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1. INTRODUCTION 

This paper discusses some models and related statistical methods for random 
convex polygons. Statistical studies of compact sets are difficult due to the 
lack of models which allow evaluations and provide sufficiently variable shapes. 
Other problems appear, since for an observer typically positions and/or orien­
tations of the set-valued observations are unknown. This means that samples 
of figures rather than samples of sets are considered. (A figure is an equiva­
lence class containing all sets equal up to Euclidean motions.) Indeed, in the 
statistical analysis of sand grains or powder particles the question of location 
and orientation does not make sense at all. 

Similar problems are treated in the statistical theory of shape developed 
by Kendall [15] and Bookstein [3]. There a figure is represented by a finite 
collection of "specific" points, called landmarks. Then motion- and scale­
invariant statistics of these point configurations are considered, see [3, 27, 
28]. However, this approach ignores the initial model of a random set, and in 
particle statistics it is not natural to define landmarks. 

We use an approach based on motion-invariant characteristics. This is 
also the approach used by engineers in applied studies, see [13]. To eliminate 
size effects and emphasize the shape distribution we argue for using of shape­
ratios (normalized measurements) which are also invariant with respect to 
scale transformations. For example, the area is not scale-invariant, but the 
area divided by the square of perimeter is scale-invariant. 

Random polyhedra (or polygons in the planar case) form a simple class 
of random compact sets in the Euclidean space. By now there are very few 
parametric models of random polyhedra. Some of them are mentioned in 
[28], while Hawkins [13] used only a descriptive approach and did not at all 
consider models or distributions. The known standard models are obtained as 
typical polyhedra in tessellations. Unfortunately, these models depend on one 
parameter only, and more sophisticated models of this type are too complicated 
for computations of their invariant characteristics. In this paper we suggest 
an alternative, namely a simple two-parametric model based on weak limits 
of convex hulls of random points. This model allows numerical computations 
of several important shape and size parameters, and at the same time it gives 
polyhedra of sufficiently variable shapes. The first parameter of the model 
controls the polyhedron's size, while the second determines its shape. 

The paper is organized as follows. Section 2 recalls some generalities on 
random compact sets. Section 3 presents several parametric models of random 
polyhedra. Distributional characteristics of so-called convex-stable polyhedra 
are treated in Section 4. Simulation results for some shape characteristics are 
given in Section 5. Finally, in Section 6 three samples of nearly polyhedral 
particles are analyzed. 
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2. RANDOM COMPACT SETS 

A random compact set X is a random element in the space JC of all non­
empty compa~t subsets of the Euclidean space Rd. The measurabilitv con­
dition ensures 'that {X n K =f. 0} is a random event for each K E K,~ The 
famous Choquet theorem [16] yields that the distribution of a random com­
pact set is determined by the values of the capacity (or hitting) functional 
P {X n K =f. 0} for K running through K. Also the containment functional 
P {X C K}, K E JC, suffices to determine uniquely the distribution of a ran­
dom compact set X. Moreover, if X is a convex compact random set, then 
its distribution is determined by the containment functional with K running 
through the smaller class of convex compacts, see [19, 29]. 

A random set X is said to be isotropic if its distribution is invariant with 
respect to non-random rotations around the origin. 

The statistical analysis of random sets often begins with a study of some 
numerical characteristics. In practice, an observer uses several values of func­
tionals fi(Xi), ... , fm(X;) for each observation X; of a random compact set 
X. Then the problem can be reduced to observations of a random vector 
with the subsequent use of techniques of multivariate statistics. However, the 
corresponding distributions are very difficult to compute and to handle. 

For convex compact random sets it is natural to work with the values 
fj(X) = h(X, u1), 1 S j s m, of the support function 

h(X,u) = sup{(u,x): x EX} 

of x at different points U1, ... , Um of the unit sphere sd-l. Here (u, .r) denotes 
the scalar product in Rd. Of course, these values do not allow one to retrieve 
the shape of X. 

