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Resource location in structured P2P system has a critical influence on the system performance. Existing analytical studies of
Chord protocol have shown some potential improvements in performance. In this paper a splay tree-based new Chord structure
called SChord is proposed to improve the efficiency of locating resources. We consider a novel implementation of the Chord
finger table (routing table) based on the splay tree. This approach extends the Chord finger table with additional routing entries.
Adaptive routing algorithm is proposed for implementation, and it can be shown that hop count is significantly minimized without
introducing any other protocol overheads. We analyze the hop count of the adaptive routing algorithm, as compared to Chord
variants, and demonstrate sharp upper and lower bounds for both worst-case and average case settings. In addition, we theoretically
analyze the hop reducing in SChord and derive the fact that SChord can significantly reduce the routing hops as compared to Chord.
Several simulations are presented to evaluate the performance of the algorithm and support our analytical findings.The simulation
results show the efficiency of SChord.

1. Introduction

The emerging applications of peer-to-peer technologies are
providing users with cheap and powerful facilities for com-
munication. Due to their decentralized nature, the peer-
to-peer applications are enjoying growing popularity. Their
architectures allow for wide availability of network services.
Peer-to-peer networks fall into two categories, unstructured
and structured networks. Structured peer-to-peer networks
are appealing because they can provide decentralization, self-
organization, failure resilience, and good worst-case lookup
performance for applications. However, they suffer from
high latencies in average cases. Since overlay connections
span wide-area networks, the overall lookup time is strongly
dependent on the latencies between the intermediate nodes
of the lookup. It is important to minimize the hop count of
the overlay network.

Chord [1] is a popular topology for structured peer-to-
peer networks, where nodes are arranged in a ring. Chord
methodology partitions the ring by introducing forward links
so that message routes can skip consecutive nodes. These
forward links roughly skip nodes in power-of-two segments
around the ring and therebymake routing easy-to-implement

and demonstrably efficient. The path length of routes in a
Chord network with 𝑁 nodes is bounded by ⌈log𝑁⌉ in the
worst-case and ⌈log𝑁⌉/2 on average. A thorough analysis
of the Chord approach can be found in [2]. Although in
general the Chord approach is both interesting and worth-
while, the actual implementation of the lookup protocol has
some performance and reliability drawbacks.

Several methods [3–5] have been proposed to improve
Chord lookup by exploiting the topological information
of the underlying physical networks. Proximity neighbor
selection (PNS) is one of the representative techniques that
has become widely used. This seeks to select, among the
possible next hops, the one that is the closest in the physical
network or the one that represents a good compromise
between progress in the identifier space and proximity. PNS
methodology can benefit the overall latencies of the system
when peer communication latencies vary significantly, but it
may result in a greater number of routes or longer latency.

As an alternative to minimizing lookup latency via PNS,
paper [6] describes an optimal routing scheme based on bidi-
rectional lookup. This scheme calculates the optimal route
with the least hop count by solving a coding problembased on
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the signed digit representations of minimal hamming weight.
Although this optimal scheme can achieve ⌈log𝑁⌉/3 + 𝑂(1)
hop count on average, any intermediate node failure during
a lookup terminates the lookup and yields the worst-case
hop count ⌈log𝑁⌉/2. F-Chord [7] proposes an alternative
approach to reducing the hop count by producing fingers
based on the Fibonacci number system. Inspired by F-Chord,
paper [8] generalizes the design of the Chord finger table for
fewer routing hops.The works [7, 8] improve the diameter by
paying off a corresponding increase in the degree.

In this paper we propose a new splay tree-[9] based
solution to arrange and maintain the finger table called
SChord. Briefly, the main contributions of our work are as
follows.

(i) A simple and complete splay tree-based SChord
structure is provided in this paper. To the best of our
knowledge, it is the first work to improve Chord by
introducing the tree structure into the design of finger
table.

(ii) The lookup performance of splay finger table (SFT)
is evaluated. Theoretical analysis demonstrates the
search cost on SFT for keys under Zipf distribution
approaches 𝑂(1), which is a notable improvement as
compared toΩ(min{log𝑁, 𝑘}) for lookup in Chord.

(iii) We evaluate the availability of server selection in
SChord and propose the server selection algorithm
(SSA). Analysis shows that SSA is efficient as well
as reliable even if there are a lot of more fingers in
SChord node than Chord node has.

(iv) We analyze the expected number of hops for the
lookup of a random key both in Chord and SChord.
Both theoretical analysis and simulation results show
that SChord can significantly reduce the routing hops.

The remainder of this paper is structured as follows.
Section 2 summarizes related work. The detailed design of
our splay finger table and how to construct and search for
the splay finger table are presented in Section 3. Section 4
describes the method of utilizing server selection via splay
finger table. The results of experiments are presented in
Section 5. Finally we present conclusions and potential future
work in Section 6.

2. Related Works

Extensive work has been proposed to date multiobjective
optimization for Chord-like DHTs. These studies fall into
four categories, namely, optimizing the finger table, proximity
neighbor selection, optimizing the routing algorithm, and
data replication. We summarize the representative work for
each of these categories.

One line of research improves routing via optimizing
the finger table. Literature [7] proposes a family of routing
schemes based on the Fibonacci number system, allowing to
improve the maximum/average number of hops for lookups
and the routing table size per node. It is shown that in F-
Chord the diameter (i.e., the number of hops) is 0:72021 log𝑁

and the average path length is 0:39812 log𝑁. Item [8] gen-
eralizes this result, showing how to construct an improved
finger table when the objective is to reduce the number of
hops, possibly at the expense of an increased size of the finger
table. Monte Carlo simulation results show that the new
proposed finger table provides superior routing performance
and exhibits reduced sensitivity to failures.

