Although it may be possible to compute the

inverse and determinant of A in this example, computations are likely to be very slow. Hence,

an alternative computational approach is to write the data likelihood as products of marginal

likelihoods for lower-dimensional response vectors or scalars.
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Alternative for non-nested models

Consider the NYC data in which there are two non-nested factors, ancestry and census tracts.

We denote the factor with fewer groups as h = 1 (ancestry) and the factor with a larger number

of groups as h = 2 (census tracts). We can write the marginal likelihood as

p(Y |β,φ,γ) =
∫

p(Y |β, φ, b̃2, b̃1, σ
2)π(b̃2)π(b̃1)π(σ2)db̃2db̃1dσ2, (3.10)

=
∫ {

c2∏

k=1

p(Yk|β,φ, b̃2k, b̃1, σ
2)

}
π(b̃2)π(b̃1)π(σ2)db̃2db̃1dσ2,

=
∫ {

c2∏

k=1

∫
p(Yk|β, φ, b̃2k, b̃1, σ

2)π(b̃2k)db̃2k

}
π(b̃1)π(σ2)db̃1dσ2

=
∫ {

c2∏

k=1

∫ [
mk∏

i=1

p(Yki|β,φ, b̃2k, b̃1, σ
2)

]
π(b̃2k)db̃2k

}
π(b̃1)π(σ2)db̃1dσ2,

in which c2 is the number of groups in factor 2, Yk is the vector of responses for group k in factor

2, b̃2 are the random coefficients for factor 2, b̃2k are the random coefficients corresponding to

group k in factor 2, b̃1 are the random coefficients for factor 1, mk is the number of subjects in

group k of factor 2 and Yki is the response of the ith subject in group k of factor 2. This approach

allows one to integrate out the random coefficients for factor 2 in smaller dimensions, as b̃2k is

only a (d2 × 1) vector. For model (3.2) applied to the NYC data, b̃2k is a scalar (representing a

random intercept for census tract k) and results in matrices with smaller dimensions than those

obtained from (3.9).

Alternative for nested models

Although not of particular interest in the NYC data, one could consider a 3-level nested design

with subjects nested within census tracts nested within boroughs (there are 5 boroughs in NYC).

In such cases one can use the nested structure for easier computation. Let h = 1 denote the

census tract factor and h = 2 denote the borough factor. Then

p(Y |β,φ,γ) =
∫

p(Y |β,φ, b̃2, b̃1, σ
2)π(b̃2)π(b̃1)π(σ2)db̃2db̃1dσ2 (3.11)

=
∫ {

c2∏

k=1

p(Yk|β,φ, b̃2k, b̃1k, σ
2)

}
π(b̃2)π(b̃1)π(σ2)db̃2db̃1dσ2

=
∫ {

c2∏

k=1

∫
p(Yk|β,φ, b̃2k, b̃1k, σ

2)π(b̃2k)π(b̃1k)db̃2kdb̃1k

}
π(σ2)dσ2
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=
∫ 




c2∏

k=1

∫ 


c1k∏

j=1

p(Ykj|β,φ, b̃2k, b̃1kj, σ
2)


 π(b̃2k)π(b̃1k)db̃2kdb̃1k



 π(σ2)dσ2

=
∫ 




c2∏

k=1

∫ 


c1k∏

j=1

∫
p(Ykj|β,φ, b̃2k, b̃1kj, σ

2)π(b̃1kj)db̃1kj


 π(b̃2k)db̃2k



 π(σ2)dσ2

=
∫ 




c2∏

k=1

∫ 


c1k∏

j=1

∫ (mkj∏

i=1

p(Ykji|β,φ, b̃2k, b̃1kj, σ
2)

)
π(b̃1kj)db̃1kj


 π(b̃2k)db̃2k



 π(σ2)dσ2,

in which c1k is the number of groups for factor 1 within group k of factor 2, mkj is the number of

subjects in group j of factor 1 within group k of factor 2, Ykj is the response vector for subjects

in group j of factor 1 within group k of factor 2, Ykji is the response of subject i within group j

of factor 1 within group k of factor 2, b̃1k are the random coefficients for factor 1 within group

k of factor 2, and b̃1kj are the random coefficients corresponding to group j of factor 1 within

group k of factor 2. This approach allows one to integrate out the random coefficients b̃1kj and

b̃2k which have smaller dimensions equal to (d1 × 1) and (d2 × 1), respectively. For the NYC

data with a random intercept for census tracts and boroughs, b̃1kj and b̃2k are both scalars.

If there are non-nested random coefficients in addition to nested random coefficients (i.e.

cross-nested) and either m or r is too large for computational feasibility, then similar strategies

can be used to decrease the dimensions of the required integrals. For example, such strategies

could be used on the NYC data with factors for ancestry and census tracts nested within

boroughs. However, given there are only 5 boroughs in the NYC data, incorporating random

coefficients at the borough level is not of particular interest for this example.

3.4 Simulation study

3.4.1 Testing random intercepts

We conducted a simulation study to evaluate the performance of our method in correctly iden-

tifying models with or without random intercepts. We consider a simple setting with two

non-nested factors with 30 classifications each. We simulated b10[i] ∼ N(0, 1), b20[i] ∼ N(0, 1),

εi ∼ N(0, 1), and calculated

Yi = λ1b10[i] + λ2b20[i] + εi, (3.12)
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for various combinations of m = (100, 500, 1000), λ1 = (0, 0.1, 0.2, 0.3), and λ2 = (0, 0.1, 0.2, 0.3)

for 1,000 datasets. Using prior distributions β0 ∼ N(0, 1), σ2 ∼ InvGam(.1, .1) (which are non-

informative given the simulation settings), and φh ∼ N(log(0.3), 2), we approximated marginal

likelihoods for the following models:

M0 : Yi = β0 + εi, (3.13)

M1 : Yi = β0 + eφ1b10[i] + εi,

M2 : Yi = β0 + eφ2b20[i] + εi,

M3 : Yi = β0 + eφ1b10[i] + eφ2b20[i] + εi,

in which φh = log(λh) for λh > 0 and h = 1, 2. Estimates of the Bayes factors B̂30, B̂10, B̂20

were calculated for each data set and interpreted according to the scale given by Wasserman

(2000) and Jeffreys (1961). For comparison with frequentist methods, we chose to reject H ′
k

if an estimated Bayes factor Mkk′ was greater than 1, in which model k was preferred over

model k′. In this simple setting, we can use the restricted likelihood ratio test for testing M1

and M2 versus M0, in which the null distributions follow a 50:50 mixture of a point mass at 0

and a chi-square distribution with 1 degree of freedom (denoted as LR10 and LR20) (Self and

Liang, 1987; Stram and Lee, 1994). We can also test M1 and M2 versus M0 using the ANOVA

F-test (denoted as AOV10 and AOV20). For testing M3 versus the other models, we implement

an ad-hoc restricted likelihood ratio test, in which the standard test statistic is compared at

the α = 0.10 level to a chi-square distribution with degrees of freedom equal to the difference

in the number of variance components in the models being compared (denoted as LR∗
30, LR∗

31,

and LR∗
32). Although this approach may not be recommended from a theoretical perspective

(Fitzmaurice et al., 2004), it is known to be used in practice.

In the absence of random effects, the Bayes factor approach, likelihood ratio tests, ANOVA

F-tests, and ad-hoc tests all preserved the nominal Type I error rate at 0.05 for all model

comparisons and all sample sizes (Table 3.1). The power for B̂10 and B̂20 in detecting a random

effect was very similar to the likelihood ratio tests LR10 and LR20 and the ANOVA F-tests. For

testing M3 versus M0, the performance of B̂30 was similar to the ad-hoc LR∗
30, with slighter

greater power for small sample sizes and slightly less power for larger sample sizes. A similar

67



pattern was seen comparing B̂31 versus LR∗
31 and B32 versus LR∗

32. These results support the

claim that our method has good frequentist properties with respect to power and Type I error.

Tables 3.2-3.4 shows a more complete breakdown of the estimated Bayes factors according

to the scale of Wasserman (2000) and Jeffreys (1961). As λ1 and λ2 increased, the estimated

Bayes factor displayed greater evidence for the model with random intercepts. As the sample

size increased, the estimated Bayes factors increasingly favored the null model in the absence

of random intercepts, and increasingly favored the random intercept models in the presence of

random intercepts. This shows large sample consistency in our method under these simulation

settings.

3.4.2 Testing a random slope

We extend our simulation to test for the presence of a random slope in a two-factor non-nested

multilevel model. To simulate the data, we include random intercepts for each factor as done

previously, but also incorporate a random slope for one of the factors. We simulated xi ∼
N(0, .25), b20[i] ∼ N(0, 0.04), εi ∼ N(0, 1), b1[i] ∼ N2(0,ψ), with ψ11 = 0.04, ψ12 = ρ

√
ψ11ψ22,

and ρ = −0.3, which induces a negative correlation between the random intercept and slope.

The variances of the random intercepts (0.04) were chosen to match the variances from the

previous simulation corresponding to λ1 = λ2 = 0.2. We calculated

Yi = b10[i] + b20[i] + b11[i]xi + εi, (3.14)

for various combinations of m = (100, 500, 1000) and
√

ψ22 = (0, 0.1, 0.2, 0.3, 0.6, 1.0) for 1,000

datasets. Using prior distributions β0 ∼ N(0, 1), σ2 ∼ InvGam(.1, .1) (which are non-informative

given the simulation settings), and φh ∼ N(log(0.3), 2), we approximated marginal likelihoods

for the following models:

M3 : Yi = β0 + β1xi + eφ1b10[i] + eφ2b20[i] + εi (3.15)

M4 : Yi = β0 + β1xi + eφ10b10[i] + eφ20b20[i] + eφ11b∗11[i]xi + εi,
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in which b∗11[i] = γ1b10[i] + b11[i]. Model M3 incorporates random intercepts for both factors

with a fixed effect for the covariate, and model M4 includes the additional random slope on

the covariate for factor 1. Table 3.5 gives the power and Type I error of our approach using

approximate Bayes factors and the ad-hoc restricted likelihood ratio test. Our method preserves

the Type I error rate at α = 0.05 and has similar power to the ad-hoc RLRT. Table 3.6 shows

the estimated Bayes factors according to the scale of Wasserman (2000) and Jeffreys (1961). As

√
ψ22 increased, the estimated Bayes factor displayed greater evidence for the model with the

random slope. As the sample size increased, the estimated Bayes factor increasingly favored M3

in the absence of a random slope, and increasingly favored M4 in the presence of a random slope.

These simulation results support the claim that our method has good frequentist properties and

large sample consistency.

3.4.3 Choice of prior distributions

Saville and Herring (2008) considered several alternative prior distributions for this method in

the context of the linear mixed model. More specifically, the authors conducted simulations with

priors of the form φhl ∼ N(h, ζ), with various combinations of h = log(1), log(0.3), log(0.15) and

ζ = 1, 2, 3. Additionally, they considered a t-distribution for φhl with 2 and 10 degrees of free-

dom, as well as prior distributions σ2 ∝ σ−2, σ2 ∼InvGamma(0.1,0.1), σ2 ∼InvGamma(0.01,0.01),

and β ∝ c in which c is a constant. They found that alternative priors on σ2 and β did not have

notable influence on the estimated Bayes factors, but the priors for φhl did have some influence.

More specifically, values of h = log(0.30) and ζ = 2 resulted in power and Type I error rates

that closely aligned with standard frequentist methods. Smaller values of h or ζ led to increased

Type I error rates and larger values of h or ζ led to more conservative Type I error rates. Given

that simulation results for the multilevel linear model using the default prior are similar to those

obtained from the linear mixed model, we would expect to observe similar patterns based on

alternative prior distributions in the multilevel linear model.
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3.5 Application

We are interested in fitting a multilevel linear model to infant’s birth weight, predicted by

infant gestational age, gender, maternal race, parity, smoking status, age, weight gain, maternal

nativity, and the neighborhood deprivation index, with random coefficients for census tracts and

ethnic ancestries. We focus on singleton term births with a gestational age ≥ 37 weeks and a

birth weight between 900 g and 5300 g. After exclusions, we have a total of 93,938 subjects with

complete data available for the analysis.

