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Abstract 
  To improve Augmented Reality applications’ performance in laparoscopic surgeries, 
the thesis focuses on using stereo vision setup to produce high-quality 3D reconstruction 
of texture-less objects in a confined space. First, a primitive stereo reconstruction system 
is implemented with basic local block matching algorithm and is analyzed by observing 
changes in reconstruction when various variables are tuned. Then, a sequence of 
additional refining algorithms is proposed to be applied to the system as the thesis gives 
observation of improvement in reconstruction quality. Structured light is added to help 
reconstruction texture-less objects. After multiple setups are analyzed, the most suitable 
structured light component is added to the original system. Experiments were conducted 
with the new system to help analyze the relationship between variables in projected 
patterns and reconstruction performance. Current system cannot solve all problems and 
still have difficulty in reconstructing objects such as thin curve ones. To make the system 
fully functioning in real-world scenario, some future work and possible solutions to the 
artifacts are proposed, based on a literature review. 
 
 

Introduction 
 In the past decades, innovations in computer science had made it possible for the 
medical personnel to use robots and imaging systems to improve surgery operations. In 
particular, laparoscopic surgeries, known for its advantage over open surgeries for 
clinical purposes but also for its difficulty because of the lack of visibility of operating 
areas, have a growing number of Augmented Reality applications as assistance in recent 
years. [4] However most of the conventional applications are limited to enhancing the 
visibility of operating area by increasing the resolution of visual output on monitor 
screens with high-resolution laparoscopes or superimposing 3D static preoperative data 
gained from CT scan before surgeries. These approaches have obvious drawbacks in 
either depth cue or data interactivity. [4][12] 
  Suppose a system with Head-mounted-display as visualization device could render 
real-time 3D reconstruction of the operating area from a stereo laparoscope, such system 
would enable surgeons to see through patients’ skin and conduct the surgeries just like 
open surgeries, providing much more depth cues than the 2D camera does. However, 
multiple technical challenges would make the system less reliable and popular compared 
to previous conventional AR applications. [4] 
  One of the biggest bottlenecks of this system is the quality of 3D reconstructions. 
Human cavity is a completely dark, confined environment with texture-less tissues which 
are complex both in shapes and spatial relationships. Many 3D reconstruction algorithms 
will fail to work in such complicated environment, incorrectly visualizing or even 
missing some parts of surgical areas. From surgeons’ point of view, the precision of tasks 
during operations is limited to less than 1 millimeter. Therefore, any part that failed to 
get reconstructed would result in catastrophic consequences during the real surgeries. For 
reliability and precision, surgeons would choose 2D visual output over 3D real-time data.  



  To fully exploit advantage of 3D real-time capturing in depth cue over 2D visual output, 
a reliable and suitable capture setup and corresponding reconstruction algorithm are 
needed for building the whole system. This thesis will focus on improving the quality of 
3D reconstructions in the scenario that target objects are texture-less, complex in shapes 
and close in range by utilizing multiple algorithms tuned with experimental variables and 
combining different reconstruction setup. 
  To support arguments in this thesis, a dynamic 3D reconstruction system integrated by 
both hardware and software was developed. The project only aims to test the performance 
of the implemented algorithm and does not intend to be directly used in the medical 
process so the sizes of the experimental object are not comparable to human cavities. In 
later part of the thesis, improvements of the setup to fit the real circumstances will be 
suggested. 
  The thesis is divided into following chapters: 
Chapter 1: A primitive stereo reconstruction system 
  The chapter reviews the development of all components of a primitive stereo vision 
system which is a setup with two cameras placed in parallel on a short baseline. Then, 
for each component, it demonstrates the relationships between varies variables such as 
block size and reconstruction results and analyzes them in details with formulas and 
reasoning. 
Chapter 2: Structured light component 
  The chapter first identifies the artifacts in primitive stereo vision system’s 
reconstruction. Then it will analyze these artifacts to shed more lights on algorithms of 
primitive stereo vision system. To eliminate some of those artifacts, the chapter proposes 
to add structured light component to provide controlled textures for texture-less objects. 
Different setups for structured light are analyzed and most suitable one is added. 
Experimenting with structured light setup, it evaluates reconstructions with different 
projected textures. 
Chapter 3: Further expectations 
  The chapter analyzes some further issues that adding structured light fails to address 
and proposes possible solutions. Then, it suggests some necessary improvements for the 
pipeline to be used in real-world scenario.   
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter One: A primitive stereo reconstruction system 
Hardware Setup 
  The selection of capture devices is important, because the distortion, raw input images’ 
format and the resolution of cameras could all affect reconstructions results. For cameras, 
a pair of Point Grey cameras with the same model is selected because they are able to do 
hardware synchronization by connecting both cameras to a FireWire board attached to 
the CPU. Hardware synchronization not only saves effort to conduct software 
synchronization procedure after capturing but also makes real-time synchronizing 
rendering possible. For lenses, a pair of similar common range lens with small distortion 
are selected because they can properly cover the range of target areas of this research. 
Two cameras are placed almost in parallel and in close distance between each other to 
fulfill requirements for a stereo vision setup. (Figure 1.1 (a)) 
 Image format will be configured to 16-bits gray-scale pixel format because the 
algorithm only cares about the density of each pixel. Differences in focal length, zoom 
level and aperture size between two cameras are minimized manually in order to reduce 
errors in image pair. The resolution of the output will be configured to 800*600 pixels 
because it is enough to capture details of the scene and it doesn’t cost too much 
computational power in reconstruction. 
  As for target scene setup, a peg board which is usually for laparoscopic surgery 
training tasks such as peg transfer is placed about 20 centimeters away from the camera 
to simulate texture-less human cavity. Peg board has no texture and some complexities 
in shapes, providing an ideal model for human cavities. 
 

 
(a)                              (b) 

Figure 1.1: (a) is the stereo cameras system setup; (b) is the reconstruction scene setup. 
 
Overview of the software: Implementation of depth acquisition pipeline 
  After hardware are set up, a corresponding depth acquisition pipeline needs to be 
implemented. This section is to provide the overall structure of the software. Before 
capturing, information about two cameras such as relative spatial relationship, intrinsic 
camera matrix and distortion parameters are important for reconstruction process. So, a 
calibration process needs to be conducted using checker board and calibration function 
from OpenCV library. [9] 



  As for storing image data, the software mainly uses Mat data type from OpenCV 
library to store image data. When capturing the data, the software stores image pixel data, 
image format and time stamp into one pre-defined data type called stream packets as 
information about one frame of the capture. 
  Then the frame data is extracted to perform block matching to get depth or disparity 
map which stores depth information of each pixel on the image. With gained depth or 
disparity maps, a sequence of algorithms is used to refine the depth information.  
  Finally, to get a more detailed observation of the reconstruction results, a points cloud 
object will be generated with the depth information and color information of each pixel. 
 