Proximity routing used by recent papers in the area [3–
5, 10] is suitable for distributed systems where underlying
network connections incur long latencies. CFS [5] utilizes an
internet coordinating system for its participating nodes and
uses server selection to avoid visiting nodes with potential
long latencies. This improves the overall routing perfor-
mance. LPRS-Chord [11] discusses a random sampling tech-
nique to improve the lookup performance. It redesigns the
nodes’ communication message to glean lookup traversing
latency. Recursive lookups server selection exhibits a better
scaling behavior. LPRS-Chord is fast, incurs little network
overhead, and requires relatively few modifications to the
existing Chord. The author modifies the finger selection
algorithm in order to achieve a more balanced distribution.
The advantage of this proposal as compared to previous
approaches is that it does not add any overhead to the basic
Chord algorithm. The key concept in the above strategies is
that carefully preconfigured routing message can benefit the
later operation.

Paper [6] describes a pioneering optimal routing scheme
based on the signed digit representations of minimal ham-
ming weight. The optimal routing scheme makes use of
both clockwise and counterclockwise fingers and works out
the path with the least hop count. Analysis shows that the
optimal routing scheme can reduce the average hop count to
⌈log𝑁⌉/3 + 𝑂(1) but does not help in the worst-case, that is,
⌈log𝑁⌉ hops. In addition, [12] brought us 𝑂(1)-hop lookup
by issuing parallel queries.

TheBeehive system [13] introduces a proactive replication
framework forDHTs.The goal of this framework is to provide
DHTs with 𝑂(1)-hop lookup performance for Zipf-like or
power law and query distributions. One highlight of this
study is that it presented an approach to alleviating the DHT
hot spot problem through replication. In addition, utilizing
this framework is independent of the underlying DHTs and
therefore does not alter the DHT lookup algorithm.

3. Splay Finger Table

3.1. Overview Splay Finger Table (SFT). SChord uses splay
finger table (SFT) for routing. SFT has four attributes:

(1) 𝑆𝑇: the splay tree that provides insertion and lookup
of the desired key;

(2) Count: a counter that records of the number of nodes
in 𝑆𝑇;

(3) 𝑆: the node that has the minimum ID value in 𝑆𝑇;
(4) 𝑇: the node that has the maximum ID value in 𝑆𝑇.

Splay tree is a self-adjusting binary search tree. The
hierarchy of the node is closely related to the access frequency
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Figure 1: Example of Chord ring with finger tables.

which leads to efficient access of the frequently visited nodes.
On an 𝑛-nodes splay tree, all these standard search tree
operations have an average time bound of 𝑂(log 𝑛) over a
worst-case sequence of operations.

SFT has two functions: routing and caching. For routing,
lookup can be performed on the SFT to find the closest
preceding node 𝑛

󸀠 to the desired key. The lookup is then
directed to 𝑛

󸀠 and the lookup continues until the desired
key is found. Similarly, the key is routed through a sequence
of 𝑂(log 𝑛) nodes towards the destination. As with caching,
when a lookup is performed on node 𝑛, 𝑛 firstly searches
its splay tree in SFT for the desired key. If the key is found,
then lookup is done; otherwise 𝑛 directs the lookup to some
node 𝑛󸀠 in its splay tree. After the lookup on 𝑛

󸀠 is finished,
𝑛 inserts the pair (key, node) to its splay tree, where node is
the successor of key in the SChord ring. Each node can set
a quota for its splay tree known as CACHE MAX. When a
node’s SFT reaches its quota, instead of being inserted into
the node’s splay tree, the new (key, node) pair will be dropped.
The value of CACHE MAX will be discussed in Section 4.

3.2. Settingup Splay Finger Table. The construction of SFT
is similar to the construction of finger table in the original
Chord. Each node maintains a SFT which contains a splay
tree. When a node 𝑛 is created, it sets up an initial splay tree

for its SFT by initiating lookup RPCs to find 𝑚 successors,
that is, successor (𝑛 ⋅ id + 2

𝑖
), 0 ≤ 𝑖 ≤ 𝑚 − 1. It then inserts

them into SFT’s splay tree. The insertion operation is the
standard splay tree insertion. After the insertion, the other
three attributes in SFT change accordingly. Figure 1 depicts
an example of a Chord ring with𝑚 = 3.

In the example above, we examine the construction of
node 0’s SFT step by step. When node 0 is created, all its
attributes in the SFT are set to NIL. Then node 0 tries to
construct its SFT by issuing a series of lookup RPCs. The
fingers are then inserted to the splay tree using the splay tree
insertion operation.Thewhole construction process is shown
in Table 1.

3.3. Lookup on Splay Finger Table. From the previous section
we learnt that the splay tree in a node’s SFT covers keys only
in the interval [𝑆 ⋅ id, 𝑇 ⋅ id]. Thus, the lookup of key on SFT
differs, according to whether the lookup key is in or out of the
interval [𝑆 ⋅ id, 𝑇 ⋅ id].