The first model we investigate allows a random intercept for ancestry, defined as

M1 : Yi = x′iβ + b1[i] + εi, (3.16)

with

x′iβ = β0 + β1Blacki + β2Hispi + β3Asiani + β4Otheri + β5Gesti (3.17)

+ β6Gest2
i + β7Pbirthi + β8Femalei + β9Smokei + β10NDIi

+ β11Age2i + β12Age3i + β13Age4i + β14Age5i + β15Nativityi +

+ β16Wtgaini + β17Wtgain2
i + β18Wtgain3

i ,

in which b1[i] is the random intercept corresponding to the ancestry of subject i. The explanatory

variables Blacki, Hispi, Asiani, and Otheri are indicator variables for race corresponding to

black, Hispanic, Asian or Pacific Islander, and other (white as the referent group). Gesti is the

gestational age of the infant for subject i and Gest2
i is the corresponding quadratic variable.

The variables Pbirthi, Femalei, Smokei, and Nativityi are indicator variables for any previous

births, female infant gender, maternal smoking, and maternal birth outside of the United States,

respectively. Maternal age was categorized into the following groups: < 25yrs (referent group),

26-30 yrs (Age2i), 31-35 yrs(Age3i), 36-40 yrs (Age4i), and > 40 yrs (Age5i). The variable

NDIi is the neighborhood deprivation index corresponding to the census tract of subject i,

and Wtgaini is the difference in maternal pre-pregnancy weight and weight at delivery. The

continuous variables NDIi, Gesti, and Wtgaini are centered and standardized by 2 standard
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deviations to place the regression coefficients on the same scale as the binary indicators (Gelman,

2008).

We also consider a model with a random intercept for census tracts but without random

coefficients for ancestries,

M2 : Yi = x′iβ + b2[i] + εi, (3.18)

in which b2[i] is the random intercept corresponding to the census tract of subject i. Incorporating

random intercepts for both ancestries and census tracts, a two-factor non-nested model takes

the form

M3 : Yi = x′iβ + b1[i] + b2[i] + εi. (3.19)

As discussed previously, the effect of race may depend on maternal ancestry. Hence we consider

a variation of M3 with random intercepts for both ancestry and census tract, but we allow the

effect of race to vary by ancestry. This model can be written as

M4 : Yi = x′iβ + b1p[i] + b2[i] + εi, (3.20)

in which b1p[i] is the random intercept corresponding to the ancestry (factor 1) of subject i within

race p. This model assumes that two persons of the same ancestry with different races have

different random intercepts. Similarly, it may be the case that the effect of ancestry varies by

nativity. Hence we consider

M5 : Yi = x′iβ + b1s[i] + b2[i] + εi, (3.21)

in which b1s[i] is the random intercept corresponding to the ancestry (factor 1) of subject i within

nativity s. This model assumes that two persons of the same ancestry with opposite nativity

have different random intercepts. Additionally, it may be the case that the effect of maternal

weight gain on infant birth weight is affected by ancestry. This may result from either biological

or social factors that are correlated with a given ancestry. We can model this heterogeneity by
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including a random slope for weight gain for the ancestry factor. Adding this component to

model M3, we have

M6 : Yi = x′iβ + b10[i] + b2[i] + b11[i]Wtgaini + εi, (3.22)

in which b11[i] is the random slope for weight gain corresponding to the ancestry of subject i.

Finally, we consider a model without random effects,

M0 : Yi = x′iβ + εi. (3.23)

Our goal is to identify the preferred model using approximate Bayes factors, and to proceed

with inference using this chosen model.

The mean value for infant birth weight is 3,362 grams with a standard deviation of 460

g. Converting to kilograms for computational convenience, we use prior distributions β0 ∼
N(3.36, 1), β ∼ N(0, I), and σ2 ∼ N(0.1, 0.1), which are non-informative priors given the scale

of the response and predictors. We found very strong evidence for heterogeneity in birth weights

across census tracts and across ancestries (log B̂10 = 280, log B̂20 = 32, and log B̂30 = 284), with

birth weights tending to vary across maternal ancestries in greater magnitude than across census

tracts. We found that the effects of race (log B̂43 = −6), nativity (log B̂53 = −11) and maternal

weight gain (log B̂63 = −1) do not vary by ancestry.

We fit the preferred model, M3, using MCMC methods and base inference on 20,000 samples

after discarding 5,000. The posterior means and 95% credible intervals of the fixed effects

are given in Table 3.7. Results are presented in grams for better interpretability. Predictors

with 95% credible intervals greater than 0 include parity (99,111), maternal age 26-30 (45,60),

maternal age 31-35 (64,80), maternal age 36-40 (75,94), maternal age >40 (60,92), and maternal

nativity (3,18). Hence, previous live births, greater maternal age, and maternal birth outside the

U.S. are all associated with greater infant birth weights. Predictors with 95% credible intervals

that are less than 0 include maternal Asian race (-91,-24), black race (−74,−7), infant female

gender (-126,-115), maternal smoking (-186,-143), and higher neighborhood deprivation (95%

CI=(-23,-9) for a 2 sd increase). Hence, Asian and black race (compared to white), female
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infants (compared to males), smokers (compared to non-smokers), and greater NDI values are

associated with lower infant birth weights. Both maternal weight gain and infant gestational

age showed non-linear associations with infant birth weight. The linear effect for a 2 sd increase

in maternal weight gain is significant in a positive direction (95% CI=(175,190)), the quadratic

effect is significant in a positive direction (95% CI: (40,58)), and the cubic effect is significant in

the negative direction (95% CI=(-41,-30,)). As shown in Figure 3.2, this implies greater maternal

weight gain in the range of 8-78 lbs. is associated with greater infant birth weights, but greater

maternal weight gain in the ranges of 0-8 lbs. and 78-98 lbs. is associated with smaller infant

birth weights. The linear effect for a 2 sd increase in infant gestational age is highly significant

in a positive direction (95% CI: (278,289)) while the quadratic effect is significant in a negative

direction (95% CI: (-71,-54)). As shown in Figure 3.2, this implies greater gestational age is

associated with greater infant birth weights, but this association flattens as gestational age

nears the right tail of its distribution (44 weeks). The variables with the largest effects on infant

birth weight are smoking (β̂9 = −165), female infant gender (β̂8 = −120), maternal weight gain

(non-linear), and infant gestational age (non-linear). Variables with weaker yet “significant”

associations include a 2 sd increase in NDI (β̂10 = −16), maternal nativity (β̂15 = 11), and black

versus white race (β̂1 = −40). One must consider whether the magnitude of each of these effects

is considered clinically relevant, as the statistical significance may be a result of the large sample

size. The effects of Hispanic (95% CI=(−25, 56)) or “other” (95% CI=(-80,75)) races are not

significantly associated with infant birth weight at the α = 0.05 level. The non-significant result

for Hispanic race may be due to the nature in which the variable was constructed. Data were not

initially collected for Hispanic race, and investigators therefore constructed a Hispanic indicator

variable using the ethnic ancestry variable. Hence this predictor may lack the precision of the

other race indicator variables. The “Other” race group suffered from small sample size.

The frequency counts for ancestry by race are given in Table 3.8. We note that most an-

cestries correspond to predominantly one race. We give the posterior means of the random

intercepts corresponding to the 62 ancestries in Table 3.9, as well as the predicted means for

each of the ancestries by race for a typical subject with mean gestational age (39.3 weeks), NDI

equal to 0, mean weight gain (31.2 lbs.), no previous births, male infant, non-smoker, < 25

years old, and maternal birth in the United States (with missing values for non-observed race
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by ancestry classifications). 95% credible intervals for the ancestry random intercepts are given

in Table 3.10 and plotted in Figure 3.1. Ancestries with the greatest estimated infant birth

weights include Peru, Morocco, and Nigeria, while ancestries with the lowest estimated infant

birth weights include Guyana, Bangladesh, Gambia, and Ivory Coast. There were no notable

trends for certain geographical regions with respect to the ancestry effects. Also, we did not

observe patterns between nativity and the ancestry random coefficients (Table 3.10), supporting

the claim (based on the Bayes factors) that nativity does not modify the effect of ancestry.

In conclusion, we found heterogeneity in birth weights across maternal ancestries and census

tracts. The heterogeneity in maternal ancestry exists within subgroups that Howard et al.

(2006) considered homogeneous, and may be due to any of a large number of unmeasured social

and biological factors. Further research is needed to determine why certain ancestries tend to

have lower or higher birth weights. The effect of race was significant for Asian and black versus

white race (although perhaps not clinically significant) and non-significant for Hispanic versus

white race, while adjusting for the effects of ancestry and census tracts. Additionally, effects for

race, nativity, and maternal weight gain did not vary by ancestry.

3.6 Discussion

We recommend our approach as a straightforward and efficient method for testing random coef-

ficients in multilevel linear models. Our approach avoids issues with testing on the boundary of

the parameter space, uses low-dimensional approximations to the Bayes factor, and incorporates

a default prior on the random coefficients. The scaling of the random coefficients to the residual

variance makes φhl ∼ N(log(0.3), 2) a reasonable default prior distribution. Simulations suggest

that this prior has good frequentist properties and large sample consistency. A major contri-

bution of our method is the ability to test several variance components from multiple factors

simultaneously, and to do so for nested, non-nested, or cross-nested multilevel designs.
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TABLE 3.1: Testing non-nested random intercepts, power and Type I error

M1 vs. M0 M2 vs. M0 M3 vs. M0 M3 vs. M1 M3 vs. M2

m λ1 λ2 B̂10 LR10 AOV10 B̂20 LR20 AOV20 B̂30 LR∗30 B̂31 LR∗31 B̂32 LR∗32
100 0 0 0.05 0.05 0.05 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.06 0.05

0.1 0.06 0.04 0.05 0.06 0.04 0.04 0.04 0.03 0.06 0.04 0.06 0.04
0.2 0.05 0.04 0.05 0.12 0.1 0.09 0.07 0.06 0.12 0.1 0.05 0.04
0.3 0.06 0.04 0.05 0.26 0.22 0.2 0.16 0.14 0.27 0.21 0.05 0.04

0.1 0 0.07 0.06 0.06 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.08 0.06
0.1 0.07 0.06 0.06 0.06 0.04 0.04 0.05 0.04 0.06 0.04 0.07 0.06
0.2 0.07 0.06 0.06 0.12 0.1 0.09 0.08 0.07 0.12 0.09 0.07 0.06
0.3 0.08 0.06 0.06 0.26 0.22 0.19 0.18 0.15 0.27 0.22 0.08 0.06

0.2 0 0.14 0.12 0.1 0.04 0.03 0.04 0.08 0.06 0.04 0.03 0.14 0.12
0.1 0.14 0.12 0.1 0.06 0.05 0.04 0.08 0.07 0.06 0.04 0.15 0.11
0.2 0.14 0.11 0.1 0.12 0.1 0.09 0.12 0.1 0.12 0.1 0.14 0.11
0.3 0.13 0.11 0.1 0.26 0.22 0.19 0.22 0.19 0.26 0.22 0.14 0.11

0.3 0 0.27 0.24 0.22 0.05 0.03 0.04 0.18 0.16 0.04 0.03 0.28 0.23
0.1 0.26 0.23 0.22 0.06 0.05 0.04 0.2 0.17 0.06 0.04 0.27 0.23
0.2 0.26 0.23 0.22 0.12 0.09 0.09 0.23 0.19 0.12 0.09 0.27 0.22
0.3 0.25 0.21 0.21 0.25 0.21 0.18 0.29 0.27 0.25 0.21 0.26 0.22

500 0 0 0.04 0.04 0.05 0.05 0.06 0.07 0.02 0.04 0.05 0.05 0.04 0.04
0.1 0.04 0.04 0.05 0.14 0.15 0.17 0.06 0.09 0.15 0.15 0.04 0.04
0.2 0.04 0.04 0.05 0.64 0.65 0.66 0.42 0.52 0.64 0.64 0.04 0.04
0.3 0.03 0.04 0.05 0.95 0.95 0.95 0.87 0.91 0.94 0.94 0.04 0.04