The support function h(X, u) is not invariant with respect to motions of X. 
However, if the location (orientation) of X is not known, then all measurements 
f(X) should be invariant with respect to shifts (rotations) of X. Examples of 
s~ch measurements are: area (denoted by A(X)), volume, perimeter (U(X)), 
number of connected components, surface area or other geometric functionals 
and shape-ratios, see [13, 22, 28]. In the planar case we will often use the 
compacity or area-perimeter ratio of X given by 

47rA(X) 
C(X) = U(X)2 . (2.1) 

Note that o s C(X) :::; 1, and C(X) = 1 if and only if X is a disk. For other 
shape ratios see [28] and [13]. The computational techniques for real data arc 
discussed in [21, 22, 26]. 
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3. PARAMETRIC MODELS 

In this section some parametric models of random compact polyhedra (poly­
gons in the planar case) are considered. All examples are centered with respect 
to the origin. Nevertheless, these random polygons can serve as representatives 
of the corresponding (non-centered) random figures. 

3.1. Poisson polyhedron. This is the "typical" random polyhedron X 
generated by the stationary and isotropic Poisson hyperplane tessellation of 
intensity >., see [16, 27, 28]. To obtain random sets, all polyhedra generated 
by the family of hyperplanes are shifted in such a way that their centres of 
gravity lie on the origin. These shifted polyhedra are interpreted as realizations 
of the "typical" random polyhedron X. The moments of its main geometric 
characteristics were given in [16], see also [17], [27, p.271 J. 

3.2. Poisson-Dirichlet polyhedron. Let us consider the Dirichlet (or 
Voronoi) mosaic generated by the stationary Poisson point process of intensity 
>.. For each point x; we construct the open set containing all points of the plane 
whose distance to x; is less than the distances to other points. If shifted by 
x;, the closures of these sets give realizations of the so-called Poisson-Dirichlet 
polyhedron, see [28]. 

Several important numerical parameters of the Poisson polygon and the 
Poisson-Dirichlet polygon (in the planar case, d = 2) are given in Table 3.1. 
These values are taken from [28]. Note that the second moments for the 
Poisson-Dirichlet polygon are obtained only by simulation or numerical in­
tegration. The functionals in the last two columns are motion- and scale­
invariant. Also the number of vertices is a motion- and scale-invariant func­
tional, but we do not recommend its practical use, since small defects on 
boundaries of real figures can produce too many vertices. 

The distributions of both Poisson polygon and Poisson-Dirichlet polygon 
depend on one parameter only, the corresponding intensity parameter ). (hav­
ing different meanings for both models). Moreover, both models can be ob­
tained by scale transforms from the corresponding sets with ,\ = 1. For ex­
ample, the Poisson-Dirichlet polygon X has the same distribution as >.- 1/ 2 X1 , 

where X1 is the Poisson-Dirichlet polygon obtained by the point process with 
unit intensity. Thus, ). affects only size characteristics of the corresponding 
random sets, while their scale-invariant characteristics, e.g., the mean value 
of compacity, C(X), do not depend on ,\. For the Poisson-Dirichlet polygon 
1000 simulations gave the result EC(X) ~ 0.72 with the standard deviation 
O"((X) = 0.10. 

3.3. Convex hulls of a finite number of points (finite convex hulls). 
Another model of a random isotropic polyhedron is the convex hull of N inde­
pendent points uniformly distributed within the ball Er ( o) of radius r centered 
at the origin, see [28]. For given N, the containment functional of this poly-
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Table 3.1: 
Numerical characteristics of the Poisson and the Poisson-Dirichlet polygons. 

EA(X) EU(X) E(U(X)2) ~ ( ) 

Poisson 4>..-2/7r 4,>.-l (271"2 + 8)>..-2 v'2n2 - 8/4 
polygon ~ 0.857 

Poisson-
Dirichlet ,>.-1 4>..-1/2 ~ 16.947>.-1 ~ 0.243 
polygon 

hedron X is given by 

P {X CK}= (µd(Kd))N, KC Br(o), 
bdr 

EU(X) 
yEA(X) 

2.,fo 
~ 3.545 

4 

where K is a convex subset of Br(o), µd is the Lebesgue measure in Rd and 
bd is the volume of the unit ball in Rd. However, further exact distributional 
characteristics are not so easy to find; mostly only asymptotic properties for 
large n can be investigated, see [6, 7, 14, 23, 25]. The values of r and N are 
the two model parameters. The radius of the ball affects the size of polyhedra, 
while N determines their shapes. Convex hulls of random balls were considered 
in [l, ll]. 

