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Reconfigurable computers usually provide a limited number of different memory resources, such as host memory, external
memory, and on-chip memory with different capacities and communication characteristics. A key challenge for achieving high-
performance with reconfigurable accelerators is the efficient utilization of the available memory resources. A detailed knowledge
of the memories’ parameters is key for generating an optimized communication layout. In this paper, we discuss a benchmarking
environment for generating such a characterization. The environment is built on IMORC, our architectural template and on-
chip network for creating reconfigurable accelerators. We provide a characterization of the memory resources available on the
XtremeData XD1000 reconfigurable computer. Based on this data, we present as a case study the implementation of a 3D image

compositing accelerator that is able to double the frame rate of a parallel renderer.

1. Introduction

Reconfigurable accelerators achieve performance gains over
CPUs by turning application hot spots into customized
hardware cores and providing customized memory architec-
tures to deliver the required high data bandwidth. Typical
reconfigurable platforms for high-performance computing
come with a certain fixed memory architecture with no or
limited possibility to change the size and organization of
the external memory on an per-application basis. A specific
challenge is to find new methods for reducing the design
effort for accelerators which are capable of using the given
memory layout in a flexible yet effective way.

For supporting reconfigurable accelerator design, we
have created the IMORC: Infrastructure for Performance
Monitoring and Optimization of Reconfigurable Computers
[1, 2]. IMORC consists of an architectural template and an
on-chip network. An application is split into an arbitrary
number of cores that run at full speed in their own
clock domains and communicate asynchronously via FIFO-
buffered links. IMORC inserts bitwidth conversion modules

into the links which speeds up the accelerator design process
and facilitates the reuse of developed processing cores. The
IMORC infrastructure also includes memory controllers and
host interfaces which provide the cores with a unified and
transparent way of accessing different kinds of memory,
for example, on-chip memory, off-chip memory, or host
memory.

Related work on architectural templates like IMORC
includes SIMPPL [3], which also connects different cores in
a field programmable gate array (FPGA) using asynchronous
FIFOs. An example for a performance modeling and pro-
filing approach can be found in [4], where a model for
determining an application’s suitability for FPGA accelera-
tion is presented. Similarly, [5] introduces the reconfigurable
computing amenability test (RAT) methodology, which
is a high-level, analytical performance prediction model.
In [6], a framework for performance analysis for high-
performance reconfigurable computing is proposed, which
gathers performance information using manually inserted
load sensors. Further work in the area of performance
prediction is presented by Smith and Peterson [7, 8] who


https://core.ac.uk/display/208552575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

focus on synchronous iterative algorithms running on high-
performance computers equipped with FPGAs. IMORC
differs from these approaches in (i) its more flexible intercon-
nect and (ii) extended infrastructure support. The IMORC
interconnect employs a multibus architecture with slave-
slide arbitration which allows for a multitude of topologies.
Infrastructure cores such as bitwidth converters, farming
cores, and load sensors [2] greatly ease accelerator design and
performance analysis.

The contribution of this paper is the communication
performance characterization for IMORC cores executing
on the XtremeData XD1000 system and, based on that,
the development of an accelerator for parallel rendering.
This paper extends our work presented in our publication
“Communication Performance Acceleration for Reconfig-
urable Accelerator Design on the XD1000” presented at
ReConFig 09 [9]. In addition to our previous work, we
present an introduction to the IMORC architecture template
and its communication infrastructure. The architecture
characterization was extended by an analysis of the CPU’s
memory interface and by a characterization of the achievable
performance when the CPU directly accesses the FPGA’s
address space. Furthermore, we added a discussion of
alternative approaches for 3D compositing using the SIMD
(single instruction, multiple data) units of the CPU, or
graphics processing units (GPU). Finally, we elaborate on the
reasons why our FPGA-based hardware accelerator is able to
accelerate streaming applications, such as 3D compositing,
even if the computational kernels are comparatively simple
and provides only limited inherent parallelism.

The remainder of this paper is organized as follows: in
Section 2, we give an introduction to the IMORC architec-
ture template that is used as a basis for the architecture
characterization and the case study. In Section 3, we discuss
the memory layout on the XD1000 reconfigurable computer
and the IMORC infrastructure for accessing memory on that
machine. We then experimentally characterize the maximally
achievable communication performance. In Section 4, we
use these data to develop an IMORC accelerator for a
z-buffer compositing kernel, a hot spot in our parallel
rendering application. The compositing kernel is a data-
centric streaming kernel with almost no computation and
thus ideal for evaluating the efficiency of the memory
architecture. Measurements presented in Section 5 show that
the IMORC accelerator can double the frame rate of the
parallel rendering application. In Section 6, we discuss the
applicability of the presented approach to other applications.
Finally, Section 7 concludes the paper.