Intrinsic and Extrinsic Calibration 
  To proceed to reconstruction procedures, intrinsic and extrinsic calibration of both 
cameras are indispensable, because camera matrixes, transformation matrixes and 
distortion parameters for both cameras provided by calibration are needed for depth 
reconstruction. [9] 
  The calibration process is performed as independent procedures because it is only 
required when the parameters of cameras are changed. OpenCV calibration functions are 
used in the system. An efficient and easy-to-operate program is built to automate the 
calibration process because the usual way is too time-consuming. An interactive interface 
allows the researchers to select satisfied pairs of frames when playing the captured video. 
With pairs of frames selected, the program uses the same frame pairs for both intrinsic 
and extrinsic calibration, avoiding the manual work to select corresponding frames 
separately for extrinsic and intrinsic calibration. All the operations described above can 
be performed via keyboard inputs.  
  Automation of the process shortens the calibration time to less than 5 minutes. For 
calibration, researcher only needs to start to record and hold a chessboard in front of the 
camera pair. However, there are requirements to the type of chessboard and the way of 
holding and moving chessboard.  
  For types of chessboard, the whole chessboard needs to be seen in the image if the 
chessboard is hold the same distance away from the cameras as the target objects. So, in 
this scenario, chessboard with 6*7 2cm*2cm square blocks is chosen. During the 
development phase of the system, the target scenario involves objects with the size of 
human face which are approximately 70 cm away from the cameras. So, the chessboard 
with 10*9 4cm*4cm square blocks was chosen. (Figure 1.2) 
  For the way of holding chessboard, the chessboard needs to be held approximately the 
same distance away from the camera as the distance between target object and cameras. 
In this case, the distance should be around 15 cm because both cameras would be set to 
focus on that distance. If the distance between chessboard and cameras are different from 
the distance between target objects and cameras, the chessboard would not be in focus, 
the features of chessboard would be blurred and the calibration results would be 
inaccurate. For the way of moving the chessboard, in recording for calibration, different 
angles and positions of the chessboard in the recording should be covered as many as 
possible. [9] 
  After calibration is completed, the calibration data is stored in file. So it can be used 



for multiple sessions of reconstruction with the same camera setup. 

 
Figure 1.2 Left chessboard have the chess block with 2cm in size and right chessboard 
have the chess block with 4cm in size. 
 
Basic Local Block Matching Algorithm 
  To acquire depth maps from two synchronized image streams, local block matching 
algorithm is used. The main procedure of local block matching in stereo reconstruction 
is that for each block of pixels of the first image, the most similar block of pixels need to 
be found in the second image. The similarity of two blocks is defined by matching scores 
calculated from two blocks with particular cost function. The smaller the difference, the 
more similar the two blocks. After two most similar blocks are found in separate images, 
the depth information of the block can be calculated with calibration data and pixel 
positions of the block. [3] 
  For the above procedure, two approaches can be taken, which are both implemented 
and analyzed in this section. First approach is rectifying the image pair and comparing 
the blocks of pixels of first image with only the blocks of pixel of second image whose 
center pixel is at the same row as the first one. Rectification process is to adjust all pixels 
of a pair of images so that the pixel coordinates of certain object in two images only have 
difference in x-axis. So, in a rectified image pair, for each pixel in one image, only pixels 
with the same x position in the other image can be a candidate correspondence. The 
differences in x-direction between two corresponding pixel positions are defined as 
disparity value. The disparity can be transformed into depth via equation: [3] 

D = 	f ∗
𝑏
𝑑

 

where b is length of baseline between two cameras, f is the focal length, d is the disparity 
value and D is depth from the camera’s aperture. It is obvious to see that, with fixed focal 
length and baseline length, disparity value is inversely proportional to depth value.  
  For debugging purpose, this approach and standard rectified data from Middlebury 
stereo dataset is used at the initial stage of the implementation. [3] 
  The second approach is using raw image pairs with projection matrixes of both 
cameras and finding the block in the second image by plane-to-plane transformation and 
sweeping the z (depth) value within defined range. Such approach is more robust and 
efficient because it rectified the whole image by performing a single matrix 



multiplication for each pixel. By contrast, the rectification approach first needs to change 
the pixel coordinates of every pixel based on the movement of cameras from original 
position to rectified one and generates a new rectified image. Using projection matrix 
directly saves one stage of loading, calculating and saving pixels’ information. Therefore, 
the system takes this approach for reconstructing captured image pair from the hardware 
setup instead of standard dataset. After the most similar block in the second image is 
found for each pixel in the first image, a depth map can be formed for all found suitable 
z (depth) values. The procedure described above can be demonstrate by following 
formula: [11] 

𝑝) = 𝐾)[𝑅)|𝑡)][R1|t1]31(K1
31𝑝1 ∗ 𝑧) 

 
Where p1 and p2 are pixel coordinates in the first and second image respectively, R1, R2 
are rotation matrixes, t1 and t2 are position vectors, K1 and K2 are intrinsic calibration 
matrixes for the first camera and second camera respectively, z is changing value of depth 
within pre-defined range. With this formula, different blocks with different pixel 
coordinate of the center pixel from the second image can be gained by changing z depth 
value. Another difference in this approach will be that raw disparity values gained will 
all be integer because the algorithm only takes a block of discrete pixels. By contrast, 
depth values gained from projection matrix will be float values because transformation 
and calibration matrixes all involve floating point values. The pixel coordinates gained 
from a sequence of matrix multiplication could also have floating point value. However, 
it is impossible to get the density value of the pixel with floating point value coordinates 
directly. In this implementation, a formula which takes distance from two nearest 
neighboring pixel as linear ratio multiplied by the density value of the neighboring pixels 
in both axis is used for getting density of pixels with floating point coordinates. The 
formula can be illustrated below: 
 

r9 = 	1 − 𝑓9;	𝑟? = 1 − 𝑓? 

dA = 	 𝑟? ∗ r9 ∗ 𝑑1 + 𝑟? ∗ 1 − 𝑟9 ∗ 𝑑) + 𝑟9 ∗ 1 − 𝑟? ∗ 𝑑C + 1 − 𝑟9 ∗ 1 − 𝑟? ∗ 𝑑D 

Where (x1+fx, y1+fy) is the pixel coordinate in floating point value, fx and fy are floating 
point values less than 1, (x1 , y1), (x2 , y1), (x1 , y2), (x2 , y2) are pixel coordinates of four 
interested neighboring pixels with d1, d2, d3, d4 as density values respectively and df will 
the result for density of pixel coordinates with floating point value. Here x2 = x1 + 1 and 
y2 = y + 1. Since pixels in one block all have floating point value coordinates, this formula 
needs to be applied for every pixel in the block. 
  On the basis of block matching algorithm, different variables were experimented to 



 
(a)                        (b)                          (c) 

 
(d)                        (e)                          (f) 

Figure 1.3 (a) is ground-truth disparity map; (b),(c),(d) are disparity maps with same 
block size 7 pixels and with different cost functions: SSD, NCC, ZNCC respectively; 
(d),(e),(f) are disparity maps with with ZNCC cost function but with different block size: 
7 pixel, 11 pixel, 15 pixel respectively. (Ground-truth image source [3]) 
 
see their influence on the reconstruction results. 
  The first variable is selection of cost functions to calculate difference between two 
blocks of pixels. Three cost functions were implemented in the system: Sum of Square 
Difference (SSD), Normalized Cross Correlation (NCC), Zero-Mean Normalized Cross 
Correlation (ZNCC). The comparison of performance of different cost function on 
standard data is shown in Figure 1.3. 
  With comparison to the ground-truth depth, NCC and ZNCC are usually preferred to 
SSD because SSD are not robust to some consistent discrepancy between images such 
as variation of brightness in two images caused by different exposure time of two 
cameras. 
 Another variable that worth investigating is the size of matching block. The block size 
cannot be small because one single block will be too small to include distinct features of 
the image, resulting in failures of finding proper depth. Also, it cannot be too large 
because large size block will not only include too much features to distinguish itself from 
its own neighbor blocks but also increase the computation cost for the block matching 
algorithm by the square of its size. Therefore, it is important to find a proper block size 
for specific scenario. Comparison between disparity maps with different block size is 
shown in Figure 1.2. Disparity map with block size of 7 pixels tends to have more noise 
pixels than other disparity maps with larger block size. Noise pixel means that it failed 
to find the correct disparity or depth. It can be observed that the bigger the block size, 
the smoother the disparity or depth map but the longer the computation time. Later 