0.1 0 0.13 0.13 0.14 0.05 0.06 0.07 0.06 0.09 0.05 0.06 0.12 0.13
0.1 0.13 0.13 0.15 0.14 0.15 0.18 0.1 0.15 0.14 0.15 0.13 0.13
0.2 0.13 0.13 0.15 0.62 0.63 0.64 0.48 0.57 0.62 0.63 0.13 0.13
0.3 0.12 0.13 0.14 0.95 0.95 0.95 0.89 0.92 0.94 0.94 0.12 0.13

0.2 0 0.6 0.61 0.63 0.05 0.06 0.07 0.41 0.49 0.06 0.06 0.61 0.61
0.1 0.59 0.6 0.62 0.14 0.15 0.17 0.48 0.56 0.14 0.15 0.59 0.6
0.2 0.58 0.6 0.6 0.61 0.62 0.63 0.75 0.8 0.62 0.63 0.58 0.59
0.3 0.57 0.58 0.58 0.94 0.94 0.95 0.95 0.96 0.94 0.94 0.57 0.59

0.3 0 0.95 0.95 0.95 0.05 0.06 0.06 0.89 0.92 0.06 0.06 0.95 0.95
0.1 0.95 0.95 0.95 0.14 0.15 0.17 0.91 0.93 0.14 0.14 0.95 0.95
0.2 0.95 0.95 0.95 0.56 0.57 0.58 0.95 0.96 0.58 0.59 0.94 0.95
0.3 0.93 0.93 0.94 0.93 0.93 0.93 0.99 0.99 0.94 0.94 0.94 0.95

1000 0 0 0.04 0.06 0.06 0.03 0.04 0.05 0.01 0.04 0.03 0.04 0.04 0.06
0.1 0.04 0.05 0.06 0.24 0.29 0.31 0.1 0.2 0.24 0.29 0.04 0.05
0.2 0.03 0.05 0.06 0.92 0.93 0.94 0.8 0.88 0.92 0.93 0.04 0.05
0.3 0.03 0.05 0.06 1 1 1 1 1 1 1 0.04 0.05

0.1 0 0.24 0.29 0.32 0.03 0.04 0.05 0.12 0.21 0.03 0.04 0.24 0.28
0.1 0.24 0.29 0.31 0.24 0.3 0.32 0.24 0.39 0.24 0.29 0.24 0.28
0.2 0.23 0.28 0.3 0.92 0.93 0.94 0.86 0.92 0.91 0.93 0.25 0.28
0.3 0.23 0.26 0.28 1 1 1 1 1 1 1 0.24 0.28

0.2 0 0.92 0.94 0.94 0.03 0.05 0.05 0.81 0.89 0.03 0.04 0.92 0.93
0.1 0.92 0.94 0.94 0.23 0.28 0.3 0.87 0.93 0.23 0.28 0.92 0.93
0.2 0.92 0.93 0.94 0.9 0.92 0.94 0.98 1 0.91 0.93 0.92 0.93
0.3 0.9 0.93 0.93 1 1 1 1 1 1 1 0.91 0.93

0.3 0 1 1 1 0.03 0.04 0.05 0.99 1 0.03 0.04 1 1
0.1 1 1 1 0.21 0.27 0.28 1 1 0.23 0.28 1 1
0.2 1 1 1 0.88 0.91 0.92 1 1 0.9 0.93 1 1
0.3 1 1 1 1 1 1 1 1 1 1 1 1

Table gives percent of times the null hypothesis was rejected out of 1000 simulations
Type I error is given by λ1 = 0 or λ2 = 0

β̂kk′ : estimated Bayes factor for Mk vs. Mk′
LRk0: restricted likelihood ratio test for Mk vs. M0 using a mixture of chi-square distributions
AOVk0: ANOVA F-test for Mk vs. M0

LR∗
kk′ : Ad-hoc restricted likelihood ratio test for Mk vs. Mk′ using α = 0.10
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TABLE 3.2: Estimated Bayes factors for comparing M1 and M2 versus M0

B̂10 B̂20

Favor M0 Favor M1 Favor M0 Favor M2

m λ1 λ2 < 0.1 0.1-0.33 0.33-1 1-3 3-10 > 10 < 0.1 0.1-0.33 0.33-1 1-3 3-10 > 10

100 0 0 0 2 92 4 1 0 0 2 94 3 0 0
0.1 0 2 92 4 1 0 0 2 92 5 1 0
0.2 0 2 93 4 1 0 0 1 88 9 2 1
0.3 0 1 93 4 1 1 0 0 73 17 6 3

0.1 0 0 1 91 6 1 0 0 2 93 4 1 0
0.1 0 1 92 6 1 1 0 2 92 5 1 0
0.2 0 1 91 6 1 1 0 1 87 9 2 1
0.3 0 1 91 6 1 1 0 0 73 17 6 3

0.2 0 0 1 85 10 3 1 0 2 93 3 1 0
0.1 0 1 85 10 2 1 0 2 92 5 1 0
0.2 0 1 85 11 2 1 0 1 87 10 2 1
0.3 0 1 86 10 2 1 0 0 74 18 5 3

0.3 0 0 0 72 17 6 4 0 2 93 4 1 0
0.1 0 0 73 16 7 4 0 2 92 5 1 0
0.2 0 0 74 16 7 3 0 1 87 9 2 1
0.3 0 0 74 17 6 3 0 0 75 17 5 2

500 0 0 0 67 29 3 1 0 0 62 33 4 1 0
0.1 0 67 29 3 0 0 0 39 47 9 4 2
0.2 0 66 30 3 1 0 0 8 28 21 16 26
0.3 0 66 31 3 1 0 0 0 5 7 10 78

0.1 0 0 42 45 9 2 1 0 62 33 4 1 0
0.1 0 43 44 9 2 1 0 40 46 9 4 2
0.2 0 44 43 9 3 1 0 8 30 21 16 26
0.3 0 45 43 9 2 1 0 0 5 8 9 78

0.2 0 0 7 32 20 16 25 0 63 32 4 1 0
0.1 0 7 33 19 15 25 0 41 45 9 4 1
0.2 0 8 33 20 15 23 0 9 30 21 17 23
0.3 0 9 34 21 15 21 0 0 5 9 8 77

0.3 0 0 0 4 6 10 79 0 63 32 4 1 0
0.1 0 0 5 6 10 78 0 42 43 10 3 1
0.2 0 0 5 9 12 73 0 10 33 22 16 18
0.3 0 1 6 8 13 72 0 1 7 9 9 74

1000 0 0 0 82 13 3 1 0 0 83 14 2 1 0
0.1 0 82 13 3 1 0 0 43 31 12 7 5
0.2 0 81 15 2 0 1 0 2 5 8 12 71
0.3 0 81 14 2 1 1 0 0 0 0 1 99

0.1 0 0 41 33 10 8 6 0 83 14 2 1 0
0.1 0 42 33 10 7 7 0 43 31 12 7 5
0.2 0 43 32 10 7 6 0 2 5 9 13 69
0.3 0 46 29 11 7 6 0 0 0 0 1 99

0.2 0 0 2 6 8 12 72 0 83 13 2 1 0
0.1 0 2 6 8 11 72 0 45 30 13 6 4
0.2 0 3 5 9 12 70 0 2 7 10 14 67
0.3 0 3 6 10 13 66 0 0 0 0 1 99

0.3 0 0 0 0 0 1 99 0 83 14 2 0 0
0.1 0 0 0 0 1 99 0 47 29 12 6 3
0.2 0 0 0 0 1 98 0 2 9 10 14 63
0.3 0 0 0 1 1 98 0 0 0 0 1 98

Table includes the percent of times that the estimated Bayes factors fell into the respective categories
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TABLE 3.3: Estimated Bayes factors for comparing M3 versus M1 and M2

B̂31 B̂32

Favor M1 Favor M3 Favor M2 Favor M3

m λ1 λ2 < 0.1 0.1-0.33 0.33-1 1-3 3-10 > 10 < 0.1 0.1-0.33 0.33-1 1-3 3-10 > 10

100 0 0 0 2 94 3 1 0 0 2 92 5 1 0
0.1 0 1 93 5 1 0 0 2 93 4 1 0
0.2 0 1 87 10 2 0 0 1 93 4 1 1
0.3 0 0 73 18 7 1 0 1 93 4 1 1

0.1 0 0 1 94 3 1 0 0 1 91 6 1 0
0.1 0 1 93 5 1 0 0 1 92 6 1 1
0.2 0 0 87 10 2 0 0 1 92 5 1 1
0.3 0 0 73 18 7 1 0 1 92 6 1 1

0.2 0 0 2 94 3 1 0 0 1 85 10 3 1
0.1 0 1 93 4 1 0 0 1 84 11 2 1
0.2 0 0 87 9 2 0 0 0 85 11 2 1
0.3 0 0 73 18 7 1 0 0 85 11 2 1

0.3 0 0 1 94 4 1 0 0 0 72 17 6 4
0.1 0 1 93 4 1 0 0 0 72 16 7 4
0.2 0 0 87 10 2 0 0 0 73 16 7 3
0.3 0 0 75 17 7 1 0 0 74 16 7 3

500 0 0 0 61 33 4 1 0 0 67 29 3 1 0
0.1 0 38 47 9 5 1 0 67 29 3 0 0
0.2 0 8 28 21 27 16 0 66 30 3 0 0
0.3 0 0 5 6 19 69 0 66 30 3 1 0

0.1 0 0 63 32 4 1 0 0 42 45 9 3 1
0.1 0 40 46 9 5 0 0 43 44 9 3 1
0.2 0 8 29 20 26 15 0 44 43 9 3 1
0.3 0 0 5 7 18 69 0 44 43 8 3 1

0.2 0 0 63 31 5 1 0 0 7 32 20 16 25
0.1 0 41 45 9 5 0 0 7 33 19 15 25
0.2 0 9 29 20 27 15 0 8 34 19 15 25
0.3 0 0 6 8 18 68 0 8 34 19 16 23

0.3 0 0 63 32 5 1 0 0 0 4 7 10 79
0.1 0 41 45 9 5 0 0 0 5 6 10 79
0.2 0 9 33 22 25 11 0 0 5 9 12 74
0.3 0 0 6 8 19 67 0 0 5 6 12 76

1000 0 0 0 83 14 2 1 0 0 82 13 3 1 0
0.1 0 43 31 12 9 3 0 83 13 3 1 0
0.2 0 2 6 9 25 58 0 83 13 3 1 0
0.3 0 0 0 0 1 98 0 83 13 3 1 0

0.1 0 0 84 13 2 1 0 0 41 33 10 8 6
0.1 0 44 30 13 9 2 0 42 32 10 8 6
0.2 0 2 6 8 25 58 0 43 31 11 7 6
0.3 0 0 0 0 1 98 0 43 31 10 7 6

0.2 0 0 84 12 2 1 0 0 2 6 8 12 73
0.1 0 44 30 13 8 2 0 2 5 9 11 73
0.2 0 2 6 8 25 57 0 2 6 9 12 71
0.3 0 0 0 0 1 98 0 2 6 8 12 71

0.3 0 0 84 12 2 1 0 0 0 0 0 1 99
0.1 0 45 30 13 8 2 0 0 0 0 1 99
0.2 0 2 7 8 26 57 0 0 0 0 1 99
0.3 0 0 0 0 1 98 0 0 0 0 1 99

Table includes the percent of times that the estimated Bayes factors fell into the respective categories
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TABLE 3.4: Estimated Bayes factors for comparing M3 versus M0