2. Overview of the IMORC
Architecture Template

When implementing FPGA-based accelerators, the final
design often consists of several cores that need to commu-
nicate with each other or with some kind of memory. For
simplifying the design of such accelerators, we have created
the IMORC: Infrastructure for Performance Monitoring and
Optimization of Reconfigurable Computers.
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FIGURE 1: Memory architecture of the XD1000 architecture.

IMORC consists of an infrastructure that enables such
communication between cores. Cores provide an arbitrary
number of master and slave ports, which enable them to
communicate with each other using links. IMORC links use
asynchronous FIFOs for buffering data and requests and
enable each core to run at full speed in its own clock domain.
Additionally, the links insert bitwidth conversion modules
enabling each core to operate at its native data width without
any knowledge of the other cores’ native data width. 1:1
connections can directly be achieved by connecting a master
and a slave port using an IMORC link, while for n : 1
connections (multiple masters access one slave), slave side
arbiters are inserted.

IMORC also provides load sensor cores for collecting
performance information at runtime, for example, statistics
on how frequently FIFOs have run full or drained empty.
Additionally, user-specified load sensors are supported. The
data gathered by these load sensor cores allow the designer
to optimize the performance of the accelerators during a
redesign, for example, by increasing the width of buses that
have been identified as bottlenecks. Further available infras-
tructure cores include the IMORC-to-Register converters for
setting and reading control registers of cores, farming cores
for dynamic load balancing, and, depending on the target
platform, memory controller and host interface cores. An in-
depth overview of the IMORC infrastructure is presented in

[].

3. Communication Performance
Characterization

In this section, we quantitatively characterize the achievable
performance for a reconfigurable core accessing memory on
the XtremeData XD1000 reconfigurable computer.

3.1. The XtremeData XD1000 Architecture. The XD1000
features a 2.2 GHz AMD Opteron CPU with 4 GB of host
memory, and a module equipped with an Altera Stratix II
EP2§180-3 FPGA and 4 GB of external memory installed in a
second Opteron socket. The FPGA connects to the Opteron
processor via a 16-bit-wide HyperTransport link running at
800 MT/s. Figure 1 displays the XD1000 architecture with the
three types of memory a reconfigurable core can access:
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(i) Host Memory. For accessing the host memory, we
implement an IMORC interface to HyperTransport which
is based on the HT cave described in [10]. The cave maps
three distinct address regions into the address space of
the CPU and forwards incoming HyperTransport packets
to our interface. The interface decodes the requests and
converts packets that hit one of the first two address regions
into equivalent IMORC packets which are posted on two
separate IMORC links. Packets targeting the third address
region directly access an embedded block of memory used
as a page mapping table. The first two links are used
for accessing control registers and for large data transfers,
respectively. The page mapping table is responsible for a
mapping in the other direction: host memory is mapped
into the address space of a third IMORC link. For this
purpose, the page mapping table needs to be configured with
physical page addresses of the target host memory by the
user application. When cores send requests over this link, the
upper bits form an index into the page mapping table and
the lower bits are the offset into the page. Using this address
mapping, an IMORC packet is converted into an equivalent
HyperTransport packet and posted to the HyperTransport
cave.

(ii) External Memory. For off-chip memory access,
IMORC wraps the Altera DDR SDRAM controller core
which can access memory in blocks of configurable burst
sizes. DDR SDRAM writes always cover a complete burst,
that is, 2, 4, or 8 clock cycles, depending on the controller
configuration. The XD1000 system provides a 128-bit-wide
memory. Hence, depending on the burst size, 256 bit, 512 bit,
or 1024 bit are written to the memory during a transfer. Since
the XD1000 does not provide data mask pins for the memory
to mask out bytes not to be written during a burst, IMORC
implements a read-modify-write cycle for writes that do
not match one of the burst sizes. The read-modify-write
cycle incurs an overhead but at the same time increases the
flexibility and potential for core reuse, as the core designer is
not necessarily bound to predetermined burst sizes and link
widths.

(iii) Internal Memory. IMORC also provides a versatile
interface for accessing on-chip memory which is functionally
equivalent to the interface for accessing off-chip memory.
Typical FPGA on-chip memories provide byte-enables,
which makes the implementation of the interface for internal
memory less complex than for external memory. Moreover,
on-chip memory can be easily adapted to an application’s
needs since it is customizable to a high degree regarding
parameters such as width and depth. While the achievable
bandwidth for accessing internal memory can be huge, the
capacity of internal memory is rather limited.