experiment also shows that when block size reaches extremely large value such as 25 
pixels, the depth or disparity extraction becomes too smooth to miss some small depth 
features in the scene. Based on previous comparison, 15 pixels in block size is a suitable 
value for the standard datasets. 
  The last variable that was investigated is the iteration times of each blocks in the first 
image. This variable is strictly considered in approach that uses projection matrix to get 
the depth map. There is no need for this variable in disparity searching because the step 
size will be, by default, one pixel in rectified images. Since the matching block can only 
be in x-axis, finding the matching blocks in the second image will retain row number of 
the block of in the first image and sweep the blocks in the second image by some number 
of pixels at either left or right depends on the relative position of the second image to the 
first one. The iteration number of sweeping the block is closely related to quality of the 
depth map. The higher the iteration number, the smaller the step size as sweeping of 
comparison go through a range of depth and the more likely the sweeping will be able to 
find more precise depth value for each pixel. The step size mentioned above is 
determined by minimum range, maximum range and iteration times. The way to calculate 
step size is illustrated by a formula below: 

step = (
1

𝑧HIJ
−

1
𝑧HK9

)/𝑡 

Where step is step size, zmin is minimum range, zmax is maximum range and t is iteration 
times. With the step size, a new depth value z can be calculated from from one iteration 
of number of steps started from minimum range zmin. The calculation can be illustrated 
by the following formula: 

z =
1

1
𝑧HIJ

− 𝑠 ∗ 𝑠𝑡𝑒𝑝
	(0 ≤ 𝑠 ≤ 𝑡) 

where s is the number of steps which is iterated from 1 to t and z is the result of depth 
value which will be used for further calculation in matrix multiplication. Such reverse 
fashion of calculating depth value is used because it can sweep the range in smaller 
discrete steps when the depth value is closed to minimum range. In such way, the object 
nearer to the camera can get more detailed reconstruction. 
  The comparison between depth maps with different iteration number is in Figure 1.4. 
From the picture (a), (b) and (c), depth map gets finer as the number of step increases, 
because more iteration steps within the same sweeping range, which means more blocks 
are compared in the same range, increases the precision in depth values. If the number 
of steps is too few, the block matching procedure would miss some correct blocks and 
fail to find the depth value eventually.  
  However, in picture (c) and (d), some pixels lose their depth values as the number of 
iteration step increase from 100 to 200, even though these values are correct judging 
from the pixels around them which have depth values. After careful observation and 
analysis, it is believed that it is caused by the focus of cameras and distortion of projected 
patterns. In both picture (c) and (d), the peg board, which is in focus and has less 
distortion on projected pattern, did not miss apparent amount of depth values as the 
iteration number increased. Most parts of missing depth value occur in edges of the 



background and front part of the cardboard box.  

 
(a)                               (b) 

 
              (c)                                  (d) 

 
(e) 

Figure 1.4 (a), (b), (c) and (d) are depth map with the same block size, minimum and 
maximum range and iteration steps of 20, 40, 100 and 200 respectively. (e) is the raw 
image for reference. 
 
As raw image (e) shows, these parts are not in focus because they are blurred and they 
have more distortion in projected pattern because their angle relative to the cameras are 
greatly different from that of peg board which is vertical to the cameras. In block 
matching loop, the blocks in blurred and distorted parts of the image tend to find the 
wrong corresponding blocks more easily than blocks in other parts of the image which 
are in focus have less distortion in projected pattern. Such tendency is caused by blurring 



and distortion eliminating the distinct features of blocks. As the number iteration steps 
increases, more ambivalent blocks become the candidates for the best matching blocks, 
thus increasing the possibility to select wrong corresponding block in the image. Large 
errors are eliminated by the occlusion test, which is described in following sections, 
resulting in missing depth value. From this experiment, it is not always true that the more 
iteration steps, the finer the reconstruction results. 
 
Sub-pixel Refinement Algorithm 
  Since the sweeping of depth in the block matching algorithm is in discrete step from 
the minimum to the maximum, which means it changes by certain amount of value for 
each matching loop, the found most similar blocks may not be the actual block with the 
least matching cost value in the whole range. Some depth values are missed within one 
discrete step when the depth range is swept. If the size of discrete step is large enough, 
the strip pattern can be easily seen from the depth or disparity map. (Figure 1.5) As the 
analysis above, such strip patterns are caused by the absence of intermediary depth values 
between two discrete ones. To get rid the strip patterns, a sub-pixel refinement algorithm 
needs be used inside block matching loop. 
  The idea of the algorithm is to consider either depth or disparity value as x-value and 
matching score as y-value. The function between depth values and matching scores can 
be approximated to a quadratic equation. Finding depth/disparity values with the 
minimum matching scores can be transformed into finding the minimum of quadratic 
equation. To find three parameters of the quadratic equation, three points on the parabola 
are needed. Therefore, three points that are taken is the depth value that are found with 
discrete steps with its matching score and two neighboring depth value different by a 
discrete step size with their matching score: P1 (d1, s_min), P2(d1 – (step_size)*1, s2), 
P3(d1+(step_size)*1, s3). (Figure 1.5) 

 
Figure 1.5. Approximate the relationship between depth value and matching score as x-
y value in quadratic equation (Image Source: [1]) 
 
  With these three points, the new minimum depth value could be found, by using the 
formula below: 

y = ax) + bx + c 



a =
𝑦1 − y) xC − x) − (yC − y))(x1 − x))
𝑥1) − 𝑥)) 𝑥C − 𝑥) − (𝑥C) − 𝑥)))(𝑥1 − 𝑥))

 

b = 	
𝑦1 − y) xC) − x)) − (yC − y))(x1) − x)))
𝑥1 − 𝑥) xC) − x)) − (𝑥C − 𝑥))(x1) − x)))

	 

dHIJ = 𝑥HIYYZ[ = −
2𝑎
𝑏

 

Where p1(x1, y1), p2(x2, y2), p3(x3, y3) and dmin is the result depth value with minimum 
matching score.   
  The comparison between disparity maps with and without sub-pixel refinement 
algorithm can be seen in Figure 1.6. The disparity map is more smooth and free of strip 
patterns after refinement.  

 
(a)                     (b)                     (c) 

Figure 1.6. (a) Strip patterns of disparity maps with 7-pixel block size of ZNCC as cost 
function without processing of sub-pixel refinement algorithm; (b) Disparity map after 
sub-pixel refinement algorithm and same parameters as image(a); (c) Ground-truth 
disparity map. (Ground-truth image source: [3]) 
  There is a small difference between applications of sub-pixel refinement algorithm in 
disparity map and depth map. For disparity map, two neighboring discrete pixels are 
taken in the second image. If the center of the best matching block has column number 
x, then the center pixels of two neighboring blocks will be x-1 and x+1 respectively. For 
depth map, however, two center pixels’ pixel coordinates of two neighboring blocks 
differ from the center pixel’s coordinates by one iteration step’s size. In such way, the 
sub-pixel refinement algorithm cannot override the rough value gained by block 
matching algorithm but refine the depth value within one iteration step’s size. 
 
