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PREFACE 

This thesis presents the results from three years research which was conducted as a PhD project 

entitled “Naturally occurring folates in food – Quantification and possible food fortification 

strategy”. The research was performed at the Research group for Bioactives – Analyses and 

Application, National Food Institute at the Technical University of Denmark from 1
st
 of November 

2015 until 28
th

 of February 2019. The project was funded by Danish Veterinary and Food 

Administration and Technical University of Denmark. 

The project was carried out under supervision of Senior Scientist Jette Jakobsen and co-supervision 

of Senior Scientist Anette Bysted, and it included two external research stays. During the first 

external research stay at the School of Engineering and Science, Institute of Technology and Higher 

Education, Monterrey, Mexico (October 2016), the work was supervised by Associate Professor 

Rocío Isabel Díaz de la Garza. The second external research stay was conducted at the Chair of 

Analytical Food Chemistry, Technical University of Munich, Germany and was supervised by 

Professor Michael Rychlik (May-September 2017). 
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SUMMARY 

A group of biologically active compounds with various chemical structures called folate is well 

known by its major role in the transport of one-carbon groups in numerous metabolic reactions in 

humans. It takes part in core intracellular cycles such as in the synthesis of nucleic acids, in 

production, methylation and regeneration of DNA, in remethylation of homocysteine and synthesis 

of various amino acids. Due to its crucial role in cell production, inadequate folate intake can lead 

to occurrence of various chronic diseases such as neural tube defects, anemia, certain types of 

cancer and cognitive degenerative diseases. As it is synthesized by plants and microorganisms, 

folate is widely present in nature. However, due to its minor concentrations in food, sensitivity and 

complexity of its chemical structure, and complexity of food matrices, folate analysis in food is 

challenging. Three main steps included in folate quantification are extraction, deconjugation and 

detection. Deconjugation or removal of polyglutamyl tail from the biologically active part of the 

molecule by the use of ɣ-glutamyl hydrolase (GGH) is a bottle-neck in folate analysis. Numerous 

studies have been performed in order to obtain reliable data on folate content, but there are many 

discrepancies in these data, depending on the natural variation of folate occurrence, but also on the 

method used for folate analysis. So far, a GGH of animal origin is mainly used for folate 

deconjugation. Microbiological assay as the only standardized method for folate detection in food is 

incapable of distinguishing among various folate forms, which have different stability and 

presumably bioavailability. Therefore, the main hypothesis in this PhD project is that the use of a 

recombinant plant origin GGH can be a starting point for the standardization of the deconjugation 

step by providing fast and effective deconjugation in various food matrices, with possibility of 

distinguishing among biologically active folate forms. The overall aim was to establish research 

based documentation for a new, accurate and precise chemical method for quantification of folate 

forms, and further investigate a new strategy to produce folate fortified food products. 

Therefore, the main focus was on the development of a rapid, sensitive and reproducible method for 

folate quantification in various groups of foods. Liquid chromatography coupled to tandem mass 

spectrometry (LC-MS/MS) detection, was chosen as a method for analysis of various folate forms 

due to its selectivity and sensitivity. The developed LC-MS/MS method was validated for the 

quantification of folate forms such as tetrahydrofolate, formyl folate forms (10-formylfolic acid, 

5,10-methenyltetrahydrofolate, 5-formyltetrahydrofolate), folic acid, 5-methyltetrahydrofolate and 

10-methylfolic acid using three 
13

C5-labeled internal standards. A single-enzyme extraction 

provided satisfactory deglutamylation with enzyme activity being >95% after 1 hour of incubation. 
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Validation parameters of trueness at 80-120% in spiked samples and certified reference materials, 

and a precision <10% were met in all compounds of interest except tetrahydrofolate. In the future, 

quantification of tetrahydrofolate as the least stable folate form should be performed by the use of a 

corresponding isotopically labeled internal standard.  

The single-laboratory validated method using recombinant GGH of plant origin was compared to 

microbiological assay and another LC-MS/MS method using the animal origin GGH in a round 

robin study on a large and diverse sample set. Food groups of fruits, vegetables, legumes, cereals, 

dairy products, meat and offal represented a sample set of 89 samples analyzed for the folate 

content. A significantly lower constant bias of 17% (p ≤ 0.05) was observed when the method using 

plant origin GGH was compared to microbiological assay. This indicates that folate daily intake 

calculated from the national food composition databases that normally contain data obtained by the 

use of microbiological assay, is overestimated. On the other side, comparison to another LC-

MS/MS method using animal origin GGH evidenced superiority of deconjugation activity of plant 

origin GGH in plant matrices. Especially in the groups of fruits, vegetables and cereals constant 

bias of 25% was shown (p ≤ 0.05). The reason for the difference is hypothesized to be due to 

inhibition of the GGH of animal origin in the plant food matrices. The superior activity of the GGH 

of plant origin over the commonly used GGH of animal origin encourage the incorporation of the 

new GGH for future standardization of an accurate, precise, and specific method for folate vitamers. 

Food groups of offal, vegetables, legumes and certain fruits were shown to be sources rich in folate. 

5-methyltetrahydrofolate was the most abundant folate form in the mentioned groups and the 

second most abundant in food groups of cereals, meat and dairy products after formyl forms. 

However, folate distribution varied within the food group and between different varieties of the 

same foodstuffs. Even though they were not considered as folate sources, food groups of cereals 

and dairy products contribute to the folate intake among Danes due to their wide consumption. 

Therefore, a fortification strategy to increase the folate content in products made from flour by 

fortification of flour with biologically active folate form 5-methyltetrahydrofolate was studied. Due 

to its instability, 5-methyltetrahydrofolate was incorporated into food system in the forms of 

nanocapsules, where it was protected by carbohydrate matrix produced by the electrospraying 

encapsulation. A significant improvement in the stability of 5-methyltetrahydrofolate was achieved 

via encapsulation, even though its incorporation into food system did not confirmed the need for 

encapsulation, indicating the importance of future investigation of this fortification strategy.   
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RESUMÉ 

Folat er en gruppe af biologisk aktive forbindelser med forskellige kemiske strukturer. Folat er velkendt 

for dets vigtige rolle i transporten af et-karbon-grupper i adskillige metaboliske reaktioner i mennesker. 

Folat tager del i vigtige intra-cellulære cyklusser f.eks. i syntesen af nukleinsyrer, i produktion, 

metylering og regenerering af DNA samt i remetylering af homocystein og syntese af forskellige 

aminosyrer. På grund af dets afgørende rolle i celleproduktionen kan et utilstrækkeligt indtag af folat 

føre til en række kroniske sygdomme såsom neuralrørsdefekter, anæmi, visse typer af kræft og kognitiv 

nedbrydende sygdomme. Da folat syntetiseres af planter og mikroorganismer, er det meget udbredt i 

naturen, men på grund af dets lave koncentrationer i fødevarer, sensitiviteten og kompleksiteten af dets 

kemiske struktur samt kompleksiteten af fødevarematricerne er folatanalyser i fødevarer en udfordring. 

De tre hovedtrin i bestemmelsen af indholdet af folat er ekstraktion, dekonjugering og detektion. 

Dekonjugering eller fjernelse af polyglutamyl-halen fra den biologisk aktive del af molekylet ved hjælp 

af ɣ-glutamylhydrolase (GGH) er en flaskehals i folatanalyser. Der er udført adskillige studier for at 

opnå pålidelige indhold af folat, men der er mange uoverensstemmelser i disse data afhængigt af både 

den naturlige variation i forekomsten af folat og metoden, der anvendes til folatanalyser. Indtil nu har 

GGH af animalsk oprindelse hovedsageligt været brugt til dekonjugering af folat. Den mikrobiologisk 

analyse, som er den eneste standardmetode til bestemmelse af folat i fødevarer, kan ikke skelne mellem 

de forskellige folatformer, der har forskellig stabilitet og formentlig også forskellig biotilgængelighed. 

Hovedhypotesen i dette ph.d.-projekt er derfor, at brugen af et rekombinant GGH af vegetabilsk 

oprindelse er et udgangspunkt for standardisering af dekonjugeringstrinnet, fordi det giver en hurtig og 

effektiv dekonjugering af forskellige fødevarematricer med mulighed for at skelne mellem biologisk 

aktive folatformer. Det overordnede formål var at etablere forskningsbaseret dokumentation for en ny, 

nøjagtig og præcis kemisk metode til kvantificering af folatformer samt undersøge en ny strategi til 

produktion af folat-berigede fødevarer. 

Hovedvægten blev derfor lagt på udvikling af en hurtig, følsom og reproducerbar metode til 

bestemmelse af indholdet af folat i forskellige fødevaregrupper. Væskekromatografi koblet til tandem-

massespektrometri (LC-MS/MS) detektion blev valgt som metode til analyse af forskellige folatformer 

på grund af dens selektivitet og følsomhed. Den udviklede LC-MS/MS metode blev valideret til 

kvantificering af folatformerne: tetrahydrofolat, formyl-folatformer (10-formyl-folsyre, 5,10-metenyl-

tetrahydrofolat, 5-formyl-tetrahydrofolat), folsyre, 5-metyl-tetrahydrofolat og 10-metyl-folsyre. Tre 

13C5-mærkede interne standarder blev brugt til denne validering. Enkelt-enzym-ekstraktion gav 

tilfredsstillende deglutamylering. Enzymaktiviteten var >95% efter en times inkubation. 

Valideringsparametrene korrekthed på 80-120% i spikede prøver og i certificerede referencematerialer 
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samt præcision på <10% blev opnået for alle relevante forbindelser undtagen for tetrahydrofolat. I 

fremtiden bør en tilsvarende isotop-mærket intern standard bruges til kvantificering af tetrahydrofolat, 

der er den mindst stabile folatform. 

Metoden med recombinant GGH fra planter (valideret på et enkelt laboratorium) blev sammenlignet 

med den mikrobiologiske metode og en anden LC-MS/MS metode, der benytter GGH af animalsk 

oprindelse. Metodesammenligningen blev udført i et round robin studie med et stort udvalg af 

forskellige fødevarer. Indholdet af folat blev analyseret i 89 prøver udvalgt fra fødevaregrupperne med 

frugter, grøntsager, bælgfrugter, cerealier, mejeriprodukter, kød og indmad. Der blev observeret en 

signifikant lavere konstant bias på 17% (p ≤ 0.05) ved anvendelse af metoden med GGH fra planter i 

forhold til den mikrobiologiske metode. Dette indikerer en overestimering af det daglige indtag af folat 

beregnet fra nationale fødevaredatabaser, hvor der normalt findes data tilvejebragt ved anvendelse af 

den mikrobiologiske metode. På den anden side viste sammenligning med en anden LC-MS/MS metode 

med GGH af animalsk oprindelse evidens for forbedret dekonjugeringsaktivitet af GGH af vegetabilsk 

oprindelse i plantematricer. Specielt i grupperne med frugter, grøntsager og cerealier hvor der blev 

fundet en konstant bias på 25% (p ≤ 0.05). Grunden til denne forskel kan skyldes inhibering af GGH fra 

animalsk oprindelse i plantefødevarematricer. Den øgede aktivitet af GGH af vegetabilsk oprindelse i 

forhold til aktiviteten af den almindeligt anvendte GGH af animalsk oprindelse tilskynder inkorporering 

af den nye GGH i fremtidig standardisering af en nøjagtig, præcis og specifik metode til bestemmelse af 

folatformer. 

Det blev vist, at fødevaregrupperne med indmad, grøntsager, bælgfrugter og enkelte frugter er rige 

folatkilder. 5-metyl-tetrahydrofolat var den hyppigst forekommende folatform i de nævnte grupper og 

den næst hyppigste i fødevaregrupperne med cerealier, kød og mejeriprodukter efter formylformerne, 

dog varierede folatfordelingen inden for fødevaregrupperne og mellem forskellige slags af de samme 

fødevarer. Selvom de ikke betragtes som folatkilder, bidrager fødevaregrupperne med cerealier og 

mejeriprodukter til danskernes indtag af folat på grund af det store indtag af fødevarerne. Som følge 

heraf blev der undersøgt en berigelsesstrategi for at øge indholdet af folat i produkter lavet af mel ved 

berigelse af mel med den biologisk aktive folatform 5-metyl-tetrahydrofolat. Da 5-metyl-tetrahydrofolat 

er ustabilt, blev det inkorporeret i fødevaresystemet i form af nano-kapsler, så det var beskyttet af 

kulhydratmatricen produceret ved elektrospray-indkapsling. Ved indkapslingen blev der opnået en 

signifikant forbedring i stabiliteten af 5-metyl-tetrahydrofolat, selvom dets inkorporering i 

fødevaresystemet ikke bekræftede behovet for indkapsling. Dette indikerer vigtigheden af fremtidige 

undersøgelser af denne berigelsesstrategi.  
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Chapter 1: Introduction  

Folate or B9 vitamin is a generic term for a group of compounds that act as cofactors in many 

metabolic reactions in humans. They play a key role in one carbon-metabolism (Fekete et al., 2012; 

McGarel et al., 2015). Together with B6 and B12 vitamins they act as cofactors in the synthesis, 

methylation, and reparation of DNA. They regenerate methionine from homocysteine, reduce 

homocysteine concentration in organism and consequently reduce the risk of chronic diseases and 

developmental disorders including Alzheimer’s disease, cardiovascular diseases and dementia. 

Their indispensable role is the prevention of neural tube defects (NTDs) that include abnormalities 

of the brain, spine and spinal cord which occur in fetus during the first month of gestation period 

(Saini et al., 2016). Due to numerous beneficial roles, an adequate folate intake is extremely 

important. Even though it is widely distributed among foods, such as in green leafy vegetables, 

legumes, offal, certain fruits, grains and fermented dairy products natural folate is extremely 

sensitive to various conditions such as temperature, light and oxygen. Therefore, people whose 

habits do not emphasize plant foods and whose diet are based on the processed food normally do 

not have an adequate folate intake (Delchier et al., 2016).  

Due to the complexity of the folate’s structure, which affects their stability and presumably 

bioavailability, the methods for folate quantification from food are complex. There are 

discrepancies in the folate content in food analyzed by different methods, due to the various 

parameters, where the use of deconjugase enzyme and detection system plays crucial roles. The 

enzyme of animal origin is normally used in enzymatic deconjugation of folate extracts, which can 

be inhibited by the plant food matrix, resulting in inaccurate and imprecise folate values (Bhandari 

& Gregory, 1990). Furthermore, microbiological assay, as the only standard method for folate 

detection in food is being laborious, costly and time-consuming, it does not enable separation and 

quantification of various folate forms present in food, and it is very dependent of the microorganism 

and the calibrant used for analysis (Arcot & Shrestha, 2005; Quinlivan et al., 2006). The data in 

food composition databases are obtained by the use of microbiological assay, which analyzes only 

total folate content. On the other side, the use of chromatographic methods enables separation and 

quantification of various folate forms and provides information on the stability and bioavailability 

of folate, opening broad possibilities in the research of folate forms. Improvement of folate 

quantification and data collection is a challenge in most developed countries, especially in Europe, 

as there is no mandatory folate fortification in these countries (European Union, 2002, 2006). 
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The hypothesis for this project was that the use of a recombinant plant origin enzyme can serve as a 

basis for the standardization of deconjugation step in folate analysis in terms of enzyme 

effectiveness, by providing fast and complete folate deglutamylation in various food matrices. The 

overall aim was to establish a research based documentation for the use of a novel plant origin 

enzyme which would be an essential part in future folate analysis. Therefore, a special emphasis 

was placed on the development and validation of a specific, sensitive and reproducible LC-MS/MS 

method for quantification of various naturally occurring folate forms in food by the use of a 

recombinant plant origin enzyme (Arabidopsis thaliana). Furthermore, a method comparison study 

was performed on a large sample set, where newly developed method was compared to another LC-

MS/MS method using an animal origin enzyme and to the microbiological assay, as the only 

standard method for folate analysis in food. The presumption was that the folate content analyzed 

by microbiological assay is overestimated and therefore, the final part of the project was to find the 

fortification strategy to increase the content of folate in food. 

To answer the hypothesis, this PhD project was divided into the following parts: 

Part 1: Development and validation of LC-MS/MS method using plant origin deconjugase for 

extraction of naturally occurring folates in various food matrices (Paper I) 

Part 2: Analysis of a large and diverse sample set, and method comparison to another validated LC-

MS/MS method using animal origin deconjugase and to microbiological assay (Paper II, III) 

Part 3: Development of the nanocapsules containing L-5-CH3-H4folate using electrospraying as 

encapsulation technique and their incorporation into food matrix (Paper IV) 

 

The thesis is structured as follows: The background information of folate is presented in Chapter 2. 

Chapter 3 is a summary of the experimental part of the thesis that is attached in Papers I-IV. 

Chapter 4 provides brief information on folate analysis in food and presents additional information 

on method development that was not included in Paper I. Chapter 5 is a general discussion on 

method comparison studies and folate content in food based on the data presented in Papers II and 

III. Chapter 6 is presenting a discussion on folate fortification in food with references to Paper IV. 

Chapter 7 is a general conclusion about the new knowledge obtained in this thesis, whereas 

suggestions for future perspectives are given in Chapter 8.   
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Chapter 2: Folate 

This section provides essential background information on folate. It describes nomenclature and 

chemistry of folate, as well as metabolism and bioavailability. The information on the folate 

deficiency and dietary intake of folate are included. 

2.1. Discovery and significance of folate 

In 1931, Lucy Wills discovered an anti-anemia factor by using yeast extract to treat macrocytic 

anemia in pregnant women (Wills, 1931). It took 10 years until that curative agent was isolated 

from spinach leaves, defined as an acid and received the name folic acid from Latin word folium, 

meaning leaf (Mitchell et al., 1941). Even though originally named as folic acid, nowadays 

naturally occurring folate forms are named folate, whereas folic acid is a term used for the synthetic 

form of the vitamin. Folate is a group of essential compounds synthesized by plants and 

microorganisms, since their biosynthesis pathways are absent in animals (Saini et al., 2016). They 

play a key role in association with vitamins B6 and B12 in the synthesis, reparation and methylation 

of DNA, and also as a cofactor in numerous metabolic reactions. Together with these vitamins, 

folate is involved in two major inter-related cycles: methylation cycle and DNA biosynthesis cycle 

(Crider et al., 2012). They are responsible for homocysteine remethylation which is catalyzed by the 

vitamin B12-dependent enzyme methionine synthase. When folate status is poor, the ability of the 

cell to remethylate cellular homocysteine is very low and this results in increased plasma 

homocysteine levels, which presents an increased risk of various chronic diseases (Fan et al., 2017). 