Table 1 summarizes the capacities and theoretical max-
imum bandwidths for all memories in the XD1000 system,
as reported in specifications and data sheets. Note that these
bandwidth figures must be considered as upper bounds
which will not be attained in any concrete implementation,
such as IMORC, due to controller and protocol overheads.
Typically, such overheads make the achievable bandwidth
dependent on the request size. Furthermore, the actual
bandwidth available to an accelerator implementation can be

TaBLE 1: Capacities and theoretical bandwidths for the XD1000.

Memory Capacity Parameter Bandwidth
Host 4GB Ba(HM) 1.6 GB/s
External 4GB Ba(EM) 5.4 GB/s
Internal 1 MB Bra(IM) >

Bwr (IM) >

further reduced by contention when several cores compete
for accessing the same memory.

In order to obtain a more detailed bandwidth charac-
terization for different request sizes, we have implemented
a micro benchmark. The micro benchmark essentially is an
IMORC core consisting of a request generator, a data source,
and a data sink. The core provides one IMORC link per
memory to be tested and can be configured in the test type
(read/write), the overall size of data to be transferred, and
the request size per transfer. The link to the HyperTransport
interface is 64-bit wide, the link to the memory controller for
external memory 256 bit. The benchmarking core gathers the
number of clock cycles required for completing a request and
sends this data to the host application.

3.2. CPU - Host Memory Performance Characterization.
For measuring the throughput of the host memory when
accessed by the host CPU, we used the RAMspeed bench-
mark [11]. Just like the popular STREAM benchmark [12],
RAMspeed performs several simple computations on large
arrays of data, hence it accesses memory with consecutive
addresses. Contrary to STREAM, RAMspeed does not only
operate on scalar values but can also perform benchmarks
using the SIMD units (MMX and SSE) integrated in
modern CPUs for measuring the throughput. The basic
operations performed in RAMspeed are Copy (A = B),
Scale (A = m - B), Add (A = B+ C) and Triad (A =
m - B + C). Figure 2 shows the results of the RAMspeed
benchmark operating on 64 bit integer values, 64 bit floating
point values, when using optimized SIMD instructions with
optional prefetching operations. These prefetching variants
of the code use explicit commands to preload the cache with
the data needed in future iterations of the benchmarking
loop in order to reduce cache misses.

The results show an average bandwidth from 2.34 GiB/s
to 2.46 GiB/s for integer and floating point operations as
well as for the MMX and SSE operations without explicit
prefetching. The MMX and SSE operations with explicit
prefetching achieve a much higher bandwidth of about
4.29 GiB/s. This shows that the CPU’s built-in automatic
prefetching units are not able to generate optimal prefetching
commands even for these basic streaming operations.

3.3. CPU «~ FPGA Communication Performance Characteri-
zation. Figure 3 presents the achievable bandwidth when the
CPU reads from or writes to the FPGA. The write bandwidth
nearly reaches the maximum theoretical bandwidth of the
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F1GURE 3: Measured bandwidth when the CPU accesses the FPGA.

HyperTransport link if sufficiently large amounts of data
are transferred. Reading from the FPGA results in a very
poor performance of about 14 MiB/s. The reason for this
behavior is that the CPU does not send a sequence of read
requests to HyperTransport link that connects the CPU to the
FPGA, which could be responded with a continuous stream
of data, but sends only a single request for 64 bit of data at
a time. The next request is not sent before a response has
been received. Thus, directly reading data from the FPGA
should be avoided. Instead, data transfers from FPGA to host
memory should be initiated by the FPGA that is able to better
exploit the available bandwidth of the HT link as shown in
the following paragraph.

3.4. FPGA <~ DDR SDRAM and FPGA «— Host Memory
Performance Characterization. Figures 4 and 5 present the
measured performance for accessing the host and the
external memory from the FPGA with varying request sizes.
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IMORC core on the XD1000.

External memory on the FPGA module is tested using
different controller configurations with 2-, 4-, and 8-cycle
bursts. As mentioned in the overview of the XD1000 memory
architecture, writing data that does not match the burst
size of the memory or does not start at a burst boundary
address requires that a read-modify-write cycle is inserted.
This procedure consists of reading a complete burst from
DDR SDRAM, decoding the error correcting code (ECC)
and performing an error correction, multiplexing the data
to be written on the resulting data stream, encoding the
ECC and writing the data stream back to the memory. As
expected, for writes to the external memory, Figure 4 clearly
shows that the read-modify-write cycle produces a significant
overhead. Memory-bandwidth bound applications should
thus prefer write block sizes matching the controller’s burst
size. For request sizes that do not match the controller’s
burst size, all configurations achieve roughly the same
bandwidth.
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For full-burst writes, the controller configurations differ
strongly. Configurations with 4- and 8-cycle bursts achieve a
write bandwidth of about 4.8 GiB/s, while the 2-cycle burst
configuration is inferior. The 2-cycle burst configuration
delivers a write bandwidth of only 2.5GiB/s for small
request sizes that comprise one burst, and improves to about
4.3 GiB/s for requests of 256 bytes.