Occlusion Test Algorithm 
  Another component that can be implemented to eliminate noise pixels in the depth or 
disparity result is the occlusion test algorithm. If there are some areas in the scene which 
can be seen from one camera of the setup but not the other. In such situation, it is 
impossible for basic block matching algorithm to find the correct corresponding blocks 
in the image of the second camera because they do not exist. Therefore, many noise 
pixels with random depth value can be seen in the occluded area, causing even more 
disturbing surface features in 3D objects. It is important to eliminate these noise pixels 
by recognizing them and setting their depth values to 0, irrelevant depth data. For this, 



occlusion test algorithm should be applied. 
  Currently, depth values are searched in one way, from a block of pixels in the one 
image to the block that has minimum matching cost scores in the second image. Such 
process can be reversed to get the second version of depth or disparity map. If all the 
depth values that are found in both versions, they should be match to each other by a 
small amount of error. Following describes procedures of matching a pixel pair in 
separate depth maps. For each pixel of the first version depth map, its depth value z and 
pixel coordinates are used to find a 3D point in the camera coordinates of the first image. 
Then, it is transformed into a 3D point in the camera coordinate of the second image by 
plane-to-plane transformation with the camera intrinsic matrix and extrinsic matrix 
between two cameras. The coordinates of this 3D points should match to the coordinate 
of 3D points gained by transforming pixels in the second version depth map to the second 
camera’s coordinates with intrinsic matrix. Since depth values are calculated by 
approximation, exact matching for every pixel is experimentally impossible. However, 
the occluded pixels have much higher error than the pixel with correct depth. Hence, a 
proper threshold will be set for the matching error. Pixels which have higher errors than 
the threshold in the test are set to 0 for depth value. 
 Procedures described above can be illustrated by following formula: [11] 
 

C) = 	 [𝑅1|𝑡1][R)|t)]31K)31𝑝) ∗ 𝑧)	 
 

C1 = 	K131𝑝1 ∗ 𝑧1 
 

error = C1 − C)  
 
Where C1 and C2 are points in camera coordinate of the first image gained by two 
versions of depth value z1 and z2 respectively, K1 and K2 are intrinsic matrixes for two 
cameras respectively, and [R1|t1] and [R2|t2] are transformation matrixes for two cameras 
respectively. Error value will be the result to compared with threshold value. Currently, 
this implementation set the threshold value to 0.5 centimeter.  
  Implemented and tested by the system, the occlusion test algorithm was proved to be 
effective. (Figure 1.7) 

 
(a)                       (b)                 (c) 

Figure 1.7. (a) Disparity map with sub-pixel, 11-pixel block size and ZNCC cost function 
but without occlusion test algorithm; (b) Disparity map with occlusion test and same 
parameters as the image(a); (c) Ground-truth disparity. 



 

(a)                             (b) 

 

                   (c)                           (d) 
Figure 1.8 picture (a)(b) is the raw image which contains density values and the depth 
image which contains depth values respectively; picture (c)(d) is two screenshots of the 
points cloud object generated from the picture (a)(b). 
 
Generating 3D Points Cloud Objects 
Sub-pixel algorithm and occlusion test described above intend to eliminate artifacts 
discovered from the depth map. To present refinements’ effect visually more detailed, 
more detailed results other than 2D depth maps are needed. To achieve this, points cloud 
objects need to be generated from the point of view of cameras. Since all the depth values 
are already inside depth or disparity map, only one step that needs to be done is to get 
the camera coordinates for each pixel with its z value, its pixel coordinates and intrinsic 
matrix of the selected camera. Formula below was used in the implementation: [11] 

C = 	K31𝑝 ∗ 𝑧 
Where K is intrinsic matrix, p is pixel coordinate, z is depth value and C is camera 
coordinate of corresponding pixel.  
The selection of adding color to the points cloud was also implemented by taking the 
RGB value or gray-scale value of the pixel and assigning it to the corresponding point 
inside points cloud. (Figure 1.8) 
  Also, as an additional refinement to the 3D reconstruction result, mesh object could 
be generated from points cloud object to get better overview of reconstructed surface. 
The algorithm to generate mesh object from points cloud object is a recursive 
triangulation algorithm. It starts from a single point and finds the nearest neighbor point 



to form an edge. Then, the edge finds the nearest neighbor point to form a triangle. For 
each triangle formed, two new edges are formed. For each of these two new edges, two 
new triangles can be formed by finding other closest neighboring points. If any triangles 
have edges large than a pre-defined constant threshold, the triangle is recognized as 
invalid and eliminated because it could connect some distant noise pixels and represent 
a non-existing surface. The recursive algorithm ends when all points are tested for 
triangulation. 
 
Regularization Algorithm 
  After the points cloud object is generated from the depth map, some jagged patterns 
of the reconstruction become apparent which are failed to be observed from depth or 
disparity map. The reason for the jagged patterns is that even though sub-pixel refinement 
algorithm is used, the approximation is a local refinement procedure with only two 
neighboring depth values considered. Local approximation ignores the overall 
smoothness of the surface, resulting in inconsistency in depth value over the whole 
surface that is reconstructed. Such inconsistency becomes the observable jagged pattern 
in the points cloud object. (Figure 1.7) 
  Hence, a global regularization over all the depth values is needed to further refine the 
reconstruction. The idea is to create a cost function in forms of a gigantic matrix which 
incorporates all depth values. The result of the cost function represents the smoothness 
of the surfaces reconstruction. The lower the result, the smoother the reconstruction. New 
depth values for all pixels are values that minimize the result of the function. The idea 
above is represented by the cost function below: [8] 

ε D = 	 𝛼b 𝐷b − 𝐷b
)

b

+	 𝜔be 𝐷b − 𝐷e
b,e ∈h

)
 

where 𝛼b is a coefficient of quadratic equation gained from sub-pixel calculation, 𝐷b 
with slash head is raw depth value of certain pixel, E are the four neighboring pixels of 
certain pixel and 𝜔be is given by  

1/(1 + 	𝛽|∇𝐼 𝐷�, 𝐷e |) 

where 𝛽 is a constant. The cost function can be transformed into a quadratic form of 
0.5𝑥𝐴𝑥o − 𝑏𝑥 + 𝑐, where A, b and x has the same number of dimension as the number 
of pixel in the image. To minimize the function is the same as finding the minimum of 
quadratic function with certain x, where the derivative of the function will be 𝐴𝑥 =
𝑏.	The implementation used Eigen library and Conjugate Gradient Solver class to solve 
this linear system. Comparison between surfaces reconstruction with regularization and 
without regularization can be seen in Figure 1.7. There are two variables that can be 
changed manually for testing, beta and times of iteration. Beta is the constant that 
determines the ratio of importance of difference between two pixels’ density for the cost 
value, and the number of iterations is the number of recursions for the solver when 
solving the linear system. The lower the iteration number, the less the computation cost 
and the more similar to the original reconstruction. The value of these two variables  



 
           (a)                      (b)                       (c) 

 
                  (d)                              (e) 
Figure 1.8. (a) General view of reconstructed 3D object; (b) closer view of points in point 
cloud which are without regularization; (c) closer view of points in point cloud which 
are processed by the global regularization algorithm; (d) is the points cloud object 
without regularization reconstructed from close object; (e) is the same reconstruction 
result as (d) after processed by regularization algorithm with 15 iterations and beta 0.5. 
 
need to be adjusted to find the most proper ones for reconstruction under specific 
circumstances. [8][10] 
  One additional problem for regularization algorithm remains unsolved as it was 
observed after multiple trials. Regularization algorithm works well for mid-size object in 
mid-range such as a human face model stands 50 cm away from the cameras. From the 
reconstruction results, the regularization algorithm failed to work for small size objects 
in close range which is a 10cm*5cm*3cm peg board sits 20 cm away from the camera. 
After regularization, the surface of reconstruction appears to be in wave shape, which 
means the surface is smoothed but not flat as expected. (Figure 1.9)  
  The hypothesis is that the surface smoothing procedure is overly aggressive. Some 
small detailed features are smoothed as jagged patterns and originally flat surface are 
overly smoothed to become wave shape. Several aforementioned sets of variables have 
been experimented but no effective solution was found. Due to the limited period of 
conducting more detailed research, this issue will be left for further exploration. 
 