In DNA biosynthesis cycle, folate plays a key role in one-carbon metabolism, enabling the transfer 

of one-carbon units during the synthesis of purine and pyrimidine precursors of nucleic acids, 

required for normal cell division, growth and production of cells (McGarel et al., 2015). Due to 

their connection with vitamin B12 and B6, it is very hard to access the level of subclinical 

deficiency. Plasma levels of folate are inversely related to plasma homocysteine levels at 

concentrations <40 mM, suggesting a link between folate intake and reduced risk of vascular 

diseases (Scaglione & Panzavolta, 2014; Voutilainen et al., 2001; Blom & Smulders, 2011). 

Numerous studies have shown that mothers who have inadequate folate intake are at higher risk of 

giving birth to a child with NTDs which include complex congenital malformations of the central 

nervous system resulting from failure of the neural tube closure during embryogenesis (Imbard et 

al., 2013; Pitkin, 2007; De Wals et al., 2007). Both deficiency and abundance or over-
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supplementation of folic acid, in addition to other conditions, may contribute to breast 

carcinogenesis at different stages of tumor development or in different neoplastic or tumor 

phenotypes (Stolzenberg-Solomon et al., 2006), whereas folate deficiency can contribute to 

neurological damage and cause Alzheimer’s disease (Snowdon et al., 2000). 

 

2.2. Nomenclature and chemistry of folate 

Folate is a generic term for a group of compounds that exhibit similar chemical characteristics and 

biological activity, but they differ in chemical structure. The basic structure is composed of 

pteridine ring (2-amino-4-hydroxy-6-methylpterin) that is connected by methylene bridge to para-

aminobenzoate which is linked to one or more (2-9) L-glutamic acid residues with ɣ-peptide bond 

(Figure 1).  

 

 

Figure 1 Structure of folate, showing different oxidation states 
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In 1944, Keresztesy introduced a word vitamer as any of a number of chemical compounds that 

have similar chemical structure, and comparable biological activity within the same vitamin family 

(Keresztesy, 1944). Due to the complex structure, and possible differences at three sites of a 

structure, there are a large number of folate forms, or possible vitamers. Firstly, there are three 

possible oxidation states of the pteridine ring. It can be fully oxidized, as it is in the synthetic form 

of folate folic acid, partially reduced at 7,8-position (H2folate) or fully reduced. Fully reduced form 

is called 5,6,7,8-tetrahydropteroylglutamic acid or tetrahydrofolate (H4folate) according to IUPAC 

(Quinlivan et al., 2006). Secondly, naturally occurring biologically active tetrahydrofolate forms 

can be substituted with either methyl (CH3), formyl (HCO), or formimino (CH=NH) group on the 

N
5
 or N

10
 position of the pteridine ring, or N

5
 and N

10
 can be linked to form 5,10-methenyl- (5,10-

CH
+
=) or 5,10-methylenetetrahydrofolate (5,10-CH2-) as shown on Figure 2 (Jägerstad & 

Jastrebova, 2013).  

 

Figure 2 C1 units carried by tetrahydrofolate - biologically active forms of folate 

 

Thirdly, the polyglutamyl chain of folate is usually composed of up to 8 glutamate residues (Ndaw 

et al., 2001), even though lengths of up to 10 or 14 glutamate residues were also recorded (Garratt 

et al., 2005). All these structural differences contribute to the wide number of naturally occurring 

folate forms, which can result in more than 250 different folate forms. 
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Folate forms are sensitive to various environmental conditions such as exposure to light, oxygen, 

high temperatures and the changes in pH values. Due to the various substituents on N
5
 and N

10
 

positions, their stability in water solutions changes depending on the conditions mentioned above, 

and it decreases as follows: 5-HCO-H4folate > 5-CH3-H4folate > 10-HCO-H4folate > H4folate 

(Delchier et al., 2016). At acidic pH values, 10-HCO-H4folate, 5-HCO-H4folate and 5-NH=CH-

H4folate are cyclized to 5,10-CH
+
=H4folate, where the rate of interconversion depends on the 

extraction buffer and its pH. At physiological pH values, 5,10-CH2-H4folate dissociates to 

formaldehyde and H4folate, which results in joint quantification of these folate forms during folate 

analysis which is normally performed using these extraction conditions (e.g. extraction at pH 7.85) 

(Quinlivan et al., 2006). At pH 10, a little amount of 5,10-CH
+
=H4folate is present, as the 

equilibrium between 5,10-CH=H4folate and 10-HCO-H4folate is shifted toward 10-CHO-H4folate 

(Quinlivan et al., 2006). Folic acid is the oxidized synthetic form of folate which is only found in 

fortified foods, supplements and pharmaceuticals and it shows greater stability than the reduced 

folate forms. It does not exist in nature, even though oxidation of naturally occurring folate to folic 

acid is seen in stored and cooked foods (Forssén et al., 2000). 

 

2.3. Folate metabolism 

Folate forms play a crucial role in fundamental cellular processes, such as biosynthesis of nucleic 

acids, transport of methyl group and amino acid metabolism. In other words, they are responsible 

for the normal function of three important intracellular cycles in humans; folate cycle, methylation 

cycle and DNA biosynthesis cycle (Scaglione & Panzavolta, 2014). Dietary folate forms have no 

coenzyme activity until they are reduced to H4folate via H2folate in two reduction steps catalyzed 

by the enzyme dihydrofolate reductase (DHFR). H4folate is the active form of folate that carries C1 

units and therefore plays an important role in thymine synthesis, serine/glycine metabolism and 

methionine/S-adenosyl methionine (SAM) regeneration. SAM is the universal methyl group donor 

and the second most common enzymatic cofactor in human metabolism after adenosine 

triphosphate (ATP) (Zhang & Zheng, 2016; Ducker & Rabinowitz, 2017). H4folate is metabolized 

in the reversible reaction by the B6-dependent enzyme serine hydroxymethyltransferase (SHMT) to 

generate glycine and 5,10-CH2-H4folate (Gregory et al., 2000). 5,10-CH2-H4folate is a hub of the 

folate pathway, since it can lead to 4 different outcomes, as shown on Figure 3: 
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1) It can be processed back to H4folate by SHMT, depending on the amount of glycine and 

serine. 

2) It can be processed back to H2folate by the enzyme thymidylate synthase (TYMS) during 

the production of nucleic pyrimidine base deoxythymidine monophosphate (dTMP) in DNA 

synthesis. 

3) It can go towards the methylation cycle, by converting to 5-CH3-H4folate by the action of 

B2-dependent enzyme methylenetetrahydrofolate reductase (MTHFR) that is then utilized to 

methionine if the cell needs SAM. 

4) It can go towards the production of 5,10-methenyl-H4folate and 10-HCO-H4folate which in 

further metabolic processed take part in purine synthesis. 

Therefore, intracellular folate metabolism is at a branch of two major inter-related metabolic cycles: 

DNA biosynthesis cycle and methylation cycle. The role of 5,10-CH2-H4folate is dependent on the 

cell requirements and on the state of vitamins B2, B6 and B12 as they are cofactors in folate cycle. 5-

CH3-H4folate is a methyl donor for a homocysteine remethylation to form methionine. This reaction 

is of a particular physiological importance because methionine is the substrate for SAM synthase. 

SAM plays a major role in biosynthetic processes including phosphatidylcholine, creatine, and 

polyamine synthesis (Mudd et al., 2007; McBreairty et al., 2013), whereas phosphatidylcholine 

synthesis is the largest source of S-adenosylhomocysteine (SAH) (Stead et al., 2006). Therefore, 

SAM/SAH balance is extremely important in order to control the methylation of DNA and 

phospholipid synthesis. The synthesis of methionine from 5-CH3-H4folate is catalyzed by the B12-

dependent methionine synthase (MST) (Ducker & Rabinowitz, 2017). If a B12 deficiency occurs, 

the production of SAM is reduced, and the content of homocysteine and 5-CH3-H4folate is 

increased, which results in inhibition of MTHFR. Furthermore, the activated H4folate pool is 

decreased and the ability of the cell to produce methionine, SAM and dTMP is very low, which 

results in folate deficient state. On the other side, the reduction of synthetic folic acid to H4folate 

does not require MTHFR and MST, because of what folic acid may mask the signs of vitamin B12 

deficiency. Therefore, plasma homocysteine levels reflect cellular folate and vitamin B12 use, and 

are indirect indicator of their levels (Ma et al., 2017).  
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Figure 3 Intracellular folate metabolic pathways. Modified from Scaglione & Panzavolta (2014). 

 

2.4. Absorption and bioavailability 

Naturally occurring folate forms, which mainly exist in their polyglutamylated form, are absorbed 

in the jejunum of the small intestine as monoglutamyl forms. Therefore, their polyglutamyl chain 

has to be removed by intestinal GGH, following reduction and methylation in the enterocyte 

(Halsted, 1989). The deglutamylation is catalyzed by a GGH placed on the jejunal brush border 

membrane, whereas the GGH from pancreatic solution can also contribute to deglutamylation 

(Gregory, 2001). There are two possible folate absorption systems. The first and the most common 

one is a carrier mediated mechanism known as a saturable transport, where folate forms are bound 

to membrane-associated folate-binding proteins (FBP), following the transport across the brush-

border membrane. The second one is a passive diffusion, which occurs only when the intraluminal 

concentration of folate is very high (>10 µM/L), and it is called non-saturable diffusion. It is 

normally caused by the consumption of fortified food and/or folate supplementation, while it is 

hardly activated by dietary folate intake (Brouwer et al., 2001). The brush border GGH is zinc-

dependent and is active while the lumen pH is 6.5-7. Therefore, if there is a zinc deficiency and/or a 

more acidic pH, the GGH’s activity is lower and consequently the folate absorption also (Pfeiffer et 

al., 1997).  
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After absorption, folate forms enter the hepatic portal vein in monoglutamylated form mostly 

present as 5-CH3-H4folate. Absorbed folate is transported to liver, where approximately a half of the 

body pool of folate forms is stored, and 10-20% absorbed during the first-pass. The rest is 

transported via circulation to cells in other body tissues (Ohrvik & Witthoft, 2011). When stored, 

folate forms are in polyglutamylated form, where addition of glutamyl residues traps them within 

the cell.  

There are several factors that may hinder the absorption of naturally occurring folate forms, which 

could be divided into two groups: pre-absorptive and post-absorptive variables (Gregory et al., 

2005). Pre-absorptive variables include: 

1) Entrapment of folate forms in food matrix, or partial release from cellular structures. 

2) Gastric instability of folate forms in the low pH environment of gastrointestinal tract. 

3) Inability of GGH to deglutamylate folate forms due to the alteration of the pH from optimal. 

4) Portion size of the ingested food. 

Some dietary constituents such as organic acids (citrates, malates, ascorbates and formats) can 

contribute to the inhibition of GGH (Wei & Gregory, 1998). However, these factors are irrelevant in 

the case of folic acid as it is synthetic monoglutamate form which is less sensitive to the variability 

in conditions of gastrointestinal tract. On the other side, post-absorptive factors influence both 

naturally occurring folate forms and folic acid, as they are specific to the individual, and include: 

1) Individual’s status of vitamins (e.g. B12, B6, B2). 

2) Genetic polymorphism. 

3) Individual’s variation in the ability to metabolize folic acid ingested in large amounts. 

4) Drug/alcohol interactions. 

Chemo-therapeutic drugs, e.g. 5-fluorouracil (5-FU) or methotrexate (MTX) as shown on Figure 3, 

inhibit enzymes responsible for tumor cell growth, but simultaneously unable the cell division of 

the beneficial cells (Caudill, 2010; Gregory et al., 2005). The factors mentioned above are also 

affecting folate bioavailability as these two terms are tightly connected. There are several 

definitions of bioavailability, but the most commonly used one was defined by Jackson (1997), who 

defined it as “a fraction of an ingested nutrient that is available for utilization in normal physiologic 

functions and for storage”. It is a concept associated with the efficiency of absorption and a 

metabolic utilization of an ingested nutrient. There are many approaches that have yielded 

information regarding folate bioavailability, such as in vivo models (animal and human studies), and 
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in vitro methods. The assessment of urinary folate is also used since folate is excreted from the 

body mostly by urine and in lower extent by feces (Gregory, 2001). It is estimated that 0.3-0.8% of 

the folate pool is excreted per day, which means that folate from the diet is absorbed effectively and 

stored in tissues (Ohrvik & Witthoft, 2011). The use of animal studies is discontinued because of 

differences between the intestinal deconjugation mechanisms between animals (chickens and rats) 

and humans (Gregory, 2001). Human studies use the area under the curve (AUC) approach for 

assessment of folate bioavailability. The AUC approach is based on the assumption that with 

standardized study design, the post dose folate concentrations in plasma/serum sampled over time 

correspond to the folate fraction that was absorbed from a single dose. By comparing the sample 

doze with an oral reference dose of supplemental folate, which is normally folic acid, the 

information of relative folate absorption is obtained (Ohrvik & Witthoft 2011). However, Wright et 

al., (2010) recommended the use of 5-CH3-H4folate as a reference folate when food folate 

bioavailability is being estimated, since their comparison with folic acid showed that the estimated 

relative bioavailability of food folate is lower than the one of folic acid when used as a reference.  

The possible cause of that could be due to the differences in the absorption between folic acid and 

5-CH3-H4folate. As mentioned before, 5-CH3-H4folate is absorbed as a monoglutamyl form, 

whereas folic acid has to pass two metabolic steps in order to be converted to biologically active 

form H4folate and an additional one to be converted to 5-CH3-H4folate. 20 years ago, the use of 

isotopically labeled internal standards increased sensitivity in folate quantification, by being used 

with chromatographic detection, which enabled quantification of different folate forms. The use of 

isotopic methods using stable isotope-labeled folate forms, combined with the AUC approach and 

chromatographic methods showed to be the most specific and precise, enabling detection of a very 

low individual folate concentrations in plasma/serum (Gregory, 2001). 

Folate bioavailability is highly variable and mostly incomplete, due to many factors that can affect 

it. The overall absorption of dietary folate is estimated to 50%, but it can vary from 10-90% (Combs 

Jr. & McClung, 2017). Some minor differences in the bioavailability of various oxidation forms of 

folate are possible, but also in the length of the polytlutamyl chain (Gregory et al., 1992). A relative 

bioavailability of long chain (n = 5-7) polyglutamyl folate forms ranges from ~50 to 100%, with an 

average of ~75% when compared to monoglutamyl (Gregory, 1995). Therefore, it is considered that 

the increased polyglutamyl chain reduce the bioavailability. Sauberlich et al. (1987) reported that 

folate bioavailability in a typical mixed diet was no more than 50% relative to folic acid in a 

formula diet, which led to conclusion that naturally occurring food folate forms have a lower 
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bioavailability than folic acid (Caudill, 2010). However, it should be recognized that not all food 

sources of folate exhibit poor bioavailability, since 60-90% of folate bioavailability relative to folic 

acid was found in fruits and vegetables (Brouwer et al. 1999; Winkels et al. 2007).  

The terms bioaccessibility and bioefficacy are also described in order to describe bioavailability. 

Bioaccessibility is typically based on in vitro studies and refers to the fraction of a nutrient that is 

released from food and is available for intestinal absorption (Carbonell-Capella et al., 2014). In 

vitro studies are more rapid and easier than in vivo studies for assessing folate bioavailability and 

the main hypothesis in this approach is that the components of food would reduce the 

bioavailability of polyglutamyl folate forms by inhibiting deconjugation (Gregory, 2001). 

Bioefficacy is the proportion of ingested nutrient that is converted to its active form (Brouwer et al., 

2001). Bioavailability differs widely between investigated foodstuffs. Mönch et al. (2015, 2016) 

conducted a short-term human study and reported folate bioavailability for spinach, wheat germ and 

two different Camembert cheeses being 73%, 33%, and 9% and 68%, respectively. Ringling and 

Rychlik (2017) used in vitro model to study folate bioaccessibility from the same foodstuffs and 

concluded that the results correlate well with the results for bioavailability from human study. 

Comparison of two different types of Camembert cheeses indicates that folate’s distribution and the 

composition of the foodstuff affect the bioavailability and bioaccessibility of folate forms, as they 

have different composition of microbial cultures and different folate distributions in the foodstuff. 

Furthermore, Camembert cheese in which folate bioavailability was 9% has 51% of H4folate, and 

contained most of its folate forms (80%) in the rind, which may hinder folate accessibility during 

gastrointestinal ingestion. The H4folate presented 19% of the folate content in the other Camembert 

cheese showing higher bioavailability, whereas more than 60% of folate could be found in the soft 

dough matrix of the cheese (Mönch et al., 2016). As H4folate had lower bioavailability than other 

monoglutamate forms, and it was completely lost during the in vitro simulation, this could be an 

explanation for a lower folate bioavailability from this Camembert cheese. The bioavailability of 5-

CH3-H4folate, as the major naturally occurring folate form (Gregory, 2012), was dependent on the 

food matrix, as it was shown in this study. 

In 1998, the Institute of Medicine introduced the use of dietary folate equivalents (DFE) in order to 

adjust for the differences in bioavailability of various folate forms in the USA (Institute of 

Medicine, 1998). DFE are defined as: naturally occurring food folate (µg) + 1.7 x of synthetic folate 

(µg), which represents the adjustment for the greater contribution of synthetic folate due to its 
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generally greater bioavailability. The factor 1.7 was calculated from the ratio of 85% and 50%, 

which are recognized as the relative bioavailability of folic acid consumed by food (Pfeiffer et al., 

1997) and dietary folate (Sauberlich et al., 1987), respectively. In the other words, the 

bioavailability of naturally occurring food folate is 60% that of folic acid when consumed with a 

meal (50/85x100). However, previously mentioned studies showed that folate bioavailability is 

dependent on many factors. The C1 substitution and the length of the polyglutamyl chain should be 

minor factors, however, the food matrix and entrapment of folate could be the major factor 

influencing bioavailability and bioefficacy, together with the amount of folic acid that is consumed 

(Brouwer et al., 2001). Therefore, a further research should be done on the methods assessing 

bioavailability the same as the development of the specific analytical methods which will enable a 

proper quantification of naturally occurring folate forms, since the reliable method for folate 

determination is a priority. 