For write accesses to host memory over the HyperTrans-
port interface, the bandwidth increases with the block size to
about 1 GiB/s for requests of 64 bytes, which is the maximum
packet size of HyperTransport. For larger request sizes, the
bandwidth drops to about 0.6 GiB/s since the data now has to
be split into two packets of which only one packet exploits the
maximum packet size, and again increases linearly to peak
at about 1 GB/s for multiples of HyperTransport’s maximum
packet size.

Figure 5 presents the measurements for read requests.
The bandwidth for reads from external memory increases
linearly with the request size, reaches a maximum when a
multiple of the configured burst size is reached, and drops
again when exceeding this size. Interestingly, for some non-
matching request sizes 4-cycle bursts are superior to 8-cycle
bursts which tend to match the lower 2-cycle performance.
In these cases, the Altera DDR SDRAM controller performs
sub-optimally and terminates the burst after receiving data
for 2 cycles before initiating another 2-cycle burst.

The achievable bandwidth for read requests to the host
memory increases linearly for request sizes up to 64 bytes,
resulting in a bandwidth of about 1.3 GB/s. Increasing the
request sizes beyond this threshold does not result in any
further significant deviations.

4. An Compositing Accelerator for
a Parallel Rendering Framework

4.1. Parallel Rendering. Modern 3D computer-aided design
applications such as production planning and optimiza-
tion and mechanical component design require substan-
tial computation for rendering 3D scenes. Using highly
detailed object models originating from computer-aided
design (CAD) tools or 3D scanners, such simulation and
visualization applications generate complex 3D scenes with a
huge numbers of polygons to be rendered. Parallel rendering
approaches are required to meet the stringent performance
requirements, especially for interactive modes of operation.
Molnar et al. [13] introduce three approaches for parallel
rendering: sort-first, sort-middle, and sort-last.

Our case study focuses on an in-house parallel renderer
using the sort-last approach. A master node divides a scene
(frame) into N — 1 subscenes and distributes the workload
to N — 1 rendering nodes. The subscenes have roughly the
same number of geometric primitives (polygons) but the
assignment of polygons to rendering nodes is arbitrary. Each
rendering node runs a rendering pipeline that computes a
set of display primitives (pixels) from the received geometric
primitives. A rendering node computes two buffers for its
subscene, the frame buffer containing the color information
and the z-buffer containing the depth information for each

pixel. The resulting 2 - (N — 1) buffers are transferred back
to the master node for compositing. Compositing performs
the sorting step by comparing the distances of the N — 1
candidates for each pixel to the view plane. Only the closest
display primitive is visible.

There are different hardware solutions to accelerate
the compositing of the different frames [14-16]. These
solutions usually comprise some kind of application-specific
integrated circuit (ASIC) or FPGA attached to the graphics
card and can further accelerate different tasks commonly
used in computer graphics. Lightning2 [14] for example
is a standalone hardware that is connected to the graphics
cards in the rendering cluster using DVI (digital visual
interface) interface. The rendering processes running on the
different nodes are modified to copy the depth buffer into
the pixel buffer right after the pixel information and sends
both buffers to the DVI port. The Lightning2 hardware
receives these buffers, performs the image composition, and
sends the resulting image to a separate DVI port. Other
approaches such as the Sepia architecture [17, 18] consist of
PCI attached hardware that is added to every node of the
rendering cluster. The hardware reads the pixel and depth
buffer of each frame from the graphics card and additionally
receives corresponding buffers from other nodes using a
separate special-purpose network. The frames are composed
and again sent to the special-purpose network for further
compositing steps or to the graphics card’s pixel buffer
for being displayed. The main issues with these solutions
are their inflexibility and the limited number of supported
applications [19].

While such special-purpose hardware solutions may
be appropriate for dedicated rendering clusters, equipping
general-purpose clusters for which parallel rendering is
just one of many applications is often not affordable.
Instead, advances in computer system architecture allow for
achieving the same objective with off-the-shelf components.
Fast PCI express interfaces allow for attaching hardware
accelerators with a standardized interface, and high-speed
networks allow for sending images fast enough over the
network, which enables flexible software solutions, for
example [19, 20]. However, while the rendering process can
be distributed easily, composing images with the CPU still
takes a significant amount of time. Compositing has been
identified as a bottleneck for achieving sufficiently high
frame rates in our in-house parallel renderer, in particular
for high-resolution images. Hence, parallel renderers could
benefit from acceleration with general-purpose FPGA
accelerators, which are becoming increasingly popular in
the area of high-performance computing. As FPGA-based
accelerators can be used for accelerating a wide range of
applications, equipping a general-purpose cluster with
commodity FPGA accelerators is more justifiable than
installing specific hardware for rendering.