Parallel Computing Feature with CPU 
 The system currently runs on CPU. So, any algorithm described above except for the 
global regularization will have its complexity in ratio of resolution of the image. High 
resolution of the image is necessary because higher resolution images provide more 



surface features. However, higher resolution images also increase the computational time 
of block matching algorithm by ratio of squared increase in image resolution. For 
example, if the original computation complexity is n and resolution of images is 
increased by k times, then the new computation complexity will be k2*n. 
  To shorten the debugging and experimental waiting time, parallel computing feature 
can be applied by using multiple cores of the CPU. Since each of the pixels in one image 
are independent to each other when depth values are computed, loops for sweeping the 
blocks of the first image can run simultaneously. The system utilized OpenMP library to 
apply multi-cores feature to the loop which sweeps the pixels of the first image. As tested, 
the feature shortens the computing time by approximately eight times because of eight 
cores in the CPU of the system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter Two: Structured Light Component 
Problem in Primitive Stereo Reconstruction System 
  After several reconstruction tests of the system, many problems arise. One problem 
that this chapter tries to address is the failure in reconstructing texture-less objects. To 
analyze the failure, texture of object needs to be defined. Textures are defined as surface 
patterns of a 3D object. In a 2D image which includes some objects, textures function as 
the spatial segmentation of the object from the whole image. For example, what 
distinguishes a colorful poster on the wall is its texture. However, if the object has 
surfaces which are mostly monochrome, such as a white wall with only white color on 
the surface, there will be hardly any distinct surface patterns for such objects. So, in this 
thesis, objects that have mostly homogeneous surfaces are texture-less objects. 

 

                  (a)                             (b) 

 
       (c)                             (d) 

Figure 2.1. (a)(b) are gray-scale image captured by the first camera and corresponding 
depth image respectively in middle range (60 – 70 cm); (c)(d) are image captured by the 
first camera and corresponding depth image in close range (15 – 20 cm).  
 
  For the laparoscopic surgeries scenario, the target area and organs will be texture-less 
because they all mostly have the same color, the color of inner human tissues. In the 
simulated scenario, the target objects will also be texture-less because the peg board’s 
rectangle body is completely white and its vertical sticks are completely gray. 
 As the experiments show, the primitive stereo reconstruction system performs poorly 
on texture-less objects on either close range or middle range. (Figure 2.1)  



 From the images, such failure in reconstruction is obvious for middle range 
reconstruction depth map, in which most part of the white wall behind human model 
failed to get depth detected. (Figure 2.1(b)) By contrast, the human model’s face with 
distinct facial features and its shirt with different colored square is reconstructed. Similar 
issue can be found in close range reconstruction depth map, in which the peg board’s 
white part at the side failed to get its depth detected while the box under the peg board 
which pasted with color poster gets reconstructed. (Figure 2.1(d)) 
  The primitive stereo reconstruction system uses local block matching algorithm as the 
basis. In the algorithm, the detection of depth depends on the matching scores of different 
blocks of pixels. When the algorithms of calculating matching scores of two blocks are 
closely examined, which are SSD, NCC and ZNCC in the implementation, the 
calculation of matching scores depends on the discrepancy between texture features of 
two pixel blocks. Suppose there is a completely white surface of an object is captured in 
the image. If the block matching algorithm is applied to find the depth of the surface, it 
will fail because it cannot find a distinct block for a block that is completely contained 
in the area which captured the surface. Multiple blocks with only white pixels are 
indistinguishable for cost functions. Therefore, it is impossible to find the correct depth 
value from multiple blocks with the same matching score. This artifact prevents primitive 
stereo vision reconstruction system from reconstructing objects with homogeneous 
surfaces. 
  There are also some interesting exceptions for texture-less objects. (Figure 2.2) 
From the images in Figure 2.2, the surface of cardboard is correctly reconstructed even 
though the cardboard’s surface is, based on visual cues from the gray-scaled image, a 
brown homogeneous surface, which is expected to fail in reconstruction. However, from 
the depth map, the brown surface turns out to be well reconstructed. One Possible reason 
for such exception is that the surface of cardboard is not actually a homogeneous surface 
but has distinct features which cannot be seen from human eyes. So, a homogeneous 
surface cannot be determined by human eyes. 
 

 
(a)                                (b) 

Figure 2.2 (a) shows how the scene looks from the left camera of camera pair. (b) shows 
the reconstruction result from the picture (a). 
 
Motivation for Structured Light 



  One intuitive approach to solve problems in reconstructing texture-less objects is to 
provide distinct textures to the target objects, so that the block matching algorithm can 
reconstruct texture-less objects based on projected texture on the surfaces. With a 
projector, a pre-designed pattern can be projected onto the target objects. Images with 
distinct patterns on all surfaces should be the same as objects with textures. It is also 
reasonable to have a projector as a controlled light source because artificial light source 
will also be needed for lightening up patients’ cavity during the surgeries. 
  Structured light pattern can also avoid repeated patterns of reconstructed objects which 
can also cause failures in reconstruction because of the same reason for which texture-
less objects fail to get reconstructed. 
  In general, structured light component functions the same as natural light sources and 
can also help solve multiple issues which natural light source cannot solve. 
 
Basic Setup of Structured Light Component 
 There are many possible setups of projector-camera system for choosing. This chapter 
analyzes two and tests one.  
  The first general setup would be one camera accompanied by one projector. In this 
setup, the projector functions similarly to the second camera in a stereo vision system. 
Therefore, precise extrinsic and intrinsic calibration need to be performed for both the 
camera and the projector. Once the calibration is done, the patterns that will be projected 
onto the surface should be encoded to recognized all the surface features on the pattern. 
The way of encoding patterns will be discussed in the later part of this chapter. [7][13] 
  The second general setup, which was incorporated by the system, is one pair of 
cameras accompanied by an additional projector. The difference between two setups is 
that no calibration is required for this additional projector because the projector only 
functions as light source and pattern generator for the scene. Also, no special encoding 
is required for the projected patterns. However, the patterns do need careful design to 
ensure the quality of reconstructions. 
  There would also be some requirements for the projector in both setups. The projector, 
just like cameras, should have the target object in focus so that patterns could be projected 
onto the surface of the object clearly. Also, light emitted by the projector needs to be 
bright enough so that the patterns will not be disturbed by the natural light. Therefore, 
the projector used for this system is a Optoma DLP projector which has enough 
brightness for the lab environment. (Figure 2.3) However, in the real scenario, demands 
for the brightness of projectors would not be high because there will be no other light 
sources in human cavity except for the projector itself. 
  As for the position of the projector, the closer the distance between projector and 
cameras, the better reconstruction results. The reason is that everything that can be seen 
from the point of view of the projector is projected with patterns and has no shadows 
covered. Suppose cameras stand at the same position as the projector, the images that 
they captured would also have complete projected patterns and no shadow. Such images 
can receive full effect from the structured light, possibly producing the most complete 
reconstruction results without disturbance from shadows. However, it is currently 
impossible to set cameras and projector to the exactly same position. So distance between 



cameras and projector should be minimized to approximate such perfect position. 
Currently, the projector and cameras are positioned as the Figure 2.3 have shown. 
 

 
Figure 2.3. the left image is the relative position between cameras and projector and the 
right image is overview of the setup and target scene. 
 