 

2.5. Folate deficiency and health outcomes 

Due to the essential role that folate plays in fundamental cellular processes its adequate intake is of 

a high importance for human health. An adequate folate intake reduces the risk of many illnesses, 

while the suboptimal intake causes various conditions that lead to the development of severe 

chronic diseases. Folate status is most often assessed by measuring folate concentrations in the 

plasma, serum or red blood cells, and combining them with the data of total homocysteine 

concentration and unmetabolized folic acid in order to confirm folate deficiency (Sobczynska-

Malefora & Harrington, 2018). The most common laboratory test used for the evaluation of folate 

status is determination of the folate in plasma/serum. However, circulating folate levels are strongly 

affected by the recent intake, and can be changed by one folate-rich meal. Furthermore, it seems 

that in about 5% cases where serum folate concentration is normal, there is still a possibility of 

folate deficiency (Galloway & Rushworth, 2003). Therefore, the determination of a folate in red 

blood cells (RBC) is a stronger indicator of a folate status, since it is not affected by the changes in 

dietary intake. Folate content in RBC is fixed during the erythropoiesis, so the low values of the 

results that present 4 months period indicate folate deficiency, which was defined as <6.8 nmol/L 

and <340 nmol/L for serum/plasma and RBC folate concentrations, respectively (Sobczynska-

Malefora & Harrington, 2018). Folate deficiency is a huge problem in many parts of the world and 

it is mostly caused by an inadequate folate intake. However, an increased need for cell division 
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caused by conditions such as pregnancy, lactation and puberty, pathological conditions, anti-folate 

drugs or some other metabolic inhibitors may also be the cause of folate deficiency (Bailey et al., 

2015). Several genetic mutations named polymorphisms that occur in enzymes controlling folate 

absorption, transport and metabolism may have an effect on folate status and health. A 

polymorphism of a high importance for folate metabolism is the 677CT base substitution in the 

gene that encodes the enzyme MHTFR that catalyzes the reduction of 5,10-CH2-H4folate to 5-CH3-

H4folate, which is connected to 70% lower MHTFR enzyme activity for homozygotes (T/T) and 

35% lower activity for heterozygotes (C/T). The activity of MHTFR enzyme is also affected by the 

1298AC polymorphism, but to a lesser extent (Chango et al., 2000; Tamura & Picciando, 2006). 

Another important polymorphism in folate and methylation cycles is 2756AG, which reduces the 

activity of MST, disabling the conversion of homocysteine to methionine (Coppedè et al., 2013). 

This mutation causes the increased homocysteine concentration in blood, which is a risk factor for 

development of various diseases such as NTDs, cancer, cardiovascular diseases and neurological 

disorders, and is connected to all-cause mortality risk (Fan et al., 2017). There is an assumption that 

polymorphisms may lead to the occurrence of NTDs, even though no consistent evidence for this 

statement has been found (De Marco et al., 2002; Coppedè et al., 2013; O’Leary et al., 2005; Yan et 

al., 2012; Yu et al., 2014).  

NTDs such as; spina bifida, encephalocele, and anencephaly, are a group of birth disorders that 

include a set of serious developmental defects connected to inability of a closure of neural tube 

(Naderi & House, 2018). They occur in the first month of pregnancy when the neural tube is 

formed. Therefore, an adequate folate intake is not only important for mother’s, but also for infant’s 

health. During pregnancy, folate requirements are increased to enable a rapid cell replication and 

growth of fetal, placental and maternal tissue (Tamura & Picciando, 2006). Food and Drug 

Administration (FDA) authorized food fortification with folic acid in the USA and Canada, which 

became mandatory in 1998, in order to reduce the prevalence of NTDs caused by the inadequate 

intake of naturally occurring folate forms (Food and Drug Administration, 1996), that resulted in 

significant reduction of NTDs occurrence rates (Imbard et al., 2013; Pitkin, 2007). 

Despite playing an important role in reduction of NTDs, an inadequate dietary folate intake, and 

high homocysteine concentration are also associated with the risk of several cancers, such as 

leukemia, colorectal, breast, and prostate cancer (Bailey et al., 2015; Pieroth et al., 2018). Folate 

deficiency may disturb the synthesis of thymidylate and purines, which results in incorporation of 
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uracil into DNA, which destabilizes DNA. Furthermore, it affects methylation of DNA, which 

affects gene expression and causes carcinogenesis (Hu et al., 2016). However, anti-folate drugs 

such as 5-FU or MTX derivatives are used in chemotherapy to prevent the replication and growth of 

cancer cells, simultaneously disabling the function of folate metabolism. Therefore, the 

supplementation by folic acid is recommended in the cancer treatment, but precautious should be 

taken related to the dose, as it seems that the dose, the folate form and timing of folate 

supplementation determine the efficiency of the therapy (Sanderson et al., 2007). Intake achieved 

by high doses of supplemental folic acid have been associated with an increased risk of colorectal, 

breast and prostate cancer (Sanderson et al., 2007; Stolzenberg-Solomon et al., 2006; Wien et al., 

2012), even though the previously mentioned MTHFR gene polymorphism could also play a role in 

development of breast cancer (Zhang et al., 2015). 

The most common consequence of folate deficiency is a megaloblastic anemia, which is caused by 

inadequate nucleic acid synthesis and impaired cellular division, where red blood cells do not fully 

mature and stay large. As mentioned, folate plays a key role in the methylation cycle, where it 

converts homocysteine to methionine. Folate deficiency results in hyperhomocysteinemia, which 

could be also caused by polymorphisms on MST genes or vitamin B12 deficiency as B12 acts as a 

co-factor for MST. Hyperhomocysteinemia has been related to an increased risk of hypertension, 

cardiovascular diseases and cerebrovascular diseases (Blom & Smulders, 2011; Bailey et al., 2015). 

In addition, polymorphisms on MHTFR gene 677TC and TYMS 3/3TC, affect homocysteine 

and folate responses to folate intake, and present a high risk for development of cardiovascular 

diseases and ischemic stroke, but also of neurological disorders such as Alzheimer’s disease and 

vascular dementia (Vijayan et al., 2016; Smith & Refsum, 2016). Ma et al. (2017) reported that low 

blood levels of folate and vitamin B12 and high levels of homocysteine were associated with 

Alzheimer’s disease and mild cognitive impairment in older Chinese population.  

Due to the tight connection with vitamin B12 in folate and methylation cycle, the deficiency of 

vitamin B12 can lead to folate deficiency by enabling conversion of 5-CH-3-H4folate to H4folate, 

which is called “methyl trap”, since folate is “trapped” in the form of 5-CH3-H4folate (Sauer & 

Wilmanns, 1977). The lack of a biologically active folate form H4folate disables the production of 

5,10-CH2-H4folate that plays a role in many metabolic pathways. However, when the folate intake 

is adequate and vitamin B12 is deficient, there is a constant supply of folate which enables 

production of red blood cells and DNA, which can mask vitamin B12 deficiency (Moll & Davis, 
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2017). Therefore, it is of a high importance to measure the status of both vitamins in order to be 

sure that a proper type of deficiency is diagnosed as the cases of masking folate deficiency by B12 

deficiency have also been reported (Antony, 2017). 

2.6. Folate recommendations and intake  

Requirements for folate are changing during the life time depending on the age, sex, special 

conditions such as pregnancy or lactation, and other physiological changes. Moreover, gene’s 

polymorphisms of the key enzymes involved in folate biosynthetic pathways can also contribute to 

the change in dietary recommendations of individuals. If the differences in bioavailability of various 

folate forms would also be taken into consideration, it is becoming complicated to establish dietary 

recommendations. Worldwide countries have specified dietary recommendations for folate intake. 

The Institute of Medicine (1998) defined the most relevant for the folate intake as; estimated 

average requirement (EAR), recommended dietary intake/allowance (RDI/RDA/RI), and tolerable 

upper intake level (UI). 

EAR:     The intake that would meet the requirements of 50% of the population. 

RDA/RDI/RI:    Based on the EAR and corrected for the population variance. It is the average daily 

dietary intake level that is sufficient to meet requirements of ~98% of the 

population (NNR 2014). 

UL:  “Maximum daily intake levels at which no risk of adverse health effects is expected 

for almost all individuals in the general population, including sensitive individuals, 

when nutrient is consumed over long periods of time” (Institute of Medicine 2000). 

Worldwide established recommendations for dietary intake of folate (µg/day) are shown in Table 1. 

Denmark is using Nordic Nutrient Recommendations, where the recommended folate intakes for 

children are 80 µg/day (2-5 years), 130 µg/day (6-9 years) and 200 µg/day (10-13 years), adjusted 

on the basis of bodyweight. The folate intake for adults is 300 µg/day, whereas women of 

reproductive age and women in pregnancy and lactation are recommended to have an intake of 400 

µg and 500 µg of folate per day, respectively. Danish average dietary folate intake of 350 µg/10 MJ 

is the highest among Nordic countries, even though is shown to be inadequate related to the 

reference values for heterogeneous groups (450 µg/10 MJ) (NNR, 2014). 
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Table 1 Dietary recommendations of dietary folate (µg/day) for adults 

 Nordic 

countries1 

United 

Kingdom2 

Germany, 

Switzerland, 

Austria3 

The 

Netherlands4 

South- 

-east 

Asia5 

United 

States and 

Canada6 

FAO/

WHO7 

Australia, 

New 

Zealand8 

µg/day of folate µg/day of DFE 

Category** RI RNI RI RDA/AI RDA RDA/AI RNI RDA/AI 

Males 300 200 300 300 400 400 400 400 

Females 300 (400)* 200 300 (400)* 300 400 400 400 400 

Pregnancy 500 300 550 400 600 600 600 600 

Lactation 500 260 450 400 500 500 500 500 

*recommendation for women of a reproductive age 

**Units used to express recommended dietary intake recommendations differ worldwide. DFE, dietary folate equivalent; 

RI, recommended intake; RNI, recommended nutrition intake; RDA, recommended dietary allowance; AI, adequate 

intake. 

1Nordic Nutrition Recommendations, 2014; 2Department of Health, 1991; 3Krawinkel et al., 2014; 4Health Council of 

The Netherlands, 2008; 5Barba & Cabrera, 2008; 6Institute of Medicine, 1998; 7World Health Organization and Food 

and Agriculture Organization of the United Nations, 2004; 8Australian Government Department of Health and Aging, 

2006 

In 1998, the mandatory food fortification of cereal grain products was implemented in the United 

States, Canada and Costa Rica, followed by many other countries, which reduced significantly 

occurrence of NTDs (Crider et al., 2011). However, the increased intake of folic acid by fortified 

food in combination with dietary folate intake and supplementation opened new challenges, since 

possible adverse effects of excessive folic acid consumption occurred. A dose greater than 280 µg 

of folic acid is enough to saturate the hepatic biotransformation of folic acid and result in 

appearance of “unmetabolized folic acid” (Tam et al., 2012). Institute of Medicine defined UL of 

1000 µg/day of folic acid for adults, whereas there is no UL for naturally occurring food folate 

forms. Adverse health effects were observed in the combination of high level of folate in blood 

(≥45.3 nmol/L) with poor vitamin B12 status. Reynolds (2016) concluded that the UL for folic acid 

is set too high as adverse neurological effects have been observed from the long-term exposure to 

folic acid at doses of 500-1000 µg per day in the presence of B12 deficiency. The European Union 

sat recommendations in order to reduce the prevalence of folate deficiency, but no mandatory 

fortification was introduced (European Union, 2002, 2006). At the moment, there is still no 

consensus about the use of folic acid as some researchers suggest reduction of the doses (Dolin et 

al., 2018; Pitkin, 2007), while the others find that there is no need for having UL and that 
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mandatory food fortification should be introduced, such as in the United Kingdom (Wald et al., 

2018; Morris et al., 2016). 

Institute of Medicine (1998) defined the EAR for folate as a 320 µg/day. In 1997, a large Dutch 

study summarized folate intake of European countries and reported the intake of 291 µg/day for 

men and 247 µg/day for women, with a wide variation (de Bree et al., 1997). If the EAR is reliable, 

these findings would mean that 20 years ago there was an obvious folate deficiency within the 

Europe, as the actual intake was lower than EAR. In 2013, the International Life Sciences Institute 

(ILSI) evaluated prevalence of low micronutrient intakes of different European countries (Mensink 

et al., 2013). They used UK’s recommendations as a reference for folate intake in which RNI was 

defined as 200 µg/day as is shown in Table 1. The mean folate intake from the base diet ranged 

from 156 µg/day (The Netherlands, 19-30 years) to 299 µg/day (Denmark, 18-60) for women and 

from 199 µg/day (The Netherlands, over 60 years) to 333 µg/day (Poland, 18-60 years) for men, 

which led to a conclusion that the folate intake is adequate. However, if the NNR would be taken as 

a reference, the mean folate intake would be inadequate for women of reproductive age. Tetens et 

al. (2011) evaluated the intake of micronutrients from the diet and from supplements in a 

representative sample of the Danish adult population. The medians of a dietary intake of non-users 

of supplements among males (18-49 years) and females (18-49 years) was 311 µg/day and 264 

µg/day, respectively, indicating that the dietary intake of women in a reproductive age was 

inadequate. However, >50% of the subjects from the study were classified as users of supplements, 

and their folate intake was adequate. Moreover, Danes with special types of diet, such as vegetarian 

or vegan, have folate intakes ranging from 758 µg/day (men) to 601 µg/day (women) (Kristensen et 

al., 2015), which exceeded NNR of 300 µg/day. However, it is very challenging to compare intakes 

between the countries as there are variations between the methods used for the determination of the 

folate content in national food databases. 

2.7. Food sources 

Folate is synthesized by plants and microorganisms, and it is therefore present in most of foodstuffs 

(Saini et al., 2016; Hanson & Gregory, 2011). Contents of selected food sources are presented in 

Table 2. The data shows that yeast and offal, including mainly liver, are the best folate sources, 

which is expected since yeast is known by folate production and liver is the folate storage organ in 

mammals (Korhola et al., 2014; Ohrvik & Witthoft, 2011). From the foodstuffs of plant origin, 

green leafy vegetables, spices and herbs, and legumes are the best folate sources, followed by 
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certain fruits such as berries and citrus. Moreover, tropical fruits and their products are shown to be 

great sources of folate with total folate content ranging up to 440 µg/100 g of fresh weight 

(Akilanathan et al., 2010; Striegel et al., 2018).  

 

Table 2 Selected food sources of folate. Data are taken from Frida – Danish Food Composition 

Databank (Revision 3a, https://frida.fooddata.dk) 

Food group Foodstuff Folate content (µg/100 g) 

Yeast Yeast, dried 4000 

Yeast, extract, Marmite 1010 

Yeast, baker’s, compressed 1000 

Offal Liver, ox, raw 2300 

Liver, pig, raw 1000 

Liver, cod, raw 300 

Pate, liver 252 

Kidney, ox, raw 80 

Vegetables Spinach, raw 220 

Cauliflower, all varieties, raw 165 

Brussels sprouts, raw 130 

Carrot, raw 46 

Fruits Strawberries, raw 117 

Avocado, raw 93 

Orange, raw 46 

Raspberry, raw 44 

Legumes Peas, chick, dry, raw 180 

Nut, pea, oil-roasted and salted 124 

Walnuts, dried, raw 66 

Spices and herbs Curry powder 154 

Dill, raw 116 

Chives, raw 80 

Coriander, leaf, raw 62 

Cereals Rice, brown, raw 53 

Rice, polished, raw 31 

Bulgur 21 
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Table 2 Selected food sources of folate. Data are taken from Frida – Danish Food Composition 

Databank (Revision 3a, https://frida.fooddata.dk) (continued) 

Dairy and egg products Egg, yolk, raw 51 

Yoghurt, plain, whole milk 21 

Milk, whole, 3.5% fat 11 

Egg, egg white, raw 7 

Meat and fish products Chicken, flesh and skin, raw 24 

Tuna, raw 15 

Herring, raw 10 

 Roast beef, sliced 9 

 

Even though yeast, offal and tropical fruits are high in folate, their consumption is lower than the 

one of fruits and vegetables, and consequently their contribution to the folate intake too. 

Dietary survey conducted from 2011-2013 showed that the food groups of vegetables, breads and 

cereals, and fruits contribute the most to the dietary folate intake among Danish population 

(Pedersen et al., 2015). Even though there is no mandatory fortification of cereals grain products in 

Europe, and these products are not considered as folate-rich foodstuffs, they contribute significantly 

to the dietary folate intake among Danes, showing the importance of consumption on the intake.  

 

Figure 4 Contribution of various food groups to the folate intake among Danish population 

(Pedersen et al., 2015) 

Vegetables: 

26%

Breads and 

cereals: 22%
Fruits: 13%

Milk: 8%

Meat: 8%

Cheese: 6%

Potato: 5%

Drinks: 3%

Others: 2%
Juices: 2% Fish: 1%

Poultry: 1% Eggs: 1% Snacks: 

1%

https://frida.fooddata.dk/
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Furthermore, raw foodstuffs normally have higher folate content than processed ones, due to its 

instability to various experimental conditions. Delchier et al. (2016) reviewed an effect of various 

cooking processes such as blanching, steaming, cooking in boiling water, freezing, canning and 

juicing on the folate’s stability in fruits and vegetables. The highest losses of folate were recorded 

after canning where 65% and 77% of folate was lost in spinach and chickpeas, respectively. On the 

other side, no significant reduction was found for steaming and microwaving of peas. Leaching was 

also described as a mechanism of folate loss via diffusion which occurs when foodstuffs are flushed 

with liquid (mostly water) during processing and folate forms were found in covering liquid 

(Delchier et al., 2014). It mostly occurs in dry legumes which have to stand in water before 

cooking. Folate content was analyzed in raw, cooked and malted pseudocereals, such as quinoa, 

amaranth and buckwheat. Total folate content expressed as folic acid equivalent was 309 ± 8 

µg/100 g, 228 ± 24 µg/100 g and 153 ± 12 µg/100 g of dry weight of raw quinoa, amaranth and 

buckwheat, respectively. Boiling and steaming reduced the total folate content by 58% and 22%, 

respectively, whereas a 10-15% increase was observed in quinoa. Moreover, malting significantly 

increased total folate content in amaranth and buckwheat by 21% and 27%, respectively, while no 

significant change was observed in quinoa. The retention of folate vitamers was also studied and 

differences in stability of various folate forms were observed, depending on the foodstuff and 

processing procedure (Motta et al., 2017). Therefore, even though some foodstuffs are considered 

as good folate sources, their consumption, folate retention in specific food matrix during specific 

processing procedure and other previously mentioned factors will determine whether their 

contribution to the dietary intake is significant.  
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Chapter 3: Summary of papers describing the studies performed 

This PhD thesis is based on four research papers presenting the work performed on quantification 

of naturally occurring folate forms in various groups of foods and potential fortification strategy. A 

short summary of the papers is given here. It is recommended to read the research papers before 

continuing with reading the thesis. 