4.2. Compositing Accelerator Performance Estimation. The
parallel renderer we are studying in this work is part of
a visualization application that can be run in batch-mode
or interactively. The master node stores or displays the



composited image and distributes the next subscenes to
the renderer nodes. The application is implemented with
the MPI (message passing interface) library using double
buffering for frames to overlap computation and network
communication. To analyze potential bottlenecks in the
parallel rendering application, it suffices to look at the
following parameters:

(i) H and W are the height and the width of a subscene
(frame) in pixels. Each rendering node processes
a frame buffer and a z-buffer for each subscene,
resulting in P = W x H x 8 bytes of data (32 bit frame
buffer, 32 bit z-buffer).

(ii) Tr (s/frame) is the time required for one rendering
node to compute its subscene. Trx depends on the
size of the subscene, that is, on P and the number
of polygons. Since the workload is evenly distributed,
we can work with an average value over all rendering
nodes.

(iii) T¢ (s/frame) measures the computation time for the
master node and comprises the times for composing
the images, displaying or storing the resulting image,
and redistributing the next workload. The composit-
ing time is dominating and depends on P and the
number of rendering nodes, N — 1.

(iv) Bnet (byte/s) is the bandwidth of the link which
connects the master node to the computer network.

The aggregated data bandwidth generated by the ren-
dering nodes is (N — 1) x P/Tg (byte/s). Depending on P,
the complexity of scenes, and parameters of the compute
cluster, a reasonably designed and configured system will
try to set the number of rendering nodes such that the
network or the master node is not saturated. Bottlenecks
occur if the aggregated renderer bandwidth exceeds Bpet
or if the master node’s computation time T¢ limits the
throughput. The latter will be more likely in practice which
makes compositing an interesting target for acceleration.

Listing 1 shows the pseudocode for the compositing
function. The function is computationally very simple, only
comprising a regular loop with comparisons and assign-
ments which can be parallelized in a straight-forward way.
However, the main challenge for accelerating this code is to
establish a continuous stream of data through the computing
core. The main design decisions for the FPGA accelerator
are (i) where to store the images and (ii) how many parallel
comparisons to implement. Referring to the communication
characterization for the XD1000 system (Section 3), we
conclude that internal memory is not available in sufficient
capacity for storing realistically large images.

To support the streaming nature of the application, both
the CPU and FPGA implementation of the compositing
function need to store the image (frame and z buffers) from
the first rendering node in memory. Then, the stored image
is compared to each newly arriving picture and updated if
necessary.

Overall, the accelerator has to transfer (N — 1) X P
bytes of data from the host to the FPGA module. Since the
used OpenMPI implementation [21] is unable to store the
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/% compose function
Parameters:
pic_a: base address of first framebuffer
pic_b: base address of second framebuffer
size: frame size in pixels
Note:
—pic_a is also the destination of the composed
frame
—framebuffers are directly followed
by z-buffers, that is, z_a = pic_a + size
*/
void compose (int * pic_a, int x pic_b, int size) {
/lcalculate base addresses of z-buffers
int xz_a = pic_a + size;
int xz_b = pic_b + size;
for (inti=0;1 < size; i++) {
if (z_bli] < z-a[i]) {
pic_ali] = pic_b[i];
z_ali] = z_b[i];

Listing 1: Code for the compositing.

received data directly into the FPGA’s address space, we have
to explicitly transfer the frames to the FPGA.

Figure 6 visualizes the execution of the compositing
accelerator during the different phases and the data channels
to be used. We transfer the first frame to the external
memory on the accelerator module. Since Bq(HM) is
lower than B,4(EM), the time needed for this first phase
of the accelerator is determined by the HyperTransport
performance. The following N — 2 frames of size P stream
from the host to the FPGA accelerator, and, at the same time,
the stored frame streams from external memory to the FPGA,
and the resulting frame streams back to external memory.
The time required for this second phase of computation is
dominated by memory accesses and given as P/B;q(EM) +
P/By;(EM) for the external memory and P/B.4(HM) for the
host memory read over the HyperTransport link. Consulting
the bandwidth measurements of Section 3, that is, Figures
4 and 5, we conclude that for reasonably chosen request
sizes the host memory access will limit the execution time.
This holds true only if the external memory is accessed with
request sizes that are multiples of the controller’s burst size.
The actually chosen burst size of the memory controller
influences the access time for the external memory, but has
no effect on the overall compositing application.