Favor M0 Favor M3

m λ1 λ2 < 0.1 0.1-0.33 0.33-1 1-3 3-10 > 10

100 0 0 0 68 29 2 0 1
0.1 0 65 31 3 1 1
0.2 0 57 35 5 1 1
0.3 0 41 42 11 3 2

0.1 0 0 65 31 3 1 1
0.1 0 62 33 4 1 1
0.2 0 53 39 5 2 1
0.3 0 40 42 12 4 2

0.2 0 0 55 37 5 2 1
0.1 0 53 38 6 2 1
0.2 0 47 41 8 3 1
0.3 0 34 44 15 4 3

0.3 0 0 43 39 12 4 3
0.1 0 40 40 13 4 3
0.2 0 34 43 14 5 3
0.3 0 23 47 17 8 5

500 0 0 55 38 4 2 0 0
0.1 37 47 11 3 2 1
0.2 10 26 22 15 11 15
0.3 1 5 7 8 9 69

0.1 0 38 46 11 4 1 1
0.1 25 48 17 7 2 2
0.2 5 24 23 17 14 18
0.3 0 4 7 8 9 72

0.2 0 8 31 20 14 12 15
0.1 5 25 21 16 15 18
0.2 1 11 13 15 17 43
0.3 0 2 3 5 7 83

0.3 0 1 5 6 9 12 68
0.1 1 4 5 8 12 70
0.2 0 2 3 7 9 79
0.3 0 0 1 2 3 95

1000 0 0 79 16 3 1 0 0
0.1 47 31 11 5 3 2
0.2 3 8 8 9 15 56
0.3 0 0 0 1 1 98

0.1 0 48 30 10 5 3 3
0.1 23 33 19 10 7 7
0.2 1 6 7 7 12 66
0.3 0 0 0 0 1 98

0.2 0 3 8 8 9 12 59
0.1 1 5 6 8 13 66
0.2 0 0 1 1 4 93
0.3 0 0 0 0 0 100

0.3 0 0 0 0 1 1 98
0.1 0 0 0 1 1 98
0.2 0 0 0 0 0 100
0.3 0 0 0 0 0 100

Table includes the percent of times that the estimated
Bayes factors fell into the respective categories
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TABLE 3.5: Testing a random slope, power and Type I error

m
√

ψ22 B̂43 LR∗
43

100 0 0.05 0.03
0.1 0.05 0.04
0.2 0.07 0.05
0.3 0.09 0.07
0.6 0.26 0.2
1 0.66 0.56

500 0 0.04 0.05
0.1 0.06 0.07
0.2 0.13 0.14
0.3 0.29 0.29
0.6 0.92 0.91
1 1 1

1000 0 0.03 0.04
0.1 0.06 0.09
0.2 0.24 0.28
0.3 0.59 0.61
0.6 1 1
1 1 1

Rejection rate for 1000 simulations
Type I error:

√
ψ22 = 0

β̂43 = Bayes factor, M4 vs. M3

LR∗
43 = ad-hoc RLRT, M4 vs. M3

79



TABLE 3.6: Estimated Bayes factor, B̂43, for comparing M4 versus M3

Favor M3 Favor M4

m
√

ψ22 < 0.1 0.1-0.33 0.33-1 1-3 3-10 > 10

100 0 0 0 95 5 0 0
0.1 0 0 95 4 1 0
0.2 0 0 93 6 1 0
0.3 0 0 91 6 1 1
0.6 0 0 73 16 6 4
1 0 0 34 22 16 27

500 0 0 54 43 3 1 0
0.1 0 50 43 6 1 0
0.2 0 37 50 9 4 1
0.3 0 17 54 14 7 8
0.6 0 1 7 10 12 70
1 0 0 0 0 0 100

1000 0 0 85 12 2 0 0
0.1 0 74 19 4 2 1
0.2 0 47 28 11 7 6
0.3 0 16 23 15 16 28
0.6 0 0 0 0 1 99
1 0 0 0 0 0 100

Table includes the percent of times that the estimated
Bayes factor fell into the respective categories
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TABLE 3.7: Model posterior means and 95% credible interval

Parameter Posterior Mean 2.5% 97.5 %

β0 3329 3294 3363
β1 (Black) -40 -74 -7
β2 (Hisp) 14 -25 56
β3 (Asian) -57 -91 -24
β4 (Other) -2 -80 75
β5 (Gest)∗ 284 278 289
β6 (Gest2) -63 -71 -54
β7 (Previous birth) 105 99 111
β8 (Female) -120 -126 -115
β9 (Smoke) -165 -186 -143
β10 (Deprivation)∗ -16 -23 -9
β11 (Age 26-30) 53 45 60
β12 (Age 31-35) 72 64 80
β13 (Age 36-40) 84 75 94
β14 (Age > 40) 76 60 92
β15 (Foreign) 11 3 18
β16 (Wtgain)∗ 183 175 190
β17 (Wtgain2) 49 40 58
β18 (Wtgain3) -35 -41 -30
∗ Estimates for a 2 sd increase
All estimates given in grams
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FIGURE 3.1: Posterior means and 95% credible intervals of random intercepts
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FIGURE 3.2: Estimated change in infant birth weight by gestational age and maternal weight
gain
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TABLE 3.8: Frequency counts for ancestry by race

Region Ancestry White Black Hispanic Asian Other Total

Non-Hisp U.S. White Non-Hisp U.S. White 24749 0 0 0 0 24749
N Africa Morocco 203 21 0 4 0 228

Egypt 347 0 0 7 0 354
Other N Africa 65 44 0 4 0 113

Subsaharan Africa Nigeria 3 410 0 3 0 416
Ghana 2 450 0 0 0 452
Guinea 0 256 0 0 0 256
Senegal 1 206 0 1 0 208
Gambia 0 177 0 0 0 177
Ivory Coast 0 161 0 0 0 161
Mali 2 187 0 0 0 189
Other W Africa 5 219 0 1 0 225
Central-East-Southern Africa 38 283 0 4 0 325

E Asia China 25 13 0 5506 0 5544
Hong Kong 0 0 0 36 0 36
Taiwan 1 0 0 65 0 66
Korea 8 2 0 784 0 794
Japan 9 3 0 352 0 364
Other E Asia 19 3 0 51 0 73

SE Asia-Pac Islands Vietnam 6 4 0 13 0 23
Malaysia 0 0 0 78 2 80
Philippines 22 9 0 646 0 677
Other SE Asia 12 5 0 151 0 168

SC Asia India 8 56 0 1374 7 1445
Bangladesh 30 20 0 1190 0 1240
Pakistan 40 10 0 960 0 1010
Afghanistan 65 2 0 70 0 137
Iran 96 0 0 2 0 98
Other SC Asia 149 3 0 148 0 300

Non-Hisp Caribbean Jamaica 5 2076 0 14 0 2095
Haiti 6 1269 0 0 0 1275
Trinidad and Tobago 12 1140 0 283 0 1435
Grenada 0 220 0 3 0 223
Barbados 0 175 0 0 0 175
St Vincent 0 160 0 0 0 160
Antigua and Barbuda 0 118 0 0 0 118
St Lucia 1 142 0 1 0 144
Virgin Islands 2 40 0 0 0 42
Other Non-Hisp Caribbean 16 956 0 13 0 985

Hisp Caribbean Dominican Republic 0 0 8426 0 1 8427
Puerto Rico 0 0 7997 0 3 8000
Cuba 0 0 192 0 0 192

Mexico Mexico 0 0 6585 0 0 6585
S America Guyana 0 0 1785 0 73 1858

Ecuador 0 0 3053 0 0 3053
Colombia 0 0 1239 0 1 1240
Peru 0 0 521 0 0 521
Brazil 0 0 178 0 0 178
Argentina 0 0 198 0 0 198
Venezuela 0 0 181 0 0 181
Other S America 0 0 283 0 0 283

C American Honduras 0 0 740 0 23 763
El Salvador 0 0 640 0 0 640
Guatemala 0 0 397 0 13 410
Panama 0 0 226 0 0 226
Belize 0 0 109 0 0 109
Nicaragua 0 0 114 0 0 114
Other C America 0 0 59 0 0 59

African American African American 62 12323 0 12 6 12403
American Indian American Indian-Eskimo-Aluet 5 18 0 0 12 35
Other Ethnicity Other Ethnicity 59 344 0 137 7 547
Other US Born Hispanic Other US Born Hispanic 0 0 1356 0 0 1356

Total 26073 21525 34279 11913 148 93938
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TABLE 3.9: Posterior means of ancestry random intercepts, and predicted means by race

Region Ancestry b̂1j ŷwhite ŷblack ŷHispanic ŷAsian ŷOther

Non-Hisp U.S. White Non-Hisp U.S. White 42 91 . . . .
N Africa Morocco 98 147 107 . 90 .

Egypt 24 73 . . 16 .
Other N Africa 60 109 69 . 52 .

Subsaharan Africa Nigeria 86 135 95 . 78 .
Ghana 23 72 32 . . .
Guinea -16 . -7 . . .
Senegal -30 19 -20 . -38 .
Gambia -91 . -82 . . .
Ivory Coast -83 . -74 . . .
Mali -65 -16 -55 . . .
Other W Africa 28 77 37 . 20 .
Central-East-Southern Africa 34 83 43 . 26 .

E Asia China 32 81 41 . 24 .
Hong Kong -45 . . . -53 .
Taiwan 22 71 . . 14 .
Korea 28 77 37 . 20 .
Japan -65 -16 -56 . -73 .
Other E Asia 83 132 93 . 75 .

SE Asia-Pac Islands Vietnam -54 -5 -45 . -62 .
Malaysia 9 . . . 1 55
Philippines -29 19 -20 . -37 .
Other SE Asia 40 89 49 . 32 .

SC Asia India -62 -13 -53 . -70 -16
Bangladesh -128 -80 -119 . -136 .
Pakistan -27 22 -18 . -35 .
Afghanistan 84 133 93 . 76 .
Iran -25 24 . . -33 .
Other SC Asia 59 108 68 . 51 .

Non-Hisp Caribbean Jamaica 5 54 15 . -3 .
Haiti 16 64 25 . . .
Trinidad and Tobago -22 26 -13 . -31 .
Grenada -2 . 7 . -10 .
Barbados -3 . 6 . . .
St Vincent 35 . 45 . . .
Antigua and Barbuda -54 . -45 . . .
St Lucia 34 83 43 . 26 .
Virgin Islands -43 6 -34 . . .
Other Non-Hisp Caribbean -7 41 2 . -15 .

Hisp Caribbean Dominican Republic -8 . . 55 . 38
Puerto Rico -33 . . 30 . 14
Cuba 20 . . 84 . .

Mexico Mexico 13 . . 77 . .
S America Guyana -150 . . -87 . -104

Ecuador 21 . . 84 . .
Colombia 29 . . 92 . 76
Peru 108 . . 171 . .
Brazil 26 . . 89 . .
Argentina 51 . . 114 . .
Venezuela -32 . . 31 . .
Other S America 66 . . 129 . .

C American Honduras 4 . . 67 . 50
El Salvador 20 . . 83 . .
Guatemala 10 . . 73 . 57
Panama -49 . . 14 . .
Belize -35 . . 28 . .
Nicaragua -15 . . 48 . .
Other C America -55 . . 8 . .