Paper I. The aim of the study was to develop and validate a rapid, sensitive and reproducible 

method for quantification of six naturally occurring folate forms, such as; tetrahydrofolate, 5,10-

methenyl-tetrahydrofolate, 10-formylfolic acid, 5-formyltetrahydrofolate, folic acid and 5-

methyltetrahydrofolate in food. The method was based on the use of recombinant plant origin 

deconjugase for folate deglutamylation. Folate forms were extracted from the food matrix by using 

a combination of a heat treatment and single-enzyme deconjugation, followed by the solid phase 

cleanup and detection by liquid chromatography-tandem mass spectrometry using electrospray 

ionization (LC-ESI-MS/MS). Three 
13

C5-labeled internal standards were used for the quantification, 

which resulted in acceptable calibration curve (R
2
>0.99 and trueness 85-115%), a limit of 

quantification at 0.1 µg/100 g, trueness at 80-120% in spiked samples, and a precision <10%. An 

interconversion of unstable formyl folate forms was also studied, and their joint quantification as a 

sum of folic acid equivalent was proposed.  

Paper II. The aim of the study was to compare the newly developed and validated method from the 

Paper I with the microbiological assay as the only standard method for folate determination in 

foodstuffs and another LC-MS/MS method using the deconjugase enzyme of animal origin such as 

rat serum and chicken pancreas. Both LC-MS/MS method included single-enzyme extraction, 

whereas microbiological assay used tri-enzyme extraction by human plasma as deconjugase. A 

round robin comparison was performed in which 89 samples representing food groups of fruits, 

vegetables, legumes, cereals, dairy products, meat and offal were analyzed for folate content. The 

significant bias (p ≤ 0.05) of 17% lower and 25% higher results was observed if the newly 

developed LC-MS/MS method using the enzyme of plant origin was compared to microbiological 

assay or another LC-MS/MS method, respectively. Interestingly, no difference in the folate content 

analyzed in legumes, which are considered as a complex matrix, was found between the three 

methods. This round robin comparison gave the insight in the performance of our newly developed 

method and showed that it could serve as a proper substitute to the currently standardized 

microbiological assay.  
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Paper III. The aim of the study was to examine folate distribution in commonly consumed raw 

materials from food groups of fruits, vegetables, legumes, cereals, dairy products, meat and offal 

and their contribution to the daily dietary intake. 89 food samples were analyzed for the folate 

content by the method developed in Paper I. Foodstuffs from food groups of offal (829 – 1897 

µg/100 g), vegetables (71 – 162 µg/100 g), legumes (73 – 115 µg/100 g) and certain fruits such as 

strawberries (79 – 94 µg/100 g) were shown to be “sources rich in folate” providing the highest 

folate intake and contributing to the recommended daily intake of up to 40% per serving, whereas 1 

serving of liver exceeded the recommended daily intake (400-600%). 5-CH3-H4folate was the most 

abundant folate form (>80%) in fruits, vegetables and certain legumes, whereas it was the second 

most abundant in liver and dairy products after formyl forms. Folate distribution can vary within the 

same food group and between different varieties of the same foodstuff. Commonly consumed 

foodstuffs such as meat (0.6 – 6 µg/100 g), cereals (4 – 41 µg/100 g), dairy products (6 – 41 µg/100 

g) and certain fruits as banana (20 – 22 µg/100 g), apple (0.7 – 5 µg/100 g) and tomato (12 – 24 

µg/100 g) are not good sources of folate. However, due to the increased consumption of these 

foodstuffs, they also contribute to the daily intake of folate. 

Paper IV. The aim of this study was to develop an effective encapsulation technique for 

stabilization of synthetic 5-methyltetrahydrofolate (L-5-CH3-H4folate). The encapsulation of L-5-

CH3-H4folate using combination of carbohydrates, such as glucose syrup and pullulan as 

biopolymers was tested. The encapsulation process was optimized, producing capsules with 100% 

of L-5-CH3-H4folate recovered from biopolymer solution. Stability study of produced capsules was 

performed by storing the capsules at room temperature, in the dark for 21 day. The use of ascorbic 

acid as antioxidant was also tested, which did not indicate any significant improvement of the 

stability of the capsules. However, encapsulation enabled oxidative stability of the capsules, as the 

stability of the free L-5-CH3-H4folate used as a control started to significantly decrease after day 7, 

decreasing for 40% in 21 day, whereas no difference was observed in folate content in the capsules 

from day 0 until day 21. A further step of incorporating the encapsulated L-5-CH3-H4folate in food 

matrix was performed, where all-purpose flour was enriched by 150 µg/100 g of L-5-CH3-H4folate, 

in either free or encapsulated form and was used for preparation of buns. The buns were baked at 

200°C/7.5 min and stored at room temperature in the dark for 9 days. No significant difference was 

observed in the oxidative stability of encapsulated folate, being 100%. However, the stability of free 

L-5-CH3-H4folate was significantly lower on day 9, decreasing from 100% to 88%. However, a 

further work should be done in order to test efficiency of this protective technique. 
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Chapter 4: Quantification of folate in food 

In order to examine the efficiency of the use of enzyme of plant origin for quantification in various 

food products, the analytical method for folate quantification has been developed and validated. 

This chapter describes the relevant background information for the choice of analytical method 

used in Paper I, II, III and IV. Section 4.1. presents the general information related to folate 

quantification in food. Section 4.2. summarizes development of LC-ESI-MS/MS, as folate 

quantification method, and it includes some unpublished results generated during the method 

development. Detailed description is given in Paper I.  

4.1. Folate analysis 

The differences in the behavior of various folate forms and the entrapment of the naturally 

occurring folate forms in the food matrix present a challenge in folate determination. However, due 

to the important role that folate plays in human health, a proper method for the quantification of 

folate in food is of a high importance in order to know more about folate consumption and intake.  

Folate analysis is challenging due to their low concentrations in food and their different stabilities 

during heat, light and oxygen exposure. There are three main steps in folate analysis, such as 

extraction, deconjugation and quantification as it is shown on Figure 5. Depending on the detection 

method, a purification step may also be included (Quinlivan et al., 2006; Jägerstad & Jastrebova, 

2013). Extraction is the first step in folate analyses in which folate is liberated from food matrix by 

the use of heat, various enzymes, or their combination. Deconjugation is the following step in which 

folate polyglutamates are reduced to monoglutamyl forms by the use of GGH enzymes, which is 

followed by folate quantification using microbiological or chemical assays. It is important to have 

an appropriate method for folate quantification, as can be shown in the case of Konings et al. (2001) 

where folate intake estimated by HPLC method was ~25% lower than the one estimated by 

microbiological assay, which illustrates how differences in the method’s performance can influence 

the final outcome of the study. However, data obtained by HPLC have not been used in food 

composition database, as MA is more widely used than HPLC. Therefore, the data obtained by MA 

provide easier comparison among various national food composition databases.  
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Figure 5 Schematic overview of analytical methods for folate determination in foods modified from 

(Quinlivan et al., 2006; Delchier et al., 2016; Arcot & Shrestha, 2005) 
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Furthermore, folate may be entrapped in complex food matrix which reduces their extraction rate. 

In order to be analyzed, food folate forms have to be extracted from food matrix which includes 

exposure to temperature change in several heating and cooling steps during the extraction. 

Moreover, low pH values (2-3) are used during sample purification and in mobile phases in liquid 

chromatographic (LC) methods, which causes interconversion of some folate forms due to their 

different stability at different pH  (de Brouwer et al., 2007; Kirsch et al., 2010; Quinlivan et al., 

2006; Ringling & Rychlik, 2013). The scheme of interconversion reactions is shown on Figure 6. 

These changes affect folate stability and they have to be taken into consideration during extraction 

and quantification of folate forms. For instance, folic acid and 5-CH3-H4folate are shown to be 

relatively stable at pH 2-10 with and without heat treatment, whereas 5,10-CH
+
=H4folate and 5-

HCO-H4folate are relatively stable without heat treatment. However, if heated, 5,10-CH
+
=H4folate 

and 5-HCO-H4folate are not stable at pH 3-9 and pH < 3, respectively, which makes folate analysis 

very complex (de Brouwer et al., 2007). 

 

Figure 6 Scheme of folate interconversion and degradation under various conditions modified from 

(de Brouwer et al., 2007; Quinlivan et al., 2006) 
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4.1.1. Sample extraction and purification 

Folate extraction involves liberation of folate from food matrices by heat treatment in buffers 

containing reducing agents. Neutral or slightly acidic or alkaline pH of the buffers such as; acetate, 

phosphate, MES and HEPES/CHES buffer is normally used (Delchier et al., 2016). Ascorbic acid 

(Asc) is the most commonly used antioxidant, combined with other reducing agents such as β-

mercaptoethanol (MCE), dithiothreitol (DTT), 2,3-dimercapto-1-propanol (BAL) or 2-thiobarbituric 

acid (TBA) (Patring et al., 2005). Recently, the use of odorless and more powerful reducing agent 

tris-(2-carboxyethyl)phosphine hydrochloride (TCEP) has also been reported (Bhandari et al., 

2018). Patring et al. (2005) studied the antioxidant effectiveness of mentioned reducing agents in 

yeast extracts. They suggested the use of BAL as a reducing agent of choice in folate analysis, 

because it enables H4folate stability during heating, storage and freezing/thawing. However, MCE 

is still very commonly used reducing agent (Vishnumohan et al., 2017; García-Salinas et al., 2016; 

Luo et al., 2017; Zou et al., 2019). The combination of heat treatment and tri-enzyme extraction has 

been suggested as the best extraction procedure in folate analyses (Hyun & Tamura, 2005). Tri-

enzyme treatment includes treatments with protease in order to release folate from the matrix 

containing proteins, α-amylase to reduce carbohydrates and GGH to remove polyglutamyl tail in 

order to reduce folate to monoglutamyl form, which is necessary prior the quantification by 

chemical analysis as shown at Figure 5. During this procedure, folate forms are exposed to a couple 

of heat treatments due to inactivation of enzyme activity. Furthermore, various GGH enzymes (E.C 

3.4.19.9.) have different pH optima, which also defines some steps in folate analyses and affect 

their stability and interconversion, as shown in Figure 6. GGHs are obtained from several sources 

and are mainly of animal origin such as rat plasma/serum, human plasma, hog kidney, and chicken 

pancreas (Jägerstad & Jastrebova, 2013). Chicken pancreas is able to reduce folate forms only to a 

diglutamyl forms, and it is therefore not suitable if used alone in chromatographic procedures which 

quantify monoglutamyl forms. Therefore, it is used in the combination with some other GGHs in 

order to improve deconjugation (Ringling & Rychlik, 2013). The optimal activity of rat plasma and 

chicken pancreas is at neutral pH, whereas hog kidney deconjugases have optimum activity at pH 

4.5-5 (Arcot & Shrestha, 2005). GGHs of animal origin contain some endogenous folate forms 

which have to be either removed by purification steps or it has to be corrected for endogenous 

content of folate. The activity of GGHs varies depending on the enzyme and food components that 

may inhibit their activity. Rat serum/plasma is a very commonly used GGH as it is easy to prepare 

it and it is commercially available (De Brouwer et al., 2010; Kiekens et al., 2015; Luo et al., 2017; 
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Striegel et al., 2018). It is highly recommended to test the activity of each GGH batch by the use of 

polyglutamated substrate, such as pteroyltriglutamic acid (Patring et al., 2005). It was reported that 

the enzymes of animal origin may be inhibited by the plant food matrix (Wei & Gregory, 1998). In 

2013, Ramos-Parra et al. published results on the use of a plant origin recombinant GGH produced 

from Arabidopsis thaliana, which enabled complete deglutamylation of folate within 1 hour 

(Ramos-Parra et al., 2013; Orsomando et al., 2005). Recently, the same deconjugation efficiency 

was shown to be accomplished by the use of recombinant commercially available human GGH in 

different berries and berry juice (Zou et al., 2019). Even though tri-enzyme treatment was suggested 

as an extraction procedure of choice, some studies showed that there is no difference between tri-

enzyme and single-enzyme treatment (Ringling & Rychlik, 2017a; Zou et al., 2019). 

If chromatographic methods are used as detection, sample cleanup is preferable to avoid as much as 

possible interferences during chromatographic measurement. Solid-phase extraction (SPE) is a very 

common purification strategy which often includes strong anion exchange (SAX) or affinity 

chromatography using folate binding protein (FBP) (García-Salinas et al., 2016; Ringling & 

Rychlik, 2013). SAX is used to purify negatively charged acids which bound to positively charged 

groups of the cartridge sorbent that are positively charged under all conditions, and the purification 

is done by changing the pH of washing and elution solutions. Affinity chromatography using FBP is 

more specific for folate analyses, as it consists of FBP covalently bound to a solid support, usually 

agarose beads (Quinlivan et al., 2006). Their high specificity enables excellent purification lowering 

significantly limits of detection (LOD) if compared to SAX, even though using SAX results in 

sufficient LOD (Freisleben et al., 2003a). However, agarose-FBP columns are not commercially 

available, which makes their use laborious and expensive. Moreover, they do not bind equally to all 

folate forms, as 5-HCO-H4folate showed lower affinity to the FBP that the other folate forms 

(Kariluoto et al., 2001). 

4.1.2. Detection methods  

Detection methods used for folate quantification can be divided in three main groups; 

microbiological assay (MA), ligand-binding methods using FBP, and chemical assays. Chemical 

assays present high pressure liquid chromatography (HPLC) methods coupled to various detectors 

such as ultraviolet (UV), fluorescence, electrochemical, mass spectrometer (MS) or tandem mass 

spectrometer (MS/MS). Chemical assays provide higher sensitivity, specificity and precision when 

compared to MA. 
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4.1.2.1. Microbiological assay 

Microbiological assay is the only standardized method for folate determination in food (DeVries et 

al., 2005; EN14131, 2003). It is based on the bacterial growth, Lactobacillus rhamnosus 

(ATCC7469), also known as L. casei, determined by turbidimetric detection using UV detector. 

Quantification of folate using tri-enzyme extraction has been the method of choice for a long time, 

even though is tedious, time-consuming, and require special expertise (Tamura, 1998). Furthermore, 

the microbial response can be affected by the presence of some other compounds, such as; 

thymidine, amino acids, purines, and pyrimidines, which can give inaccurate results (Koontz et al., 

2005). Previous studies reported that the response of L. rhamnosus is not the same to all folate 

vitamers, showing the highest response for 5-HCO-H4folate, followed by the response for 10-HCO-

H4folate, PteGlu, 5-CH3-H4folate and H4folate (Weber et al., 2011). Moreover, microbiological 

assay is dependent on the calibrant used for quantification, which was reported by Ringling and 

Rychlik (2017a), where the significant difference in the folate content in wheat germs, chickpeas 

and mung beans was found depending on the use of 5-HCO-H4folate or PteGlu as a calibrant. 

However, standard methods for folate quantification by the use of MA normally use folic acid as a 

calibrant, which should provide comparable results. Today microbiological assay is still used as a 

reference method, even though it is possible that the microbial growth is affected by non-folate 

compounds in the sample. Hence validated, precise and accurate chemical methods are warranted to 

form the bases for future standardization. 

4.1.2.2. Chemical methods 

In contrast to microbiological assay that quantifies only total folate content; chemical methods 

enable quantification of various folate forms due to the separation on chromatographic columns and 

sensitive detection systems. Chromatographic methods are coupled to detector such as UV, 

fluorescence, ECD or MS, as shown in Table 3, which differ in their sensitivity and specificity. UV 

detection was the most common detection system for a long time, but it was not specific and 

sensitive enough to detect low limits of all naturally occurring folate forms. Therefore, it was often 

combined with some other more sensitive detectors, such as fluorescence detector. On the other 

side, native fluorescence detection is less sensitive than UV detection for some folate forms, 

whereas folic acid cannot be detected as it is not fluorescent. However, folic acid can be analyzed if 

irradiated with intense UV-irradiation (λex/em = 280/440 nm), which also increases fluorescence of 
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5-CH3-H4folate and 5-HCO-H4folate (λex/em = 280/360 nm) (Martín Tornero et al., 2017; Arcot & 

Shrestha, 2005).  

In the last 20 years, the use of MS detection enabled fast and sensitive separation of various folate 

compounds which was troublesome due to small differences in their ionic characters. MS gave a 

new dimension of mass-to-charge ratio (m/z) which enables more accurate, precise and sensitive 

detection of naturally occurring folate forms. However, the challenge in such a complex chemical 

analysis has been the lack of a suitable internal standard that could compensate for losses during 

folate extraction, sample cleanup and for the matrix effect. In 2001, Pawlosky et al. used for the 

first time stable isotope dilution (SIDA) method for quantification of 5-CH3-H4folate using 
13

C5-5-

CH3-H4folate as internal standard. Two years later, 
2
H4-labeled internal standards were introduced 

for quantification of PteGlu, 10-HCO-H4folate, H4folate, 5-CH3-H4folate and 5-HCO-H4folate, 

which presented a start of new era in folate analysis (Freisleben et al., 2003b). Isotopically labeled 

internal standards are widely used since they ensure more accurate quantification (Ringling & 

Rychlik, 2013; Striegel et al., 2018; Vishnumohan et al., 2017; Zou et al., 2019). Recently, a UPLC-

MS/MS method using three 
13

C5-labeled internal standards was approved as an AOAC-method for 

determination of PteGlu, 5-CH3-H4folate, 5-HCO-H4folate and total folate content expressed as 

PteGlu equivalent in infant formula and adult nutritionals (Bhandari et al., 2018). The optimum 

folate analysis would include a proper labeled internal standard for each vitamer form.  