For the last frame, we read P bytes from each host
memory and external memory but write only P/2 bytes back
to host memory since the resulting z-buffer is not needed
for displaying the image. Despite the fact that the write
bandwidth to the host memory is much lower than the
read bandwidth, the execution time of this last accelerator
phase will be determined by reading the host memory
since writing involves only half the data size. Using this
performance estimation, we compare the execution times
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FIGURE 6: Diagram of the communication performed in each phase.
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for the FPGA compositing accelerator with measured CPU
execution times for the same task. Figure 7 shows the results
of this performance comparison for frame resolutions of
800 x 600, 1024 x 768, and 1280 x 1024 pixels. The FPGA
accelerator achieves higher frame rates than the CPU. When
composing the results from four rendering nodes operating
in parallel, the estimated speedup ranges from 4x to 4.5x.
For eight parallel rendering nodes, the speedup is between
5% and 5.7x. Naturally, the achievable frame rate decreases
with an increasing number of subimages that need to be
composed for generating the final image. However, Figure 7
presents only the compositing time. The overall performance
of the parallel rendering application will scale with the
number of rendering nodes, up to the point where we hit a
bottleneck.

5. Implementation and Measurements

In this section we discuss the implementation of the
compositing accelerator based on the statements given in the
previous section. We then evaluate the performance of the
accelerator by integrating the XD1000 into a test setup and
rendering a test scene on a different number of CPUs. We
compare the compositing performance of the accelerator to
the performance achieved by the XD1000 CPU and a CUDA-
based implementation executed on an NVidia graphics card.

5.1. Accelerator Design. Based on the analysis of the com-
positing function and the bandwidth estimations, we imple-
ment a compositing accelerator using our IMORC infras-
tructure. The accelerator architecture is shown in Figure 8
and comprises a host interface core encapsulating the
HyperTransport interface, a memory controller for accessing
the external memory, and a number of cores implementing
the actual compositing function.

As shown in Listing 1, for each iteration we need to read
two values of the z-buffer and two values of the frame buffer,
and write one z-buffer and one frame buffer value. We always
write back one z-buffer and one frame buffer value in order
to keep regularity in the data flow. Figure 8 shows that we
employ a separate stream buffer core for each of these six
memory accesses. The memory controller is configured to 8-
cycle bursts and the request size is set to 128 bytes. A seventh
stream buffer handles frame buffer writes, when the resulting
image is streamed back to the host.

The composer core of the accelerator implements the
actual comparison of z-buffer values and runs at 200 MHz
synchronously to the HyperTransport core. To fully utilize
the HyperTransport link to the host memory, which is the
limiting factor in the design, we unroll the loop in Listing 1
and compute two iterations in parallel. Hence, all links from
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FIGURE 9: Architecture diagram of the test setup comprising an Intel Clovertown system with two 4-core processors connected to the XD1000

using Infiniband.

composer cores to the HyperTransport interface core are 64-
bit wide.

The remaining two cores are the request core and
the compositing controller. The request core is responsible
for issuing read/write requests to the stream buffer cores.
The compositing controller includes control registers for
parameters such as the width and height of an image and
the number of rendering nodes, as well as logic needed for
exchanging state information between the host and the FPGA
accelerator.

5.2. Performance Evaluation. In order to evaluate the overall
performance of the parallel renderer, we implement a test
system comprising an Intel Clovertown machine connected
via Infiniband to the XtremeData XD1000 as pictured in
Figure 9. The Intel Clovertown features two quad core pro-
cessors running at 2.66 GHz and 8 GB of main memory. We
use this machine to implements 1 to 8 rendering nodes. The
XD1000 implements the master node including the com-
positing function. Theoretically, the Infiniband interconnect
provides a peak bandwidth of 10 GBit/s. Measurements with
the Intel IMB benchmark show that our test setup reaches a
sustained Infiniband bandwidth of 700 MB/s.