In the first case as illustrated in Figure 2, when node 𝑛
tries to resolve a lookup of key that falls out of interval [𝑆 ⋅
id, 𝑇 ⋅ id], the lookup process continues on node 𝑇. This is
because the key is on the arc ⃗𝑆𝑇; as far as node 𝑛 knows, 𝑇 is
the nearest node to key in identifier space; hence the node for
the next hop is 𝑇.
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Table 1: Construction of node 0’s splay finger table.

Step Finger Splay finger table
𝑆𝑇 Count S T

0 — NIL 0 NIL NIL

1 1 1 1 1 1

2 3 3
1 12 1 3

3 0
0

3
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3 0 3

Key

Splay
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S

Figure 2: Lookup key falls out of [𝑆 ⋅ id, 𝑇 ⋅ id].

The terminology which is used for describing the splay
tree was introduced by Sleator and Tarjan [9]. Here we use
the example in the preceding section and demonstrate how
SFT changes along with the lookup process for key 1 on node
0.

Table 1 gives the ultimate state of the splay tree 𝑆𝑇 (Step 3)
in node 0. So the lookup for key 1 has two steps; first go right
then left. Such right-left access combination is called zag-zig.
In the splay tree lookup operation, a zag-zig move consists
of two binary tree rotations. First it rotates right at the right
child of the root node, and then it rotates left at the root node,
as illustrated in Figure 3.

It is useful to use sentinel node pointer to replace the NIL
children pointers in the leaf nodes. So after the splay search
process is done and no appropriate node has been found, then
the sentinel node becomes the root of the splay tree. This
sentinel root node is then removed by replacing it with the
largest node in its left subtree, as shown in Figure 4. After the
removal, the lookup will be directed to the new root node.

When the lookup is finished, several additional postop-
erations are needed to update the splay tree. Since the SFT
caches historical search results, for a lookup of key which
does not exist in the splay tree, the key and the lookup result
(key, node) pair are later inserted into the splay tree unless
SFT reaches its quota, that is, CACHE MAX. The insertion
operation on splay tree consists of two steps: splay searches
the key to be inserted and then replaces the root nodewith the
(key, node) pair node if key is not found.The following is the

lookup algorithm on SFT described in C-like pseudocodes;
we name it slookup (see Algorithm 1).

3.4. Lookup Performance on Splay Finger Table. The finger
table in Chord is stored in a form of sequence list or array
which supports randomly access of elements. When a lookup
is performed, Chord simply does a linear search on finger
table by examining entry from the last to the first. SinceChord
uses consistent hashing to generate nodes’ identifiers, we can
infer its properties from the consistent hashing. For each
node 𝑛, the identifier difference between 𝑛 and its successor
is roughly 2𝑚/𝑁. So the number of distinct fingers in finger
table is approximately 𝑚 − log

2
(2
𝑚
/𝑁) = log

2
𝑁. From the

definition of finger table in Chord we may infer that the 𝑖th
finger in 𝑛’s finger table 𝑛⋅finger[𝑖], 0 ≤ 𝑖 ≤ 𝑚−1 is responsible
for up to 2𝑖 keys.The average cost of the lookup for a random
key on node 𝑛 can be calculated as follows:

2
𝑚−1

2𝑚
+ 2

2
𝑚−2

2𝑚
+ ⋅ ⋅ ⋅ + log𝑁2

𝑚−log𝑁

2𝑚

=

log𝑁

∑

𝑖=1

𝑖
1

2𝑖
= 2 −

2

𝑁
−
log𝑁
𝑁

= 𝑂 (1) ,

1 ≤ 𝑁 ≤ 2
𝑚
.

(1)

Thus the cost of the lookup in Chord for keys under
uniform distribution is 𝑂(1). The cost of SFT lookup is
composed of two parts: the splay tree operations, including
insertion and retrieval of keys, and the update operations
for SFT attributes. The SFT update operations contribute to
the constant factors of the overall cost as illustrated in the
pseudocode of slookup, so we only need to examine the cost
of splay tree operations.

We use amortized algorithm analysis to determine the
behavior of splaying over long sequences of operations. The
amortized cost 𝑎

𝑖
is defined to be

𝑎
𝑖
= 𝑡
𝑖
+ 𝑐
𝑖
− 𝑐
𝑖−1
, (2)

for 𝑖 = 1, 2, . . . , 𝑚, where 𝑡
𝑖
is the actual cost of operation 𝑖 and

𝑐
𝑖
is the credit balance after the operation 𝑖. So the total actual

cost and total amortized cost of a sequence of 𝑚 operations
on a data structure are related by

𝑚

∑

𝑖=1

𝑡
𝑖
= (

𝑚

∑

𝑖=1

𝑎
𝑖
) + 𝑐
0
− 𝑐
𝑚
. (3)

Let 𝑆
𝑖
(𝑥) denote the number of nodes in the subtree

rooted at node 𝑥 after step 𝑖 of the splaying process, then we
define the rank at each step 𝑖 of 𝑥 to be

𝑟
𝑖
(𝑥) = log 𝑆

𝑖
(𝑥) . (4)



The Scientific World Journal 5

0

3

1

0

01

1

3

3

Becomes

Sub tree

Sub tree

Root

Root

Right treeRight tree

Total height = h + 2

Total height = h + 3

h − 1

or

h

h − 1

or

h

h

h

h h

T1

T1

T2

T2

T3

T3T4 T4

One of T2or T3 has height h.

Figure 3: Lookup for key 1 on node 0.

Large

Replace

Sentinel root

T1 T2

T3

Figure 4: Removal of sentinel root node.

