
Hindawi Publishing Corporation
ISRN Software Engineering
Volume 2013, Article ID 532659, 11 pages
http://dx.doi.org/10.1155/2013/532659

Review Article
End User Development: Survey of an Emerging Field for
Empowering People

Fabio Paternò

CNR-ISTI, HIIS Laboratory, Via Moruzzi 1, 56124 Pisa, Italy

Correspondence should be addressed to Fabio Paternò; fabio.paterno@isti.cnr.it

Received 25 February 2013; Accepted 26 April 2013

Academic Editors: C. Calero, K. Framling, O. Greevy, A. Lastovetsky, and C. Rolland

Copyright © 2013 Fabio Paternò.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The purpose of this paper is to introduce the motivations behind end user development, discuss its basic concepts and roots, and
review the current state of art. Various approaches are discussed and classified in terms of their main features and the technologies
and platforms for which they have been developed. Lastly, the paper provides an indication of interesting possibilities for further
evolution.

1. Introduction

One important trend in software technology is that more
and more interactive applications are being written not by
professional software developers but by people with expertise
in other domains working towards goals supported by com-
putation. Statistics from theUSBureau of Labor and Statistics
predicted that by 2012 in the United States, there would be
fewer than 3million professional programmers butmore than
55 million people using spreadsheets and databases at work
and many writing formulas and queries to support their jobs
[1]. More recently, a July 2011 Gartner report indicated that
nonprofessional developers will build at least 25 percent of
new business applications by 2014. Computer programming,
almost as much as computer use, is becoming a widespread,
pervasive practice. Such trends were already identified some
years ago [2] and are becoming more and more evident.

End-User Development (EUD) can be defined as a set
of methods, techniques, and tools that allow users of soft-
ware systems, who are acting as non-professional software
developers, at some point to create, modify or extend a
software artefact [3]. End users have specific goals in their
own domains, which are not related to software development.
The users that we consider here are people who have some
basic technological knowledge but are not professional pro-
grammers.

There are various motivations for EUD: professional
developers lack the domain knowledge that end users cannot

easily convey when communicating requirements for a new
application, and regular development cycles are too slow to
meet the users’ fast changing requirements. However, since
end users usually lack the training of professional software
developers, it is simply not possible to use the traditional
development approaches for EUD.

Currently available applications only realize a fraction of
EUD’s potential and still suffer from several flaws, limiting
EUD’s important contribution to empowering users as active
citizens of the information society. The success of the Web
2.0 is a clear indication of how people would like to be more
active and creative in the information society. However, Web
2.0 is mainly limited to user-generated content, while people
often also would like to change the behaviour, functionality
and accessibility of their applications.

Topics related to EUD have already been investigated to
some extent in recent years. For example, [4] provided an
interesting overview of the state of art in end-user software
engineering. They provided an analysis involving phases in
software engineering, such as debugging [5] and testing,
which are not considered in this paper since they have
not stimulated particular interest from an EUD viewpoint.
On the other hand, their work did not properly address
recent developments in EUD, such as EUD for the Web and
mobile applications, which are extensively dealt with in this
paper because such new developments have to consider novel
aspects. For example, in recent years we have witnessed an
increasing number of applications developed throughmobile

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208291195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 ISRN Software Engineering

devices. This involves specific requirements for developing
applications. Indeed, early EUD approaches mainly focused
on static desktop applications. However, more and more
people use a variety of devices (desktop, tablet, smartphones,
etc.) to access and manipulate their applications in evermore
varying environments, and this raises new problems for end-
user development that are discussed in the following.

In general, people should be able towork through familiar
and immediately understandable representations that allow
them to easily express and manipulate relevant concepts
and thereby create or modify interactive software artefacts.
On the other hand, since a software artefact needs to be
precisely specified in order to be implemented, there is
a need for environments supporting transformations from
intuitive but sometimes ambiguous representations intomore
precise, but more difficult to understand, specifications.
Model-based approaches to the design of interactive systems
[6–10] are used to support the development through the
use of meaningful abstractions to avoid dealing with low-
level details. Despite such potential benefits, their adoption
has mainly been limited to professional software designers
and developers. While domain experts are often familiar
with modelling techniques in their work, they often have
difficulties in manipulating models of interactive software
applications. Therefore, new solutions are necessary which
enhance the nature of abstract models, representations, and
computational languages.

