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Abstract

Cancer remains among the most challenging human diseases. Several lines of

evidence suggest that carcinogenesis is a complex process that is initiated by DNA

damage. Exposure to clastogenic agents such as heavy metals, ionizing radiation

(IR), and chemotherapy drugs may cause chronic mutations in the genomic

material, leading to a phenomenon named genomic instability. Evidence suggests

that genomic instability is responsible for cancer incidence after exposure to

carcinogenic agents, and increases the risk of secondary cancers following

treatment with radiotherapy or chemotherapy. Melatonin as the main product

of the pineal gland is a promising hormone for preventing cancer and improving

cancer treatment. Melatonin can directly neutralize toxic free radicals more

efficiently compared with other classical antioxidants. In addition, melatonin is

able to regulate the reduction/oxidation (redox) system in stress conditions.

Through regulation of mitochondrial nction and inhibition of pro‐oxidant enzymes,

melatonin suppresses chronic oxidative stress. Moreover, melatonin potently

stimulates DNA damage responses that increase the tolerance of normal tissues to

toxic effect of IR and may reduce the risk of genomic instability in patients who

undergo radiotherapy. Through these mechanisms, melatonin attenuates several

side effects of radiotherapy and chemotherapy. Interestingly, melatonin has

shown some synergistic properties with IR and chemotherapy, which is distinct

from classical antioxidants that are mainly used for the alleviation of adverse

events of radiotherapy and chemotherapy. In this review, we describe the

anticarcinogenic effects of melatonin and also its possible application in clinical

oncology.
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1 | INTRODUCTION

Cancer is one of the most challenging diseases and is responsible for

a considerable proportion of death in the world. It has been reported

that in 2012 more than 14 million new cases of cancer were

identified, and more than 8 million of whom died (Ferlay et al., 2015).

Nowadays, it is well known that damage to DNA and genomic

instability are among the main factors involved in the initiation of

carcinogenesis. Genomic instability is associated with abnormal DNA

mutations, which can be transferred to the next generation of the
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cells. It is confirmed that various types of cytotoxic agents such as

nonionizing radiation, heavy metals, and also anticancer drugs,

including ionizing radiation (IR) and chemotherapy drugs, are able

to impair the genomic content of cells (Najafi, Cheki, et al., 2018).

Exposure to these agents increases the risk of carcinogenesis and

elevates the risk of second primary malignancies following radio-

therapy or chemotherapy in patients with cancer (Burt, Ying, Poppe,

Suneja, & Gaffney, 2017; Hamilton, Tyldesley, W. Li, Olson, &

McBride, 2015).

Melatonin is considered as a neural hormone, which regulates the

circadian rhythm and sleep cycles. This agent can also be obtained

from some herbal agents such as some fruits and vegetables, grains,

nuts, and seeds (Meng et al., 2017). Nowadays, melatonin is

prescribed as a sleeping aid, while a large body of data have reported

various useful effects (Blask, 2009). One of the most interesting

properties of melatonin is the potent antioxidant activity that can

prevent aging and several diseases such as cancer and neurodegen-

erative diseases (Anisimov, 2003; R. J. Reiter, 1995, 2004; R. Reiter,

Tan, & Allegra, 2002; D. Tan et al., 2002). Through the N1‐acetyl‐N2‐
formyl‐5‐methoxykynuramine (AFMK) pathway, melatonin is able to

neutralize different types of free radicals (S. Cho, Joh, Baik, Dibinis, &

Volpe, 1997). In addition to its direct action, melatonin is able to

neutralize free radicals via stimulation of antioxidant enzymes or

suppression of redox enzymes activity (Pablos et al., 1995; R. Reiter

et al., 1999). These properties may make it a potential agent for

radioprotection during radiotherapy or exposure to nuclear or

radiological pollutants or warfare (Najafi, Shiraz, Motevaseli,

Rezaeyan et al., 2017; Yahyapour et al., 2017, 2018).

It has been shown that there is a direct association between

decreased serum levels of melatonin and increased oxidative DNA

damage. Animal models have revealed that administration of

melatonin reduces the risk of tumorigenesis and prevents the

proliferation of cancer cells (Blask et al., 1999; Dauchy et al.,

2009). Moreover, some epidemiological evidence suggests that low

levels of melatonin are associated with increased risk of some

malignancies such as breast and prostate cancers (Schernhammer &

Schulmeister, 2004; Stevens, 2005; Tai, Huang, Bao, & Wu, 2016). In

addition to its preventive role, recent studies have suggested that

melatonin can be used as an adjuvant for increasing therapeutic

outcome and reducing side effects of radiotherapy and chemother-

apy (Najafi, Shiraz, Motevaseli, Geraily et al., 2017).

2 | MELATONIN: BASIC BIOLOGY

In most species including human, the pinealocytes in the pineal gland

are the primary source for melatonin biosynthesis. However, some

other tissues and cells such as gastrointestinal tract, retina, harderian

gland, iris ciliary body, lacrimal gland, and also leukocytes have been

reported to be involved in melatonin production. In the process of

melatonin biosynthesis, tryptophan amino acids are converted to

serotonin. Then, the enzyme arylalkylamine‐N‐acetyltransferase
converts serotonin to N‐acetylserotonin, which is subsequently

metabolized to the melatonin (Klein et al., 1997; Zheng, Scheibner,

Ho, & Cole, 2001). The biosynthetic pathway of melatonin production

has been reported in details in several studies. In the first step,

tryptophan is uptaken from the circulation and converted into

5‐hydroxytryptophan by the tryptophan hydroxylase. The activity of

this enzyme increases during darkness by about two folds. Then

5‐hydroxytryptophan is converted to serotonin and then melatonin

by arylalkylamine‐N‐acetyltransferase in the pineal gland. The

activity of N‐acetyltransferase is highly dependent on the circadian

rhythm, being increased by around 100 folds at night.