We assume that, after 𝑚 splaying steps, 𝑥 ends up as the
root. Hence we obtain that the total amortized cost is
𝑚

∑

𝑖=1

𝑎
𝑖
= (

𝑚−1

∑

𝑖=1

𝑎
𝑖
) + 𝑎
𝑚

≤

𝑚−1

∑

𝑖=1

(3𝑟
𝑖
(𝑥) − 3𝑟

𝑖−1
(𝑥)) + (1 + 3𝑟

𝑚
(𝑥) − 3𝑟

𝑚−1
(𝑥))

= 1 + 3𝑟
𝑚
(𝑥) − 3𝑟

0
(𝑥) ≤ 1 + 3𝑟

𝑚
(𝑥) = 1 + 3 log 𝑛.

(5)

Thus the amortized cost of an insertion or retrieval with
splaying in a binary search tree with 𝑛 nodes does not exceed

1 + 3 log 𝑛. (6)

upward moves of the target node in the tree.
The total complexity of a sequence of 𝑚 insertions or

retrievals with splaying in a binary search tree that never has
more than 𝑛 nodes does not exceed

𝑚(1 + 3 log 𝑛) + 𝑛 log 𝑛, (7)

upward moves of a target node in the tree.
Here we recall the static optimality theorem in [9].
If every item is accessed at least once, then the total access

time is

𝑂(𝑚 +

𝑛

∑

𝑖=1

(𝑞 (𝑖) log( 𝑚

𝑞 (𝑖)
))) . (8)

Consider that the nodes accessed are under Zipf distribu-
tion. We define the rank of node 𝑖 to be 𝑟

𝑖
, according to Zipf ’s

law 𝑞(𝑖) = 𝐴/𝑟
𝛼

𝑖
, where 𝛼 (𝛼 = 1) and 𝐴 are constants that

characterize the distribution. So the amortized access time
becomes

𝑚 +

𝑛

∑

𝑖=1

(
𝐴

𝑟
𝑖

log(𝑚
𝐴
𝑟
𝑖
))

= 𝑚 + 𝐴∫

𝑛

1

1

𝑥
log(𝑚

𝐴
𝑥)𝑑𝑥 + 𝑂 (1)

= 𝑚 + 𝐴 log 𝑚
𝐴

ln 𝑛 + 𝐴∫

𝑛

1

1

𝑥
log𝑥𝑑𝑥 + 𝑂 (1)

= 𝑂(𝑚 + log 𝑚
𝐴

ln 𝑛 + ln2𝑛) ,

(9)
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// Splay Finger Table Lookup
// Return the successor of key
n⋅slookup(key)
(1) if (key is between S⋅id and T⋅id)
(2) 𝑛

󸀠 = splay search(𝑆𝑇, key)
(3) if (𝑛󸀠 is sentinel)
(4) remove sentinel root(𝑆𝑇)
(5) n󸀠 = 𝑆𝑇⋅root
(6) if (𝑛󸀠⋅id == key)
(7) return 𝑛󸀠
(8) 𝑛

󸀠 = 𝑛󸀠⋅slookup(key)
(9) else
(10) 𝑛

󸀠 = T⋅slookup(key)
(11) if (Count < CACHE MAX)
(12) splay insert(𝑆𝑇, 𝑛󸀠)
(13) 𝑆 = min (𝑆, 𝑛󸀠)
(14) 𝑇 = max (𝑇, 𝑛󸀠)
(15) return 𝑛󸀠

Algorithm 1

where 𝐴 = 𝜃𝑚, 0 < 𝜃 < 1; thus the average access time in the
worse-case is

𝑂(
ln2𝑛
𝑚

) . (10)

In the latter section we will discuss the upper bound
for 𝑛, that is, CACHE MAX which is a constant. So the net
potential drop over a long sequence of accesses is bound to
𝑂(1).

In contrast, we determine the lower bound for the lookup
process in Chord when keys are under Zipf distribution.
Assume that there are 𝑘(𝑘 > 0) resources with distinct ranks.
Similarly, let 𝑟

𝑖
be the rank of the 𝑖th resource and let 𝑠

1
𝑠
2
⋅ ⋅ ⋅ 𝑠
𝑥

denote an arbitrary permutation of 𝑥 of 𝑘 integers in set
{1, 2, . . . , 𝑘}, for 1 ≤ 𝑥 ≤ 𝑘. Then the expected cost of the
Chord lookup for keys under Zipf distribution follows

1

𝑥!

1

∑
𝑘

𝑖=1
(1/𝑖)

( ∑

𝑠
1
𝑠
2
⋅⋅⋅𝑠
𝑥

(
1

𝑟
𝑠
1

+
2

𝑟
𝑠
2

+ ⋅ ⋅ ⋅ +
𝑥

𝑟
𝑠
𝑥

))

=
1

𝑥!

1

∑
𝑘

𝑖=1
(1/𝑖)

((𝑥 − 1)!(

𝑥

∑

𝑗=1

𝑗)(

𝑥

∑

𝑖=1

1

𝑟
𝑠
𝑖

))

=
𝑥 + 1

2

1

∑
𝑘

𝑖=1
(1/𝑖)

(

𝑥

∑

𝑖=1

1

𝑟
𝑠
𝑖

)

≥
𝑥 + 1

2

ln ((𝑘 + 1) / (𝑘 − 𝑥 + 1))
1 + ln 𝑘

= Ω (𝑥) ,

(11)

where 𝑥 = min{𝑛, 𝑘} and 𝑛 is the number of distinct entries in
the node’s finger table. We have derived the value of 𝑛; that is,
𝑛 = log𝑁;𝑁 is the number of nodes in the Chord ring. Since
the resources are finite and 𝑘 is a constant, the lower bound is
thenΩ(𝑥).