Temporal Single Camera and Single Projector System [13] 
  As mentioned above, the projector functions as the second camera in the system. To 
get correspondence of the image captured by the camera, either each pixel or each set of 
pixels needs to be encoded by a unique identifier from others so that it can be identified 
and reconstructed. This thesis will discuss two ways of using structured light patterns to 
find depth in the camera-projector system. 
  The first one is temporal structured light which uses time-multiplexing strategy to 
encode each pixel of projected space with a sequence of patterns. For temporal structured 
light, the most commonly used encoding mechanism is binary encoding. Each projected 
pattern includes two values for each pixel: 0 and 1. They are represented by black pixels 
and white pixels respectively in the patterns. With a sequence of n such patterns, the 
maximum number of pixels these patterns can encode is 2n because each pattern can 
represent one digit of binary values for each pixel and n patterns can represent binary 
values with n digits. [7] 
  When a complete sequence of binary encoded patterns is projected onto the surface, 
camera which stays in the same position takes one image of each projected pattern 
together with the scene. With such sequence of captured images, each pixel or small 
block of pixels with projected patterns in the camera image can be identified with the 
binary values combined from a sequence of binary signals represented by the patterns. 
So, a pair of corresponding pixel coordinate in camera and in projector can be gained for 
each such pixel or pixel block. The depth value can be solved via following formula: [9] 

𝑝) = 𝐾)[𝑅)|𝑡)][R1|t1]31(K1
31𝑝1 ∗ 𝑧) 

Where p1 and p2 are pixel coordinates in the image and the projected pattern respectively, 
R1, R2 are rotation matrixes, t1 and t2 are position vectors, K1 and K2 are intrinsic 
calibration matrixes for the camera and the projector respectively, z is the depth value 
that should be solved. 
  This depth finding mechanism is much more computational efficient than the local 



block matching algorithm because such correspondence matching avoids searching 
procedures which involves calculating matching scores for each possible blocks in the 
range step by step. Assume both the time looking for pixel coordinate given a code value 
and the time conducting matrix calculation above to solve depth value are constant. The 
computational complexity to find depth correspondence is only O(n) where n represents 
number of pixels in one image. 
  The difficulty of such approach lies in synchronizing frames between projector and 
camera and edge detection of every pixel in order to recognize binary value for all 
possible pixel in the image. Synchronization between projector and camera is 
indispensable because for each frame from the camera, a corresponding binary encoding 
pattern from the sequence is needed for finding the value of a certain digit in encoded 
values. To achieve synchronization, a special projector which allows frame 
synchronization from outside source and special hardware such as Firewire used for 
synchronizing cameras are needed. This will not be discussed in detail because hardware 
problems are not in the scope of this thesis. 
  Edge detection means determining the position of edges which divide black areas and 
white areas. Edge detection is crucial for deciding if the pixel is in white blocks and black 
blocks within projected patterns. Since the captured camera would have noise pixels, the 
actual parts of the image with projected pattern will not be completely black or white. 
So, the easiest way to know if a pixel is projected black or white is to determine where 
black or white block starts and ends or, in another way to say, the edge between two 
distinct blocks. The shift between black and white will not be instantaneous because of 
resolution of the camera and the projector. Hence, one way of detecting edges with sub-
pixel accuracy is proposed.  
  Approximate the density value of pixels near edges as a function with y-value as 
density value and x-value as either row number or column number of the pixel. Then 
calculate the derivative of this function and find the zero-crossing of the derivative. The 
position of the edge with sub-pixel accuracy will be the x-position of the zero-crossing 
because it represents the pixel which shifts most in density. [7] 
  One possible drawback for this structured light system is the restriction of hardware 
and limitation of frame rate. Restriction of hardware is already discussed above which is 
that the synchronization between camera and projector limits the selection of cameras 
and projectors. There will also be some decline in the frame rate of a sequence of 
reconstructions because each reconstruction needs n frames to receive n patterns. If the 
camera’s frame rate is f, the maximum frame rate of the reconstruction is f/n. If the 
system is a real-time system, the performance will be negatively influenced by such 
limitation. [13] 
  One proposed improvement to the projected pattern is to only encode one axis instead 
of two. Based on the equation above, only one component of the pixel coordinate, either 
x or y position, is needed to solve depth value z. The advantage of only encoding one 
axis is that the cost to conduct edge detecting can be reduced by half. Also, single axis 
encoding increases the number of pixels which can be coded in n pattern. There can be 
only 2n pixels or blocks encoded in two axis encoding, while there can be 2n strips of 
pixels encoded in one axis encoding. Increased encoded pixels means less patterns for 



certain amount of pixels or higher resolution for each pattern. [7] 
 
Spatial Single Camera and Single Projector System [13] 
  The second way of using structured light is spatial. It projects a single special pattern 
in which a pixel’s coordinate can be uniquely identified by itself and its neighboring 
patterns. Microsoft Kinect sensor V1 will be a suitable illustration of spatial pattern. 
Kinect sensor relies on one infrared emitter and one infrared camera to reconstruct depth 
from the scene. These two have a baseline distance of 75 mm. During reconstruction 
process, infrared emitter emits a special infrared dot pattern onto the target scene. (Figure 
2.4) The infrared camera simultaneously captures the target scene. To conduct 
correspondence search between the captured image and the stored dot pattern which is 
projected, the camera needs to filter out other natural light to make sure no other light 
sources can disturb the window matching procedure. [15] 
  Correspondence search in Kinect is called Region-growing Random Dot matching 
algorithm. It is similar to local block matching algorithm by using cost function such as 
NCC to calculate the matching scores of two blocks of pixels in two images. However, 
Kinect sensor searches correspondence in random fashion instead of doing block 
matching starting from the left top corner of the image row by row. It first identifies all 
dots in the image. Then it starts from a random dot which is defined as an anchor of the 
region and conducts block matching along the scan-line. If the best matching score is less 
than pre-defined threshold, the anchor is set as valid, otherwise, invalid. If the anchor is 
valid, then its neighboring pixels will be added to a queue and block matching will be 
applied on them around its own neighborhood which is gained by shifting the position of 
anchor by a certain value. If the best matching score is found to be less than the threshold, 
then this pixel’s neighboring pixels will also be added to the queue. This recursive 
procedure ends until the queue is empty. After the best matching block is found, the 
disparity value can be gained by comparing distance between pixel coordinate of the 
pixel in the image and pixel coordinate of the pixel in the dot pattern. [2] Then the depth 
value can be gained via following formula: 

D = 	f ∗
𝑏
𝑑

 

where b is length of baseline, f is the focal length, d is the disparity value and D is depth 
from the camera’s aperture. 
  The whole matching procedure ends after all dots in the image either find depth or 
marked as invalid. This algorithm can help reduce the noisy pixels because it will focus 
on the area with dots in the image and ignore the areas where have no projected pattern 
covered. In such way, it could potentially be more computational efficient than the local 
block matching algorithm. [2] 
  One improvement to this algorithm is to add sub-pixel refinement algorithm. In this 
algorithm, no additional refining algorithm is applied. So, the reconstruction results of 
Kinect sensor have apparent strip patterns. Since it also does block matching by sweeping, 
the algorithm can utilize the sub-pixel refinement algorithm mentioned in chapter one to 
get rid of strip patterns. 
  In general, the projector in the spatial system functions the same as the second camera 



in the stereo camera system. Similar block matching procedure will be applied to find 
correspondences between the image and projected pattern instead of the second image in 
the stereo cameras system.  

 
(a)                                 (b) 

Figure 2.4. (a) shows Kinect V1’s dot pattern; (b) shows how the dots positioned on the 
measured scene (Image Source: (a)[15], (b)[2]) 
 
Calibration of projector and camera 
  For the single camera and single projector structured light system to work, both 
projector and camera need to be calibrated to get intrinsic and extrinsic parameters. As 
for intrinsic and extrinsic calibration of camera, chapter one has given detailed 
description with commonly used OpenCV library’s calibration function. Intrinsic and 
extrinsic calibration of projector, however, is a little bit more complicated than those of 
cameras because the projector which projects image onto the surface does not know how 
patterns look like after being projected from the point of view of projector.  
  In traditional OpenCV calibration function of the camera model, two matrixes are 
needed to feed into the function as arguments. The first matrix containing all points with 
three dimensions is called object points which describes how the pattern should be 
positioned when the z values of all points on the pattern are the same. Take a chessboard 
with chess block of size 5 cm for example. The first feature point which is the corner of 
four white and black blocks at the top left corner can be described as (0,0,0) and then the 
next point which is at the right side of the first one (5,0,0), then (10,0,0), (10,5,0) and so 
forth. The second matrix containing points with two dimensions is called image point 
which should be the pixel coordinates of chessboard corner appeared in the image. The 
detection of chessboard corners is handled by another special function in the OpenCV 
library. Also, the points in object points matrix should correspond to the points with the 
same indices in image points matrix. [9][5] 
  Each image of the same chessboard with different positions and rotations should have 
the same object points matrix and different image points matrix. With one set of image 
points matrixes and one object points matrix, the calibration function will return intrinsic 
parameters and extrinsic parameters relative to the chessboard by solving following 
camera model equation: [5] 