3.4. Convex-stable sets. Convex-stable sets (more precisely, strictly 
convex-stable in the terminology of [18, 19]) appear as weak limits of scaled 
convex hulls 

a;:;- 1conv(Z1 U · · · U Zn) 

of iid random compact sets Z1, Z2 , ... having a regularly varying distribution 
in a certain sense, see [19] for a detailed discussion. The an > 0, n ~ 1, are 
positive constants such that an _. oo as n - oo. 

We will deal only with the simplest model where X is the weak limit of 
convex hulls of random singletons (Z; = {~;} ). This case was studied also in 
[2, 4, 5, 8]. However, until now the corresponding convex hulls have not been 
used as models of convex polyhedra. 

In order to obtain non-degenerate limit distributions, the probability den­
sity f of the ~i's must be regular varying at infinity, i.e., for any vector e-:/ o, 
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lim f((tui)) = </J(u) ¥- 0 or oo, 
t-+OO f te 

(3.1) 

for u1 - u ¥- o as t - oo, see [12, 19, 24]. Then <:/;is continuous and homoge-
neous, that is, 

<j;(su) = s-a-d<P(u), s > 0, u E Rd. (3.2) 

Furthermore, the function L(u) = f(u)/<j;(u) is slowly varying, i.e., it satis­
fies (3.1) with the right side equal to 1. If a > 0 in (3.2) then, for an = 
sup{t: ro.L(te) ~ n-1}, the convex hulls 

(3.3) 

converge weakly (in distribution) as n - oo to the convex-stable random set 
X with the containment functional 

P {X c K) =exp {-1 ~(u)du} , (3.4) 

where Kc is the complement of K, see [18, 19]. Note that X is isotropic if and 
only if ef>( u) depends on the norm 11 u \I only. 

The limiting random set X can be equivalently represented as the convex 
hull of a scale invariant Poisson point process, see [9, p.325]. This is a non­
stationary Poisson process whose intensity function satisfies (3.2). Then (3.4) 
follows directly from the Poisson property. Unfortunately, it is not easy to 
simulate such a point process directly, since its intensity measure is infinite in 
the origin. 

To satisfy (3.1), the density f must have power tails. In the isotropic case 
we will use the density 

(3.5) 

for some a > 0 and suitable positive constants c and c1. The constant c is 
a scaling parameter, while the normalizing parameter c1 is chosen in such a 
way that f is a probability density function. Then (3.1) is valid, an ,..., n11° 
as n - oo, and, for \lello.+d = c, (3.1) yields <j;(u) = c\lull-a-d. Thus, for 
an = n 1/o., the random set (3.3) converges weakly to the isotropic convex­
stable set X with the containment functional (3.4). 

Thus, the model has two parameters: the size parameter c and the shape 
parameter a. The choice of a positive a implies that X is almost surely a 
compact convex polyhedron, see [10]. 

A possible engineering motivation for the model of convex-stable polyhedra 
may be the following. Suppose that particles were obtained as the result of 
high pressures applied to dust clouds. These high pressures correspond to 
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scale transformations (3.3) of the clouds with parameter an -+ oo. Then the 
shape of the limiting convex hull is determined only by those elementary dust 
particles which are very far from the origin. If the distribution of dust particles 
has a regular varying density, then the limit is non-degenerate and corresponds 
to a convex-stable polyhedron. 

4. NUMERICAL CHARACTERISTICS OF CONVEX-STABLE 
RANDOM POLYHEDRA 

Here we give some mean values of numerical parameters of a convex-stable 
random polyhedron X with containment functional (3.4). We consider only 
the i~otropic case for which the formulae are simpler. 

4.1. Support function. The distribution of the support function of X is 
given by 

P {h(X, u) < x} = P {X C (Hu(x))c} =exp {- j </>(w)dw} , 
H,.(x) 

where rj;(w) = cllwll-o-d, and Hu(x) = {v: (u,v) ~ x}, x > 0. Integration 
gives the result 

P { h(X, u) < x} =exp {-x-"a(a:)} , 

where 

J </>(v)(u, v)°'dv. 
llvll=l, (u,v)~O 

The integral does not depend on u E sd-l, and the integration is taken with 
respect to the surface area measure on gd-l. Thus, 

Eh(X, u) = f(l - a:- 1)a(n) 1I<>, u E gd-l, ( 4.1) 

where r is the gamma-function. The expectation is finite if and only if a: > 1, 

see also [4]. 
The covariance of the support function of X can be computed by means of 

the formula 

p {h(X, u) < x, h(X, v) < y} =exp {- j </>(w)dw} (4.2) 
H,.(x)UHv(Y) 

for the joint distribution function of h(X, u) and h(X, v). Note that the second 
moment of the support function is finite only if a> 2. Then 