Based on the above analysis, when the lookup key is under
uniform distribution, the expected cost of a search operation

B

A

10ms

100ms

Client (X)

Target (Y)

Figure 5: Example of choice in server selection.

on splay finger table is 𝑂(log 𝑛) compared to 𝑂(1) for the
search in Chord. However, in the real world, the lookup key
is nonuniform, approximately under Zipf distribution. In this
case the average cost of slookup approaches 𝑂(1), which is
a notable improvement as compared to Ω(min{log𝑁, 𝑘}) for
lookup in Chord. This is also confirmed in our experiment.

4. Server Selection

The use of server selection in the lookup layer strives to
reduce the overall latency by choosing the node that has the
least estimated lookup time (ELT) as the next hop node.

4.1. Background: Server Selection in Chord. When a lookup is
performed, the original node 𝑛 tries to find the predecessor
of the lookup key by issuing a RPC to a node 𝑛

󸀠, and 𝑛
󸀠

then returns the closest preceding nodes in its finger table
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SERVER-SELECT(k, n)
(1) best← +∞
(2) for i← 1 to k
(3) do if C(pi) < best
(4) then best← C(pi)
(5) for i← k + 1 to n
(6) do if C(pi) < best
(7) then return i
(8) return n

Algorithm 2

to 𝑛. This process is reiterated until the desired successor is
found. Chord adopts this lookup method to minimize the
number of necessary hops along the lookup path. Therefore
the overall lookup time strongly depends on the intermediate
nodes among the lookup path.

Potentially the server selection could be used at each step
of the lookup process to reduce the overall lookup latency.
Namely, when an intermediate node 𝑛 tries to find the node
for the next hop, instead of picking the node with the closest
ID in its finger table, it estimates the time left to finish the
lookup process for each finger that precedes the lookup key.
So the next hop node should be the one has the least ELT.

Figure 5 illustrates a situation of the choice of a potentially
better lookup path. When the client (node 𝑋) parses the
lookup of target (node 𝑌), it compares 𝑌 to its fingers and
finds two matching nodes 𝐴, 𝐵. The direct one-trip time
(OTT) between 𝑋𝐴 and 𝑋𝐵 could be estimated via network
coordinates or querying𝑋’s historical latency database. So the
ELT for the rest of the lookup could be calculated as

𝑇
𝑋𝐴𝑌

= HopLatency ×NumHops
𝐴𝑌

+OTT
𝑋𝐴
,

𝑇
𝑋𝐵𝑌

= HopLatency × NumHops
𝐵𝑌

+OTT
𝑋𝐵
.

(12)

It is better to pick node 𝐴 rather than 𝐵 if 𝑇
𝑋𝐴𝑌

< 𝑇
𝑋𝐵𝑌

.
We denote by 𝐶(𝑛

𝑖
) the overall latency of the lookup for

id that starts from node 𝑛. Then 𝐶(𝑛
𝑖
) is estimated by

𝐶 (𝑛
𝑖
) = 𝑑
𝑖
+ 𝑑 × 𝐻 (𝑛

𝑖
) . (13)

Having 𝑑
𝑖
be the OTT between 𝑛 and 𝑛

𝑖
and 𝑑 be the

average per hop latency which might be obtained from the
node’s historical RPC latency data, 𝐻(𝑛

𝑖
) is the estimated

number of hops left from 𝑛
𝑖
to the lookup finishes. For an

𝑛-node Chord ring𝐻(𝑛
𝑖
) can be calculated as

𝐻(𝑛
𝑖
) = ones ((𝑖𝑑 − 𝑛

𝑖
) ≫ (160 − log𝑁)) , (14)

where “≫” is the binary right shift operation and ones(𝑛)
function counts the number of significant bits of integer 𝑛 in
binary.

To utilize server selection on the original Chord, at each
step of the lookup process, the node for this hop examines
the fingers preceding the desired key in its finger table and
chooses the one that has the least ELT as the next hop
node. However, for server selection on SFT, this is a different
scenario.

4.2. Server Selection via Splay Finger Table. Unlike the finger
table in Chord, which has fixed size in fingers, the number of
fingers in SFT is dynamic, varying from𝑚 to CACHE MAX.
So the number of predecessors of the desired key at each
step of the lookup could be large. A new method needs to
be discovered so that the server selection can be performed
as efficiently as Chord’s.

The algorithm we proposed here is inspired by prob-
abilistic analysis. Consider the situation that at some step
of a lookup on 𝑠 node; 𝑠 examines the predecessors in its
SFT of the desired key and assumes that there are 𝑛 of such
predecessors. So 𝑠 will then pick one of these predecessors
that have a smaller ELT as the next hop node. By saying
“smaller ELT,” we mean the node which has an ELT that is
smaller than 𝑡’s ELT, where 𝑡 is the node in SFT whose ID is
the closest to the desired key. Let 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
be the fingers

in SFT that precedes the desired key; the following gives the
server selection algorithm (SSA) on SFT (see Algorithm 2).