In mammalians, melatonin is able to affect cellular functions

through interaction with some receptors. Two different G protein‐
coupled melatonin receptors, including metallothionein 1 (MT1) and

MT2, have been identified. Melatonin is also able to attenuate

transfer of electrons to quinones through binding to MT3, leading to

the amelioration of oxidative stress. Furthermore, melatonin has

been proposed as a stimulator of the retinoid orphan nuclear

receptor α (RORα; Wiesenberg, Missbach, Kahlen, Schräder, &

Carlberg, 1995). RORα has a high expression in some malignancies

such as lymphoma, leukemia, brain, breast, and central nervous

system cancers (Du & Xu, 2012). Melatonin induces apoptosis and

growth inhibition in some cancer cells such as colon and pituitary

cancers through modulation of RORα (Karasek, Gruszka, Lawnicka,

Kunert‐Radek, & Pawlikowski, 2003; Winczyk, Pawlikowski,

Guerrero, & Karasek, 2002). Through stimulation of its receptors

including MT1, MT2, and RORα, melatonin has been shown to affect

immune cells activity, thereby stimulates antitumor activity of

immune cells (Pozo, Garcia‐Maurino, Guerrero, & Calvo, 2004).

3 | MELATONIN PREVENTS GENOMIC
INSTABILITY AND CANCER INCIDENCE

3.1 | Neutralization of free radicals

Free radicals are one of the main toxic product of interaction of

exogenous agents within cells. Although, free radicals are

normally produced by some interactions and are involved in

various signaling pathways within cells, abnormal increase of

their production can hurt vital organelles in cells (Bókkon, 2012).

Oxygen free radicals are the most destructive type of oxygen

metabolites. Reactive oxygen species (ROS) can be found as some

types including high‐reactive hydroxyl radical (OH), and also low‐
reactive superoxide anion radical (O2

−) and hydrogen peroxide

(H2O2). High‐reactive free radicals can attack to DNA, lipids, and

proteins that are in the vicinity of free radical’s origin (Lobo, Patil,

Phatak, & Chandra, 2010). As these free radicals are highly

reactive, it can interact with vital molecules within some

nanosecond. Although H2O2 is low reactive compared with other

type of ROS, it can be generated to H2O and high toxic O2
−.

On the other hand, O2
− interacts with nitric oxide (NO), leading

to the production of the peroxynitrite anion (ONOO−).

Peroxynitrite and NO are named reactive nitrogen species (Tacar,

Sriamornsak, & Dass, 2013). These two type of free radicals are

2 | FARHOOD ET AL.



highly reactive, which are able to damage to adjacent cells

(R. J. Reiter, Manchester, & Tan, 2010).

The potent free‐radical scavenging effects of melatonin has been

found by some experimental studies (Marshall, Reiter, Poeggeler,

Aruoma, & Halliwell, 1996; Poeggeler et al., 1994). After that it has

shown that melatonin neutralizes free radical by donate of electron.

Their experiments showed that melatonin scavenges OH more

efficiently compared with other antioxidants including glutathione or

mannitol (Poeggeler, Reiter, Hardeland, Tan, & Barlow‐Walden, 1996).

After that it has confirmed that melatonin is able to neutralize other

types of free radicals such as H2O2, NO, ONOO−, and also singlet

oxygen and O2
− (D. X. Tan et al., 2002; D. Tan et al., 2000). In addition to

melatonin itself, other its metabolites such as cyclic 3‐hydroxymelatonin

N1‐acetyl‐5‐methoxykynuramine (AMK), 6‐hydroxymelatonin, 2‐hydro-
xylmelatonin, 6‐hydroxylmelatonin, and AFMK have potent ROS

scavenger (Álvarez‐Diduk, Galano, Tan, & Reiter, 2015; Galano, Tan, &

Reiter, 2013; R. J. Reiter et al., 2016). In response to IR, a large body of

studies have revealed the antioxidant effect of melatonin. Besides direct

actions on free radical scavenging, melatonin stimulates ROS/NO

scavenging enzymes potently, thus more metabolize ROS and NO,

and further protect against oxidative stress. Treatment of rats with

10mg/kg melatonin before exposure to different doses of IR can

potently alleviate oxidative stress markers and augments antioxidant

enzymes like reduced glutathione (GSH), glutathione‐S‐transferase, and
catalase in liver (El‐Missiry, Fayed, El‐Sawy, & El‐Sayed, 2007). Similar

results have obtained in rat lens after injection of 5mg·kg−1·day−1

melatonin (Shirazi et al., 2011; Taysi et al., 2008). Reduce of oxidative

stress, DNA damage, and lipid peroxidation by melatonin have shown by

other in vivo studies (Bhatia & Manda, 2004; Guney et al., 2007; Take

et al., 2009).

3.2 | Suppression of reduction/oxidation (redox)
system

In addition to direct free radical production by toxic agents, such as

IR or chemotherapy drugs, redox interactions have key roles in cell

toxicity. The main sources of ROS and NO production within cells are

mitochondria, membrane, lipoxygenases (LOXs), cyclooxygenases

(COXs), nicotinamide adenine dinucleotide phosphate hydrogenase

(NADPH) oxidases, inducible nitric oxide synthase (iNOS), and some

others. Several experiments have reported that chronic upregulation

of redox enzymes is associated with increased risk of carcinogenesis

(Najafi, Motevaseli, et al., 2018).