This paper is organised as follows. It first provides a
short indication of the early work in the area, then discusses
key concepts that characterise EUD and provide concrete
examples of how they have been addressed.Then, some of the
currently important emerging approaches involving the Web
and ubiquitous applications are described and discussed, and
lastly some conclusions and indications for possible further
developments are provided.

2. Early Work

With the advent of mass market personal computing with
graphical user interfaces and tools for personal productivity,
there was soon a need to create environments that allowed
peoplewithout a programming experience to create their own
applications. Various approaches were exploited for this pur-
pose. HyperCard was an environment for Apple Macintosh
that was the first successful hypermedia system before the
emergence of the World Wide Web. It combined database
features in “cards” that supported clickable regions that
could link to another card, or execute some functions. This
combination of features—simple form layout, database capa-
bilities and ease of programming—led to widespread use in
many different roles. Programming-by-demonstration (PBD),
sometimes called programming-by-example, is another pro-
gramming technique whereby the user creates an application
by performing the steps as an example.Thus, the user demon-
strates an example of what the program should do, from
which the programming environment infers a more general
application supporting the desired behaviour. One of the first
contributions in this area was Peridot [11], which allowed

the user interface designer to draw a picture of what the
user interface should look like and to interact with it. While
this was happening, Peridot created a code for the interface
and its connections to actual application programs.The code
producedwas not simply a transcript of the designer’s actions,
but parameterized procedures, in which parts of the interface
could depend on the parameter values. To this end, Peridot
used some simple artificial intelligence techniques to infer
how the graphics and mouse should change based on the
actual values of the parameters. Some PBD systems are able
to deductively infer the entire program, while others deduce
what they can, and ask the user for help for the rest [12].
Eager [13] supported PBD by detecting looping behaviours
on HyperCard; this was obtained by searching through a
person’s interaction history for events similar to the current
action. PBD-based tools have been considered for creating
animations and many other kinds of programs [14, 15]. One
problemwith PBDhas been representing the final program in
a form useful to the users to enable them to review, test, and
debug the program. Thus, PBD is often used in combination
with visual or textual languages.

Fischer and Girgensohn [16] introduced the concept of
end-user modifiability in design environments in order to
ease the construction and modification of artefacts designed
within the environment, thus making it possible to modify
systems in order to allow them to support tasks that the
designer did not foresee. This concept was then generalised
into the concept of meta-design aiming to allow users to act
as designers and be creative, thus putting in their hands the
tools rather than the object of the design. This approach can
be useful to obtain environments that are flexible and able to
evolve because they cannot be completely designed prior to
use.

Customization techniques [17–19] soon raised a good deal
of interest with the aim of helping users obtain application
versions more suitable for their tasks. Mørch [20] identified
three levels of tailoring: customizing existing functionality;
integrating functionality available elsewhere, and extending
a system with new functionality created by end users. More
recently, such tailoring techniques have been investigated in
the context of component-based applications [21].

One approach that has received a considerable amount
of attention has been visual programming. The idea is to
exploit two-dimensional graphical representations to facili-
tate development. In general, this trend has been successful
to simplify development though this has not always resulted
in novice users being able to understand how to develop their
own applications. In visual programming, dataflow visual
language is one paradigm that has been often applied: its
basic idea is to associate icons to high-level functionalities
that are important for the specific domain experts. Usually
such icons have some output and input ports representing
the input and the output data, and the development of the
application then consists in interactively composing instances
of such icons by indicating where they receive input from and
where they send the results of their processing. One of the
first environments applying such paradigm was Cantata [22]
a visual language for Khoros, an environment that was used
mainly for image processing applications. Another similar



ISRN Software Engineering 3

example was reported in [23], which considered an environ-
ment to specify, analyse, and execute visual programs for
geographical information systems (GIS) in order to support
professionals without a strong programming background
who wanted to access GIS. The adoption of a visual language
approach was useful in order to hide the plethora of basic GIS
functions, while providing ready-to-use tools to solve users’
tasks. This visual environment provided users with higher
level interfaces: it was based on the module concept, which
was conceived as a software building block that implements
a solution to a general basic task and is presented to the user
through an interactive frame. Complex GIS queries could be
carried out by interconnecting modules into flow networks,
using a direct manipulation approach. More recently various
tools have provided graphical representations for designing
dataflow connections between components, for example,
Yahoo! Pipes (http://pipes.yahoo.com/), which provides a
composition tool to aggregate, manipulate, and mashup
content from around the Web. Like Unix pipes, simple
commands can be combined together to create an output
that meets user needs, such as combining many feeds into
one, then sort, filter, and translate it. More generally, visual
programming languages soon raised a number of issues
related to their scalability [24].