 4.2. The development and validation of an LC-ESI-MS/MS for folate in food 

A highly specific and sensitive LC system, coupled to triple quadrupole mass spectrometer 

(MS/MS), was chosen as the detection principle for folate quantification in various groups of foods. 

The specific parts of the method development are discussed in the upcoming sections. 

4.2.1. Sample preparation 

A proper sample preparation and purification are very important in order to make sure that samples 

are free from interferences that can affect the quantification of the analyte from interest due to the 

low unit mass resolution (4000 Th) and low mass accuracy (100 ppm) of triple quadrupoles if 

compared to other mass analyzers (de Hoffmann & Stroobant, 2007). As folate forms are extremely 

sensitive to various environmental conditions that cause their degradation or interconversion, a 

special precaution should be taken to prevent folate degradation by exposure to light and oxygen. 

Therefore, all analyses were performed under yellow light, in brown glass, or protected by UV 
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absorbing film (EN14131, 2003). Furthermore, the change in the temperature and formation of large 

ice crystals which are mostly extracellular causes damages to the tissue and possibly folate 

degradation during freezing and thawing cycles (Ninagawa et al., 2016). Therefore, instant freezing 

by the use of liquid nitrogen was chosen as a freezing technique which enables immediate freezing 

of the samples to temperatures < -80°C. Prior the analyses, the samples were homogenized while 

frozen using a coffee grinder which enabled production of a fine powder and consequently the use 

of a low amount of sample for the chemical analysis. Ascorbic acid and MCE were used as 

antioxidants (Paper I) and nitrogen-flushing was used in order to remove oxygen from sample bags 

during sampling or extracts during chemical analyses.  

Folate extraction is normally composed of the combination of several heating steps and the use of 

enzymes that enable liberation of folate from food matrices (Jägerstad & Jastrebova, 2013; 

Quinlivan et al., 2006). Due to the thermal instability of folate forms, it is preferable to use as less 

as possible heating/cooling steps. The composition and the pH of the extraction buffer are playing 

an important role in the stability of folate. Phosphate buffer pH 6-7 is one of the most commonly 

used buffers, even though pH 4.5 has also been used depending on the use of enzyme and the pH of 

its optimal activity (Czarnowska-Kujawska et al., 2017; Tyagi et al., 2015; de Brouwer et al., 2007). 

The use of the deconjugase enzyme plays an important role in folate analyses. As various 

deconjugases have various pH optima, that should be taken into consideration during the method 

development (Arcot & Shrestha, 2005). Chicken pancreas converts polyglutamyl folate forms to 

diglutamate, whereas rat serum ensures the necessary transition to monoglutamate. Rychlik et al. 

(2007) reported the activity of rat serum incubated overnight alone and with addition of chicken 

pancreas being 42% and 96% respectively. The recombinant enzyme of plant origin was produced 

by genetic engineering from Arabidopsis thaliana (Orsomando et al., 2005), whose optimal activity 

is at pH 6. In 2013, Ramos-Parra et al. published the comparison of deconjugation using the enzyme 

of plant origin and rat plasma, which showed superiority of plant enzyme over animal enzyme in 

terms of the efficiency (Ramos-Parra et al., 2013). Plant origin enzyme provided 100% 

deconjugation within 1 hour by using very low amounts of enzyme solution in food matrices such 

as tomato fruit, black bean seeds, and alfalfa sprouts, whereas the enzyme of animal origin provided 

55%, 28% and 57% deconjugation in these foodstuffs, respectively. 
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Table 3 HPLC methods for folate determination in food samples and biological tissue samples 

Sample Extraction buffer Enzyme 

treatment 

Purification Column Chromatographic 

conditions 

Detection Reference 

Food samples 75 mM K2HPO4 + 
52 mM ascorbic 

acid/ascorbate 

mixture,  

0.1% MCE,  

pH 6.0 

Single enzyme 
treatment,  

 

D: hog kidney + 

chicken pancreas 

SPE, SAX 
(quaternary 

amine) 

Shandon 
Hypersil ODS 

column (3 µm, 

120 x 4.6 mm) 

and 

Spherisorb ODS 

column (5 µm, 

250 x 4.6 mm) 

Gradient: ACN/30 mM 
phosphate buffer (pH 

2.2) 

Fluorescence  
ex/em 290/356 nm 

and 360/460 nm 

(UV 290 nm) 

Vahteristo et 
al., (1996) 

Rat liver, rat 

and mouse 

brain 

50 mM potassium 

tetraborate,  

1% sodium 

ascorbate,  

pH 9.2 

Single enzyme 

treatment, 

 

D: chicken 

pancreas 

Affinity 

chromatography 

(Bovine milk 

FBP) 

250 x 4.6 mm 

Betasil Phenyl 

A: 28 mM K2HPO4 + 60 

mM H3PO4 in H2O 

B: 28 mM K2HPO4 + 60 

mM H3PO4 in 20:80 

ACN:H2O 

C: 25 mM K3PO4, pH 7.0 
in 5:95 ACN:H2O 

D: H2O 

Four-channel 

electrochemical 

detector 

Bagley & 

Selhub, 

(2000) 

Rye varieties 50 mM 

HEPES/CHES 

buffer, 2% 

ascorbate,  

10 mM MCE,  

pH 7.85 

Tri-enzyme 

treatment,  

 

D: hog kidney (4h 

in total) 

Affinity 

chromatography 

(Bovine milk 

FBP) 

Shandon 

Hypersyl ODS 

column (3 µm 

,150 mm x 4.6 

mm) 

Gradient: ACN/20 mM 

phosphate buffer 

Fluorescence  

ex/em 290/356 nm 

and 360/460 nm 

(DAD 290 nm) 

Kariluoto et 

al., (2001) 

Rice 50 mM phosphate 

buffer,  

1% Asc, 0.5% 

DTT,  

pH 7.5 

Tri-enzyme 

treatment,  

 

D: not specified 

Ultrafiltration 

using 5 kDa 

Millipore filter 

Acquity HSS T3 

column (1.8 µm, 

150 mm x 2.1 

mm) 

A: 0.1% formic acid in 

H2O 

B: 0.1% formic acid in 

acetonitrile 

UPLC-ESI-MS/MS V. De 

Brouwer et 

al., (2010) 

Bread, wheat 
germs, spinach, 

Camembert 

cheese, 

vegetable mix 

200 mM MES 
buffer, 2% ascorbic 

acid,  

0.2 mol/L MCE,  

pH 5.0 

Single enzyme 
treatment,  

 

D: rat serum + 

chicken pancreas 

SPE, SAX 
(quaternary 

amine) 

C18 BDS, 3 µm, 
150 x 3.2 mm) 

A: 0.1% acetic acid in 
H2O 

B: 0.1% acetic acid in 

ACN 

LC-ESI-MS/MS Ringling & 
Rychlik, 

(2013) 
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Table 3 HPLC methods for folate determination in food samples and biological tissue samples (continued) 

Tomato 50 mM potassium 

phosphate,  

1% ascorbic acid, 

0.5% MCE and 1 

mM calcium 

chloride,  

pH 4.5 

Tri-enzyme 

treatment 

 

D: rat plasma 

Ultrafiltration 

using 10 kDa 

cut-off 

membrane filter 

Luna C18 

column (5 µm, 

250 x 4.6 mm) 

A: 0.1% formic acid in 

H2O 

B: acetonitrile 

UPLC-MS/MS Tyagi et al., 

(2015) 

Avocado, 

banana, 

papaya, tomato 

50 mM 

HEPES/CHES 

buffer, 2% ascorbic 

acid, 

10 mM MCE,  

pH 7.8 

Dienzyme 

treatment for high 

starch samples, 

 

D: recombinant 

plant GGH 

Affinity 

chromatography 

using FBP 

Prodigy ODS (5 

µm, 150 x 3.2 

mm) 

A: 28 mM K2HPO4, 59 

mM H3PO4 

B: 75% A, 25% ACN 

LC-Four-channel 

electrochemical 

detector 

García-

Salinas et al., 

(2016) 

Lettuce, 
spinach, pak 

choi and rice 

leaf 

50 mM phosphate 
buffer,  

1 % ascorbic acid, 

0.1% BAL,  

pH 6.7 

Single enzyme 
treatment,  

 

D: rat serum + 

chicken pancreas 

Ultrafiltration 
using 0.22 µm 

PVDF 

hydrophilic 

membrane 

filters 

Acquity UPLC 
BEH, C18 

column, (1.7 

µm, 50 x 2.1 

mm) 

A: 0.1% formic acid in 
H2O 

B: 0.1% formic acid in 

acetonitrile 

UPLC-MS/MS Shohag et al., 
(2017) 

Berries and 

berry juices 

100 mM 

ammonium acetate, 

1% ascorbic acid, 

0.2% MCE,  

pH 6.0 

Single enzyme 

treatment,  

 

D: recombinant 

human GGH 

SPE (Oasis 

HLB) 

HILIC column 

(2.6 µm, 100 x 

4.5 mm) 

A: 0.1% formic acid in 

H2O 

B: 0.1% formic acid in 

acetonitrile 

UPLC-ESI-MS/MS Zou et al., 

(2019) 
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4.2.2. Electrospray ionization 

Ones when extracted and purified, sample extracts are in a liquid phase. In order to be analyzed by 

MS/MS they have to be transferred to gas phase. Nowadays, the universal ionization source for LC-

MS/MS analysis is electrospray ionization (ESI). It is a soft ionization technique that transfers ions 

from a liquid to gas phase by applying a high voltage (normally 2-5 kV) without changing the 

chemical structure of the analyzed compounds.  

 

Figure 7 Scheme of the positive mode electrospray ionization modified from Cech & Enke (2001) 

 

The applied voltage provides the electric gradient that is required to separate charge at the surface 

of the liquid. Positively charged ions are drawn to the capillary tip in the case that negative electric 

field is created and vice versa. Once when field strength is high enough, there will be a “Taylor 

cone” formed at the capillary tip that will release a jet of droplets with an excess of charge on the 

surface (Figure 7-1). As the droplets are moving towards the entrance to mass spectrometer, the 

solvent evaporates (Figure 7-2), and at a certain point reaches Rayleigh limit, when the Coulombic 

forces between ions exceed the surface tension of the solvent (Figure 7-3). At that point, charged 

gas-phase ions are formed and ready to be analyzed for mass-to-charge (m/z) ratio by entering mass 

spectrometer (Cech & Enke, 2001; Kebarle & Verkerk, 2009). For folate analyses, ESI is a perfect 

ionization source since folate vitamers are polar compounds, present in their ionic form in the 

solution, and it is normally used in folate analysis (Striegel et al., 2018; Zou et al., 2019; 

Vishnumohan et al., 2017). Despite the power of coupling LC and MS, ESI has some drawbacks in 

terms of its sensitivity to matrix effects that can occur in analysis of complex samples, such as food 

(Glish & Vachet, 2003).  
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4.2.3. LC-MS/MS 

Triple quadrupole is typically used mass analyzer for MS/MS analysis that consists of two 

quadrupole mass filters and a collision cell that is placed in between mass filters. MS/MS technique 

involves two stages of MS. In the first stage, ions of desired m/z called precursor or parent ions are 

isolated from the ion beam entering mass analyzer from ion source. They pass first mass filter, enter 

the second quadrupole called collision cell, where they collide with a collision gas, normally 

nitrogen, and fragment to various product ions. These product ions are analyzed in the second MS 

stage in second mass filter, and passed to detector. An important advantage of MS/MS detection is 

that two MS analyses can be independent variable, increasing the sensitivity and specificity of the 

chromatographic analysis (Glish & Vachet, 2003). The sensitivity is lowest in the scan mode in 

which all ions produced are passed to the detector, and the highest in SRM (selected reaction 

monitoring), where single ion is selected and passed into collision cell and a few product ions are 

selected in the second mass filter for detection. The principle of triple quadrupole work and various 

MS/MS modes are presented in Figure 8. In SRM mode, signal to noise ratio (S/N) is very good as 

this principle excludes all other compounds present in the sample, and reduces the background 

noise. During the method development, the use of one more ion transition was included in the 

MS/MS method as a qualifier, which shows the peak purity and is used for a confirmation of the 

analyte of interest. Combining this evidence with retention time and a proper peak shape enables a 

proper quantification of specific folate forms (Paper I). 
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Figure 8 Scheme of the principle of work of MS/MS modified from Glish & Vachet (2003); de 

Hoffmann & Stroobant (2007). Green and blue circles show different precursor ions 

entering first triple quadrupole from the ion source, whereas yellow, orange and red circles 

present product ions obtained after the collision of precursor ions with collision gas in 

collision cell.  

 

4.2.4. Quantification of folate in food 

The use of plant origin enzyme served as a starting point for this PhD project, and the aim was to 

test its performance in various food matrices. Its activity was tested immediately after the 

production in papaya fruits, where folate content was analyzed using electrochemical detection, as it 

is shown at Figure 9.  

a) Scheme of a triple quadrupole MS/MS detector
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b) Scan modes in triple quadrupole mass spectrometer
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Figure 9 The plant enzyme activity analyzed in papaya sample by the use of electrochemical 

detection. a) Folate polyglutamates signals detected in the marked area before the use of 

plant enzyme. b) Folate polyglutamates signals absent after the use of plant enzyme.  

The method from Ramos-Parra et al. (2013) contained the pH adjustment step, since they used 50 

mM HEPES/CHES buffer, pH 7.9 and tri-enzyme extraction. De Brouwer et al. (2007) studied the 

stability of nine monoglutamate folate vitamers, among the others H4folate, 5,10-CH
+
=H4folate, 10-

HCO-PteGlu, 5-HCO-H4folate, PteGlu and 5-CH3-H4folate, and reported that they are mostly stable 

at pH values between 4 and 8 at 37°C, except H4folate that was shown to be unstable at low pH 

values. However, if heated, formyl forms such as 5,10-CH
+
=H4folate interconvert to 5-HCO-

H4folate, as previously mentioned. Due to the stability of the majority of folate forms, and the 

optimal activity of the GGH of plant origin, folate extraction was performed at pH 6. Therefore, pH 

adjustment step was avoided by using phosphate extraction buffer of pH 6, which reduced the time 

of the analyses. In order to test the enzyme activity, green peas, representing a complex food matrix, 

was used (Paper I), and the satisfactory enzyme activity was reported already after half an hour of 

incubation at 37°C by using 100 µg of enzyme per gram of sample, which was equivalent to 

approximately 50 µL of the enzyme solution, depending on the purity of obtained batch, as is 

shown on Figure 10. 

a) 

b) 
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Figure 10 Deconjugation of pteroylheptaglutamic acid (PteGlu7) in green peas extract (GPE) by 

the use of plant enzyme (GGH). 1) GPE containing PteGlu7 without GGH treatment; 2) 

GPE without PteGlu7 treated with GGH; 3) GPE containing PteGlu7 treated with GGH. 

Yellow peak is PteGlu detected after conversion of PteGlu7 due to the GGH treatment. 

 

The use of SAX was included in the purification step (Paper I) in order to reduce the contamination 

of analytical column and the ionization source by interfering substances such as pigments, and 

thereby to reduce interferences during the ionization in LC-MS/MS analyses and consequently to 

improve the response of the instrument to various folate forms. SPE is suitable for routine analyses, 

as it takes less time, reduces organic solvent consumption and enables automated purification of a 

higher number of samples (Majors, 2010). The use of cut-off filters instead of SPE was also 

reported (Shohag et al., 2017). Zhang et al. (2018) optimized folate extraction from seeds using 10 

kDa cut-off filters at 4°C for 30 min. Testing the performance of cut-off filters as a purification step 

of the more complex samples would be beneficial for this method, to make it even shorter.  

During folate extraction, two heating/cooling steps were used. In the first one, samples were heated 

in order to denaturate proteins and liberate folate vitamers from food matrix, whereas in the second 

they were heated in order to stop deconjugase activity. As folate forms are sensitive compounds that 

interconvert and degrade during the sample extraction and chemical analysis, it is beneficial to use 

1) 

2) 

3) 
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the internal standard which improves their quantification. Internal standard is useful in multiple 

sample preparation chemical analysis because it compensates for everything what happens with the 

compound of interest, such as loss, signal variation etc. In folate analyses the use of 
13

C5 and 
2
H4 

isotopically labeled internal standards made an improvement in folate analyses, but the costliness of 

the internal standards makes them impossible to use for all compounds. Three internal standards 

were used in this method, such as 
13

C5-PteGlu, 
13

C5-5-HCO-H4folate and 
13

C5-5-CH3-H4folate 

(Papers I, II, and III).  

The purpose was to develop a sensitive and precise method for simultaneous quantification of six 

folate monoglutamates that are naturally occurring in food. Therefore, the optimization of LC and 

MS/MS conditions was performed as described in Paper I. A C18 analytical column and a gradient 

elution composed of eluent A (2.5 mM ammonium formate in H2O:methanol (95:5)) and eluent B 

(2.5 mM ammonium formate in methanol) was chosen for chromatographic conditions, whereas the 

optimized ion source parameters are shown in Table 4. The optimization of fragmentation was also 

performed in order to establish multiple reactions monitoring method (MRM) for simultaneous 

analysis of various folate forms. The table presenting MRM transitions included in the method is 

shown in Paper I, whereas the fragmentation of each folate form is presented on Figure 11. 

 

Table 4 Optimized ion source parameters used in ESI-MS/MS 

Drying gas temperature 225 °C 

Drying gas flow 11 mL/min 

Nebulizer 40 psi 

Capillary voltage 3000 V 

Sheath gas temperature 400°C 

Sheath gas flow 12 mL/min 
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Figure 11 Fragmentation of various folate forms results in product ions that were used for MRM 

transitions included in the LC-MS/MS method. 
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The use of methanol as the organic solvent increased instrument’s response and enabled faster 

analysis time by shortening the analysis to 9 min as it is shown on Figure 13, which is 8 minutes 

less than if it was analyzed by acetonitrile as the organic solvent, though this is a commonly used 

procedure in folate analysis (Vishnumohan et al., 2017; Striegel et al., 2018).  