For image compositing, we compared the performance of
off-the-shelf components. We attached an NVidia GeForce
8800GTS graphics adapter with an NVidia G80 GPU to
the PCle 16x slot of the XtremeData XD1000 platform.
Using the bandwidthTest application of the NVIDIA
CUDA software development kit (SDK), we measured a
write bandwidth of about 1457 MB/s from the host memory
to the memory of the graphics card, which is comparable
to the achievable bandwidth of the CPU/FPGA interface
of the XD1000. We have tested different approaches for
implementing such a CUDA-based compositing accelerator.
The first implementation variant starts an asynchronous
receive operation for the frame- and z-buffers of all rendering
nodes. As soon as the first two frames have been received,
these images are composed on the GPU. As soon as the
next frame has been received, the next compose operation is
started on the GPU, and so forth. Benchmarking has shown
that the performance of these procedures is suboptimal,
hence we have implemented a second variant of a GPU
compositing application which waits until all frames have
been received. Then, all frames are copied to the GPU and
a different compositing kernel that processes all frames is
invoked on the GPUs. After compositing, the resulting image
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FIGURE 10: Performance values of the complete rendering applica-
tion.

is read back from the GPU memory. On the host CPU, we are
using a double buffering approach. Hence, while the GPU is
busy with compositing, the host CPU is already receiving the
next frames from the rendering nodes in the meantime.

However, although this implementation is much faster
than the first variant, composing the frames on the 2.2 GHz
Opteron CPU of the XD1000 is still faster than composing
on the GPU. In our test setup, we achieved a frame rate
of about 11.4fps for a resolution of 800 x 600 with four
rendering nodes when using the CPU for compositing. The
maximum frame rate for this resolution was achieved with
7 rendering nodes and was around 17.1 fps. The CUDA-
based compositing kernel only achieved frame rates of
about 9.7 fps and 15.5fps with these parameters, respec-
tively. A similar behavior could be observed with higher
resolutions like 1280 x 1024, although in this case the
values are more close. At this resolution, the CPU-based
implementation achieves a maximum frame rate of 6.4 fps,
which is achieved when using four rendering nodes. The
corresponding CUDA implementation in this case only
reaches a rate of 5.8 fps. The main reasons for these results is
that the CUDA implementation needs to transfer all images
to the GPU first, before the compositing operation can be
started and the final image can be read back to the CPU.
In contrast, a pure CPU implementation can access the
frame data much faster than the copy operations to and
from the GPU memory. Since only a few simple operations
are performed for each pixel of the frames—basically a
conditional copy operation—the application is essentially
bound by the memory bandwidth and the GPU is not
able to demonstrate its advantage in computational density.
Hence, for accelerating the compositing task in parallel,
rendering it is key to achieve a high throughput through the
accelerator.

In order to provide a fair comparison among different
compositing implementations, we have made efforts to
optimize our baseline implementation for the CPU. To this

end, we have explored the use of SSE2 SIMD instructions
which look like a good match for compositing, because four
comparison and assignment operations can be performed in
parallel. While this reduces the iterations of the compositing
loop by a factor of four, the SIMD model requires to perform
the same sequence of operations on each of the four pixels.
This excludes the possibility to skip the copy operations
for depth and color on a per-pixel basis, when the z-value
comparison reveals that no copying is required. As a result,
the use of SSE2 SIMD instructions did not provide a speedup
over a sequential implementation. Hence, we will restrict our
performance comparison in the following to the use of the
FPGA and the use of the CPU without SSE2 instructions.

Figure 10 compares the overall performance, measured
in frames/s, of the purely CPU-based parallel renderer with
the FPGA-accelerated parallel renderer. Additionally, the
figure shows the frame rates that could be achieved if the
Infiniband interconnect was fully utilized. Figure 10 covers
all three system states of the parallel renderer application.
In the following, we discuss these states for a resolution of
1280 x 1024 pixel, For a small number of rendering nodes
(up to three), the performance increases linearly, and since
neither the network nor the master node is saturated, there
is no benefit from using FPGA acceleration. Increasing the
number of rendering nodes further (four to five nodes)
makes the master a bottleneck. The CPU-based system
achieves its maximum frame rate for four rendering nodes.
In this system state, FPGA acceleration is highly useful as
the improved compositing performance allows us to achieve
a higher peak frame rate. For example, for four rendering
nodes, the performance gain is 1.25X. At a certain point
(six nodes and more), the aggregate bandwidth from the
rendering nodes saturates the network. Figure 10 clearly
shows that the performance of the FPGA-accelerated system
is limited by the Infiniband bandwidth. Obviously, also in
this state FPGA acceleration is beneficial and delivers an
improvement in the frame rate of 2.1x for eight rendering
nodes.