3.3 | Mitochondrial preservation

Mitochondria are vital organelles within cells, because their roles in

oxidative phosphorylation and energy supply. During oxidative

phosphorylation, the produced electrons in electron transport chain

(ETC) are captured by the cytochrome c and coenzyme Q and then

transported to oxygen molecules. This process leads to the

production of water, while it is possible some electrons cause

reduction of oxygen molecules to form O2
− (D.‐X. Tan, Manchester,

Qin, & Reiter, 2016). Damage to mitochondrial DNA (mtDNA) is

associated with increased production of superoxide, leading to

chronic oxidative stress. Released ROS from mitochondria can

stimulate other inflammatory mediators, such as macrophages to

further product ROS and NO, leading to more oxidative injury via a

phenomenon named ROS‐induced ROS (Zorov, Juhaszova, & Sollott,

2006). Damage to mitochondria and stimulation of ROS production

following exposure to IR has confirmed in several experiments. van

Gisbergen et al. (2017) in an in vitro study showed that when A549

or 143B cell lines irradiated, the level of ROS and DNA double‐strand
breaks increase. However, after depletion of A549 or 143B cells from

mitochondria the ROS production was decreased (van Gisbergen

et al., 2017). Results of this study are parallel with another study by

Yoshida et al. (2000) that showed the presence of mtDNA can

augment micronucleus formation after irradiation. This is associated

with the reduction of cell survival (Yoshioka et al., 2004). In addition

to mutation in mtDNA, it is proposed that mitochondria malfunction

is associated with loss of calcium homeostasis, which leads to

enhanced free radicals production and cell death (Frandsen &

Schousboe, 1993).

Studies have revealed that melatonin regulates mitochondrial

homeostasis (Castroviejo et al., 2002). It has been proposed that

melatonin neutralizes both ROS and NO in the mitochondria, which

lead to improved oxidative phosphorylation (Castroviejo et al., 2002;

Leon, Acuna‐Castroviejo, Escames, Tan, & Reiter, 2005; M. Martín

et al., 2002). An experiment by M. Martín, Macías, Escames, León, and

Acuña‐Castroviejo (2000) showed that the melatonin, but no other

antioxidants such as ascorbic acid or gamma‐tocopherol, regulates
redox status oxidative stress condition. Inflammasome and inflam-

matory mediators are other targets of melatonin. The inflammasome

is a complex containing some proteins that regulate the release of

interleukin‐1β (IL‐1β) and IL‐18, and also activation of some

proapoptotic pathways (Guo, Callaway, & Ting, 2015). Melatonin is

able to inhibit inflammasome after damage to mitochondria, leading

to the attenuation of inflammatory cytokines and mucositis following

irradiation of gastrointestinal system. As inflammatory responses and

mitochondrial disruption following exposure to radiation are involved

in chronic oxidative stress, melatonin ameliorates DNA damage via

this pathway (Fernández‐Gil et al., 2017; Ortiz et al., 2015).

In addition to energy supply to activities of the cells, the

mitochondria play a key role in apoptosis signaling pathway. On

the other hand, high incidence of apoptosis in some organs such as

bone marrow and gastrointestinal system make them sensitive to IR

or chemotherapy (Gudkov & Komarova, 2003; Tacar et al., 2013).

High radiosensitivity of these organs limit received radiation dose to

tumors within or adjacent to them. So, inhibition of apoptosis and

free radical’s production by mitochondria have suggested for

mitigation of radiation injury in these organs (Yahyapour et al.,

2018). Upregulation of Bcl‐2‐associated X protein (Bax) and caspase

genes play a key role in this process. Increased level of Bax protein

cause release of cytochrome c from ETC, leading to the production of

apoptosome complex (Marsden et al., 2002). A study by Tang et al.

(1999) showed that mtDNA is involved in apoptosis induction and
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radiation sensitivity following exposure to IR. They showed that

when cells depleted from mtDNA (RHO cells), the sensitivity to IR is

reduced. It has reported that melatonin can prevent the apoptosis

cascade during stress conditions. The ROS scavenging ability of

melatonin prevents damage to mtDNA and the ETC proteins in

oxidative stress situations, which cause stability of mitochondria

function (Acuna‐Castroviejo et al., 2001; Garciá et al., 1999).

Melatonin also, can regulate the apoptosis through modulation of

mitochondrial proapoptosis genes. Pretreatment of rats with 10 or

100mg/kg melatonin cause significant reduction of Bax and increase

of B‐cell lymphoma 2 (Bcl‐2) gene expression, as well as incidence of

apoptosis after exposure to IR (Mohseni et al., 2012).

3.4 | Other pro‐oxidant enzymes

As mentioned above, in addition to mitochondria some other

enzymes are involved in ROS and NO production following exposure

to IR and chemotherapy. Cyclooxygenase‐2 (COX‐2) is a central

isoenzyme in the inflammation, which is associated with increased

risk of cancer incidence (J. R. Brown & DuBois, 2005; Harris,

Beebe‐Donk, & Alshafie, 2006; D. Wang & DuBois, 2010). COX‐2
upregulation is associated with ROS production during prostaglandin

production. Moreover, COX‐2 can increase the release of proin-

flammatory cytokines and amplification of redox activity (D. Wang &

DuBois, 2010). In response to IR, it has been shown that COX‐2 is

involved in oxidative DNA damage and genomic instability (Mohsen

Cheki et al., 2018). Suppression of this enzyme by its inhibitors has

been shown to alleviate radiation toxicity in the bone marrow and

joints (El‐Ghazaly, Nada, El‐Hazek, & Khayyal, 2010; Hosseinimehr,

Fathi, Ghasemi, Shiadeh, & Pourfallah, 2017). This is associated with

the reduction of inflammatory cytokines such as IL‐1 and tumor

necrosis factor α (Khayyal, El‐Ghazaly, El‐Hazek, & Nada, 2009).

Melatonin can regulate COX‐2 expression and enzyme activity. In

addition, it has been revealed that in response to IR the melatonin via

inhibition of COX‐2 prevents the upregulation of iNOS, thus more

attenuate oxidative injury and inflammatory responses (Fardid

et al., 2017).