African American African American -12 36 -3 . -20 34
American Indian American Indian-Eskimo-Aluet 47 96 56 . . 93
Other Ethnicity Other Ethnicity 11 60 20 . 3 58
Other US Born Hispanic Other US Born Hispanic -13 . . 51 . .

b̂1j is the posterior mean of the random intercept for ancestry j
ŷ is the predicted mean for a subject with gestational age = 39.3 weeks, NDI=0, male infant,
maternal weight gain = 31.2 lbs, no previous births, non-smoker,< 25 years old, born in the U.S.
Estimates given in grams; ’.’ denotes no observed subjects in the category
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TABLE 3.10: Posterior means of ancestry random intercepts with CI’s, with nativity

Region Ancestry b̂1j LL UL N %Fgn

Non-Hisp U.S. White Non-Hisp U.S. White 42 9 73 24749 29
N Africa Morocco 98 44 155 228 97

Egypt 24 -26 73 354 94
Other N Africa 60 -7 126 113 99

Subsaharan Africa Nigeria 86 41 133 416 98
Ghana 23 -19 66 452 100
Guinea -16 -69 35 256 100
Senegal -30 -85 26 208 100
Gambia -91 -151 -35 177 99
Ivory Coast -83 -145 -24 161 100
Mali -65 -123 -8 189 99
Other W Africa 28 -26 82 225 98
Central-East-Southern Africa 34 -13 82 325 95

E Asia China 32 3 62 5544 95
Hong Kong -45 -134 44 36 97
Taiwan 22 -56 100 66 94
Korea 28 -10 67 794 93
Japan -65 -114 -19 364 92
Other E Asia 83 10 159 73 74

SE Asia-Pac Islands Vietnam -54 -151 41 23 100
Malaysia 9 -65 83 80 97
Philippines -29 -69 10 677 90
Other SE Asia 40 -18 99 168 95

SC Asia India -62 -99 -27 1445 94
Bangladesh -128 -173 -86 1240 100
Pakistan -27 -63 8 1010 98
Afghanistan 84 22 148 137 98
Iran -25 -95 46 98 92
Other SC Asia 59 11 108 300 100

Non-Hisp Caribbean Jamaica 5 -24 34 2095 95
Haiti 16 -17 48 1275 90
Trinidad and Tobago -22 -53 8 1435 96
Grenada -2 -55 51 223 99
Barbados -3 -62 54 175 95
St Vincent 35 -24 96 160 100
Antigua and Barbuda -54 -120 11 118 97
St Lucia 34 -27 96 144 100
Virgin Islands -43 -128 42 42 95
Other Non-Hisp Caribbean -7 -42 26 985 89

Hisp Caribbean Dominican Republic -8 -38 19 8427 81
Puerto Rico -33 -63 -4 8000 20
Cuba 20 -37 76 192 26

Mexico Mexico 13 -15 41 6585 96
S America Guyana -150 -199 -105 1858 96

Ecuador 21 -10 51 3053 91
Colombia 29 -6 63 1240 83
Peru 108 63 156 521 92
Brazil 26 -32 85 178 94
Argentina 51 -5 106 198 88
Venezuela -32 -91 24 181 95
Other S America 66 15 119 283 93

C American Honduras 4 -35 41 763 90
El Salvador 20 -21 59 640 92
Guatemala 10 -36 55 410 92
Panama -49 -105 4 226 74
Belize -35 -104 33 109 83
Nicaragua -15 -83 51 114 96
Other C America -55 -135 25 59 80

African American African American -12 -38 13 12403 12
American Indian American Indian-Eskimo-Aluet 47 -42 136 35 3
Other Ethnicity Other Ethnicity 11 -28 50 547 43
Other US Born Hispanic Other US Born Hispanic -13 -49 21 1356 3

b̂1j = posterior mean of the random intercept with 95% credible interval (LL,UL)
%Fgn = percent born outside the U.S.
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CHAPTER 4

Analyzing Correlated Longitudinal and

Survival Data in Clinical Trials Using

Multivariate Time-to-Event Methods

4.1 Introduction

Many clinical trials evaluate the efficacy of a treatment on correlated longitudinal and time-to-

event outcomes. For example, consider a randomized clinical trial evaluating the effectiveness

of a treatment drug versus a control in 2,000 patients with a chronic respiratory disorder. The

investigators recorded the time to death within 3 years of randomization, as well as repeated

measurements at 6 month intervals of respiratory lung function FEV, or postbronchodilator

forced expiratory volume at 1 second. Because these patients suffer from a chronic condition,

lung function is expected to deteriorate over time and ultimately result in death. Clearly,

lung function and survival are expected to be highly correlated. There are well-established

methods for analyzing these longitudinal and survival outcomes separately, including the linear

mixed model for longitudinal data (Laird and Ware, 1982) and the Cox proportional hazards

model for survival data (Cox, 1972). However, the analysis of these longitudinal and survival

outcomes separately may be inefficient or even inappropriate when the longitudinal variable is

correlated with the survival endpoint (Guo and Carlin, 2004). Such approaches ignore important

information in the other outcome as well as potentially informative dropout in the longitudinal



process. This has led to a growing literature on jointly modeling distributions of correlated

longitudinal and survival endpoints.

There are many reasons to consider a joint model of longitudinal and event outcomes. Such

reasons include describing the trajectory of the longitudinal process over time subject to infor-

mative censoring and how this is affected by baseline predictors; determining how the probability

of an event outcome is influenced by the longitudinal process; evaluating whether the longitudi-

nal process can be used as a surrogate endpoint for the event outcome; or making predictions of

future event times for subjects who are censored. Joint models generally base inference on the

joint distribution of the longitudinal and survival outcomes (Wulfsohn and Tsiatis, 1997; Hen-

derson et al., 2000; Tsiatis and Davidian, 2001; Lin et al., 2002; Guo and Carlin, 2004; Tseng

et al., 2005, and more recently Elashoff et al., 2007; Dang et al., 2007). For more complete re-

views of joint modeling methods, see Hogan and Laird (1997b), Tsiatis and Davidian (2004), Yu

et al. (2004), and Ibrahim et al. (2001). Although joint models may be conceptually appealing,

they can be computationally demanding, difficult to implement, and may require specialized

software (Hogan and Laird, 1997b). Many of the joint model approaches make strong paramet-

ric assumptions regarding the longitudinal and survival processes (Tsiatis and Davidian, 2004;

Yu et al., 2004). These assumptions may not be obvious and can be difficult to validate.

We propose a strategy that uses multivariate time-to-event methods to evaluate effects of a

treatment or baseline predictor on both longitudinal and survival outcomes simultaneously. We

first create multiple time-to-event endpoints based on the survival and longitudinal outcomes.

These endpoints are defined as time to reach various thresholds in the longitudinal outcome

or death, whichever comes first. We then use semiparametric and nonparametric methods to

evaluate the treatment effect on these multivariate time-to-event outcomes. Our approach is

straightforward to implement for a randomized clinical trial using standard software (SAS) and

makes minimal or no assumptions regarding underlying distributions. More specifically, the

multivariate time-to-event methods that we utilize include the Wei-Lin-Weissfeld method (Wei

et al., 1989) and nonparametric analysis of covariance (NPANCOVA) with logrank scores as

defined by Tangen and Koch (Tangen and Koch, 1999b). Although these multivariate approaches

are well-established methods, they are typically applied in settings in which multivariate events

are clearly defined. These events are usually distinct outcomes (e.g. time to relapse or time to
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death) or repeated events of the same kind (e.g. time to hospitalization). Our contribution in

this paper is to apply the multivariate time-to-event methods to longitudinal and survival data

simultaneously. In Section 2 we introduce the multivariate methods used in our approach. In

Section 3 we present simulation studies. In Section 4 we apply our method to a clinical trial

involving chronic lung disease and conclude with a discussion in Section 5.

4.2 Application of Multivariate Time-to-Event Methods

4.2.1 Wei-Lin-Weissfeld Method

Suppose there are M time-to-event outcomes. To apply the method of Wei et al. (1989) (referred

to as the WLW method), one fits a marginal Cox proportional hazards model for each of the M

events

λmi(t) = λm0(t) exp{x′iβm}, (4.1)

in which βm = (βm1, . . . , βmp)
′ is the vector of parameters for the mth marginal model, x′i is a

vector of baseline predictors, and λmi(t) is the hazard for subject i proportional to the baseline

hazard λm0(t). Let β = (β′1, . . . , β
′
M)′ be the vector of all parameters and β̂ = (β̂′1, . . . , β̂

′
M)′

be the maximum partial likelihood estimates from all M models. Wei et al. (1989) showed

that the asymptotic distribution of β̂ is normal with mean β and variance V , in which an

estimator V̂ of the variance is a function of the score residuals and information matrix (see

Appendix). Given the asymptotic normal distribution of β̂ and variance estimate V̂ , it is

straightforward to construct a model-averaged log hazards ratio to summarize the treatment

effect. Let βe = (β1e, . . . , βMe)
′ represent the vector of parameters for the marginal treatment

effect (e indexes the experimental or treatment effect). Wei et al. (1989) suggested estimating

a model-averaged log hazards ratio using the estimate

θ̂ = C ′β̂e, (4.2)
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with C = (1′M V̂e

−1
1M)−1V̂e

−1
1M and V̂e equal to the estimated covariance matrix of β̂e (con-

structed from the appropriate elements of V̂ ). This estimator was proposed as the optimal

estimator because it has the smallest asymptotic variance among all linear estimators. A test

statistic for testing whether the average log hazards ratio is equal to 0 can be constructed as

Z2 =
(C ′β̂e)

2

C ′V̂eC
, (4.3)

which follows an asymptotic chi-square distribution with one degree of freedom. In SAS version

9.1 one can obtain this test directly using the procedure PROC PHREG (see SAS documen-

tation) or by fitting the marginal models and constructing the appropriate covariance matrix

using the “dfbeta” residuals. These residuals are equivalent to the product of score residuals

and the information matrix (see Appendix).

4.2.2 Nonparametric ANCOVA

Logrank scores are a set of values which are used in nonparametric testing procedures for com-

paring the survival times of two or more groups with possible censoring (Peto and Peto, 1972;

Koch et al., 1985). These scores are centered about zero starting with 1 and decreasing as

endpoints lengthen (see Appendix). For M time-to-event outcomes, one can compute logrank

scores for each of the M events separately to obtain M vectors of logrank scores. One can

then use multivariate nonparametric ANCOVA to evaluate a treatment effect on all outcomes

simultaneously adjusting for relevant covariables (Tangen and Koch, 1999b; Tangen and Koch,

1999a). This method uses weighted least squares methods to produce an estimated treatment

effect β̂ and corresponding variance estimate V̂β̂, in which β̂ is the estimated mean difference in

logrank scores between the treatment groups (see Appendix). This model restricts the vector(s)

of differences between means for the covariates to zeros on the basis of randomization. One can

use (4.2) to obtain an average difference in logrank scores between treatments (averaged across

the M events) and its corresponding test statistic as given by (4.3). This approach is straight-

forward to conduct in statistical software packages. SAS macros are available to compute the

logrank scores (please contact authors) and to perform multivariate nonparametric ANCOVA

for comparing two treatment groups (Zink and Koch, 2002).
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4.2.3 Defining the Multivariate Outcomes

We define M thresholds or cutpoints of interest in the longitudinal outcome and use these

cutpoints to construct (M +1) “threshold endpoints”. We define the first M threshold endpoints

as time to the mth cutpoint or terminating event (e.g. death), whichever comes first. The final

threshold endpoint is defined as time to the terminating event. Subjects who do not experience

a threshold event in the study are considered censored. For example, consider the study of

chronic lung disease with FEV threshold events at ≤ 1300ml, ≤ 1010ml, and ≤ 740ml. Suppose

three subjects have FEV values and time of death as given in Table 4.1. For subject 1, the first

threshold event is observed at 18 months, the second at 24 months, and the third and fourth at

26 months. For subject 2, all four threshold events are censored at 36 months. For subject 3,

the first threshold event is observed at 6 months, and threshold events 2,3,4 are observed at 11

months.

We note that various definitions of the thresholds are possible depending on the clinical

relevance. For example, one could define the first M threshold endpoints as time to reach

a certain longitudinal value that is sustained for at least (say) three observations or death,

whichever comes first. The definition of these thresholds should be tailored toward the clinical

application such that the interpretations of the threshold endpoints are clinically relevant. Our

application is most relevant to studies in which there exists non-reversible deterioration in the

longitudinal process subject to censoring due to the survival endpoint.

We implicitly make assumptions in both the WLW and logrank approaches. For the WLW

approach, we assume that the observed time to reach a given threshold event has an underlying

continuous nature and that the hazards ratio for reaching an event is constant across time for

each predictor. We also assume that there is a log-linear relationship between the independent

variables and the underlying hazard function. For the logrank approach, essentially the only

assumption is that the patients are randomized to their respective treatment groups. The

logrank approach makes no modeling assumptions and does not require a continuous failure

time. Both approaches also make the assumption that censoring is independent of treatment

and is noninformative.