6. Applicability of Our Approach

While we have concentrated on one specific communication-
bound application that performs only a few operations on
each data element in this paper, the presented approach
can be equally applied to other communication-bound
streaming applications, such as digital filtering or image
processing. For example, in [22, 23] we have applied the
same methodology for implementing and optimizing an
accelerator for the Cube Cut problem, which is an unsolved
problem in geometry. The computational kernel of Cube
Cut is very simple and requires to perform comparison
operations on wide bit vectors which can be performed very
cheaply in FPGAs. The key for achieving high performance
is to find a decomposition of the functionality into possibly
replicated cores and to determine memory access patterns
that allow for exploiting the maximum bandwidth. The
availability of accurate bandwidth characterization data is
key to drive this systematic optimization process.
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The IMORC infrastructure as such is however much
more general and is not restricted to communication-bound
streaming applications in any way. For example, in [2] we
have presented the design and implementation of an acceler-
ator for the kth nearest neighbor (KNN) thinning problem.
KNN thinning is a computation-bound application with a
more irregular, data-dependent data processing pattern. The
KNN thinning accelerator also leverages the IMORC infras-
tructure and uses several cores which operate on a large data
set. For maximizing the utilization of data processing cores in
the presence of data-dependent processing times, the KNN
accelerator uses dedicated hardware load balancing cores for
scheduling processing jobs to cores. Even if this application
performs much more complex operations on the data to be
processed, the overall performance greatly depends on the
times needed for data access, making a detailed architecture
characterization necessary also for this application.

7. Conclusion

One specific challenge in mapping applications to high-
performance reconfigurable computing platforms is to opti-
mally utilize the available memory architecture and layout.
Leveraging our IMORC infrastructure and architectural
template for creating reconfigurable accelerators, we exper-
imentally characterize the communication performance for
cores mapped to the XtremeData XD1000 reconfigurable
computer. The achievable bandwidth is strongly varying
with request sizes and controller configurations. An optimal
design point cannot be chosen locally, but requires us to
consider the complete accelerator architecture and the overall
application.

In the case study, we have elaborated on accelerating the
3D image compositing function of a parallel rendering appli-
cation. It may come as a surprise to the reader that this oper-
ation can be successfully accelerated, given that compositing
is a computationally simple operation without significant
inherent parallelism. Hence, any performance improvements
of an FPGA-based hardware accelerator will have to result
from an optimized memory architecture that supports the
streaming nature of the application. Although the DDR
SDRAM attached to the Opteron processor provides a higher
theoretical peak performance than the HyperTransport inter-
face connecting the CPU and the FPGA and also a higher the-
oretical peak performance than the DDR SDRAM attached
to the FPGA, our microbenchmarks have shown that the
Opteron processor is not able to fully exploit this perfor-
mance when using integer arithmetics. Although the SIMD
unit of the Opteron processor should be able to efficiently
implement such a streaming, the performance when using
SSE even drops due to the increased number of operations to
be performed. Manual cache prefetching as suggested by the
microbenchmarks did not further increase the performance.

Using an FPGA compositing accelerator that leverage
the IMORC infrastructure we are able to fully support the
streaming nature of the application, utilizing the different
kinds of memory at their maximum performance. Addi-
tionally, separate memories are used for storing data: host
memory for the original frame- and z-buffers as received
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by the rendering nodes and off-chip memory for storing
the intermediate buffers. Both memories are accessed in
parallel, reducing the contention occurring on each of these
memories.

Experiments with the overall parallel rendering applica-
tion show that the FPGA accelerator is useful when the aggre-
gate bandwidth of the distributed rendering nodes drives
the compositing node into saturation. In this situation, the
accelerator is able to double the achievable frame rate of the
overall parallel renderer. This is significant since one FPGA
module does not only boost the performance of a single CPU
node, but also increases the usability and thus the practical
value of a visualization compute cluster which constitutes a
considerable investment.

Arguably, FPGA accelerators are not yet standard compo-
nents in most clusters, while GPUs are standard components
in many computer systems. To compare our accelerator with
a GPU-based solution, we have ported our compositing
application to the GPU. Our benchmarks have shown that
offloading compositing to the GPU results in a lower
performance than a pure CPU implementation due to the
overheads caused by copying data between the CPU and the
GPU and vice versa.

In this paper, we report on measurements conducted on
a setup with a rather small number of rendering nodes and
limited Infiniband bandwidth. A practical compute cluster
will employ a higher number of rendering nodes connected
by a faster network. This will further increase the pressure
on the master node and allow the FPGA accelerator to
achieve even higher speedups (see the network bandwidth
limitation for the accelerator’s performance in Figure 10).
An FPGA module with one or several network interfaces
would eliminate the HyperTransport bottleneck and allow us
to further increase the compositing performance.

Obviously, alternative approaches to parallel rendering
such as sort-first and sort-middle or parallel compositing
will show other bottlenecks and, perhaps, remove the need
for FPGA acceleration. A comprehensive study of different
parallel rendering approaches and their bottlenecks is,
however, beyond the scope of this work.
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