The idea we used in SSA is to cancel the first 𝑘 candidates,
namely, 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑘
, and then pick the first candidate 𝑝

𝑢
in

𝑝
𝑘+1

, 𝑝
𝑘+2

, . . . , 𝑝
𝑛
such that 𝐶(𝑝

𝑢
) is less than all 𝐶(𝑝

𝑖
), 0 <

𝑖 ≤ 𝑘. If no 𝑝
𝑢

satisfies, then SSA will pick 𝑝
𝑛
by

default.
We shall analyze each possible value of 𝑘 and the prob-

ability that SSA picks the node that has the least ELT. In
this case we say that SSA made the best choice. Then we
will choose the best possible 𝑘 and implement the server
selection with that value. Assume that 𝑘 is fixed for the
moment. Let 𝑀(𝑗) = min

1≤𝑖≤𝑗
{𝐶(𝑝
𝑖
)} denote the minimum

cost among the candidates 1 through 𝑗. Let 𝑆 be the event
in which SSA succeeds in making the best choice and let 𝑆

𝑖

be the event in which SSA succeeds when 𝑝
𝑖
is the one that

has the least ELT. Since the various 𝑆
𝑖
are disjoint, we have

Pr{𝑆} = ∑
𝑛

𝑖=1
Pr{𝑆
𝑖
}. SSA never succeeds if the best one is in

𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑘
; we have Pr{𝑆

𝑗
} = 0, for 𝑖 = 1, 2, . . . , 𝑘. Thus we

obtain

Pr {𝑆} =
𝑛

∑

𝑖=1

Pr {𝑆
𝑖
} . (15)

In order for 𝑆
𝑖
to succeed, candidate 𝑝

𝑖
should have

the least ELT; in addition, none of the candidates 𝑝
𝑘+1

through 𝑝
𝑖−1

have been chosen. Since 𝐶(𝑝
𝑖
) is under random

distribution and OTTs are measured with high precision, we
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can tell that there are no such two candidates 𝑝V and 𝑝ℎ such
that 𝐶(𝑝V) = 𝐶(𝑝

ℎ
). Hence we have

Pr {𝑆
𝑖
} =

𝑘

𝑛 (𝑖 − 1)
,

Pr {𝑆} =
𝑛

∑

𝑖=𝑘+1

Pr {𝑆
𝑖
} =

𝑛

∑

𝑖=𝑘+1

𝑘

𝑛 (𝑖 − 1)
=
𝑘

𝑛

𝑛−1

∑

𝑖=𝑘

1

𝑖
.

(16)

Since the following inequalities hold for 0 < 𝑘 ≤ 𝑛 :

∫

𝑛

𝑘

1

𝑥
𝑑𝑥 ≤

𝑛−1

∑

𝑖=𝑘

1

𝑖
≤ ∫

𝑛−1

𝑘−1

1

𝑥
𝑑𝑥. (17)

The lower and upper bounds for Pr{𝑆} are then obtained
as follows:

𝑘

𝑛
(ln 𝑛 − ln 𝑘) ≤ Pr {𝑆} ≤ 𝑘

𝑛
(ln (𝑛 − 1) − ln (𝑘 − 1)) . (18)

By differentiating the lower bound expression with
respect to 𝑘, we obtain

1

𝑛
(ln 𝑛 − ln 𝑘 − 1) . (19)

Setting this derivative equal to 0, we see that the lower
bound for Pr{𝑆} is maximized when 𝑘 = 𝑛/𝑒. Thus the SSA
will succeed inmaking the best choicewith probability at least
1/𝑒 ≈ 0.368.

Now we determine the cost of SSA in iterations. The
expected number of iterations 𝛿 in SSA with respect to 𝑖 is

𝑘 +

𝑛−𝑘

∑

𝑖=1

𝑖

𝑘 + 𝑖
= 𝑛 − 𝑘

𝑛

∑

𝑖=𝑘+1

1

𝑖

≤ 𝑛 − 𝑘∫

𝑛+1

𝑘+1

1

𝑥
𝑑𝑥 = 𝑛 − 𝑘 ln(𝑛 + 1

𝑘 + 1
) .

(20)

Substitute 𝑘 with 𝑛/𝑒; the expression of 𝛿 becomes

𝑛 −
𝑛

𝑒
ln(𝑒𝑛 + 1

𝑛 + 𝑒
) = 𝑛 −

𝑛

𝑒
− ln((1 + 1 − 𝑒

𝑛 + 𝑒
)

𝑛/𝑒

) . (21)

When 𝑛 grows large enough, 𝛿 is approximately

lim
𝑛→∞

(𝑛 −
𝑛

𝑒
− ln((1 + 1 − 𝑒

𝑛 + 𝑒
)

𝑛/𝑒

))

= 𝑛 −
𝑛

𝑒
−
1 − 𝑒

𝑒
=
𝑒 − 1

𝑒
(𝑛 + 1) ≈ 0.632𝑛 + 0.632.

(22)

Let 𝑛 = 0.632𝑛 + 0.632. 𝑛 is the sever selection cost of SSA
in SChord. Then 𝑛 < 𝑛 {𝑛 > 2}. Therefore SSA is faster than
server selection in Chord which calculates 𝐶(𝑝

𝑖
) for every

candidate before making a choice, resulting in 𝑛 iterations.
Furthermore, by setting CACHE MAX to (2𝑒/(𝑒 − 1))𝑀 (or
𝑛 = 𝑛), where𝑀 is the bit length of the node’s identifier, SSA
could perform as efficient as the server selection in Chord.
Better still, SSA can find the candidate that has the least ELT
with probability at least 1/𝑒.