q = K	(R|t)Q 
where q is image point in terms of 2D pixel coordinates with one additional homogeneous 



dimension, K is intrinsic matrix, R and t are rotation matrix and translation vector of the 
camera, Q is the 3D object points.  
  For projector, image points matrix can be gained directly from projected pattern. The 
difficulty lies in the how to gain the object points because the 3D position of the feature 
points will change as distance from the projected surface to the aperture of the projector 
varies. [5] 
  One way of using a calibrated camera, a printed chessboard and a projected chessboard 
image is proposed. For each transformation of chessboard relative to the projector and a 
calibrated camera, two pictures should be taken by the calibrated camera. One is the 
image of printed chessboard, the other is the image of projected chessboard pattern on 
the original chessboard object after the printed chessboard pattern is covered with a flat 
sheet of paper. (Figure 2.5) The first image can give extrinsic parameters of the camera 
by solving pinhole camera formula which is mentioned above. The second image can 
produce object points matrix by using extrinsic parameters from the first image and 
image points from chessboard corner detecting function from OpenCV library. For 
projector, image points matrix will not change because the projected image stays the 
same but object points matrix constantly changes as the transformation of chessboard 
changes relative to the projector and the camera. After enough sets of object points 
matrixes are gained, they can be fed into the OpenCV calibration functions to get the 
intrinsic and extrinsic parameters of the projector. [5] 
 

 
Figure 2.5 (Image Source: [5]) 

 
Camera Pair and Single Projector System  
  However, all the single camera and single projector systems mentioned above have a 
common drawback. There will be some degree of interference if multiple structured light 
systems are set up to capture different angles of the target scene because multiple 
projected patterns can overlap on the same surface. As edge detector or block matching 
algorithm sweep this surface, it cannot identify the pixel coordinates of this area in the 
projected pattern because overlapping area could produce new pattern which is not 
identical to any of the original patterns.  
  Multiple ways have been proposed to solve the interference such as synchronizing 
frames of all the system. This thesis proposes to use the same stereo cameras system with 
an additional projector to functions only as a pattern emitter. In this way, structured light 
part becomes an assisted component which only needs to provide distinct texture for the 
texture-less objects in the scene. The original block matching algorithm on a pair of 
images is still applied in this system along with a sequence of refinement algorithms 
discussed in chapter one. Since block matching will be conducted between one pair of 



images, no pre-defined pattern is needed for finding correspondences. Therefore, the 
calibration of projector and special encoding of projected patterns are not required in this 
system. 
  However, the design of projected patterns should still be carefully considered because 
projected patterns can affect the quality of reconstructions. First, the algorithm of 
creating patterns should be determined. The patterns in this system are in mosaic fashion. 
(Figure 2.6) For each block in the image, the pixels in the block all have same density 
and the block size can be self-defined. To ensure that the blocks in the pattern have visible 
differences in density from their neighboring blocks, the density range is divided into 
lower half and higher half. For each pair of adjacent blocks, density of one block is 
randomly selected from the lower half while density of the other from the higher half. 
Since one block of pixels in the pattern can be seen as a pixel with larger size than that 
of original pixel, changing the block size is the same as changing the resolution of the 
projected pattern. The resolution of generated pattern also needs to be considered. To 
fully utilize the resolution of the projector, the resolution of projected pattern should be 
the same as that of the projector which is 1920*1080 pixels in this case. 

 
(a)                            (b) 

Figure 2.6 (a) shows projected pattern which have block size of 1 pixel; (b) have block 
size of 20 pixels; they all have 1920*1080 in resolution  
 
  An experiment was conducted to compare the quality of reconstruction with different 
projected patterns. (Figure 2.7) It is obvious to see that the depth map is finer as the 
resolution of the projected pattern gets higher from picture (a)(b)(c)(g). In picture (a) and 
(b), strange strip patterns can be seen clearly. From the depth maps and raw images with 
projected patterns, strip lines correspond to the vertical edges of blocks of projected 
pattern and pixels in these thin strips are either noisy pixels with no significant errors 
from the neighboring ones or pixels without depth values. Based on these detailed 
observation, the reason for such strip patterns is believed to be that the size of blocks 
which are projected onto the scene is much larger than that of blocks taken from captured 
image in block matching algorithm. It should be noted that the size of a pixel in the 
pattern which is projected onto the surface is not necessarily the same as a pixel in the 
camera image. The relationship between these two sizes will change depends on two 
factors: the distance from the scene to the projector and the distance from the  



 
(a)                      (b)                    (c) 

 
(d)                     (e)                    (f) 

 
(g)                     (h)                    (i) 
 

 
(j)                     (k)                    (l) 

Figure 2.7 picture (a), (b), (c), (g), (h) and (i) shows the depth map reconstructed under 
projected pattern with block size 1, 3, 5, 10, 15 and 20 pixels respectively; picture (d), 
(e), (f), (j), (k) and (l) shows the corresponding raw image in the same sequence. All the 
reconstruction is produced with the same stereo matching variables with block size 15 
pixels, 60 iteration steps, 20 cm minimum range and 45 cm maximum range. 
 
scene to the camera. The reason for the first factor is that the pattern is projected onto the 
object, so that the pattern enlarges as the distance between projector and camera increases, 
so does the pixel size in the pattern. As for the second factor, when object is further away, 
it appears smaller from the human eyes. It is also the same for camera images, so that as 
the distance between camera and the scene increase, the size of pixels in projected pattern 



shrinks. 
 When the block matching is applied on pixels at the vertical edges of projected blocks, 
there will be multiple best matching pairs because the projected block is so large that it 
the same as a small homogeneous surface. It is highly possible that wrong blocks are 
selected as the best matching ones. Even though the wrong blocks are selected, the wrong 
blocks are near to the actual correct ones. This explains why the noisy pixels in the strips 
having no significant errors. Also, if the errors are too large, occlusion test would get rid 
of those pixels. This explains some missing depth parts in the strips. For other pixels, the 
blocks contain the edges of more than one projected blocks. So, the blocks can be 
uniquely identified from their features and correctly reconstructed. This theory explains 
why depth map is more refined as the projected pattern’s resolution gets higher because 
more blocks in the image receive distinct features as the resolution gets higher. 
  From the comparison of picture (g)(h)(i), the depth map is almost the same when 
projected pattern have block size of 5, 3 and 1 pixels respectively. Some pixels missed 
their depth values as the resolution gets higher. (Figure 2.7 (i) bottom part) The reason 
for such phenomenon could be that the resolution of projected pattern is high enough for 
blocks in camera image to be distinctly recognized. Increasing resolution will not change 
such fact. However, as the projected pattern’s resolution gets higher and the resolution 
of camera stays the same, which is 800*600 in this case, it is possible for a projected 
pixel to be smaller than a pixel of the camera image. In this case, the density of pixels in 
camera image could be the mixture of density of multiple pixels from projected pattern. 
The mixture and blurring would eliminate some pixels’ density contrast from their 
neighboring pixels, creating some small homogeneous surfaces and causing the missing 
depth values in some pixels. 
 