In a regulated clinical trial with correlated longitudinal and survival outcomes, it is often not
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known a priori whether the primary hypothesis should be based on the longitudinal or survival

outcome. The power of a survival analysis would increase with a larger number of events,

which would also be associated with increasing (informative) dropout and decreasing power for

a longitudinal analysis. Conversely, one has increasing power in the longitudinal process as

missing data due to terminating events decreases, implying fewer events and decreasing power

in the survival process. Even in cases in which the amount of missing data is predictable, it may

be unknown which process is likely to have greater sensitivity to treatment differences.

Our method is attractive in such situations, as one can incorporate our multivariate approach

in the study protocol with the understanding that it can lead to increased sensitivity to treatment

differences compared to the standard longitudinal and survival approaches and at worst should

lead to a “second best” approach. For example, consider a study in which a survival analysis

may have much greater sensitivity to treatment differences than a longitudinal analysis. Because

the multivariate approach incorporates information from each of these processes, it is reasonable

to expect the multivariate approach to have sensitivity to treatment differences somewhere in

between these two extremes. The same argument applies in the case in which the longitudinal

analysis has much greater sensitivity to treatment differences than the survival analysis. By

specifying the multivariate approach as the primary analysis a priori, one can reduce the risk of

selecting the outcome with the least sensitivity to treatment differences and have a reasonably

good chance of selecting the approach with the greatest sensitivity to treatment differences, as

shown in simulation studies in Section 3.

4.3 Simulation Studies

We conduct two simulations to evaluate the performance of our multivariate approach (using the

WLW or logrank strategy) relative to standard approaches using either of the longitudinal or

survival outcomes separately and to the joint model approach of Henderson et al. (2000). Our

proposed approach is most useful in settings with a small to moderate treatment effect on both

the longitudinal and survival outcomes and fairly large samples sizes (e.g. ≥ 300 per group). If

the treatment effects were known to be large a priori in both of these processes, there would be

little need for our method.
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We first simulate the longitudinal data with a trend over time for the mean and a random

intercept inducing an exchangeable correlation structure. We then generate terminating events

using a piecewise exponential model at fixed time points. The hazards function depends on

treatment, baseline covariates, and the population mean of the longitudinal variable for a given

interval. In the second simulation, we simulate the longitudinal data in the same format as

the first simulation, but we simulate deaths based upon subjects reaching a pre-determined

threshold. When subjects reach this threshold, the probability of death is set to 60% for each

observed Yij below the threshold. We compare the models based on power and Type I error.

Wei et al. (1989) proposed an “optimal” estimator β̂ that weights the marginal estimates by

the inverse of the covariance matrix. In our approach, one will observe a greater number of events

for earlier cutpoints, causing the “optimal” estimator to place more weight on the estimates from

the earlier cutpoints than on the later cutpoints. However, in many studies one may expect a

greater treatment effect in the later cutpoints. Hence we consider a modified WLW approach

that weights the parameter estimates of the respective events using a specified contrast matrix,

potentially weighting estimates from the later events more heavily compared to the weighting

of the “optimal” estimator. Let β̂e be the vector of treatment effects from the marginal Cox

models for the respective threshold endpoints and V̂e be the corresponding covariance matrix.

In the case of four events, we define a contrast matrix C2 = (0.25, 0.25, 0.25, 0.25)′ to weight the

treatment effects from the various threshold endpoints (time to 1st cutpoint or death, time to

2nd cutpoint or death, time to 3rd cutpoint or death, and time to death). This contrast weights

each estimate equally, placing more emphasis on estimates from the later events as compared

to the optimal estimator of Wei et al. (1989). We then compute the test statistic as shown in

(4.3). We denote this approach as WLW2 and use WLW1 to denote the WLW approach using

the optimal estimator.

4.3.1 Comparing Methods

Let Yij be the longitudinal response of subject i at observation j, for i = 1, . . . , n and j =

1, . . . , ni. Additionally, let yi0 be the baseline value of the observed response (the longitudinal

response at randomization) and xi be the treatment indicator. Let Ti denote the time to death
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of the ith subject, and Zi = min(Ti, Ui), in which Ui is a censoring time for survival of patient

i. In both simulation setups we compare the following methods:

• WLW1: The standard WLW approach using the optimal estimator of Wei et al. (1989),

i.e. C1 = (1′4V̂e

−1
14)

−1V̂e

−1
14.

• WLW2: The modified WLW approach with C2 = (0.25, 0.25, 0.25, 0.25)′.

• LR: The multivariate logrank analysis using nonparametric ANCOVA based on the test

statistic with equal weights, i.e. C2 = (0.25, 0.25, 0.25, 0.25).

• Cox: A Cox proportional hazards of the form

λi(t) = λ0(t) exp(γ1xi + γ2yi0), (4.4)

in which λi(t) is the hazard of subject i at time t, λ0(t) is an unspecified baseline haz-

ard function at time t, and γ1 and γ2 are parameters indicating treatment and baseline

measurement effects, respectively. To account for tied event times, we use both the ap-

proximation of Efron (1977) and the discrete logistic likelihood.

• LM1: A linear mixed model (with missing data due to failure) evaluating the treatment

main effect,

Yij = β0 + bi0 + β1tij + β2xi + β3yi0 + εij, (4.5)

in which tij is the observation time for subject i and observation j, β0 is a model intercept,

bi0 is a random subject intercept, and εij is the residual error. We assume εij ∼N(0, σ2)

independent of bi0 ∼N(0, ψ).

• LM2: A linear mixed model with time as a class variable (i.e. using indicator variables for

each time point) and a time by treatment interaction. The treatment effect is evaluated

at the last time point in which at least 50% of the subjects have an observed response.

Observations are discarded for the later time points with fewer than 5% observed data,

94



as this would not allow for precise estimates of the time effect and treatment by time

interaction at these time points.

• Hen: A joint model based on the method of Henderson et al. (2000) using SAS code from

Guo and Carlin (2004). The longitudinal process takes the form of (4.5) and the time to

event Ti follows an exponential distribution with hazard function

λi = exp{γ0 + γ1xi + γ2yi0 + γ3bi0}, (4.6)

in which γ0 determines the baseline hazard function and γ1, γ2, and γ3 indicate the effect

of the treatment, baseline measurement, and random coefficient, respectively. The longi-

tudinal and survival processes are linked through the random coefficient bi0. A joint test

H0 : β2 = γ1 = 0 will test for a treatment effect in both the longitudinal and survival

processes simultaneously. This joint model assumes an exponential distribution on the

hazards function, i.e. a constant hazard over time. Use of a Weibull distribution, allowing

the hazard to vary over time, led to an inflated Type I error rate (data not shown).

As an alternative to the logrank approach, Tangen and Koch (1999b) discuss using nonpara-

metric ANCOVA on the Wilcoxon scores (Gehan, 1965). However, Wilcoxon scores tend to give

more weight than the logrank test to early failures and relatively less weight to later failures

(Prentice and Marek, 1979), and thus this method had decreased power in our setting (results

not shown).

4.3.2 Simulation One

To generate the longitudinal data, we set n = 600 and sample ε ∼ N(0, 1), bi0 ∼ N(0, 1), and

calculate

Yij = bi0 + β1tij + β2tijxi + εijz, (4.7)

in which β1 = (0,−0.2,−0.5) and β2 = (0, .01, .02, .03, .04, .05) in different settings, with

xi ∼Bernoulli(0.5) and tij = j for j = (1, . . . , 10). We calculate a baseline value yi0 = bi0 + εij
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to be used as a predictor in model fitting. We then generate the survival data using a piecewise

exponential model with hazard function

λij = exp(γ0 + γ1E(Yij) + γ2xi) (4.8)

for the interval (j − 1, j], in which E(Yij) is the expected value of the longitudinal outcome,

γ0 = −2, γ1 = −0.5, and γ2 = (0,−.05,−.10,−.15) over the simulations. For subject i with

death in the interval (j − 1, j], we set Yij and all subsequent Yij to missing. We generate 5,000

datasets and calculate Type I error rates and power at the α = 0.05 significance level. The

threshold endpoints for the simulation are defined as time to the 1st, 2nd, and 3rd quartiles of

the individual minimum longitudinal values or time to death, whichever comes first.

Figures 4.1-4.2 display the predicted longitudinal mean and survival probabilities for β1 =

(0,−0.5), β2 = (0.02, 0.05), and γ2 = (0,−0.15), which represent a range of the parameter

settings. Figure 4.1 shows that the treatment differences under consideration in the longitudinal

measures are not very large. The survival probabilities shown in Figure 4.2 also show relatively

small treatment effects. This is mainly due to the fact that we have a large sample size, and

any moderate to large treatment effect would be easily detectable by a linear mixed model or a

Cox model.

With the exception of Henderson’s joint model, which was overly conservative, all methods

consistently preserved the Type I error rate at 0.05. In general, the WLW approach had slightly

greater power than the logrank approach, but the difference was very minimal. With minimal

sensitivity to treatment differences in the longitudinal process (β2 = 0, 0.01), the Cox model

had the greatest power, followed by the multivariate methods and then the linear mixed models.

For cases with no direct treatment effect on survival (i.e. γ2 = 0, though treatment indirectly

impacts survival through γ1), the linear mixed model LM generally had the greatest power,

followed by the multivariate methods and then the Cox model. Generally, for cases in which

the longitudinal and survival processes displayed somewhat equal sensitivity to treatment differ-

ences, the multivariate methods had greater power for detecting a treatment effect than either

the Cox or linear mixed models. Also, the modified (weighted) WLW approach (WLW2) had

greater power than WLW1. The performance of Henderson’s joint model varied over the simula-
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tions. It generally had less power than the multivariate approaches for β1 = (−0.2,−0.5) (more

longitudinal dropouts induced by failure), and greater power than the multivariate approaches

for β1 = 0 (fewer longitudinal dropouts).

Figure 4.3 displays the power of the various methods for detecting a treatment effect for

β1 = (0,−0.5), β2 = (0.02, 0.05), and γ2 = (0,−0.15). For cases in which treatment does not

directly impact survival (γ2 = 0), the linear mixed models LM1 and LM2 have the greatest

power, followed by the multivariate approaches, and then the Cox model. For datasets with

greater sensitivity to treatment differences in the survival process (γ2 = −0.15), the multivariate

approach and Cox model have about equal power, while the linear mixed models LM1 and

LM2 have the least power. Henderson’s joint model is very competitive compared to the other

methods in the case of little missing data (β1 = 0) but has fairly low power with increased

missing data (β1 = −0.5) in the longitudinal process due to death.

4.3.3 Simulation Two

The second simulation generates the longitudinal data in the same manner but simulates deaths

based on an increased probability of death upon reaching a pre-determined threshold rather than

assuming the piecewise exponential model. We set the probability of death equal to 0.6 at all time

points with Yij < −2.5. For subject i with death event at time j, we set Yij and all subsequent Yij

to missing (and manage the patient as death at time j). Note in this setup, a subject may have

technically died in the interval (j − 1, j] but may not have an observed death until time j. We

sample 5,000 datasets and calculated Type I error rates and power at the α = 0.05 significance

level. We use the same parameter values as simulation one, except β2 = (0, .02, .03, .04, .06, .08)

and β1 = (−0.05,−0.15,−0.20,−0.25,−0.30,−0.40,−0.50,−0.70,−0.90,−1.4). One could view

the failure times for the terminating event as interval-censored because deaths can only occur

at j = (1, . . . , J). Hence we use the discrete logistic likelihood for the Cox survival model.

Figures 4.4-4.5 display the predicted longitudinal mean and survival probabilities for β2 =

(0.02, 0.05, 0.08) and β1 = (−0.05,−0.4,−0.9), which represent a range of the parameter settings.