NADPH oxidase (NOX) including NOX1–5 and dual oxidase

1 (DUOX1) and DUOX2 are H2O2 producing enzymes, which are

activated in response to several cytokines and growth factors. It has

been shown that upregulation of these enzymes is associated with

genomic instability, and also the development of collagen and fibrosis

(Chang et al., 2015; Choi et al., 2016; Sakai et al., 2018; Sato et al.,

2016; Y. Wang, Liu, et al., 2010). D. Li et al. (2016) in an in vivo study

evaluated the potential radioprotective effect of melatonin through

NOX4 expression in mice bone marrow. They revealed that

treatment with melatonin or 5‐methoxytryptamine‐α‐lipoic acid

(a combination of melatonin with α‐lipoic acid) significantly attenu-

ates NOX4‐derived ROS, DNA damage, and apoptosis in hemato-

poietic stem cells (D. Li et al., 2016).

LOXs are another type of pro‐oxidant enzymes that have

proposed for radiation‐induced redox activity (Yahyapour et al.,

2018). These enzymes catalyze the insertion of oxygen molecules

into polyunsaturated fatty acids, which mediate the synthesis of

inflammatory leukotrienes from arachidonic acid (K.‐J. Cho, Seo, &
Kim, 2011). This is associated with ROS production and oxidative

DNA damage (Blair, 2001; Jian, Lee, Williams, & Blair, 2009; Speed &

Blair, 2011). It has shown that the pineal hormone melatonin

regulates the expression of LOXs gene (Radogna, Diederich, &

Ghibelli, 2010; Uz, Longone, & Manev, 1997). It is proposed that

melatonin via binding to a nuclear receptor RZR/RORα (a stimulator

of LOX gene) inhibits expression and production of LOXs (Steinhilber

et al., 1995).

3.5 | Stimulation of DNA repair responses

DNA damage is the first consequence of exposure of cells to IR and

chemotherapy agents such as cyclophosphamide and doxorubicin

(Cohen & Lippard, 2001). Damage to DNA and cell death leads to the

release of alarmins for immune system cells including macrophages,

dendritic cells, and lymphocyte T (Bianchi, 2007; Yang, de la Rosa,

Tewary, & Oppenheim, 2009). In response to danger alarms, these

immune cells release several types of cytokines that more stimulate

ROS and NO production by redox mediators (Krysko et al., 2011). So,

enhance of DNA repair responses can reduce cell death and also

attenuate inflammation and redox activity. In addition, some studies

have revealed that inflammation is a potent inhibitor of DNA damage

response (Najafi, Cheki et al., 2018). NO, which is released by iNOS

following activation of macrophages and lymphocyte T, is capable to

suppress DNA damage response (Moritz et al., 2014). The main

target for NO is 8‐oxoguanine glycosylase 1 (Ogg1), a DNA repair

enzyme in base excision repair (BER) pathway. NO cause nitroace-

tylation and inactivation of Ogg1, leading to attenuation of other

downstream genes, including apurinic/apyrimidinic endodeoxyribo-

nuclease 1 (Apex1), and X‐ray repair cross complementing 1 (Xrcc1).

Through this pathway, NO can promote accumulation of DNA

damage and promotion of genomic instability (Najafi, Cheki,

et al., 2018).

Melatonin has shown that accelerates kinetic of DNA repair

following exposure of DNA to ROS. A study showed that when

human lymphocytes are exposed to H2O2, cells require 120min to

complete the repair process, while treatment with melatonin reduces

this time to 10min (Sliwinski et al., 2007). A study by Santoro, Marani,

Blandino, Muti, and Strano (2012) proposed that melatonin through

activation of p53 reduces accumulation of DNA damage and risk of

genomic instability. They revealed that melatonin is able to

phosphorylate p53 without need to ataxia telangiectasia‐mutated

expression. More analyses showed that phosphorylation of p53

melatonin is depended to p38 mitogen‐activated protein kinase

(MAPK) and promyelocytic leukemia protein gene upregulation. This

study showed that treatment of human breast cells with melatonin

reduces changes in genomic content following exposure to DNA

damage agents such as cisplatin, antimetabolite fluorouracil (FU),

topoisomerase inhibitor, or IR. These results are indicated potent

inhibitory effect of melatonin on genomic instability and carcinogen-

esis (Santoro et al., 2012).
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Rezapoor et al. (2017) evaluated the effect of pretreatment

with melatonin on radiation‐induced BER pathway genes. They

administrated 100 mg/kg to rats at 30 min before irradiation with

2 or 8 Gy X‐rays. Then, circulating lymphocytes extracted at 8,

24, and 48 hr after irradiation and the expression of BER pathway

genes including Ogg1, Apex1, and Xrcc1 were detected. Results

indicated that melatonin alone increase three genes potently

when they compared with nontreated group. Although, exposure

to IR caused potent inhibition of all genes in mentioned times,

treatment with melatonin reverse regulation of those. The

stimulatory effect of melatonin was clearer for 2 Gy irradiated

rats, indicating it needs to more dose of melatonin for stimulation

of DNA damage response for against higher doses of IR

(Rezapoor et al., 2017). By similar method, another study showed

that melatonin treatment augments the regulation of Xrcc4 and

Ku70 in rat’s lymphocytes. This was more obvious at 24 hr after

exposure to IR (Valizadeh et al., 2016; Valizadeh, Shirazi, Izadi,

Tavakkoly Bazzaz, & Rezaeejam, 2017). Moreover, melatonin

treatment before irradiation has shown is able to regulate genes

involved in nonhomologous end joining (NHEJ) pathway, includ-

ing RAD50 and Cdkn1 (Rezaeejam et al., 2018).

In addition to IR, melatonin has shown to enhance DNA damage

responses against chemotherapy agents. Bennukul, Numkliang, and

Leardkamolkarn (2014) evaluated the effect of melatonin on

cytotoxicity of cisplatin on hepatocellular carcinoma (HepG2) cells.

This study showed that treatment of this cell type with 1mmol/L

melatonin lead to a reduction in DNA damage and apoptosis,

as well as an increase in ERCC1 gene, which is involved in

nucleotide excision repair (NER) pathway of DNA damage repair

(Bennukul et al., 2014).