 

Figure 12 
13

C5-labeled internal standards used for quantification of folate 

 

The internal standards used in this method are illustrated in Figure 12. However, due to the 

costliness of isotopically labeled internal standards, we did not have a proper internal standard for 

the quantification of the most sensitive folate form, H4folate, and for 5,10-CH
+
=H4folate that is 

interconverting at acidic pH if heated (de Brouwer et al., 2007).Only one internal standard for 

formyl forms was included, hence the complete separation of formyl forms wasn’t performed in 

order to keep these compounds close to their corresponding internal standard, 
13

C5-labeled 5-HCO-

H4folate. As shown on Figure 13, H4folate and formyl forms were co-eluting together with the 

internal standard. Even though the baseline separation was not achieved, the selectivity of the MRM 

mode was sufficient. Moreover, using methanol increased the signal for 22 – 188x for all 

compounds.  

Gregory (2012) recommended joint quantification of 10-HCO-H4folate and 5,10-CH
+
=H4folate, due 

to the rapid conversion of 10-HCO-H4folate. Its final oxidation product, 10-HCO-PteGlu, was 

included into this method. After testing the interconversion between formyl forms, it was concluded 
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that due to the interconversion, and acidic environment during SPE and in the mobile phase, the 

quantification of the sum of formyl forms is recommended. It would not be a drawback in 

nutritional interpretation, as these folate forms exhibit comparable bioactivity (Gregory, 2012). 

 

Figure 13 The chromatograms of folate standards analyzed by either acetonitrile (a) or methanol (b) 

as an eluent B. Methanol was used as an eluent B, due to the increased sensitivity (c) 
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The method was validated in terms of linearity (R
2
>0.99 and trueness 85-115%), a limit of 

quantification at 0.1 µg/100 g, trueness 80-120% in spiked samples and certified reference 

materials, and a precision <10%. The precision in quantification of H4folate was not satisfactory, 

ranging from 7-34%, which was due to the lack of a labeled H4folate internal standard. To access 

trueness of the method, certified reference materials (CRM) representing various food matrices 

were analyzed (Paper I). When analyzing NIST 1845a using newly developed LC-MS/MS method, 

a total folate content quantified as PteGlu equivalent was 68 ± 5 µg/100 g (n = 7), whereas the 5-

CH3-H4folate content was 43 ± 3 µg/100 g, which is lower than the certified folate amount 130 ± 7 

µg/100 g obtained by microbiological assay. 10-HCO-PteGlu was the second most abundant folate 

form in eggs (15 ± 2 µg/100 g), followed by PteGlu (7 ± 1 µg/100 g) and H4folate (1 ± 1 µg/100 g). 

Camara et al. (2013) quantified 5-CH3-H4folate in CRM NIST 1845a using tri-enzyme extraction by 

rat serum and LC-MS/MS detection. Their 5-CH3-H4folate value was 84 ± 4 µg/100 g (n = 2) which 

was also lower than the microbiological certified value. The results of folate distribution and 

quantification in eggs obtained in this project were in accordance with the results by Vahteristo et 

al. (1997), except for the content of 5-CH3-H4folate, which ranged from 140-150 µg/100 g in 

former study. They reported egg yolk as a difficult matrix, reflecting low recoveries for analyzed 

folate forms (49-67%). However, by using just single-enzyme extraction by hog kidney (pH 4.9, 

37°C, 2 h), they managed to quantify high amount of 5-CH3-H4folate monoglutamate. In order to 

improve 5-CH3-H4folate extraction, 47 U/g of sample of protease was added during the extraction 

step to the Whole Egg Powder (CRM NIST 1845a) when it was analyzed by newly developed 

method. Moreover, the pteroylpentaglutamic acid was also added to study the enzyme activity. 76 ± 

1% of pteroylpentaglutamic acid was deconjugated and transferred to monoglutamyl form PteGlu, 

whereas the use of protease did not show an increase of folate content being 69 ± 1 µg/100 g. 

Therefore, the enzyme activity of plant origin deconjugase seems to be inhibited by the food matrix 

present in whole egg powder. The mechanism of inhibition might be related to the presence of free 

fatty acids (Pande & Mead, 1968).  

Through the whole method development and optimization, the unlabeled standard compound 10-

CH3-PteGlu was also used and its quantification was validated. However, this compound was not 

found in any food products that were analyzed for the folate content. Furlani & Godoy (2007) 

published it as the main folate form found in mushrooms, which were not part of this project. 10-

CH3-PteGlu was quantified using the MRM transitions m/z 456.4→309.3 and m/z 456.4→109.1 as 

a quantifier and a qualifier, respectively. 
13

C5-5-CH3-H4folate was used as an internal standard for 
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its quantification. Method validation showed that the relative recovery of 10-CH3-PteGlu for 10 ng, 

500 ng and 900 ng was 104%, 81% and 80%, respectively. Testing matrix effect by the method of 

Matuszewski et al. (2003) showed that there was no matrix effect on 10-CH3-PteGlu. However, the 

signal of its internal standard was slightly suppress, which would not provide accurate 

quantification of this compound because only internal standard was affected. 

 

Figure 14 Matrix effect (%) of 10-CH3-PteGlu compared to the corresponding internal standard’s 

matrix effect (
13

C5-5-CH3-H4folate) 

On the other hand, 10-CH3-PteGlu was mentioned as an oxidation product that behave as folic acid 

antagonist, and plays as an enzyme inhibitor in folate metabolism (Hochster & Quastel, 1963). 

Therefore, it should not be present in food and its quantification could be related to oxidation 

processes during the analysis. 
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Chapter 5: Folate analysis of a large and diverse sample set  

Once the LC-MS/MS method using the enzyme of plant origin was developed and validated, its 

performance was compared to the two other methods performed in other laboratories. A large 

sample set of various food samples from groups of fruits, vegetables, legumes, cereals, dairy 

products, meat and offal was included in the round robin method comparison study. The results 

obtained from these analyses were also used to study folate distribution within foodstuffs and 

making the correlation to the impact of folate content and distribution on folate intake. 

5.1. Method comparison studies 

Differences among methods used for folate analysis in food result in unreliable data of folate 

content which should be the starting point in any creation of nutritional guidance or epidemiological 

evidences. Existing folate data in food-composition tables are mainly obtained by the use of 

microbiological assay as the only standard method for folate determination in food. However, these 

data are unreliable and nowadays could be considered as being incomplete due to the knowledge 

about different behavior and bioavailability of various folate forms (Ringling & Rychlik, 2017b). 

The development of chromatographic methods still requires their comparison to microbiological 

assay as the only standard method for folate analysis in food. In 2001, Konings et al. compared 

HPLC using fluorescence and diode array detection in selected items from food groups of 

vegetables, fruits, bread, dairy products and meat products with microbiological assay. Total folate 

content was approximately 25% lower if analyzed by chromatographic method than the amounts 

recorded in various national food composition tables obtained by microbiological assay. In 2005, 

Koontz et al. compared total folate content analyzed by microbiological assay in four experienced 

laboratories that perform routine folate analysis in the USA. Various types of food have been 

analyzed revealing that only results for macaroni and pizza as folic acid-fortified foodstuffs had 

lower inter-laboratory variation being 9-11% versus >45% for foodstuffs such as fresh strawberries, 

frozen spinach, orange juice, frozen meat and dried pinto beans. These data indicated that the results 

of analysis unfortified foods should be taken with caution in terms of accuracy and precision which 

is crucial for the countries which do not mandate food fortification by folate such as the countries of 

European Union. The last and the biggest international inter-laboratory method comparison study of 

folate analysis in food was published in 2005 by Puwastien et al.. Three test materials representing 

various food types and matrices such as soybean flour, fish powder and breakfast cereals were 
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analyzed in 26 laboratories worldwide. Tri-enzyme extraction was recommended as the method of 

choice, however only 9 laboratories used it in their folate analysis. Furthermore, 20 laboratories 

used microbiological assay, whereas the others implemented HPLC-UV, LC-MS and radio-binding 

assay. Among 17 laboratories that used microbiological assay using L. casei as detection method, 

the inter-laboratory coefficient of variations for soybean flour, fish powder and breakfast cereals 

were 24%, 35% and 24%, respectively. These findings indicate the complexity of folate 

quantification which still hasn’t been resolved as there are many newly developed chromatographic 

methods analyzing folate content published in recent years. With a purpose of establishing valid 

data for the performance of the plant origin GGH in folate deconjugation when using LC-MS/MS 

detection system, a round robin method comparison study has been performed. 

5.1.1. Round robin method comparison study 

In order to examine GGH’s performance in various food matrices by various detection methods, 

three different laboratories have been involved in the study. A large sample set composed of 89 

different samples divided to 7 food groups has been analyzed by LC-MS/MS method using an 

animal-origin single-enzyme extraction step at Technical University of Munich (Germany) and 

microbiological assay using tri-enzyme extraction step in accredited laboratory Eurofins Steins 

Laboratory in Vejen (Denmark). The setup of the study was described and results were presented in 

Paper II. Food groups of fruits, vegetables, legumes, cereals, dairy products, meat and offal have 

been analyzed and compared using the Bland-Altman statistical approach. Significantly lower mean 

bias of 17% (p ≤ 0.05) was reported when LC-MS/MS method using plant enzyme was compared to 

the microbiological assay, indicating a possible overestimation of folate values reported in food 

composition databases. However, significantly higher constant bias of 25% (p ≤ 0.05) was obtained 

when the two LC-MS/MS methods using GGHs of different origin were compared, indicating that 

the GGH of plant origin is superior in folate deconjugation. When analyzing the differences 

between food groups, it was observed that food groups of fruits, vegetables and cereals contribute 

significantly (p ≤ 0.05) to the bias between the two LC-MS/MS methods indicating that plant food 

matrix may inhibit the activity of animal origin GGH. However, further investigations have to be 

done in order to confirm this statement. No significant difference was found in food group of 

legumes that was considered as a complex food matrix when the newly developed LC-MS/MS 

using plant origin GGH was compared to microbiological assay or LC-MS/MS using animal origin 

GGH as a combination of chicken pancreas and rat serum. These results suggest that there is no 
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need for three enzyme treatment in complex food matrices such as legumes, even though the test of 

enzyme activity is highly recommendable prior to analysis of any new food matrix. Moreover, these 

results were in accordance to Zhang et al. (2018) who reported no need for tri-enzyme treatment 

during the extraction of legumes such as common bean, lentils, chickpeas and peas. Furthermore, 

they used fast sample purification by cut-off filters prior to UPLC-MS/MS analysis which 

decreased the time of analysis and showed to be a good method to be implemented in other food 

matrices. 

5.1.2. Strengths and weaknesses of round robin comparison 

A large and diverse sample set used in method comparison study is strength of this method 

comparison. It provided a good overview of the plant-origin GGH’s activity in various types of 

sample. Statistical analysis performed in Paper II showed possible overestimation of the results 

obtained by microbiological assay which could be due to various factors. Bacterial growth caused 

by the use of some non-folate nutrients is one of them, but also the differences in bacterial growth 

based on the variability of response depending on the calibrant used for folate quantification. 

Moreover, the differences in the preference of the enzyme to various folate forms could also be one 

of the reasons for discrepancies in the results. Ramos-Parra et al. (2013) reported differences in the 

preference of rat plasma enzyme which completely deconjugated only PteGlu triglutamate within 

30 min, whereas only 85% of 5-HCO-H4folate triglutamate was deconjugated within 1 hour. 

However, in this sample set, no pattern related to the enzyme preferences towards specific folate 

forms was observed.  

Any bigger multi-laboratory study should have a quality control of analytical measurements by 

analyzing reference materials, preferably certified reference materials. The lack of the use of 

reference materials in all three tested methods is a weakness of the performed round robin. The 

accuracy of the used methods was tested by analyzing certified reference materials by the LC-

MS/MS method using plant enzyme and microbiological assay, whereas it was omitted during LC-

MS/MS analysis using animal origin GGH. Table 5 shows the comparison of the results obtained by 

analyzing certified reference materials. The results from the two methods were in accordance with 

the certified values for the reference materials, except for NIST 1845a when using the plant enzyme 

and the LC-MS/MS analysis, which was already discussed in Section 4.2.4.  
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Table 5 Certified reference materials samples analyzed by LC-MS/MS using plant origin enzyme 

and microbiological assay. Values of the folate content are expressed as PteGlu equivalent 

(µg/100 g). 

Sample Certified 

value 

CRM 

Method 

Total folate 

LC-MS/MS 

Enzyme Method Reference 

BCR 487 

Pig Liver 

1330 ± 130 MA 1291** D (AtGGH2) LC-MS/MS Ložnjak et al. (2019) 

1390* Creon capsules# + 

D (human plasma) 

MA CEN (2003) 

NIST 1845a 

Whole Egg 

130 ± 7 MA 67 ± 5*** D (AtGGH2) LC-MS/MS Ložnjak et al. (2019) 

110* Creon capsules# + 

D (human plasma) 

MA CEN (2003) 

NIST 1546a 

Meat 

Homogenate 

None None 1.0 ± 0.3*** D (AtGGH2) LC-MS/MS Ložnjak et al. (2019) 

5.7* Creon capsules# + 

D (human plasma) 

MA CEN (2003) 

NIST 1549a 

Whole Milk 

None None 19 ± 1*** D (AtGGH2) LC-MS/MS Ložnjak et al. (2019) 

21* Creon capsules# + 

D (human plasma) 

MA CEN (2003) 

MA, microbiological assay; D, deconjugase 

*
 n=1, 

**
n=2, 

***
n=4 

#
Creon capsules: lipase, amylase and protease 

 

5.2. Folate content and its impact to daily intake in analyzed foodstuffs 

In 1992, Gregory et al. studied relative bioavailability of various folate forms and reported that 

differences exist in the bioavailability of monoglutamyl folate forms indicating that PteGlu has the 

highest bioavailability followed by 5-CH3-H4folate, 5-HCO-H4folate and H4folate. Biologically 

active folate monoglutamates play immense role in human metabolism as presented in Section 2.3.. 

However, 5-HCO-H4folate is not directly used as a C1-donor. 5-HCO-H4folate represents 50% of 

the formyl pool of mitochondria and presumably serves as a storage folate form, which can be 

converted to various folate derivatives that are afterwards used in C1 reactions (Orsomando et al. 

2005). Another possible function is the regulation of folate-dependent enzymes (Gorelova et al. 

2017). Numerous studies have been performed as previously mentioned in Section 2.4. that 

emphasized the need of having a sensitive and specific chromatographic method for folate 

determination in food. Folate content and distribution in food varies depending on the natural 
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variability in the foodstuff, connected to physiological state at the harvesting or production stage of 

the foodstuffs and the accuracy of the analytical methods used for folate quantification (Delchier et 

al., 2016). Folate content and distribution in the foodstuffs analyzed by round robin study and their 

possible impact on folate intake are described in Paper III. The distribution of analyzed folate 

vitamers in 25 foodstuffs divided to 7 food groups is shown on Figure 15. 

 

Figure 15 Folate distributions within 25 foodstuffs in seven analyzed food groups 

From seven analyzed food groups, food group of offal represented by two different types of liver, 

calf liver and offal liver, was shown to be the best folate source contributing by >500% to the RDI 

for adults. Folate content in analyzed liver samples ranged from 829 until 1897 µg/100 g, with 5-

CH3-H4folate and H4folate as the most abundant folate forms (Appendix, Table A7). However, as 

the mean consumption of offal consumed by the Danish population is low, though with a large 

standard deviation (Paper III), the food groups of vegetables contributes the most to the daily 

folate intake among Danes. Therefore, ~13 g of romaine salad (71 – 162 µg/100 g) that is average 

consumption among Danish women ensures >25% of RDI for adults. Moreover, >80% of the folate 

forms found in vegetables is 5-CH3-H4folate, which is biologically active form, that can exhibit 
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high bioavailability depending on the food matrix (Ringling & Rychlik, 2017b). Fruits also 

contribute to the daily folate intake in a significant way, due to a wide consumption. Bananas 

containing 21 µg/100 g (n = 2) of folate contribute to almost the same extent as strawberries 

containing 89 ± 6 µg/100 g (n = 4), providing ~15% of the daily intake.  

The most abundant folate form in fruits is 5-CH3-H4folate, the same as in vegetables (Figure 15, 

Appendix, table A1). Similar pattern in the contribution to the daily intake is visible in consumption 

of cereals and dairy products which highly contribute to the total daily folate intake even though 

their content ranges from 7 ± 4 µg/100 g (n =4) in dry parboiled rice to 37 µg/100 g (n = 2) in wheat 

flour, and from 6 ± 1 µg/100 g in milk to 37 ± 6 µg/100 g in high fat content cheese (Appendix, 

Tables A4 and A5). Patring et al. (2009) studied folate content and distribution in Norwegian and 

Swedish bread and reported that wholegrain flours such as wholegrain wheat flour and wholegrain 

rye flour contain higher folate content than sifted flour of the same grains. That is in accordance to 

new data presented in this thesis where wholegrain wheat flour contained 37 µg/100 g (n = 2), 

whereas sifted wheat flour contained 12 µg/100 g (n = 2). Mean total folate content in dry legumes 

ranged from 73 µg/100 g in lentils to 115 µg/100 g in dry kidney beans. Sen Gupta et al. (2013) 

reported the mean folate content in lentils being 225 µg/100 g, which resulted in providing a 

significant amount of the RDI of dietary folate (54-73%) for adults. Legumes are complex matrix 

containing high protein content (18-36%) and fiber content (21-52%) that may hinder folate 

bioavailability from this sources (Sen Gupta et al. 2013). Moreover, legumes have to be processed 

prior consumption that causes leaching or other types of folate degradation (Dang et al., 2000; 

Hefni & Witthöft, 2014). 

In brief, 5-CH3-H4folate was the most abundant folate form in food groups of fruits, vegetables, 

offal and partially legumes, followed by HCO-H4folate forms (Figure 15). As previously 

mentioned, it is hard to make a connection to bioavailability as it is very dependent on various 

factors, especially the type and condition of food matrix. Gregory et al. (1992) reported that PteGlu 

as a stable, synthetic monoglutamate form has the highest bioavailability among folate 

monoglutamates. However, it is considered that PteGlu should not be found in the distribution of 

naturally occurring folate forms. This study showed that indeed no PteGlu was detected in food 

groups of fruits and vegetables, whereas minor amounts were detected in food groups of legumes 

and cereals, mostly in foodstuffs where HCO-H4folate forms were the predominant ones. This 

indicates that PteGlu found in the distribution of naturally occurring folate forms might be the 
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product of oxidative degradation of HCO-H4folates during quantification analysis or in food matrix 

prior to analysis, as it was already quantified in minor amounts in previous studies (Patring et al., 

2009; Edelmann et al., 2013). 