4.3. Hop Reducing. By extending the finger table with histor-
ical lookup (key, node) pairs, at each step of the lookup, the
node that resolves the lookup could potentially take larger
advances towards the desired key. For example, when SFT in
a node 𝑛 is initially built, it has exactly the same fingers as the
finger table does in Chord. SFT then grows with the number
of lookups done on node 𝑛 since 𝑛 caches the historical
lookup results with the corresponding keys (see Section 3).
Thus for some lookup of key 𝑘, if 𝑘 falls between 𝑛⋅finger[𝑖]⋅id
and 𝑛 ⋅ finger[𝑖 + 1] ⋅ id, where 0 ≤ i < 𝑚, with some
probability, there exists a cached key 𝑘󸀠 in 𝑛’s SFT such that
𝑘
󸀠
∈ (𝑛 ⋅ finger[𝑖] ⋅ id, 𝑘), so 𝑛 will choose the node in its

SFT whose ID is 𝑘󸀠 as next hop node, instead of 𝑛.finger[𝑖]
in Chord.

We now use (14) to determine the expected number of
hops for the lookup of a random key both in Chord and
SChord, respectively. We denote by 𝜉 the number of hops for
a lookup in Chord and 𝜂 in SChord. The ones(𝑛) function is
provided as in Algorithm 3.

The cost of ones(𝑛) function is determined by the number
of significant bits in 𝑛. Assume that there are𝑚 of them; then
the cost of ones(𝑛) is 𝑚. Thus, for 𝑛 ∈ [0, 2

𝑚
), ones(𝑛) ∼

𝐵(𝑚, 1/2), the expected cost of ones(𝑛) is𝑚/2.

Lemma 1. Consider

𝑡

∑

𝑖=1

𝑖2
𝑖
= 2
𝑡+1

(𝑡 − 1) + 2. (23)

For any node 𝑛, let 𝐵
𝑖
be the event in which 𝑛 ⋅ finger[𝑖] is

responsible for the desired key. In order for 𝐵
𝑖
to succeed, key

should be in (𝑛 ⋅ finger[𝑖] ⋅ id, 𝑛 ⋅ finger[𝑖 + 1] ⋅ id]; hence the
probability Pr {𝐵

𝑖
} in which 𝐵

𝑖
happens is

Pr {𝐵
𝑖
} =

2
𝑖

2𝑚
, (24)

and the expectation for 𝜉 follows

𝐸𝜉 = 1 +

𝑚−1

∑

𝑖=1

(
𝑖

2
Pr {𝐵
𝑖
}) = 1 +

𝑚−1

∑

𝑖=1

𝑖2
𝑖

2𝑚+1
. (25)

Applying Lemma 1 we obtain

𝐸𝜉 =
𝑚

2
+

1

2𝑚
. (26)

Lemma 2. For a SChord node with𝑚 + 𝑐 fingers, the cost of a
lookup for any key never exceeds𝑚 + 1 − log 𝑐.

Proof. SChord contains all the 𝑚 fingers borrowed from
Chord and 𝑐 cached fingers. From the property of consistent
hashing, we know that the 𝑐 cached fingers divide the ID
space to 𝑐 segments with each segment length log(2𝑚/𝑐) =

𝑚 − log 𝑐 in bits. After the first lookup step is done, the
difference between current hop and the desired key in ID
space is then less than a segment. Finally, the total number of
hops, including the initially first lookup step, never exceeds
𝑚 + 1 − log 𝑐.
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// count the number of significant bits in n
ONES(n)
(1) d← 0
(2) while n not 0
(3) do d← d + 1
(4) 𝑛 ← 𝑛 & (𝑛 − 1)
(5) return d

Algorithm 3

Let us examine the expression of 𝐸𝜉. By substituting 𝑖/2
in the expression with𝑚− log 𝑐, when𝑚 > log 𝑐 and log 𝑐 ≤

𝑖 ≤ 𝑚−1, according to Lemma 2, we obtain an upper bound
for 𝐸𝜂 :

𝐸𝜂 ≤ 1 +

𝑚−1

∑

𝑖=𝑚−log 𝑐

𝑚 − log 𝑐
2𝑚+1−𝑖

+

𝑚−log 𝑐−1

∑

𝑖=1

𝑖2
𝑖

2𝑚+1

=
𝑚 − log 𝑐

2
(1 −

1

𝑐
) +

𝑚 − log 𝑐 − 2
2𝑐

+
1

2𝑚
+ 1

=
𝑚 − log 𝑐

2
−
1

𝑐
+

1

2𝑚
+ 1, 𝑚 ≥ log 𝑐 + 2.

(27)

So the expected number of hops 𝜏 reduced by slookup as
compared to lookup is

𝜏 = 𝐸𝜉 − 𝐸𝜂 ≥
log 𝑐 − 2

2
+
1

𝑐
. (28)

Let 𝜌 denote the percentage of the promotion; then we
have

𝜌 =
𝜏

𝐸𝜉
(29)

and recall the fact that CACHE MAX = (2𝑒/(𝑒 − 1))𝑀, so
𝑐 = CACHE MAX −𝑀 = ((𝑒 + 1)/(𝑒 − 1))𝑀, so we obtain a
lower bound for 𝜌:

𝜌 =
𝜏

𝐸𝜉
≥
(log 𝑐 − 2) /2 + 1/𝑐

𝑚/2 + 1/2𝑚
>
6.44

𝑚
. (30)

Since the latency for each routing hop is relatively fixed,
we may infer that when 𝑚 = log 𝑐 + 2, there are up to 1384
nodes, which is also the approximate number of peers in
a popular Bit-Torrent swarm. SChord increases the lookup
performance by 62% with respect to Chord. For the network
of 224 > 16, 000, 000 nodes, SChord increases the lookup
performance by 26% as compared to Chord.