Eh(X, u)2 = a(a:)21"r(l - 20:-1 ) · 
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Furthermore, ( 4.2) implies the independence of h(X, u) and h(X, -u). 
The results above yield the first two moments of the width function b(X, u) = 

h(X, u) + h(X, -u): 

Eb(X, u) = Eh(X, u) + Eh(X, -u), (4.3) 
Eb(X, u)2 = Eh(X, u)2 + 2Eh(X, u)Eh(X, -u) + Eh(X, -u) 2 • (4.4) 

Note that the width function is translation-invariant, but not rotation-invariant. 

4.2. Planar case. If d = 2 and the density f is rotation-invariant, then 
<;b(u) = c\\u\\-0 - 2• Therefore, 

rr/ 9 1 ) c 1· a - cfi r( 2 (a + 1) 
a(a) =; (cos/3) d/3 - ---;;- f(l + ~) . 

-rr/2 

(4.5) 

The expected values of the geometric functionals of X in the planar case 
are given in [4, 8]. In our notations 

EU(X) = 27rf(l - a- 1)a(a) 1fa (4.6) 

and 
EA(X) = ~r(2 - 2a- 1)a(a) 2/a . 

a-1 
It follows from (4.6) and (4.7) that 

EU(X)/ /EA(X) = 27rf(l - O!-l) C~ 71"~ 1 r(2 - 2a-1) )-l/Z 

( 4.7) 

(4.8) 

4.3. Expected mean width and mean square width. The two pa­
rameters in the isotropic case, c and a, can be determined by the method of 
moments. However, the second moments of motion-invariant characteristics 
are not known theoretically. In the planar case it is possible to find shape 
parameter a from ( 4.8) or ( 4.6) and ( 4. 7) using the mean area and the mean 
perimeter of X. As soon as a is found, c can be estimated by means of (4.5) 
and (4.6) or (4.7). 

Unfortunately, mean volume and mean surface area are not known theo­
retically for higher dimensions. Therefore, two other characteristics are con­
sidered. The first is the mean width 

M(X) = - 1- j b(X, u)du 
Wd-1 

Sd-1 

of X, where wd-1 is the surface area of the unit sphere in Rd. In the planar 
case M(X) = U(X)/7r. In general, (4.1) and (4.3) yield 

EM(X) = 2a(a) 1/ar(1 - a-1). 
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Instead of the second moment of M(X) (which is difficult to compute) we 
consider the expectation of 

Formula ( 4.4) yields 

EM2(X) = 2 [r(1 - 20:- 1) + f(l - o:- 1) 2] a(o:) 21°, 

whence 
2 EM 2(X) _ r(l - 2a- 1) 

(EM(X))2 - f(l - 0:-1 )2 + l. 

Note that this equation remains the same for any d. 

(4.9) 

4.4. Three-dimensional convex-stable sets and their projections. 
If X is an isotropic convex-stable polyhedron in Rd, then its lower-dimensional 
projections are distributed as isotropic convex-stable polyhedra in the corre­
sponding lower-dimensional spaces. For instance, suppose that X is a convex­
stable isotropic polyhedron in R 3 with parameters c and o:. Let Y be its planar 
projection. Then, for any planar convex set K, 

P {Y CK} = P {X CK'}= exp {- j cllull-<>- 3du} , 
(K')< 

where K' is the cylinder built on K. Let v be a unit vector orthogonal to the 

projection plane. Then 

P {Y c K) = exp {-J _r cllu + tv 11-0 -'dudt} 

= exp {-c j 11u11-0 - 2du _r(l + t')-(o+J)/'dt} 

This immediately yields that Y is a convex-stable isotropic polygon with the 

same shape parameter o: as X and the size parameter 

I +Joo 2 -(a+3)/2 _ f- f(o:/2 + l) 
C =C (l+t) dt-Cy7rf((o:+3)/2). (4.10) 

-oo 

Therefore, it is possible to estimate parameters of 3-dimensional convex-stable 

polyhedra by their planar projections. 
Other models of random polyhedra in Section 3 do not possess such a 

property. For example, if X is a finite convex hull of N points uniformly 
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distributed within BR( o), then its projection can be no longer interpreted as 
the convex hull of points uniformly distributed within a ( d- l )-dimensional ball 
(even for different numbers of points and the ball's radii). Furthermore, the 
Poisson polyhedron X in R 3 is not projection-invariant, since for its planar 
projection, X', EA(X')2/(EA(X')) 2 = 47r2/9, while this value for the two­
dimensional Poisson polygon is 7r2 /2, see [16, pp.180-181]. 