3.6 | Antiestrogenic effect of melatonin

Based on various evidence it is confirmed that estrogen has a key

role in stimulating the proliferation of the neoplastic breast

epithelium (Bouris et al., 2015; B. Huang, Warner, & Gustafsson,

2015; Santen, Yue, & Wang, 2015). Moreover, expression of estrogen

receptors increases as the cancer progresses (B. Huang et al., 2015;

Soysal et al., 2015). Estrogen through regulation of cell proliferation

and apoptosis may trigger neoplasm (Andruska, Zheng, Yang,

Helferich, & Shapiro, 2015). It seems that stimulation of MAPKs

including extracellular signal‐regulated kinase (ERK) and p38 genes,

and also Akt1 and signal transducer and activator of transcription

5 (Stat5) play a key role in this pathway (Mao et al., 2010; Xiang et al.,

2012; Zivadinovic & Watson, 2005). Experimental studies have

revealed that there is a direct relation between estrogen receptors

and breast cancer cell proliferation (Zivadinovic, Gametchu, &

Watson, 2005). Epidemiologic studies have confirmed a direct

relation between serum estrogen level and risk of breast cancer

(S. B. Brown & Hankinson, 2015). Melatonin has shown suppress

breast cancer proliferation by affecting estrogen receptors.

Kiefer, Ram, Yuan, and Hill (2002) showed that treatment of

F IGURE 1 Mechanisms of protective effect of melatonin against DNA damage and genomic instability. Melatonin is able to prevent inflammation

and redox activity in different levels. Also, it prevents genomic instability via neutralization of nitric oxide and stimulation of BER pathway genes.
CAT: catalase; COX: cyclooxygenase; IFN: interferon; IL: interleukin; iNOS: inducible nitric oxide synthase; MAPK: mitogen‐activated protein kinase;
NO: nitric oxide; Ogg1: 8‐oxoguanine glycosylase 1; ROS: reactive oxygen species; TGF‐β: transforming growth factor β; TNF‐α: tumor necrosis factor α;
STAT5: signal transducer and activator of transcription 5 [Color figure can be viewed at wileyonlinelibrary.com]
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MCF‐7 cells with melatonin suppresses growth of breast cancer cells

with estrogen receptor‐positive cells (Kiefer et al., 2002). Another

study by Lopes, Arnosti, Trosko, Tai, and Zuccari (2016) has shown

that melatonin treatment of human breast cancer stem cells inhibit

proliferation via downregulation of estrogen receptor α and the

transcription factor OCT4 (Lopes et al., 2016; Figure 1).

4 | TUMOR SUPPRESSIVE EFFECTS OF
MELATONIN

In addition to preventative effects of melatonin on cancer incidence,

a large body of studies have reported that it is able to suppress tumor

growth, proliferation, and metastasis. Studies propose various

mechanisms for tumor inhibiting effect of melatonin such as

induction of apoptosis, stimulation of immune system cells, inhibiting

repopulation and angiogenesis genes, and others. Also, studies have

revealed that administration of melatonin associated with che-

motherapy or radiotherapy may increase therapeutic effect of these

modalities.

4.1 | Induction of apoptosis

One of the interesting properties of melatonin is clastogenic effect

on tumor cells. This is in contrast by other results that indicated

potent protective effect of melatonin on normal cells. Moreover, by

contrast to normal cells, some studies propose that melatonin can

induce apoptosis in cancer cells. In a study by K. J. Kim et al. (2013)

has shown that melatonin treatment of human prostate cancer cells

potently stimulates apoptosis in a dose‐dependent manner. They

showed that treatment of cells with 3mM melatonin can reduce

viability of cells up to 80% in 48 hr after treatment. Western blot

analysis results showed a significant increase in protein level of Bax,

caspase‐3, and caspase‐9, as well as a potent reduction in Bcl‐2.
Authors showed that activation of p53 by melatonin play a key role in

initiation of apoptosis signaling pathway (C. H. Kim & Yoo, 2010).

Another study showed that melatonin via activation of MAPKs

pathway induce apoptosis in prostate cancer cells (Joo & Yoo, 2009).

Moreover, it has proposed that melatonin via inhibition of nuclear

factor‐κB (NF‐κB; an antiapoptosis gene) facilitate apoptosis induc-

tion in cancer cells (W. Li et al., 2015).

Gatti et al., (2017) evaluated apoptosis induction effect of

melatonin on human melanoma and breast cancer cell lines. They

used from four analogs of melatonin at different concentrations.

Results showed that a concentration of 10−4 M has a significant

effect on apoptosis induction in breast cancer cell lines including

MCF‐7, DX3, UCM 1037, and MDA‐MB231 cells. Melatonin

treatment showed is able to suppress Bcl‐2 expression in melanoma

WM‐115 cell line, while it shows has no effect on Bax/Bcl‐2 ratio in

other cell types. In other hand, melatonin increase regulation of

caspase‐3 in DX3 cells, while it did not increase in melanoma cells.

These results may indicate that melatonin activate apoptosis via

different pathways in different types of cancer cells (Gatti et al.,

2017). Activation of caspase‐3 and apoptosis in human neuroblasto-

ma cancer cells have reported (Garcia‐Santos et al., 2006). Similar

results have reported in other studies (Chovancova et al., 2017;

Chuffa et al., 2016; Fan et al., 2013; Sainz et al., 2003; Zha et al.,

2012). By contrast to these studies, in a study have shown that

treatment of human breast cancer cells and colorectal carcinoma

cells with melatonin do not cause increase in apoptosis induction.

Authors proposed that possibly there is a high dose of melatonin for

apoptosis induction (Santoro et al., 2012). It seems that induction of

apoptosis is dependent on melatonin concentration. Some studies

have proposed that, while cytotoxic effects of melatonin may appear

in nanomolar concentrations, induction of apoptosis requires higher

concentrations, for example at millimolar concentrations (Bizzarri,

Proietti, Cucina, & Reiter, 2013; Talib, 2018). In addition to that,

Cucina et al. (2009) showed that apoptosis induction in MCF‐7 cells

following melatonin treatment has a biphasic pathway. They showed

that apoptosis can be induced through different pathways at

different times following melatonin treatment. Results showed that

early peak of apoptosis can be observed at 24 hr after treatment

because of caspase activation, while late peak is seen at 96 hr after

treatment that is caspase independent (Cucina et al., 2009).