5. Experiments

In this section, we conduct experiments with the SChord by
simulation.The protocol is implemented as recursive style so
each intermediate node forwards a request to the next node
until it reaches the successor of the desired key, and server
selection is optional at each of these intermediate nodes.
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Figure 6: Error distribution for 1000 lookups.

5.1. Hop Estimation. We first consider the ability of (14) to
predict the lookup hops accurately. Equation (14) is used both
in the server selection and in the analysis of hop reducing.
So the accuracy of (14) is crucial. We test (14) in networks
consisting of nodes varying from25 to 1000. For each network
size, we perform 1000 lookups of random keys.The error 𝐸 of
the 1000 lookups is calculated as follows.

Let 𝑝
𝑖
be the actual number of hops for the 𝑖th lookup

and let 𝑞
𝑖
be the predicted number of hops for this lookup,

for 𝑖 = 1, 2, . . . , 1000. We have

𝐸 =
1

1000

1000

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑝𝑖 − 𝑞𝑖
󵄨󵄨󵄨󵄨 . (31)

Figure 6 plots the error of networks with size varying
from 25 to 1000 nodes. Thus for the majority of networks the
lookup errors are below one hop and for all of the networks
the errors are below 1.2. We draw the conclusion that (14) is
relatively accurate.

5.2. SFT Lookup Performance. In this experiment, we eval-
uate the finger table lookup performance in Chord and
SFT lookup performance in SChord, respectively. In the real
world, the lookup keys are under Zipf distribution. So we
randomly generate a total of 125 resources ranking from 1 to
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125; then the lookupkeys are restrained to those 125 resources.
In this case, we test the lookup time for lookups onfinger table
and SFT over up to 1,000,000 lookups.

Figure 7 plots the lookup time curves. We can see that
the SChord lookup curve is relatively steady and the Chord
lookup curve grows faster. Therefore, SChord can achieve
much better lookup performance than Chord on a large scale
of lookups.

5.3. Hop reducing. We shall verify the feasibility to predict
the expected number of hops involved in one single lookup
or slookup. According to the previous induction we know
that the expected number of hops involved in one single
lookup should be 𝐸𝜉 = 𝑚/2 + 1/2

𝑚. This is based on
the hypothesis that (14) holds for arbitrary IDs. Besides, the
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Figure 9: Hop reducing.
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previous induction gives us an upper bound for the expected
number of hops involved in one single slookup; that is, 𝐸𝜂 ≤
(𝑚 − log 𝑐)/2 − 1/𝑐 + 1/2

𝑚
+ 1. Finally 𝐸𝜉 and 𝐸𝜂 are the

predicted hops; we shall match them with the real hop data.
Figure 8 compares the experiment hop data for network

size 1 through 10,000 with the values evaluated by the
expressions of𝐸𝜉 and𝐸𝜂. For each network size, we randomly
choose 10,000 nodes with each node resolving a lookup for a
single random key. The figure shows that the upper bound
works well when there are more than 1000 nodes in the
SChord ring. In addition, the difference between estimated
lookup hops and expected lookup hops is less than one hop;
thus the prediction is quite accurate.
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Since slookup caches the historical data, the number of
fingers in a node’s SFT increases with the lookups performed
on this node until count reaches CACHE MAX. Meanwhile,
the expected number of hops for one lookup on this node
decreases while Chord has no way of reducing hops so the
expected cost of lookup is only relevant to the network
scale. Figure 9 is the comparison of the average number of
hops required between lookup and slookup in two different
networks of 1389 and 11072 nodes, respectively. In this
experiment, for each network scale, we randomly choose
a node to perform 1 through 10,000 lookups and slookups
and then record the average number of hops for lookup and
slookup.

Accordingly, Figure 10 plots the number of hops reduced
by slookup compared to lookup in Figure 9. The preceding
induction gives a lower bound 𝑦 = (log 𝑐 − 2)/2 + 1/𝑐

for it. From the figure we learn that this lower bound
works well after some initial slookup done on the node.
In this test, the lower bound holds for around 4000 initial
lookups. For systems where data are accessed in blocks or
lookup operations are resolved frequently, this initial lookup
requirement could be easily met.

In conclusion, the experiment results confirm that the
lower bound for reducing hops is possible in practice.
Hence, SChord increases the lookup operation performance
by 62% at the maximum when there are 4c nodes in the
network. Moreover, when the network size grows to as
many as 16,000,000 nodes, SChord could still increase the
lookup operation performance by 26% which is an immense
improvement.

6. Conclusions

SChord is a highly scalable, available, and efficient resource
location protocol. It takes advantage of splay tree where
lookup caching can be used to accelerate later lookups.
So the lookup performance increases based on the total
number of lookups done on the node. Theoretical analysis
and simulation results both confirm the fact that the lookup
performance in SChord has increased up to 62% in compar-
ison with Chord. Moreover with larger CACHE MAX the
lookup performance can be further enhanced in SChord.
Detailed studies in the design space of SChord also bring
interesting and useful results in building a load balance P2P
system in practice.

Further study will focus on recycling mechanism for SFT
so that SChord can adjust to resource change in the dynamic
network circumstance.
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