5. SIMULATION OF PLANAR ISOTROPIC CONVEX-STABLE 
SETS 

Some mean shape characteristics of convex-stable polygons can be computed 
using the formulae of Section 4. For many other the only way of obtaining 
numerical values is simulation. This is similar to the case of Poisson-Dirichlet 
polygons, see [20, 28]. 

Below some simulation results for isotropic convex-stable polygons in R 2 

with different parameters a: are given. We explain the simulation in order to 
help to understand the model of convex-stable sets. 

Each realization of a random convex-stable polygon with given a is sim­
ulated by scaling of the convex hull of n = 1000 independent identically dis­
tributed random points {i. ... , 6000 having the regularly varying isotropic den­
sity (3.5) with tail proportional to llxll-2- 0 , a > 1. In polar coordinates ~i is 
expressed as ~i = W'7i, where Vi is uniformly distributed on the unit circle and 
'f/i is a positive random variable. If 'r/i has the density 

er 
p(r) = 1 +r2+"', r > 0, (5.1) 

then the density of ~i is given by f(x) = p([lxll)/(2nllxll). Thus, f(x) has the 
right tail rate llxll-2- 0 , whence the corresponding convex-stable polygon X 
has the shape parameter a and the size parameter 

C = (/ 1 ;~+a) -I = 2 : a sin 2 ~a · 
The random variables TJi, i ;::: 1, are simulated as follows. 

1. Put ( = tan 11
2
19 for ?J uniformly distributed on [O, l]. The random variable 

( has then a Cauchy distribution with density 

g(r) = 2/(7r(l + r 2)), r;::: O. (5.2) 

(Note that Po(r) = p(r)(c7r )-1 = 7r-1r /(1 + r 2+"') :::; g( r) for all r ~ 0.) 

2. Simulate a random variable r uniformly distributed in [O, g(()]. 

3. If Po(() ~ T, then accept the value of (as the simulated value of T/i, i.e. 
put TJ; = (. Otherwise repeat Step 1. 
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Figure 5.1: 

The mean compacity EC(X) as a function of a. 

The density of~' has the form (3.5). Thus, the normalizing parameter in 
( 3 .3) can be chosen as an = n 1I 0 . Each realization of X was simulated by 
taking the convex hull of n = 1000 i.i.d. points, whence 

The random set X was simulated 1000 times. Figure 5.1 shows the graph of 

the mean compacity as a function of Q. Table 5.1 gives several simulation 
results for the standard deviation of the compacity. 

Note that if X has parameters c and n, then /3X has parameters c/3°' and cL 

Thus, convex-stable polygons with different size parameters can be obtained by 
scale transformations of the sample with a fixed c. However, we will use only 

scale-invariant characteristics. so simulations for one c suffice for our purposes. 

Table 5.1: 

Standard deviations of compacity for several values of a. 

a 2.0 3.0 4.0 5.0 6.0 8.0 10.0 15.0 

lT((X) 0.167 0.119 0.093 0.075 0.062 0.047 0.033 0.022 
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Figure 6.1: 

Several planar projections of particles from three samples of sand grains 
analyzed by E.Pirard. 

6. METHOD OF MOMENTS FOR INVARIANT STATISTICS 

Let us consider three samples of sand particles, which were first analyzed by 
E.Pirard [21, 22]. Figure 6.1 gives planar projections of some specimens from 
each sample. The particles are not convex, but the deviations from convexity 
are small. We try to find a model of random convex polygons with shape and 
size characteristics similar to those of the samples. 

The samples parameters are given in Tables 6.1 and 6.2. The empirical 
means of area, perimeter, compacity etc. are denoted by mA, mu, me etc. 
respectively, and estimates of their standard deviations by 0- with the corre­
sponding subscripts. Note that Pirard estimated the perimeters of particles 
by averaging their three Feret diameters with respect to three main directions 
on a hexagonal lattice, see [26, p. 222] and [21, 22]. We used these values for 
evaluating M2(X) by averaging the squares of these three directional diame­
ters, while values of M(X) were estimated as arithmetic averages of the three 
diameters. 