Motivation for Infrared Structured Light Patterns 
  There are some disadvantages of using projector to project visible textures onto objects. 
As the visible pattern is projected onto the object, the pattern could prevent humans from 
correctly recognizing objects in the original image. For example, a small object with 
distinct color from the surrounding environment can be made identical to the 
surroundings by strip or mosaic patterns. (Figure 2.7 (j)) From the image, the whole peg 
board is covered with visible patterns and the pokes of the peg board is hard to recognized 
due to the disturbance of visible patterns. If the surface is human tissue with a small thin 
wound, it will be hard to recognized with the same disturbance. 
  There have been many proposed approaches to solve this issue. One of them is to 
synchronize the frame of projectors with that of cameras. The projector can be controlled 
to project pattern in every alternative frame. So, for every two frames of the video taken 
by the cameras, one frame with patterns can be used for reconstruction while the other 
for providing colors for the reconstruction results. Since there will be barely movement 
in consecutive two frames, the difference between two consecutive frames can be 
disregarded. Such approach requires synchronization between cameras and projectors. 
As discussed above, frame synchronization limits the selection of cameras and projectors. 
  The proposed solution in this thesis is to use infrared patterns instead of visible patterns. 
In this way, infrared channel of the cameras can be used to extract projected infrared 



patterns from the images for reconstruction. While the visible light channel of the camera 
which filters out infrared light can be used for giving texture to reconstruction results. 
Such approach is more robust than the previous one in the selection of projection devices. 
Applications such as Kinect sensor which uses the infrared projected pattern to 
reconstruct depth have already been discussed in the Spatial Single Camera and Single 
Projector System section of this chapter. For color textures from the scene, one more 
color camera can be added to the system with extrinsic and intrinsic calibration. The 
color of reconstruction results can be gained by, with each pixel in the depth map, 
conducting a plane-to-plane transformation from the image plane of infrared camera to 
that of color camera to get RGB values from the colored image. [15] 
  Another disadvantage of using visible structured light pattern is the disturbance of 
natural light source. The brightness of surrounding environment could influence the 
visibility of patterns on objects and the quality of reconstruction significantly. The reason 
for such influence is that natural light sources which increase the density value of all 
pixels in the image make the difference between neighboring pixels’ density value 
blurred.  
  One solution which have already solved issue is to decrease the aperture size to make 
the image dimmer so that the difference in density of different blocks can be seen more 
clearly. Infrared structured light pattern could also solve this issue. The system can 
simulate Kinect by using infrared camera pairs and infrared projector. Since the IR 
cameras will filter out other natural light sources, they are robust to disturbance from 
other light sources. 
  The infrared solution will also be practical in real laparoscopic surgeries. To see the 
texture of human tissues in the completely dark human cavity, other light sources will be 
needed except for infrared one because infrared lights can not be used for illumination. 
With the filter, the image pairs only contain projected infrared pattern. So, the block 
matching algorithm just needs to compare a projected infrared pattern from two points 
of view without disturbance of textures of the objects and brightness of other light 
sources. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter Three: Future Work 
Photometric Feature 
  One problem in stereo vision system that the structured light assistance failed to solved 
is the false reconstruction of specular surfaces such as metal objects or shiny human 
cavity covered with fluid under the light. Such issue was discovered during the 
reconstruction tests. Previous setup of peg board was put on a flat metal surgical bench. 
The reconstruction of such scene has many noise pixels. To confirm that these noise 
pixels are caused by metal surfaces of surgical bench, the metal surfaces were covered 
with white sheets which have diffused surfaces. Compare reconstructions of two scenes 
with the same stereo matching variables, the amount of noise pixels decreases 
significantly after the surroundings are covered with white sheets. (Figure 3.1) 
 

 
(a)                     (b)                      (c) 

 
          (d)                     (e)                      (f) 
Figure 3.1 (a) and (d) are raw image of scenes with the same projected pattern. (b) and 
(e) are depth maps without and with cover of white sheet respectively. (c) and (f) are 
screenshots of 3D points cloud object from similar points view without and with white 
sheets covering respectively. 
 
  One major reason for such artifact is metal surfaces of the surroundings. Projected 
patterns on the diffused surfaces can be clearly seen from any angle because diffused 
surfaces can reflect the light in every direction. However, specular or near specular 
surfaces can only reflect the light in one direction. Near specular surfaces such as metal 
surfaces also have some diffuse property but most of the light rays are reflected in one 
direction and the rest diffused light rays are hard to see. In Figure 3.1, the projected 
patterns on the metal surface cannot be seen from the camera because the light rays of 
projector were reflected to other directions by the surface. Some shiny parts appear in 
one camera but are absent in the other because the light source is reflected at one direction 
by the specular surface. All these behaviors of specular surfaces result in false 



reconstruction of the surface which are those noise in the reconstruction results. 
  Even though the solution to correctly reconstruct specular surfaces is not in the 
research scope of this thesis, proposed solution from literature review is given because 
real laparoscopic surgeries will encounter specular surfaces. One common photometric 
technique is shape from distortion. The basic idea of shape from distortion is to solve the 
normal map of the surface by observing how the pattern is reflected by the surface. Since 
the reflectivity of one surface does not change, changing the light rays’ directions leads 
to different directions of reflection. The shape of the specular surface can be calculated 
by synthesis analysis of multiple projected patterns from various positions. (Figure 3.2) 
[16][6] 

 
Figure 3.2 Pipeline of shape from distortion (a) setup projectors to project distinct 
patterns from various fixed world positions; (b) images are captured for every patterns; 
(c) The world positions of pixels in the image are determined by analyzing the reflective 
patterns on the surface; (d) depth and normal information are extracted from (c); (e) 
surface map can be reconstructed. (Image Source: [6]) 
   
Real-time System with GPU Programming 
  For the reconstruction system to be used in real scenario, the stereo reconstruction 
system needs to be a real-time system because all the operations based on the 
reconstruction need to be conducted in live. Currently, each frame of reconstruction with 
15 pixels in block size and 200 steps in iteration takes approximately 3.5 minutes with 
parallel computing features of CPU applied. Since the duration is already decreased by 
a factor of 8 because of 8 cores in the CPU, the original computation time is around 28 
minutes. The frame resolution is 800*600 in pixels. Suppose there could be a thread 
assigned for each pixel in the image, 28 minutes could be reduced by a factor of 800*600. 
Ideally, the computation time is expected to reduce to approximately 0.003 second, which 
is short enough for reconstructing from a frame rate of 30 frames per second camera. 
Besides this, multiple refinement algorithms could be added to improve reconstruction 
quality. 
  GPU programming would be an ideal approach to realize such proposition. GPU is 
able to assign a block which is similar to a thread to each pixel in the image and conduct 
block matching on the second image simultaneously. This is expected to be done once 
the stereo matching algorithm is more refined and more robust. 
 
Ideal Stereo Setup in Real Scenario 
  As being said in chapter one and chapter two, the cameras and projector are too large 



to function in small confined human cavity with small insertion holes. To fit the system’s 
hardware into such restricted area, cameras pair with tiny scan-line and thin lens and 
projector with small body are needed. Based on the search online, stereo laparoscope can 
be selected as camera pair like Figure 3.3. To have the additional structured light 
component, one artificial light source can be modified to project special infrared patterns 
onto the target scene while the other used for illumination. One more colored camera can 
be added to the laparoscope to provide color texture to the reconstruction results.  
 

 
Figure 3.3 A image of general view of stereo laparoscope, with two cameras and two 
LED illumination devices at two sides. (Image Source: [14]) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



Conclusion 
  3D reconstruction is a broadly useful topic as it can be utilized in many fields, such as 
self-driving vehicles, human face identification and medical imaging. This thesis takes a 
deep look at how stereo vision reconstruction works and also adds structured light 
assistance to increase system’s effectiveness. 
  Inspired by laparoscopic surgeries, the thesis focuses on one situation -- a confined, 
close-range, texture-less and dark human cavity to get high quality 3D reconstruction. 
Multiple algorithms are added to refine the reconstruction. Structured light assistance 
enables the system to reconstruct texture-less objects. The thesis demonstrates the 
feasibility of such system. The reconstruction system is expected to be fully functional 
as the problems found in chapter one and two are tackled and future work sections are 
fulfilled in later research progress. New approaches such as deep learning for computer 
vision could be experimented to further optimize 3D reconstruction algorithms. 
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