As in the first simulation, the simulated treatment differences shown in Figures 4.4 and 4.5 are

relatively small due to our large sample size.
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With the exception of Henderson’s joint model, which again was overly conservative, all

methods consistently preserved the Type I error rate at 0.05. In general, the logrank approach

had slightly greater power than the WLW method, but the difference was minimal. For data

sets with small amounts of missing data in the longitudinal outcome due to failure, i.e. < 20%

(β1 ≤ −0.15), the linear mixed models performed best, followed by the multivariate methods

and then the Cox model. For data sets with 20% to 50% missing data (−0.15 ≤ β1 ≤ −0.5), the

multivariate approaches performed best, followed by the Cox model and then the linear mixed

models. For data sets with 50% to 70% missing data (−0.70 ≤ β1 ≤ −0.90), the multivariate

approaches again performed best, followed by LM1, the Cox model, and then LM2. For data

sets with greater than 70% missing data (β1 = −1.4), LM1 performs best followed by the

multivariate methods, LM2, and the Cox model. For data sets with > 70% missing data, the

linear mixed model LM1 had greater power than the Cox model, multivariate approaches, and

the linear mixed model LM2. One might expect the Cox model to perform best in this type

of setting (i.e. extreme amounts of missing data in the longitudinal outcome). However, given

the discrete sampling of our survival outcomes, most subjects experience death at time point

1 or 2, resulting in a large number of ties, and minimal sensitivity for detecting a treatment

effect in the survival process. Hence, in this simulation with extreme missing data, most of

the information regarding the treatment effect is contained in the longitudinal process. The

modified WLW approach (WLW2) again had greater power than WLW1. Henderson’s model

had less power than the multivariate approaches for all simulations except β1 ≤ −0.15 (little

missing data), with particularly low power (and a very conservative Type I error) when there

was a large amount of missing data due to failure.

Figure 4.6 displays the power of the various models of detecting a treatment effect for

β2 = (0.02, 0.05, 0.08) and β1 = (−0.05,−0.4,−0.9). For datasets with substantially greater

sensitivity to treatment differences in the longitudinal process compared to the survival process

(β2 = 0.05, β1 = −0.05), the linear mixed models perform best, followed by Henderson’s joint

model, the multivariate methods, and then the Cox model. In this simulation setup, there are no

examples in which the sensitivity to treatment differences is substantially greater in the survival

process than in the longitudinal process. For datasets with about equal sensitivity to treat-

ment differences in the survival and longitudinal processes, the multivariate methods generally
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perform better than both the Cox and linear mixed models, as well as Henderson’s joint model.

4.4 Application

We illustrate our method on the previously discussed clinical trial of 2,000 patients with a

chronic respiratory disorder. Due to reasons of confidentiality, these patients (1,000 treatment

and 1,000 control) are a random sample from the true study population, in which patients were

randomized to either treatment or control in permuted blocks with stratification by country and

smoking status.

In the original analysis, time to death within 3 years was chosen a priori as the primary

endpoint. We first evaluated the treatment effect on time to death using a Cox proportional

hazards model. We regressed the survival outcome on the following predictors: treatment,

baseline FEV, current smoking status (yes, no), age (< 55, 55-64, 65-74, ≥ 75), gender, body

mass index (< 20, 20-25, 25-29, ≥ 29), race (white, other), and geographical region (USA, Asia-

Pacific, Eastern Europe, Western Europe, other). Also, the exact days of death were available

for all patients with an event, resulting in very few ties with respect to event time. There were

139 deaths (13.9%) for patients on the treatment drug and 153 deaths (15.3%) for patients on

control. Survival data were available for all 2,000 subjects. Based on visual inspection of Kaplan-

Meier curves, there was no evidence to contradict the proportional hazards assumption. The

estimated hazard ratio for treatment versus control adjusting for covariates was 0.81 (p-value

= 0.07) with a 95% confidence interval of (0.64,1.02). An unadjusted log-rank test comparing

survival functions for the two treatment groups yields a test statistic of 0.84 with a p-value of

0.36, and a nonparametric ANCOVA approach adjusting for covariates yields a mean difference

in log-rank scores of -.026 with a p-value of 0.12. Hence these standard analyses with survival

as the primary endpoint result in non-significant results at the α = 0.05 level.

We analyzed the longitudinal outcome FEV using a linear mixed model (LM2) with the

same predictors as the Cox model, but also including time (6, 12, 18, 24, 20, and 36 months)

and a treatment by time interaction. The observation time was regarded as a class variable

using indicator variables for each observation time. We included a random intercept to account

for the intra-subject correlation. There were 297 subjects who did not have at least one FEV
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measurement post-randomization in the 3 year period, of which 80 were dead at 3 years. A total

of 8,372 observations from 1,703 subjects were available for this longitudinal analysis. 68% of

these patients had observed FEV measurements at the 3 year mark, and 18% of the observations

were missing across all possible (1703× 6) measurements, mostly due to death. The treatment

by time interaction term was not significant at the α = 0.05 level (p-value = 0.10 with 5 df), but

the estimates did show a trend for larger treatment differences as time increased. We evaluated

the treatment difference at the last observation time (3 years), at which the greatest treatment

difference was expected, resulting in an estimated difference of 60.5ml (p-value ≤ 0.0001) with

a 95% confidence interval of (34.0, 87.0) for subjects on treatment versus control. This result is

clearly signficant at the α = 0.05 level, and leads to the conclusion that treatment is associated

with higher FEV at 3 years.

We implemented the multivariate approaches to evaluate both outcomes simultaneously,

adjusting for baseline FEV, current smoking status, age, gender, body mass index, race, and

region. FEV measurements post randomization range from 210ml to 4,030ml with a median of

1,180ml. We defined three cutpoints based on the quartiles of the individual minimum FEV

measurements. This results in four threshold endpoints: time to FEV ≤ 1, 300ml or death, time

to FEV ≤ 1, 010ml or death, time to FEV ≤ 740ml or death, and time to death. Although

we could have required subjects to maintain FEV values below a cutpoint for two or more

observations to observe a threshold event, it is clinically relevant in this example to simply

define a threshold event as one observed FEV value below a given cutpoint (or death). For

subjects with no FEV measurements and death (or censored) times greater than 130 days,

we censored the first three threshold events at 130 days, the earliest time at which an FEV

measurement was recorded.

The estimated differences in logrank scores are -0.050, -0.047, -0.035, and -0.026 for the four

threshold events, respectively. The average difference in logrank scores for treatment versus

control using multivariate nonparametric ANCOVA is -0.040 (p-value = 0.005) with a 95%

confidence interval of (-0.068, -0.012). The goodness of fit statistic is 16.7 with 14 degrees of

freedom (p-value = 0.27), showing lack of evidence for imbalance of covariates at randomization

between treatments. Based on the logrank approach, we conclude that the treatment drug is

associated with smaller logrank scores and extended survival times for reaching a threshold event
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compared to control.

The respective marginal hazards ratios for the WLW model are 0.89, 0.84, 0.80, and 0.81.

Using the optimal estimator, the WLW1 hazards ratio is 0.87 (p-value≤0.0001) with a 95% CI of

(0.81,0.93). The modified estimator WLW2 results in a hazards ratio of 0.83 (p-value=0.0004)

with a 95% confidence interval of (0.75, 0.92). Based on the WLW approach, we conclude that

the treatment drug is associated with lower hazard of reaching a threshold event compared

to control, and hence is simultaneously associated with larger values of FEV and a decreased

probability of death.

The results of our proposed approach versus the Cox and linear mixed model are not sur-

prising based on our simulation results. In these data, we have a moderate to strong association

between the treatment drug and FEV and moderate missing data (18% among those with lon-

gitudinal measurements, or 30% among all 2,000 patients). This leads to a very small p-value

evaluating the longitudinal outcome. The sensitivity to treatment differences is much smaller

in the survival process compared to the longitutinal process and results in a non-sigificant p-

value for the survival endpoint. Because the WLW approach incorporates information from

both processes, in this situation we would expect it to have sensitivity to treatment differences

somewhere in between that of the longitudinal and survival approaches.

The investigators of this study had prior evidence of a strong treatment effect on FEV

and conducted this study specifically to evaluate the treatment effect on mortality. However,

had it been the case that the investigators did not know which outcome was more sensitive to

treatment differences a priori, a better approach may have been to specify either the logrank

or WLW approach as the primary analysis, which would hedge their planning with respect to

selecting the endpoint with the greatest sensitivity to treatment differences.

4.5 Discussion

Our simulation studies show two examples in which the multivariate methods are shown to have

good properties compared to standard approaches. One distinction in the first simulation setup

is that the data are generated in two extreme circumstances. First, there are many examples

in which the sensitivity to treatment differences is large in the longitudinal process, but very
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small in the survival process. Second, there are many examples in which the sensitivity to

treatment differences is large in the survival process, but very small in the longitudinal process.

In both extreme cases, the multivariate methods consistently have performance in between

longitudinal or survival methods alone. The multivariate methods generally do best relative

to the separate methods when there is a somewhat equal sensitivity to treatment differences

in both the longitudinal and survival processes. The second simulation does not have similar

extreme differences in sensitivity due to the larger correlation between the longitudinal and

survival processes.

In comparing the multivariate approaches to the joint model approach of Henderson et al.

(2000), we observed greater power for the multivariate methods for most simulations with moder-

ate missing data due to failure. In addition, in many simulations Henderson’s approach had less

power than both the linear mixed model and the Cox model. Based on simulation evidence, the

multivariate methods have better overall performance, make fewer distributional assumptions,

and are easier to implement than Henderson’s joint model.

The modified contrast matrix in WLW2 provided better performance than WLW1 in both

simulations. Although results are not shown here, we also implemented the weighted inverse

matrix C1 on the logrank method and found that the simple contrast matrix C2 resulted in

greater power. Additionally, we investigated several alternatives for the contrast matrix in

both multivariate approaches, including C3 = (0.30, 0.25, 0.25, 0.20), C4 = (0.35, 0.3, 0.2, 0.15),

C5 = (0.35, 0.35, 0.30, 0), and C6 = (0.6, 0, 0.4, 0), and found that the performance of the WLW

and logrank approaches did not change much compared to the results based on C2. In particular,

the small variations observed in power were more likely to occur in the WLW approach than

in the logrank approach. Hence, in the context of our simulations, our methods are not overly

sensitive to the specification of weights (excluding the weighted inverse matrix C1) and one can

use a smaller number of cutpoints in the longitudinal process (M = 1, 2 resulting in 2 or 3

threshold endpoints) to achieve a similar result.

Both the WLW and logrank approaches had very similar performance in terms of power and

Type I error. In general, the logrank method had slightly less power than the WLW model in

the first simulation and slightly greater power than the WLW model in the second simulation.

The logrank approach makes fewer assumptions than the WLW approach, but the analysis
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cannot evaluate effects of covariables or treatment by covariables interactions. Also, the logrank

estimated treatment parameter (i.e. mean difference in log ranks) only applies to populations

which have the same distributions for covariables as the study population. The interpretation

of the hazards ratio in the WLW approach may be more appealing than the corresponding

parameter estimate from the logrank approach. Additionally, the WLW approach allows one to

evaluate effects of covariables by treatment interactions, and the estimated treatment parameter

is generalizable to populations which might not have similar distributions for the covariables.

For a more thorough discussion of the advantages and disadvantages of nonparametric ANCOVA

versus a modeling procedure, see Koch et al. (1998). Their proposed strategy is to specify the

non-parametric analysis (e.g. logrank) as the primary evaluation of the treatment effect and to

use the statistical model (e.g. WLW) as a supportive analysis.

The WLW approach assumes that failure time (in this case time to a threshold event) is con-

tinuous. However, because longitudinal measurements are usually taken at set time points, there

is some ambiguity as to whether the continuous time assumption is satisfied for the threshold

endpoints. For cases in which the exact time of the terminating event is known, most ties in the

WLW model will be due to the longitudinal process (i.e. time to cutpoint). If one views time to

longitudinal cutpoint as interval-censored, then time to reach a threshold event may be viewed

as a combination of a continuous failure time and an interval-censored time. For cases in which

the terminating event is observed only at the time the longitudinal measurement is taken, then

time to a threshold event may be regarded as interval-censored. Hence the continuous failure

time assumption required by the WLW may not be satisfied. However, our simulations did not

show adversity for Type I error. One can still justify the WLW approach by taking the view that

time to the terminating event and time to the longitudinal cutpoints are continuous outcomes.