5.3. Round robin: A model for choice of the sample 

Due to the many performed analyses during round robin study, it is possible to propose the use of 

some samples as test materials in a larger inter-laboratory study. It is always recommended to 

analyze various groups of food due to the differences in food matrix. Furthermore, keeping the wide 

concentration range is also desirable to examine if the differences in concentration affect the 

quantification of folate forms. Following foodstuffs (Italic) are proposed as test materials for future 

method comparison studies:  

- Fruits: Strawberries have a high content of folate, mainly 5-CH3-H4folate and serve as a 

good test material due to a very easy homogenization of the sample. Strawberries were used 

in inter-laboratory comparison study by Koontz et al. (2005) and in the presented 

comparison study. Comparable values for all three used methods. 

- Vegetables: A food group of vegetables was troublesome due to the large difference in 

deglutamylation if using GGHs of different origin (Paper II). Furthermore, it was hard to 

obtain reproducible results for microbiological assays in broccoli samples which could be 

due to discrepancies in enzyme activities, but also due to differences in representative 

sample. Broccoli was sampled by making representative sample from broccoli flower 

clusters which may not be unique in their folate content. Due to the possible discrepancies in 

preparation of representative samples, a special focus has to be put on the sampling 

procedure, to make sure that the uniformity of representative samples is achieved. 

Furthermore, vegetables such as spinach or brussels sprouts might be more appropriate to 

keep the uniformity of sampling. 

- Legumes: Lentils are perfect sample for method comparison study, especially for the 

comparison of folate distribution as they contain all folate forms. Furthermore, this sample 

is dry which makes it more stable to environmental changes that may occur during the 

storage and freeze-thaw cycles. However, the highest agreement of the three used methods 

in this food group was in the frozen green peas sample which could be also considered as a 

good test material in a method comparison study. 
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- Cereals: Formyl forms are the most abundant ones in the food group of cereals. Processed 

cereals products such as pasta, parboiled rice and refined wheat flour contain very low folate 

amounts and therefore are not considered as a good choice of test materials in inter-

laboratory study due to the various limits of quantification that may affect collection of 

comparable values. However, whole grain cereals such as rye grain, oat grain, barley grain 

and wholegrain breads have high folate content, and mainly HCO-H4folate forms and 

therefore would be considered as a good choice for comparison. 

- Dairy products: Milk as a food matrix is homogeneous liquid and it could therefore serve as 

a good test material for lower folate content (<10 µg/100 g). All dairy products are 

homogeneous, but the use of cheese includes possible problems in extraction step due to the 

high content of fat per dry matter.  

- Meat and offal: As almost no folate was found in in pork loin, chicken breast would be 

recommended as a good test material from the food group of meat. On the other side, food 

group of offal such as liver is one of the richest folate sources due to its storing role in 

mammals. Therefore, any liver sample would be excellent test material in order to test upper 

limits of folate quantification. 
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Chapter 6: Encapsulation of 5-methyltetrahydrofolate using electrospraying 

This chapter gives a brief overview of the encapsulation technique used for the stabilization of L-5-

methyltetrahydrofolate, a synthetic form of the naturally occurring biologically active form 5-

methyltetrahydrofolate. Electrosprayed capsules containing L-5-methyltetrahydrofolate coated by 

food grade carbohydrates glucose syrup and pullulan were produced. Two stability studies were 

performed in order to examine capsule performance during storage and during heat processing if 

applied to food system. 

6.1. Encapsulation by electrospraying 

High awareness of consumers about the healthy lifestyle increased their demand for foods with 

beneficial effect on health. Food industry is searching for new technologies in order to increase the 

production of novel food products and delivery systems that would enhance stability of sensitive 

bioactive compounds, such as vitamins and antioxidants, and their controlled releasing in the 

gastrointestinal tract. Encapsulation is a technology for packing various materials in the micro- and 

nano-structures via entrapment of the material of interest (core material) with another substance 

(wall material) (Jacobsen et al., 2018). In the last 20 years, various micro- and nano-encapsulation 

techniques have been developed and improved, such as spray drying, freeze drying, emulsification, 

coacervation, liposome preparation etc. (Ghorani & Tucker, 2015). Each of these techniques has 

advantages and disadvantages, but the main drawback for application in prevention of sensitive 

bioactive compounds in food systems is the use of high temperatures or organic solvents. Despite 

causing degradation of the sensitive compounds, it also causes toxicity problems due to the 

residuals of the used organic solvents (López-Rubio & Lagaron, 2012). Therefore, it is desirable 

that the selected wall material is food grade, which results in a wide use of natural biopolymers such 

as proteins and carbohydrates. The choice of biopolymer material is also connected to its purpose 

and future use, in order to ensure that the encapsulated compound will be delivered to the right 

place in gastrointestinal tract. Carbohydrates are commonly used as delivery systems for various 

bioactive compounds as they can bind and entrap various hydrophilic and hydrophobic food 

ingredients, providing a good resistance to high temperature if compared to lipids or proteins which 

might melt or denaturate (Fathi et al., 2014). 

Encapsulation by electrospraying is a technique that has been accepted by the food industry because 

of the potential to produce high quality delivery systems without the use of organic solvents by 
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protecting sensitive bioactive compounds from exposure to high temperatures as it is performed at 

room temperature (Jacobsen et al., 2018). It has the same principle of work as its “sister technique” 

electrospinning and very similar to the principle of work of electrospraying ionization which was 

described previously in Section 4.2.2.  In brief, high voltage electrostatic field is used to charge the 

surface of biopolymer solution, thereby inducing the ejection of charged droplets (electrospraying) 

or jet (electrospinning) towards the nearest lower potential point which is a collector (Ghorani & 

Tucker, 2015). The difference between electrospraying and electrospinning is in the difference in 

the concentration of biopolymer solutions. In electrospraying, low biopolymer concentrations are 

used, the jet is destabilized and it forms capsules, whereas high biopolymer concentrations are used 

in electrospinning, resulting in formation of fibers. Similar to the principle described in the Section 

4.2.2., charged droplets formed by electrospraying solidify through solvent evaporation, and may be 

collected at the end of the process (Ghorani & Tucker, 2015). Particle size distribution obtained by 

this encapsulation process is usually narrow, and particles are smaller than the ones obtained by e.g. 

spray drying (Pérez-Masiá et al., 2015). Having narrow particle size distribution and smaller 

particle size is desirable due to the higher absorption efficiency of the nanoparticles in the body and 

easier incorporation to food matrix (Ezhilarasi et al., 2013). However, in order to obtain desirable 

nanocapsules, processing parameters such as solution properties, processing conditions and ambient 

conditions have to be optimized, as shown in Table 6. 

 

  Table 6 Processing parameters in electrospraying (Ghorani & Tucker 2015) 

Electrospraying parameters  

Solution properties Viscosity 

 Polymer concentration 

 Molecular weight of polymer 
 Electrical conductivity 

 Elasticity 

 Surface tension 

Processing conditions Applied voltage 

 Distance from needle to collector 

 Volume feed rate 

 Needle diameter 

Ambient conditions Temperature 

 Humidity 

 Atmospheric pressure 
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6.2. Previous work on encapsulation of 5-methyltetrahydrofolate 

As previously mentioned food fortification by folic acid might mask symptoms of B12 deficiency, 

and have to undergo some additional metabolic steps in order to be converted to the biologically 

active form. Therefore, a new strategy for food fortification has been sought. 5-CH3-H4folate is the 

most abundant natural biologically active folate form. Therefore, its use as a supplement or food 

fortifier is preferable, if compared to folic acid (Obeid et al., 2013). However, 5-CH3-H4folate is 

more sensitive to environmental conditions than PteGlu and therefore its addition to food is 

troublesome, due to the low storage stability and instability during processing.  

Former research has been performed on the possibility to increase the folate stability by 

encapsulation and its incorporation to food system. Shrestha et al., (2012a) studied thermal stability 

of PteGlu and 5-CH3-H4folate in various liquid models such as milk, soymilk, starch-water and 

water during boiling and autoclaving reporting that the thermal stability of 5-CH3-H4folate was 

lower in almost all studied matrices, resulting in the 17% loss of PteGlu and 70% loss of 5-CH3-

H4folate. In addition, they tested spray drying as an encapsulation technique that would prevent 5-

CH3-H4folate from degradation, where 60% of encapsulation efficiency of the process when using 

the combination of pectin and sodium alginate (P80:A20) for coating was obtained. Encapsulation 

process increased the stability of 5-CH3-H4folate during heating at 130 °C from 79% to 94% 

(Shrestha et al., 2012a). However, in the next study conducted, when the same capsules were 

incorporated into biscuits, no protective effect was seen on the stability of 5-CH3-H4folate at 

temperatures >200 °C, and <8.5% of 5-CH3-H4folate was retained (Shrestha et al., 2012b). Liu et al. 

(2013) encapsulated L-5-CH3-H4folate by modified starch and using spray drying. They fortified 

flour by the free-L-5-CH3-H4folate and produced capsules, and performed pilot plant and bakery 

bread baking study obtaining <80% of L-5-CH3-H4folate recovery after baking. Furthermore, they 

studied the stability of L-5-CH3-H4folate in baked breads for 7 days of storage and reported that 

encapsulation improved the stability, especially if sodium ascorbate was added as antioxidant. 

However, retention of 60% was reported after 3 days of storage in bakery baked bread. As 

previously mentioned, the bioavailability of 5-CH3-H4folate differs from the one of PteGlu, which 

resulted in a study examining the bioavailability of L-5-CH3-H4folate. Green et al. (2013) 

performed a randomized, placebo-controlled trial to assess the bioavailability of wheat rolls 

fortified with encapsulated L-5-CH3-H4folate or equimolar folic acid, and wheat rolls containing no 

added folate (placebo) during 16 weeks by measuring an increase in plasma folate concentrations. 
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Even though the study was too short to assess erythrocyte folate concentration, it showed 

comparable increase in blood folate concentration with folic acid when compared to placebo. These 

findings confirmed the use of L-5-CH3-H4folate as a supplemental folate form.  

6.3. Proposed fortification strategy 

Encapsulation of L-5-CH3-H4folate by the use of electrospraying has been proposed as a novel 

encapsulation approach in production of capsules with a purpose of incorporation into food system. 

Due to the lack of time and an intention to test performance of coating system in encapsulation of a 

vitamin, a previously described carbohydrates based coating system has been used (García-Moreno 

et al., 2018; Hermund et al., 2019). A biopolymer solution used for the encapsulation was composed 

of glucose syrup (15%) and pullulan (4%). Glucose syrup is a common and low-cost wall material, 

whereas pullulan enables good protection from humidity when compared to some other polymer 

materials such as whey protein concentrate (García-Moreno et al., 2018; López-Rubio et al., 2012). 

In order to stabilize L-5-CH3-H4folate, ascorbic acid (Asc) was added as antioxidant to one of the 

biopolymer solutions. The concentration used was 1% of Asc in the produced capsules. 

Optimization and characterization of the capsules was performed as described in Paper IV. 

Processing parameters used during electrospraying slightly differed from the ones used in the 

previous study (García-Moreno et al., 2018) being 0.006 mL/min and 20 kV for flow rate and 

voltage, respectively. Furthermore, surfactant Tween-20 was added to the process to reduce surface 

tension and enable stabilization of the process related to formation of the droplets (Pérez-Masiá et 

al., 2014). The optimized electrospray process resulted in production of the capsules without 

ascorbic acid (Capsules – Asc) and capsules with ascorbic acid (Capsules + Asc). The 

morphological characterization revealed that capsule size was equal to 0.72 ± 0.41 µm and 0.55 ± 

0.34 µm for Capsules – Asc and Capsules + Asc, respectively, which was in accordance with the 

previous study using the same biopolymers indicating that the change in the core material did not 

affect electrospraying process (García-Moreno et al., 2018). The both types of the optimized 

capsules contained 1% of L-5-CH3-H4folate.  

Upon the production, the storage experiment was conducted in order to examine capsules stability 

in very mild storage conditions in dark and at room temperature (22 °C), as it is described in Paper 

IV, whereas the experimental design is shown in Figure 16. The use of free L-5-CH3-H4folate 

served as a control. 
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Figure 16 The experimental design for the storage stability study performed in capsules. Three 

analytical replicated were sampled at each sampling point. 

 

Stability of the folate was calculated by Eq. 1 and it was expressed as recovery of L-5-CH3-

H4folate. Results presented in Table 7 indicate that encapsulation by electrospraying enhanced 

stability of L-5-CH3-H4folate during 21 days of storage, as a significant difference to the stability of 

free L-5-CH3-H4folate was observed after day 7. 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑜𝑓 5 − 𝐶𝐻4 − 𝐻4𝑓𝑜𝑙𝑎𝑡𝑒 (%) =
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 5−𝐶𝐻3−𝐻4folate 𝑞𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑑

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 5−𝐶𝐻3−𝐻4𝑓𝑜𝑙𝑎𝑡𝑒𝑎𝑑𝑑𝑒𝑑
∗ 100 [1] 

 

Table 7 Recovery of L-5-CH3-H4folate during 21 days storage at room temperature (22°C) 

Day Free L-5-CH3-H4folate Capsules - Asc Capsules + Asc 

0 102 ± 6
ax 

93 ± 0.3
ay 

102 ± 1
ax

 

3 97 ± 4
abx 

88 ± 0.4
bcy 

98 ± 1
ax 

7 88 ± 5
bx 

85 ± 0.5
cx 

96 ± 2
ay 

14 75 ± 3
cx 

94 ± 2
ay 

102 ± 2
az 

21 61 ± 2
dx 

91 ± 3
aby 

95 ± 7
ay 

Different black letters abc indicate significant difference (p ≤ 0.05) in the specific solution between days, 

whereas red letters xyz indicate significant difference (p ≤ 0.05) between the treatment groups.  

 

Storage temp (22 C)

Conditions: dark

Free L-5-CH -H folate Capsules - Asc Capsules + Asc
3 4

0 3 7 14 21 0 3 7 14 21 0 3 7 14 21

Test materials

Storage time: 21 days,

5 sampling points
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As capsules showed satisfactory stability of >85%, a possibility of food application and 

effectiveness if exposed to processing conditions was examined. Flour is a widely consumed 

foodstuff used in the preparation of numerous foods, and as it is already mandated for fortification 

in some countries, as previously mentioned, it was decided to be used as a food matrix for 

fortification. The sufficient amount of capsules was produced for fortification and added to all-

purpose flour in order to have 150 µg of L-5-CH3-H4folate/100 g of flour. The amount aimed for is 

recommended for the fortification of flour in the US (Food and Drug Administration, 1996). 

However, the purpose of the study was to test the protective effect offered by the capsules. The use 

of a very sensitive method enabled quantification of L-5-CH3-H4folate, at the low level present in 

flour. Recovery was calculated as retention of L-5-CH3-H4folate in buns after heat processing by 

Eq. 2, so small differences in the added amounts were not crucial, but desirable. The experimental 

design of the second stability study is shown in Figure 17.  

%𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = (
µ𝑔 5−CH3−H4folate  𝑝𝑒𝑟 100 𝑔 𝑜𝑓 𝑏𝑢𝑛𝑠∗𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑏𝑢𝑛𝑠

µ𝑔 5−CH3−H4folate  𝑝𝑒𝑟 100 𝑔 𝑜𝑓 𝑑𝑜𝑢𝑔ℎ∗𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑜𝑢𝑔ℎ
) ∗ 100  [2] 

The uniformity of the distribution of added L-5-CH3-H4folate, either in a free form or in capsules, 

was performed as described in Paper IV. The results of the second storage experiment performed in 

buns after baking (220 °C, 7.5 min) are shown in Table 8.  
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Figure 17 The design of the storage experiment in buns. It included retention during baking and 

stability during storage for 0, 3, 6, and 9 days. Three analytical replicates were sampled 

at each sampling point. *indicate dough samples sampled for the calculation of the 

retention.  

Table 8 Recovery of L-5-CH3-H4folate in buns after baking (Day 0) and after 3, 6 and 9 days of 

storage at room temperature (22 °C) 

Day Endogenous 5-CH3-H4folate Free L-5-CH3-H4folate Capsules - Asc Capsules + Asc 

0 46 ± 0.4
ax 

100 ± 1
ay 

89 ± 1
az 

78 ± 6
au

 

3 47 ± 3
ax 

93 ± 1
aby 

73 ± 9
bz 

85 ± 7
ayz 

6 43 ± 1
ax 

98 ± 7
aby 

78 ± 5
abz 

85 ± 6
ayz 

9 45 ± 2
ax 

88 ± 4
by 

80 ± 2
aby 

85 ± 4
ay 

Different black letters abc indicate significant difference (p ≤ 0.05) in the specific solution between days, whereas red 

letters uxyz indicate significant difference (p ≤ 0.05) between treatment groups.  

 

Addition of ascorbic acid did not improve the stability of L-5-CH3-H4folate, as no significant 

difference was found between these two capsules after any of the two performed storage studies. 

Even though significant protective effect (p ≤ 0.05) of the capsules on the stability of L-5-CH3-

Flour + free L-5-CH -H folateFlour Flour + Capsules -Asc Flour + Capsules +Asc

Dough Dough + free L-5-CH -H folate

3 4

3 4
Dough + Capsules -Asc Dough + Capsules +Asc

0

0 3 6 9

Baking conditions

0 0 0

0 3 6 9 0 3 6 9 0 3 6 9

12 buns (200 C, 7.5 min)

Storage temp (22 C);  Conditions: dark

1

2

Adding the ingredients and kneading the dough
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H4folate was observed during the first stability study, no significant protection was observed during 

baking (day 0), where free L-5-CH3-H4folate was shown to be more stable. Endogenous L-5-CH3-

H4folate represents 5-CH3-H4folate present in buns that is naturally found in flour and other used 

ingredients for the dough preparation. It is interesting to see that >50% of the endogenous folate 

was lost during the heating at 200°C which confirms the fact that the used L-5-CH3-H4folate is 

already protected from oxidation. In addition, our findings are similar to studies investigating 

encapsulated 5-CH3-H4folate and green tea extract (Shrestha et al. (2012b), Gómez-Mascaraque et 

al. (2017)). Both studied the stability of the produced capsules and the protective effect of the 

capsules to 5-CH3-H4folate and in green tea extract. In their studies, encapsulation also had 

protective effect on the bioactives following capsules production and during the characterization of 

the capsules. However, when they implemented the capsules to food system, no protective effect of 

the encapsulation was shown. 