4.2 | Suppression of tumor cells repopulation

It has been confirmed that after apoptosis in tumor cells, increased

caspase‐3 lead to stimulation of prostaglandins production, which

mediate proliferation of tumor cells (Galluzzi, Kepp, & Kroemer,

2012; Q. Huang et al., 2011). Through this pathway, activation of

caspase‐3 and elevated level of COX‐2 and subsequent prostaglan-

dins promote regrowth and resistance of tumor cells (Donato et al.,

2014; Galluzzi et al., 2012). It has shown that prostaglandin E2,

which is a product of COX‐2, is involved in tumor resistance and

repopulation during radiotherapy (Q. Huang et al., 2011). Melatonin

as a COX‐2 inhibitor has shown attenuate production of prosta-

glandins and tumor cell repopulation (Woo, Min, & Kwon, 2015).

Panzer and Viljoen (1997) found that melatonin can act as an

anticancer agent in breast cancer through a decrease in cell

proliferation and suppression of some antiapoptotic mediators

including NF‐κB and COX‐2. Antiproliferative effect of melatonin

has been shown for prostate cancer cells too (Sainz et al., 2005; Siu,

Lau, Tam, & Shiu, 2002). In recent years has shown that melatonin

via downregulating the cyclin‐dependent kinases, including CDK2

and CDK4 suppress proliferation of ovarian cancer cells (Shen,

Chang, Chen, Lai, & Hsu, 2016). Similar results obtained for

osteosarcoma cells (L. Liu, Xu, & Reiter, 2013). In a study by

Santoro et al. (2012) have revealed that treatment of MCF‐7 cells

with melatonin attenuate proliferation and colony formation of this

cell. Further analyses showed a transient arrest in G2 phase of cell

cycle. In the breast, ovarian, osteosarcoma, and colon endometrial

cancer cells have been shown that melatonin inhibit proliferation

through melatonin receptors including the MT1 and MT2 (Jablonska

et al., 2013, 2014; León et al., 2012; Treeck, Haldar, & Ortmann,

2006; Watanabe, Kobayashi, Takahashi, Kiguchi, & Ishizuka, 2008).
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4.3 | Melatonin and immune cells

A large number of studies have revealed a potent association

between melatonin and the immune system (Labrecque & Cermakian,

2015; Ozkanlar et al., 2016; Vinther & Claësson, 2015). It well known

that melatonin is produced not only by the pineal gland, but also it

can be released by the retina, kidneys, digestive tract, and also by

peripheral blood mononuclear cells (Emet et al., 2016; Tordjman

et al., 2017). This may suggest a potent interrelation between the

immune system and melatonin in different organs (Ren et al., 2017).

Some studies proposed that melatonin through its receptors on

immune cells influences proliferation of immune cells and release of

cytokines (Carpentieri, Peralta lopez, Aguilar, & Solá, 2017; Singh &

Jadhav, 2014). Furthermore, melatonin has shown that is able to

stimulate natural killer cell activity in humans, as increase antitumor

activity of immune system (Miller, Pandi, Esquifino, Cardinali, &

Maestroni, 2006). Another immune system cell, which has a key role

in tumor response to therapeutic modalities is regulatory T cells

(Tregs). In normal conditions, these cells attenuate immune system

effects and suppress autoimmune reactions. But, in tumor cells,

infiltration of these cells cause resistance of tumor cells via reduction

of cytotoxic cells activity (Vinay et al., 2015). H. Liu et al. (2011)

showed that melatonin is able to induce gastric cancer cell death in

mice bearing tumor via suppression of Tregs. Melatonin was effective

when it administrated in 100mg/kg but not for 25 or 50mg/kg.

5 | MELATONIN EFFECTS ON
ANGIOGENESIS

Angiogenesis is a key procedure that is necessary for tumor growth

and metastasis. Thus, angiogenesis is an interesting target for tumor

control and treatment (Potente, Gerhardt, & Carmeliet, 2011;

Trachsel & Neri, 2006). The vascular endothelial growth factor

(VEGF) is a key mediator for development of new vessels and

promotion of angiogenesis in both normal and malignant cells. VEGF

has three important receptors, including VEGF‐1, VEGF‐2, and

VEGF‐3, while its main effect is mediated through VEGF‐1 (Hicklin

& Ellis, 2005; Pradeep, Sunila, & Kuttan, 2005; Shinkaruk, Bayle, Lain,

& Deleris, 2003; Sousa Moreira, Alexandrino Fernandes, & Joao

Ramos, 2007). Targeting of VEGF‐1 for inhibiting tumor angiogenesis

and growth have proposed by several studies (Underiner, Ruggeri, &

Gingrich, 2004; Veeravagu et al., 2007). However, some studies

proposed targeting of VEGF‐2 or VEGF‐3 (Shi, Wu, & Li, 2015;

Tammela et al., 2008). However, clinical studies have shown that

selective inhibition of this receptor with selective inhibitors such as

bevacizumab is associated with severe side effects such as skin rash

and disruption of wound healing (Bodnar, 2014; Ishak, Aad, Kyei, &

Farhat, 2014; Macdonald, Macdonald, Golitz, LoRusso, & Sekulic,

2015; Wozel, Sticherling, & Schön, 2010).