This is not unreasonable, especially when the exact time to terminating event is known and the

time between longitudinal measurements is small.

Guo and Lin (1994) proposed a discrete version of the WLW approach for interval-censored

data. Other discrete extensions of multivariate survival analysis include Kim and Xue (2002)

and Goggins and Finkelstein (2000). However, these methods are not easily implemented in

standard statistical software packages and are therefore not currently practical alternatives.

One could use a discrete logistic model with generalized estimating equations to account for the
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repeated events. We attempted to implement this model in our simulations but found that the

Type I error rate was conservative for some settings and inflated in other settings, perhaps due

to the large number of parameters in the model, as it requires an estimate for each interval and

threshold as well as the interaction between interval and threshold (data not shown).

Although the WLW method is well suited for multivariate survival data with different types

of events, some have criticized the WLW method in settings with recurrent events data. In

such settings, an individual is not at risk for the (k + 1)th event until the person experiences

the kth event. However, the WLW method includes an individual in the risk set for each event

from time zero until the individual has the event. This may cause the regression estimates

to be overestimates of the regression parameters (Kelly and Lim, 2000). Others have argued

against this criticism, claiming that the WLW method is appropriate for recurrent events data

as long as the parameter estimates are interpreted correctly (Metcalfe and Thompson, 2007).

In the context of our method, the threshold events represent progressively greater levels of

deterioration or death, but are not recurrent events such as those discussed in Kelly and Lim

(2000). Although an individual cannot experience the (k + 1)th threshold event without having

experienced the kth event, these events can happen simultaneously. Hence an individual is at

risk for the (k + 1)th event even without having had the kth event. This implies the criticisms

of the WLW method for recurrent events data are not directly applicable to our method.

Our multivariate methods mainly address situations in which there exists attrition or non-

reversible deterioration in the longitudinal process subject to censoring due to the survival

endpoint. Our proposed strategy is very attractive in situations in which the best primary

outcome is not known a priori. Choosing a multivariate approach as the primary analysis

would ensure that the study does not choose a primary endpoint with the least sensitivity to

treatment differences, and may result in greater sensitivity to treatment differences than either

of the longitudinal or survival approaches separately.

The example in this article is based on random samples of a real clinical trial that was con-

ducted to compare three treatment arms versus a placebo for patients with chronic obstructive

pulmonary disease. The background, design, results, and interpretation of this trial are reported

by Calverley et al. (2007). Our methods are applicable to other studies with similar types of

data.
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TABLE 4.1: Individual FEV measurements

Observation time in months
Subject 6 12 18 24 30 36 Time of death

1 2500 1800 1100 900 - - 26
2 2000 1900 1800 1700 1650 1600 -
3 1200 - - - - - 11

Table gives FEV values at each observation time and time of death
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FIGURE 4.1: Simulation One: Longitudinal predicted mean
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FIGURE 4.2: Simulation One: Survival probabilities
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FIGURE 4.3: Simulation One: Power
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FIGURE 4.4: Simulation Two: Longitudinal predicted mean
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FIGURE 4.5: Simulation Two: Survival probabilities
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CHAPTER 5

Discussion

We have presented methods for testing random coefficients in the linear mixed model, and more

generally multilevel linear models, using approximate Bayes factors. Our method incorporates

default prior distributions on the random coefficients that are shown to have good frequentist

properties and large-sample consistency. A major contribution of our method is the ability

to test multiple random coefficients simultaneously, and to do so with relative computational

efficiency. Our method does not involve computationally expensive MCMC algorithms, and

only requires a maximization algorithm and numerical second derivatives. In multilevel linear

models, our method is applicable to models with nested, non-nested, or cross-nested random

coefficients. Hence our method is a practical and useful approach for testing random coefficients

in multilevel linear models.

We also have proposed a straightforward approach for evaluating a treatment effect in cor-

related longitudinal and survival outcomes. Our method mainly addresses situations in which

there exists attrition or non-reversible deterioration in the longitudinal process subject to cen-

soring due to the survival endpoint. Simulations studies show that this method consistently

performs either best or second best compared to standard survival or longitudinal methods

alone. Our method is particularly attractive in clinical trial settings in which the primary anal-

ysis must be specified a priori. Our method is straightforward to implement, makes limited to

no assumptions, and is a practical alternative for analyzing correlated longitudinal and survival

endpoints.



APPENDIX A

Testing random effects in the linear

mixed model using approximate Bayes

factors

A.1 Marginal distributions for testing a random intercept

The marginal distributions in Sections 2.2.1 and 2.3.2 can be derived from the integral

p(Y |M (a)
k ) =

∫ ∫ {
n∏

i=1

∫
p(yi|ζ(a)

k , bi, σ
2)π(bi)dbi

}
π(σ2)dσ2π(ζ

(a)
k )dζ

(a)
k (A.1)

=
∫ ∫ {

n∏

i=1

p(yi|ζ(a)
k , σ2)

}
π(σ2)dσ2π(ζ

(a)
k )dζ

(a)
k

=
∫ ∫

p(Y |ζ(a)
k , σ2)π(σ2)dσ2π(ζ

(a)
k )dζ

(a)
k

=
∫

p(Y |ζ(a)
k )π(ζ

(a)
k )dζ

(a)
k .

A multivariate t-distribution for a random vector x is typically denoted as x(p×1) ∼ tp(d, µ,Σ),

in which

p(x) = Γ

(
d + p

2

)
(πd)−p/2|Σ|−1/2

Γ(d/2)

{
1 +

1

d
(x− µ)′Σ−1(x− µ)

}− d+p
2

. (A.2)

In (A.2), p is the dimension of x, d is the number of degrees of freedom, µ is the non-

centrality parameter, and Σ is the covariance matrix. In order to express the marginal dis-

tributions p(Y |ζ(a)
k ,M

(a)
k ) in the form of (A.2), we must express the models in terms of the

vector Y = (y′1 . . . , y′n)′.
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For the ANOVA model in Section 2.2.1, we can write M
(1)
1 in terms of Y as

M
(1)
1 : Y = µ1m + λWb + ε, (A.3)

in which 1m is a (m×1) vector of ones, W is a (m×n) block diagonal matrix of (1n1 , . . . ,1nn), b =

(b1, . . . , bn)′, and ε = (ε′1, . . . , ε
′
n)′. It can then be shown that (Y |µ, λ, M

(1)
1 ) ∼ tm(2v, µ1m, w

v
Σ(1)),

in which Σ(1) = (Im + λ2WW ′). Similarly, M0 can be expressed in terms of the vector Y as

M0 : Y = µ1m + ε. (A.4)

It can then be shown that (Y |µ,M0) ∼ tm(2v, µ1m, w
v
Im). It is also straightforward to show

that (Y |µ, φ, M
(2)
1 ) ∼ tm(2v, µ1m, w

v
Σ(2)), in which Σ(2) = (Im + e2φWW ′). For large datasets,

the covariance matrix Σ may be too large to handle computationally in a mixed model setting.

Hence it is preferable to express the multivariate t-distribution in terms of the subject-specific

(independent) covariance matrices Σi, as shown in equation (6)

A.2 Marginal distributions for testing a random slope

For the linear mixed model in Section 2.3.2, M
(a)
0 can be expressed in terms of the vector Y as

M
(a)
0 : Y = Xβ + Z0W

(a)
0 b0 + ε, (A.5)

in which X = (X ′
1, . . . , X

′
n)′ is a (m×p) design matrix, Z0 is a (m×q) block diagonal matrix of

(Z0,1, . . . , Z0,n), b0 = (b′0,1, . . . , b
′
0,n)′ is a (nq× 1) vector of all random effects, ε = (ε′1, . . . , ε

′
n)′,

W
(1)
0 = In⊗ (Λ

(1)
0 Γ0) and W

(2)
0 = In⊗ (Λ

(2)
0 Γ0) are (nq×nq) matrices, in which ⊗ denotes the

right Kronecker product (whereby the matrix on the right multiplies each element of the matrix

on the left). We can express M
(a)
1 in terms of the vector Y as

M
(a)
1 : Y = Xβ + Z1W

(a)
1 b1 + ε, (A.6)
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in which Z1 is a block diagonal matrix of (Z1,1, . . . , Z1,n), b1 = (b′1,1, . . . , b
′
1,n)′, ε = (ε′1, . . . , ε

′
n)′,

W
(1)
1 = In ⊗ (Λ

(1)
1 Γ1), and W

(2)
1 = In ⊗ (Λ

(2)
1 Γ1). It can then be shown that

p(Y |β,λ
(a)
k ,γk,M

(a)
k ) ∼ tm(2v, Xβ, w

v
Σ

(a)
k ), in which Σ

(a)
k = (Im + ZkW

(a)
k W

′(a)
k Z ′

k). As with

testing a random intercept in the ANOVA setup, the covariance matrix Σ
(a)
k may be too large

to handle computationally in a mixed model setting.

115



APPENDIX B

Analyzing Correlated Longitudinal and

Survival Data in Clinical Trials Using

Multivariate Time-to-Event Methods

B.1 The Wei-Lin-Weissfeld Method

Wei et al. Wei et al. (1989) showed that

β̂ ∼̇ N(β,V ), (B.1)

in which V is estimated by

V̂ =




V̂11 V̂12 . . . V̂1M

V̂21 V̂22 . . . V̂2M

...
...

. . .
...

V̂M1 V̂M2 . . . V̂MM




. (B.2)

The estimated covariance matrix V̂ is composed of the sub-matrices

V̂mm′ = (RmÂm)′(Rm′Âm′), in which Âm is the inverse of the information matrix and Rm is the

matrix of score residuals for event outcome m. Conveniently, the quantity RmÂm is common

output in most software package and is known as the matrix of “dfbeta” residuals. The “dfbeta”

residuals represent the approximate change in a parameter estimate when the ith observation

is omitted. It follows that the asymptotic covariance matrix of β̂ can be obtained as a function

of the “dfbeta” residuals.
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B.2 Nonparametric Analysis of Covariance with Logrank Scores

Let nj be the number of observations at risk at the beginning of the jth interval,

nj =





N, j = 1

N −∑
k(nk0 + nk1), k = 1, . . . , (j − 1) and j > 1,

(B.3)

in which N is the sample size, nk0 is the number of censored observations in the kth interval,

and nk1 is the number of observed endpoints in the kth interval. Then the logrank scores for

the jth interval are

Cjd = d−∑

k

(nk1/nk), k = 1, . . . , j, (B.4)

in which d = 1 for observed endpoints and d = 0 for censored endpoints.

Suppose we are interested in comparing two treatments for M logrank outcomes adjusting

for p covariates. Let treatment i have sample size ni, mean response ȳi of dimension (M × 1)

and a mean of covariates x̄i of dimension (p× 1). Let d = (ȳ1 − ȳ2) and u = (x̄1 − x̄2). We fit

the model

E [f ] = E




d

u


 =̂




IM

0(p×M)


 β̂ = Xβ̂ (B.5)

using weighted least squares with weights based on the covariance matrix V0. Under H0,

V0 =
n1 + n2

n1n2(n1 + n2 − 1)





2∑

i=1

ni∑

k=1




(yik − ȳ)(yik − ȳ)′ (yik − ȳ)(xik − x̄)′

(xik − x̄)(yik − ȳ)′ (xik − x̄)(xik − x̄)′








(B.6)

in which ȳ and x̄ are means for all patients with treatments ignored. Additional covariance

estimates are possible under the alternative hypothesis of a treatment difference Tangen and

Koch (1999b), Tangen and Koch (1999a). The weighted least squares estimator β̂ is obtained

from

β̂ = (X ′V −1
0 X)−1X ′V −1

0 f (B.7)
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and its estimated variance is given by

V̂β̂ = (X ′V −1
0 X)−1. (B.8)

A criterion for departures from (B.5) in terms of random imbalances takes the form

Q = (f − f̂)′V −1
0 (f − f̂) (B.9)

in which f̂ = Xβ̂. The statistic Q approximately has a chi-square distribution with p degrees

of freedom and assesses the amount of random imbalance in the covariates at randomization.
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