Even though electrospraying has the potential to enable protection of L-5-CH3-H4folate using the 

carbohydrates-based coating material, it is important to acknowledge a few limitations of the study. 

As previously mentioned, due to the costliness of the analytical standard of the naturally occurring 

compound, a synthetic form L-5-CH3-H4folate was used for encapsulation as it was seen in previous 

studies (Liu et al., 2015; Liu et al., 2013). However, L-5-CH3-H4folate was more stable during 

heating and had superior recovery over the recovery of the produced capsules. The ~80% recovery 

of produced capsules may occur also during the oxidation during electrospraying processing, as the 

second stability study in buns was performed after the protective effect from oxidation of the 

capsules was confirmed by the first stability study in capsules. Therefore, two different batches of 

the capsules were used in the two storage experiments which will increase the uncertainty when 

comparing the results from the two studies. Buns, as a chosen food matrix, do not have long storage 

life. In order to test if storage stability in food matrix would be the same as in the capsules, 

prolonged study with the food matrix with longer shelf life should be done. As previously 

mentioned, significant difference (p ≤ 0.05) in the stability of free L-5-CH3-H4folate was observed 

after day 7 of the storage, which is in accordance to the results seen in the stability in buns. The 

recovery of free L-5-CH3-H4folate (88%) on day 9 was significantly different from its recovery on 

day 0 (100%), whereas recovery of encapsulated L-5-CH3-H4folate remained constant during 9 days 

of storage of the buns. In agreement with former study, these results indicate that the application of 

the newly developed delivery system to food systems could become a successful fortification 

strategy.  
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Chapter 7: Conclusions 

The main hypothesis of this PhD project was that the recombinant plant origin GGH can serve as a 

basis for the standardization of deconjugation step in various food groups. A sensitive and specific 

chemical analytical method using LC-MS/MS as a detection tool for analysis of seven folate 

vitamers was developed in order to study the hypothesis. Due to the low stability of folate forms 

and mainly their interconversion, a method development showed to be a challenging task with a lot 

of obstacles. However, the newly developed method is shown to be an efficient analytical tool that 

provided new information about the activity of a recombinant plant origin GGH and folate content 

in many foodstuffs. When compared to commonly used animal-origin GGHs the use of plant origin 

GGH enabled a fast deconjugation step using only single-enzyme extraction, which significantly 

reduced the duration of folate analysis in the lab. The newly developed method was in a round robin 

study compared with a microbiological assay and another LC-MS/MS method using the animal 

origin GGH by analyzing a large and diverse sample set composed of 89 food samples. Data 

obtained from round robin study provided the information about possible overestimation of folate 

content if using a microbiological assay, and on the superior ability of plant origin GGH to 

deconjugate folate in plant matrices such as fruits, vegetables and cereals, as it was already reported 

that animal origin GGHs may be inhibited in plant matrices. No significant difference was observed 

in the complex food matrix of legumes between the compared methods, indicating that single-

enzyme extraction is sufficient for folate deglutamylation within 1 h, if the plant origin GGH was 

used. Moreover, the data obtained by analyzing a large and diverse sample set in this PhD project 

are ready to be implemented into the Danish Food Composition Databank and provide new 

information for creation of future nutritional guidelines, as they contain information on the 

distribution of biologically active folate forms within various food matrices. 5-CH3-H4folate is the 

most abundant folate form in food groups that are considered as rich sources of folate, whereas 

formyl forms prevail in food groups of cereals, dairy products and meat. It was shown that just one 

serving of liver from the food group of offal may provide >500% of the folate RDI (300 µg/day) for 

adults, whereas food groups of legumes, vegetables and certain fruits such as strawberries 

represents food rich in folate by containing >79 µg/100 g of total folate content in food. However, a 

high consumption of food groups of cereals and dairy products results in their contribution to the 

total folate intake despite being poor folate sources. Therefore, a fortification strategy of 

incorporating encapsulated 5-CH3-H4folate into all-purpose flour was examined. The encapsulation 

by electrospraying showed to be a successful way of preserving naturally occurring 5-CH3-H4folate 
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from oxidative degradation in newly produced capsules. However, the incorporation of the 

produced capsules into food matrix such as buns did not show any protective effects during heat 

processing, indicating that further investigation is needed to utilize this as a future fortification 

strategy.  
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Chapter 8: Future perspectives 

Method development requires time and lot of work, especially in the analysis of such a complex 

compounds as folate vitamers. The developed methods showed the limitation in the quantification 

of H4folate, therefore the next version of the method is recommended to include a labeled H4folate. 

Furthermore, there were some difficulties in complete quantification of 5-CH3-H4folate in NIST 

1845a Whole Egg Powder by the use of plant-origin GGH, where other combination of deconjugase 

is needed e.g. of animal-origin deconjugase such as rat serum or recombinant human GGH.  

Improvement of the method could also be to introduce the use of cut-off filters for sample 

purification in order to scale down the extraction volumes and provide even less use of valuable 

pure recombinant enzyme, while at the same way having faster sample purification. This step would 

make this method user friendly and easy to use in routine analysis. 

The method was also validated for quantification of 10-CH3-PteGlu that was reported to be the most 

abundant form in mushrooms. Therefore, a future work on this type of foods could be done in order 

to examine if this compound is occurring in a significant amount in mushrooms and possibly test if 

there is any nutritional benefit of this compound or it is hazardous and is presenting oxidation 

product. The single-laboratory validation and the results from the round robin study funds the basis 

for a future inter-comparison study to assess reproducibility for this new method using the plant 

origin GGHs. The expected acceptable results will form the base for a new standardized method. 

Commercial availability seems to be the only drawback which has to be overcome to establish the 

use of plant-origin GGH as a standard part of folate analysis. The results from this project showed 

that the plant-origin GGH is an enzyme of choice in terms of superiority in enzyme efficiency, 

enabling short analysis-time and reproducible deconjugation of biologically active folate forms in 

complex food samples. Furthermore, 17% lower folate content obtained when analyzed by this 

method indicates that the dietary folate intake is 17% lower than is stated. This difference results in 

an inadequate folate intake among the Danish population which means that there will be a need for 

updated nutritional guidelines. 

Having a sensitive method that may lower its limits of quantification to pg/g levels as a detection 

tool, gives a good starting point in future of folate analysis in blood or biological tissue samples 

which would enable to study folate bioaccessibility and bioavailability from various food matrices. 
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The use of encapsulation as a strategy for preservation of biologically active folate forms showed to 

be successful, even though future work has to be performed in order to examine the appropriate 

food systems for incorporation of newly produced capsules as no protective effect from capsulation 

was observed in the used food system of buns baked with all-purpose flour. Moreover, it would be 

recommendable to use pure analytical standard of 5-CH3-H4folate for encapsulation as the 

commonly used L-5-CH3-H4folate, Metafolin form is already protected and produced as a folate 

form intended to be used in supplementation, therefore masking the real instability of naturally 

occurring folate forms in food.   
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APPENDICES 

 

Table A1: The content of folate forms and total folate content expressed as PteGlu equivalent analyzed by newly developed LC-MS/MS 

method using plant origin GGH in food groups of Fruits. Data are means of analytical duplicates (n=2). 

Foodstuff Sample ID H4folate 

(µg/100g)
 

HCO-folate forms
 

(µg/100g)
 

PteGlu 

(µg/100g)
 

5-CH3-H4folate 

(µg/100g)
 

Total folate 

(µg/100g)
 

    Apple  F3A1 0.00 0.34 0.00 2.08 2.42 

    Apple  F3A2 0.00 0.19 0.00 5.14 5.33 

    Apple  F3A3 0.00 0.18 0.00 0.49 0.67 
    Apple  F3A4 0.23 0.42 0.00 2.58 3.23 

    Banana  F2B1 0.00 3.35 0.00 18.82 22.17 

    Banana  F2B2 0.70 2.54 0.00 16.86 20.10 
    Strawberry  F1S1 0.00 12.48 0.00 66.89 79.37 

    Strawberry  F1S2 1.46 3.79 0.00 85.81 91.06 
    Strawberry  F1S3 3.35 8.95 0.00 81.59 93.89 

    Strawberry  F1S4 1.99 3.43 0.00 84.80 90.23 

    Tomato F4T1 0.00 3.39 0.00 9.04 12.43 
    Tomato F4T2 0.00 0.79 0.00 11.67 12.46 

    Tomato F4T3 0.97 1.92 0.00 20.68 23.57 
    Tomato F4T4 1.01 2.50 0.00 13.05 16.56 
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Table A2: The content of folate forms and total folate content expressed as PteGlu equivalent analyzed by newly developed LC-MS/MS 

method using plant origin GGH in food groups of Vegetables. Data are means of analytical duplicates (n=2). 

Foodstuff Sample ID H4folate 

(µg/100g)
 

HCO-folate forms
 

(µg/100g)
 

PteGlu 

(µg/100g)
 

5-CH3-H4folate 

(µg/100g)
 

Total folate 

(µg/100g)
 

    Broccoli V1B1 18.76 6.37 0.82 94.21 120.2 

    Broccoli V1B2 12.35 14.30 0.00 135.5 162.2 
    Broccoli V1B3 0.00 7.38 0.00 103.6 111.0 

    Broccoli V1B4 22.24 7.38 0.00 94.99 124.6 

    Leek V3L1 1.11 2.96 0.00 96.54 100.6 
    Leek V3L2 0.00 0.89 0.00 118.0 118.9 

    Leek V3L3 0.35 2.11 0.00 95.33 97.79 
    Leek V3L4 3.62 1.40 0.00 115.6 120.7 

    Romaine salad V2LS1 0.45 4.73 0.00 65.88 71.06 

    Romaine salad V2LS2 0.00 1.32 0.00 81.81 83.14 
    Romaine salad V2LS3 1.72 10.13 0.00 117.7 129.5 

    Romaine salad V2LS4 3.50 20.87 0.00 137.7 162.1 

    Onion V4O1 0.00 0.27 0.00 26.18 26.46 

    Onion V4O2 0.00 0.45 0.00 17.14 17.58 

    Onion V4O3 0.35 1.15 0.00 18.00 19.50 
    Onion V4O4 1.34 0.41 0.00 15.29 17.04 
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Table A3: The content of folate forms and total folate content expressed as PteGlu equivalent analyzed by newly developed LC-MS/MS 

method using plant origin GGH in food groups of Legumes. Data are means of analytical duplicates (n=2). 

Foodstuff Sample ID H4folate 

(µg/100g)
 

HCO-folate forms
 

(µg/100g)
 

PteGlu 

(µg/100g)
 

5-CH3-H4folate 

(µg/100g)
 

Total folate 

(µg/100g)
 

    Green peas, frozen B4GP1 3.63 7.09 1.07 85.09 96.88 

    Green peas, frozen B4GP2 4.20 1.43 0.99 74.00 80.63 

    Green peas, frozen B4GP3 7.53 7.51 1.21 67.67 83.92 
    Green peas, frozen B4GP4 8.24 7.14 0.66 72.21 88.25 

    Kidney beans, dry B1KB1 19.48 59.71 8.60 26.91 114.7 

    Kidney beans, canned B2KB1 0.00 23.38 2.06 26.34 51.77 
    Kidney beans, canned B2KB2 0.00 1.47 0.98 20.53 22.98 

    Kidney beans, canned B2KB3 0.11 4.30 1.67 21.75 27.82 
    Kidney beans, canned B2KB4 1.32 9.06 1.97 21.81 34.17 

    Lentils, red, dry B3L1 19.26 21.97 2.09 38.62 81.94 

    Lentils, red, dry B3L2 14.70 20.40 1.83 38.03 74.95 
    Lentils, green, dry B3L3 30.08 23.99 1.60 37.09 92.76 

    Lentils, green, dry B3L4 25.46 19.62 1.11 29.65 75.84 

    Peanuts C4P1 1.17 72.01 6.22 8.15 87.55 

    Peanuts C4P2 1.76 73.34 3.35 6.78 85.22 

    Peanuts C4P3 2.46 56.07 9.09 5.55 73.17 
    Peanuts C4P4 3.42 59.94 9.57 6.96 79.89 
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Table A4: The content of folate forms and total folate content expressed as PteGlu equivalent analyzed by newly developed LC-MS/MS 

method using plant origin GGH in food groups of Cereals. Data are means of analytical duplicates (n=2). 

Foodstuff Sample ID H4folate 

(µg/100g)
 

HCO-folate forms
 

(µg/100g)
 

PteGlu 

(µg/100g)
 

5-CH3-H4folate 

(µg/100g)
 

Total folate 

(µg/100g)
 

    Oat, big grain C3OM1 0.00 18.65 1.60 4.79 25.04 

    Oat, small grain C3OM2 0.37 19.57 2.37 7.76 30.07 

    Oat, small grain C3OM3 0.32 19.66 2.42 7.19 29.58 
    Oat, big grain C3OM4 0.33 22.64 1.59 3.86 28.43 

    Pasta, dry C2P2 0.00 10.17 1.11 0.70 11.98 

    Pasta, dry C2P1 0.67 9.07 1.36 1.74 12.84 
    Pasta, dry C2P3 0.17 11.25 1.01 0.35 12.78 

    Pasta, dry C2P4 0.28 8.02 1.28 0.91 10.50 
    Rice, parboiled, dry C5R1 0.00 0.57 1.94 1.96 4.47 

    Rice, parboiled, dry C5R2 0.37 6.42 2.87 4.69 14.36 

    Rice, parboiled, dry C5R3 0.06 2.69 2.15 0.14 5.04 
    Rice, parboiled, dry C5R4 0.19 2.79 2.16 0.56 5.70 

    Wheat flour C1WF1 0.72 6.16 0.60 3.54 11.02 

    Wheat flour, wholegrain C1WF2 3.94 22.12 0.89 4.76 31.71 

    Wheat flour, wholegrain C1WF3 6.03 25.70 1.77 7.95 41.45 

    Wheat flour C1WF4 2.33 7.07 0.00 2.65 12.04 

 

  



 

86 
 

 

 

Table A5: The content of folate forms and total folate content expressed as PteGlu equivalent analyzed by newly developed LC-MS/MS 

method using plant origin GGH in food groups of Dairy products. Data are means of analytical duplicates (n=2). 

Foodstuff Sample ID H4folate 

(µg/100g)
 

HCO-folate forms
 

(µg/100g)
 

PteGlu 

(µg/100g)
 

5-CH3-H4folate 

(µg/100g)
 

Total folate 

(µg/100g)
 

    Hard cheese, 45+, Danbo D3HC1 0.00 22.38 0.00 3.53 25.91 

    Hard cheese, 45+, Danbo D3HC2 2.15 15.52 0.64 4.89 23.20 

    Hard cheese, 45+, Danbo D3HC3 1.01 17.51 0.00 4.58 23.10 
    Hard cheese, 45+, Danbo D3HC4 1.24 33.09 0.00 5.07 39.40 

    Hard cheese, 60+, Brie D4HC1 0.00 13.44 0.00 22.51 35.96 

    Hard cheese, 60+, Brie D4HC2 6.72 21.07 1.54 9.49 38.82 
    Hard cheese, 60+, Brie D4HC3 7.74 9.23 2.02 22.10 41.09 

    Hard cheese, 60+, Brie D4HC4 5.01 9.37 0.00 15.72 30.10 
    Milk, 1.5% fat D2M1 0.00 1.40 0.00 5.24 6.63 

    Milk, 1.5% fat D2M2 0.40 0.16 0.00 5.17 5.73 

    Milk, 1.5% fat D2M3 0.00 1.01 0.49 5.45 6.95 
    Milk, 1.5% fat D2M4 0.36 0.16 0.00 5.46 5.97 

    Yoghurt, 1.5% fat D1Y1 0.00 6.83 0.00 3.68 10.51 

    Yoghurt, 1.5% fat D1Y2 0.42 5.66 0.00 7.21 13.29 
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Table A6: The content of folate forms and total folate content expressed as PteGlu equivalent analyzed by newly developed LC-MS/MS 

method using plant origin GGH in food groups of Meat. Data are means of analytical duplicates (n=2). 

Foodstuff Sample ID H4folate 

(µg/100g)
 

HCO-folate forms
 

(µg/100g)
 

PteGlu 

(µg/100g)
 

5-CH3-H4folate 

(µg/100g)
 

Total folate 

(µg/100g)
 

     Chicken breast M2C1 1.39 1.15 0.00 3.60 6.13 

     Chicken breast M2C2 1.14 3.16 0.23 1.72 6.25 

     Chicken breast M2C3 0.90 3.27 0.00 1.35 5.52 
     Chicken breast M2C4 0.74 1.92 0.00 1.24 3.90 

     Pork tenderloin M1P1 0.64 0.00 0.00 0.36 1.00 

     Pork tenderloin M1P2 0.41 0.09 0.02 0.11 0.63 
     Pork tenderloin M1P3 0.25 1.40 0.00 0.15 1.80 

     Pork tenderloin M1P4 0.57 0.54 0.00 0.11 1.23 

 

 

Table A7: The content of folate forms and total folate content expressed as PteGlu equivalent analyzed by newly developed LC-MS/MS 

method using plant origin GGH in food groups of Offal. Data are means of analytical duplicates (n=2). 

Foodstuff Sample ID H4folate 

(µg/100g)
 

HCO-folate forms
 

(µg/100g)
 

PteGlu 

(µg/100g)
 

5-CH3-H4folate 

(µg/100g)
 

Total folate 

(µg/100g)
 

      Calf liver O1LB1 483.0 20.96 0.00 1112 1616 

      Calf liver O1LB2 1237 53.09 1.64 605.4 1897 

      Pork liver O2LP1 655.8 69.71 1.18 687.6 1414 
      Pork liver O2LP2 371.8 36.02 0.00 420.7 828.5 

 

 

 