Comparison of the values given in Table 3.1 for Poisson polygon and Poisson­
Dirichlet polygon with the empirical values of mu/m~2 and 0-u/mu given in 
Table 6.2 suggests that for Pirard's particles the hypothesis of Poisson-Dirichlet 
polygons is more plausible than the hypothesis of Poisson polygons. However, 
the comparison of the empirical mean value of compacity with the theoretical 
value for Poisson-Dirichlet polygon throws doubts also on the first hypothesis. 
It was definitely rejected by a comparison of compacity distributions. 

Thus the two classical polygon models turned out to be inappropriate. 
Therefore, we tried the model of convex-stable polygons. We applied the 
method of moments to estimate the shape parameter a:. There are two possi­
ble methods. The first method is based on the empirical normalized perimeter 
from the second column of Table 6.2 and formula ( 4.8) and the second one uses 
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Table 6.1: 

Empirical translation-invariant characteristics of particles. 

number 
6-M I 

of sample mA (rA mu &u mM2 

sample size ( x 105) (x.104 ) ( x 103) (x 102) ( x 104 ) (x i53 ) I 

1 203 1.74 5.05 1.66 2.69 2.22 7.61 

2 203 1.26 3.40 1.41 2.15 1.60 4.98 

3 183 1.29 3.23 1.34 1.72 1.43 3.76 

Table 6.2: 

Scale-invariant empirical characteristics. 

number 
of 

sample 

. I . 1;2 
mu mA O-u/1nu 1nc a-c ')' ;-·) 

~mM2 mM 

1 3.9676 0.1624 0.7900 0.068 2.0907 
I 

2 3.9880 0.1521 0.7838 0.077 2.0708 

3 3.7279 0.1281 0.8953 0.047 2.0570 I 

formula (4.9) and values of M and M2. The obtained estimates & are given in 

Table 6.3. 
We observe large differences in the second and the third columns of Ta­

ble 6.3 and conclude that for the first two samples the range of o is from 3.5 
to 6.0. Further we estimate a by comparisons of compacity distributions. For 

the first two samples we took the range of a from 3.5 to 6.0 with step 0.1, and 

used the Kolmogorov-Smirnov test to compare the distributions of compacity 
for particles and simulated polygons. The data from the third sample were 
treated in a similar way. The values of a with the highest significance levels 
and the corresponding significance levels are shown in the two last columns of 
Table 6.3. We see that the moment method based on ( 4.8) gives results close to 
those obtained by comparison of compacity distributions. Unfortunately, the 
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Table 6.3: 

Estimates of a. 

number of & based on & based on & based on confidence 
sample (4.8) (4.9) me levels 

1 4.0 5.1 3.9 0.066 

2 4.2 5.7 3.7 0.12 

3 9.8 6.2 9.1 0.045 

estimates obtained by using ( 4.9) are not satisfactory. This may be explained 
by the large empirical variances of the values of M2, as shown in Table 6.1. 

Therefore, the method based on ( 4.9) requires larger samples and, perhaps, 

also the measurement of the width function (diameters) in more directions. 

The value of the size parameter c can be estimated by substituting the true 

mean perimeter into ( 4.6) and using ( 4.5). For example, if the estimate & = 3.7 

for the second sample is taken, then c = 6.68 · 108 . Assuming that the original 

three-dimensional particles are distributed as convex-stable polyhedra, we can 

conclude from (4.10) that three-dimensional polyhedra corresponding to the 
second sample have the size parameter 7.29 · 108 and the shape parameter 3. 7. 

Finally, we try the model of finite convex hulls. Since theoretical values of 

the compacity for this model are not known, we used simulation series of 1000 

experiments to determine the compacity for each number N of points from 3 
to 60. From this we found those values of N which give mean compacities close 

to those given in Table 6.2. Then we used the Kolmogorov-Smirnov test to 
compare the simulated samples of compacities with the empirical ones. For the 

first sample the highest significance level (0.60) is achieved for N = 16. Thus, 

for the first sample, the finite convex hulls model gives a good coincidence 

of compacity distributions. For the second sample and all N the significance 
levels are small (the highest is 6.1·10-3 for N = 15). For the third sample all 
significance levels are less than 10-4• 
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