Melatonin has shown interesting properties in tumor growth

by suppression of angiogenesis markers. In a study including 20

metastatic patients the effect of melatonin treatment has detected

on serum level of VEGF. The patients used melatonin as 20 mg/day

for 2 months and the level of VEGF were detected. Results showed

a significant reduction of median level VEGF in the serum

of patients (Lissoni et al., 2001). An in vitro study by

Carbajo‐Pescador et al. (2013) showed that melatonin attenuates

the expression of VEGF in HepG2 cells through modulation of

hypoxia‐inducible factor 1 (HIF‐1) and STAT3. Their results

proposed that melatonin in a pharmacological concentration

(1 mM) is able to inhibit VEGF stimulation during hypoxia situation

(Carbajo‐Pescador et al., 2013). Jardim‐Perassi et al. (2014)

showed that melatonin treatment of mice bearing human breast

cancer cells cause inhibition of angiogenesis in this tumor by

attenuation of VEGF receptor 2 (VEGFR2) gene expression.

Suppression of VEGFR2 was confirmed by SPECT imaging of

Tc‐99m‐HYNIC‐VEGF‐c and also immunohistochemistry analysis.

Melatonin could not reduce other proangiogenesis factors in this

study (Jardim‐Perassi et al., 2014). However, another study

proposed that melatonin may via downregulation of EGFR and

insulin‐like growth factor 1 reduces angiogenesis in breast cancer

cells (Zuccari et al., 2015). As VEGFR2 is stimulated by HIF‐1
during hypoxia situation, it seems that melatonin is an inhibitor of

breast cancer angiogenesis by downregulation of HIF‐1 (Goradel

et al., 2017; Victorasso jardim‐Perassi et al., 2016). Similar results

were defined for Dalton lymphoma, renal adenocarcinoma, colon

cancer cells, and ovarian carcinoma cells (K. J. Kim et al., 2013;

Kumari, Rawat, Kumari, & Shrivastava, 2017; Park et al., 2010;

Zonta et al., 2017). In the human gastric cancer cells it has been

shown that melatonin beside to VEGF and HIF‐1 can reduce

angiogenesis by suppression of nuclear receptor RZR/RORγ

(R.‐X. Wang, Liu, Xu, Zhang, & Zhou, 2016). It seems that melatonin

through inhibition of RZR/RORγ and sphingosine kinase 1 (SPHK1)

suppresses HIF‐1 and downstream angiogenesis signaling in

gastric cancer (S. Y. Cho, Lee, et al., 2011; R. X. Wang, Liu, Xu,

Zhang, & Zhou, 2015). By contrast to tumor cells, melatonin has

shown to stimulate angiogenesis and wound healing in normal cells

or tissues after injury (Soybir et al., 2003).

6 | SYNERGISTIC EFFECTS OF
MELATONIN IN ONCOLOGY

6.1 | Modulation of cancer response to
radiotherapy with melatonin

An appropriated adjuvant in radiotherapy should have a good

synergistic effect on tumor response to radiation, as well as low

toxicity for normal tissues. Melatonin is known as a radioprotector

more than a radiosensitizer agent. The potent radioprotection of

melatonin on normal tissues have described by several studies. So,

if melatonin is able to sensitize tumor cells to radiotherapy, it may

be used as an ideal adjuvant. Although studies to show radio-

sensitive effect of melatonin on cancer cells are very limited,

some recent studies show interesting results. Alonso‐González,

González, Martínez‐Campa, Gómez‐Arozamena, and Cos (2015) in
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an in vitro study showed that melatonin treatment of MCF‐7 cells

(1 mM, 10 μM, and 1 nM) before irradiation result in a cell cycle

arrest in the G0–G1 phase and reduction of cells in the S phase.

Moreover, melatonin administration before irradiation caused a

downregulation of DNA repair enzymes including RAD51 and

DNA‐PKcs. This may cause accumulation of DNA damage induced

by IR (Alonso‐González et al., 2015). In another study, they

showed that melatonin treatment before irradiation sensitize

MCF‐7 cells to IR via suppression of estrogen biosynthesis, which

leading to inhibition of proliferation. Also, they reported that

melatonin activates p53, a potent initiator of apoptosis in MCF‐7
cells. This effect was more significant in 1 nM compared

with other concentrations of melatonin (1 mM or 10 μM;

Alonso‐González et al., 2016).

A study by Zou et al. (2018) showed that melatonin has a

radiosensitizer effect on thyroid cancer cells too. In in vitro study

their results showed that melatonin inhibits proliferation of

thyroid cancer cells in a dose‐dependent manner. Results showed

a 15% survival when thyroid cancer cells treated with 15 mM for

48 hr. Irradiation of cells lead to an increase in expression of

NF‐κB/p65, an antiapoptosis and cell growth stimulator. While,

when cells treated with melatonin the expression of it inhibited.

Moreover, treatment with melatonin before irradiation lead to

sensitization and reduction of viability of cells when it compared

to irradiation only. Results indicated a dose‐dependent relation

between radiosensitization effect of melatonin and melatonin

concentration. Interestingly, this study showed that melatonin

via stimulation of redox reactions induces ROS production.

Moreover, in in vivo xenograft mouse model, they showed that

melatonin administration in combination with radiation attenu-

ates tumor growth when it compared with irradiation alone (Zou

et al., 2018). Enhancement of radiation toxicity on head and neck

cancer cells have been reported by Escames, Fernández‐Gil, et al.

(2017) they proposed that melatonin through modulation

of mitochondria activity, ROS production, and induction of

apoptosis has a synergistic effect on therapeutic effects of IR

(Escames, Guerra‐Librero et al., 2017).

6.2 | Modulation chemotherapy consequences by
melatonin

In addition to radiotherapy, melatonin also showed some evidence

for potentiating the therapeutic outcome and alleviation of

the chemotherapy side effects (Sanchez‐Barcelo, Mediavilla,

Alonso‐Gonzalez, & Reiter, 2012). Casado‐Zapico et al. (2010)

showed that melatonin can reinforce antitumor effect of vincristine

and ifosfamide on Ewing sarcoma cells. Also, they revealed that the

most effect of melatonin mediate through enhancement of

apoptosis via upregulation of extrinsic apoptosis pathway genes

(Casado‐Zapico et al., 2010). Melatonin has shown that reinforce

effects of chemotherapy drugs such as doxorubicin, cisplatin, and

5‐fluorouracil on HeLa cells. Although, similar to Ewing sarcoma cells

melatonin augments apoptosis, by contrast to this cell the mitochon-

drial apoptosis pathway has main role in synergistic effect of

melatonin. Moreover, melatonin increased ROS production in HeLa

cells, leading to more toxicity of cisplatin (Pariente, Pariente,

Rodríguez, & Espino, 2016). Similar effects were detected for the

rat pancreatic tumor Cells (Uguz et al., 2012). Combinations of

melatonin and temozolomide has a synergistic therapeutic effect on

malignant glioma cells. This is resulting from elevated the methyla-

tion of the ABCG2/BCRP promoter, leading to decreased expression

of this gene. Downregulation of this gene help to more accumulation

of chemotherapy agents in tumor cells, which increase therapeutic

action of chemotherapy (V. Martín et al., 2013).

In clinical trial studies also melatonin showed interesting results

for reducing chemotherapy agent’s toxicity, as well as increasing

therapeutic effect. Administration of 20mg/day orally melatonin

associated with chemotherapy showed that augments 1‐year survival
rate and potentiate regression of tumors (Lissoni et al., 1999).

Administration of same dose of melatonin in combination with

F IGURE 2 Mechanisms of antitumor
activity of melatonin in radiotherapy and
chemotherapy. Melatonin through

suppression of angiogenesis and
proliferation, as well as via stimulation of
apoptosis help to better outcome of
therapy. COX: cyclooxygenase;

MAPK: mitogen‐activated protein kinase;
NF‐κB: nuclear factor‐κB; STAT: signal
transducer and activator of transcription;

VEGF: vascular endothelial growth factor
[Color figure can be viewed at
wileyonlinelibrary.com]
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cisplatin and etoposide to metastatic non‐small‐cell lung cancer

(NSCLC) patients caused a significant tumor regression rate and

increased survival. This study showed that treatment with melatonin

cause 6% survival after 5 years, while no patients were survived

among patients that received chemotherapy without melatonin

(Lissoni, Chilelli, Villa, Cerizza, & Tancini, 2003; Figure 2).

7 | MELATONIN IN ASSOCIATION WITH
TARGETED THERAPIES

Targeted therapy is an effective method for cancer treatment and

involves inhibition of tumor growth receptors, apoptosis resistance

genes such as Bcl‐2, and cellular function (Leverson et al., 2015).

Although inhibition of these targets in cancer cells can effectively

attenuate tumor growth, there is evidence showing that mutations in

these receptors can lead to poor response to prescribed drugs

(Zaretsky et al., 2016). For example, mutations in EGFR in NSCLC

cells causes resistance to EGFR tyrosine kinase inhibitors like

gefitinib and erlotinib (Pao et al., 2005). Combination of melatonin

with some inhibitors have shown better outcomes in suppressing

tumor cells growth compared with using an inhibitor alone. Yun et al.

(2014) evaluated the cytotoxicity of a combination of melatonin with

gefitinib on H1975 cells. Cells that used in this study had a mutation

(T790M) that caused resistance to gefitinib. Results showed that

treatment of H1975 with a combination of melatonin and gefitinib

caused attenuation of EGFR phosphorylation and suppression of

Bcl‐2, culminating in increased apoptosis and reduced cell viability

(Yun et al., 2014).

A study by Prieto‐Domínguez et al. (2017) revealed effective

therapeutic effect of melatonin in combination with sorafenib on

hepatocellular carcinoma (HCC) cells. Their results showed that

melatonin, through inhibition of mechanistic target of rapamycin,

attenuates regulation of HIF‐1α, leading to the attenuation of

cytoprotective effect of hypoxia microenvironment against sorafenib

(Prieto‐Domínguez et al., 2017). Another study by this group showed

that melatonin enhances the production of ROS through depolariza-

tion of mitochondria in HCC cells. Also, it seems that upregulation of

Bax and mitophagy are involved in the cytotoxic activity of melatonin

combination with sorafenib (Prieto‐Domínguez et al., 2016). Another

study showed that activation of JNK/c‐jun pathway by melatonin is

involved in apoptosis induction by melatonin when it is combined

with sorafenib (Lin et al., 2017). Liu et al. showed that increased

autophagy is a reason for increasing the resistance of HCC cells to

sorafenib. Melatonin, through suppression of autophagy, may further

sensitize HCC cells to sorafenib (Y. Liu et al., 2017).

8 | CONCLUSION

Melatonin is a potent anticarcinogenic agent against different toxic

agents such as ionizing and nonionizing radiation, and chemotherapy

agents. It has been shown that melatonin protects normal cells against

development of malignancies at different levels. At the first level,

melatonin neutralizes free radicals directly or indirectly via enhancement

of antioxidant defense. Anti‐inflammatory effect of melatonin can prevent

development of chronic oxidative stress, a phenomenon, which is

associated with genomic instability. Moreover, melatonin is able to boost

DNA repair enzymes to prevent mutations and genomic instability. An

interesting property of melatonin is its effects on signaling pathways

involved in DNA repair, inflammation, and cell survival in both normal and

malignant cells. Stimulation of DNA repair is critical for the attenuation of

acute reactions to radiotherapy caused by massive cell death. Moreover,

inflammation—that is potently involved in both normal tissue injury and

tumor resistance—can be inhibited by melatonin. Classical antioxidants

neutralize free radicals in both normal and tumor cells which may, in

addition to protection of normal tissues, cause reduction of tumor cells

response to radiation treatment. In contrast to other antioxidants,

melatonin can modulate inflammation and redox activity that are

involved in normal tissue injury and also tumor resistance. Melatonin

enhances DNA repair in normal cells while it can promote apoptosis via

attenuation of prostaglandins in tumor cells. These properties of

melatonin make it a promising adjuvant to both radiotherapy and

chemotherapy, which can alleviate side effects on normal tissues and

reinforce therapeutic effects on the cancerous tissue.
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