Spreadsheets were amongst the first major EUD pro-
gramming environments made possible by these innovations
[25], beginning with VisiCalc, then continuing with Lotus
1-2-3 and Excel. A number of environments have adapted
the successful spreadsheet style of end-user programming to
other domains (e.g., [26, 27]).

3. Key Concepts

Generally speaking, effective design tools should make it
easy for novices to get started (low threshold) but also
possible for experts to work on increasingly sophisticated
projects (high ceiling) [28]. The low threshold means that
the interface should not be intimidating and should give
users immediate confidence that they can succeed. The high
ceiling means that the tools are powerful enough to create
sophisticated, complete solutions. Too often tools that enable
development of interactive applications may be quite hard
to learn (they do not have a low threshold). Instead, they
focus on providing numerous powerful features so that
experts can assemble results quickly. One main goal in EUD
is to decrease the conflict between application complexity
and learning effort [29]. In general, complex programming
languages can address a wide range of problems but thereby
also increasing the learning burden on the user. On the
other hand, easy-to-learn languages are often domain specific
and limit the development possibilities. The EUD aim is to
allow for a gentle learning curve, which means to provide
environments whereby each incremental increase in the
level of customizability only requires the user to devote
an incremental amount of effort. This contrasts with most
systems, which present “walls” where the user must stop
and learn many new concepts and techniques to make
further progress. Thus, novel metaphors are used to reduce

the learning burden by reducing the conceptual distance
between actions in the real world and the more abstract
concepts presented in programming languages. In general,
such graphical metaphors are closer to real life and thus
motivate users to learn and use it in daily work practices [29].
In order to allow users to provide for complex behaviours, a
gentle learning curve is supported through different layers of
abstraction that can be created.

The increasing popularity of Web 2.0 technologies char-
acterised by environments inwhich users can directly provide
and manipulate the application content shows how people
without programming background like to have more control
on their applications. Furthermore, there are several other
programming solutions for specific problems in leisure time,
as demonstrated by tools such as semantic Web browsers
[30] and process tools [31]. However, these graphic tools
have a limited range of expression. More powerful EUD
tools rely on scripting languages, but these present users
with a considerable learning burden. Furthermore, macros,
formulae, and scripts are prone to errors [32].

Over time, Fischer has elaborated and refined the con-
cepts of DODEs (Domain-Oriented Design Environments),
which provided a graphical design language and a set of
design patterns, with critic and advisor experts to guide
the design process [33, 34]. However, first DODEs required
considerable configuration or seeding with knowledge before
development could proceed and they were limited to specific
domains. AgentSheets was developed as a more general EUD
technology to implement DODEs [35–37]. AgentSheets pro-
vides an agent-oriented development environment with rule-
based templates for specifying agent behaviour and a toolkit
for creating graphical worlds in which agents interact. It
also uses a spreadsheet metaphor. In these systems, program
objects occupy cells in a grid and interact with the objects
in neighbouring cells. AgentSheets has been used to develop
several different types of applications, includingmobile infor-
mation systems. However, the agent rule-based specification
style does not easily scale to more complex procedural pro-
gramming in business domains. A similar agent rule-based
development environment specifically aimed at children as
end users, developed by Pane and Myers et al. [38, 39], used
rule-based specification templates coupled with explanation
facilities and limited programming by demonstration. The
programming-by-example tools researched by Lieberman
[40] were able to infer more complex user intentions from
demonstrated actions in the graphical worlds. However,
Lieberman concluded that mixed initiative EUD, combining
demonstration with explicit user-driven instruction, was the
best way forward. Lieberman’s “Goal OrientedWeb Browser”
[30] is an example of such a PDB system. Another approach
is called sloppy programming and is based on interpretation
of pseudonatural language instructions, instead of formal
syntactic statements [31], thus increasing adaptability of code
for nonprogrammers.

Often EUD approaches support users in composing
and customizing sets of available basic elements devel-
oped by programmers. Such basic elements are represented
by and composed through intuitive metaphors, such as
the jigsaw in which the basic elements correspond to



4 ISRN Software Engineering

the pieces to compose or iconic data flow representations
in which the icons correspond to the basic elements.
Google App Inventor [41] expresses the process of building
applications in a way similar to Scratch [42], by which
traditional programming is performed by combining jigsaw
puzzle pieces. This metaphor was also used in “Playing
with the Bits” [43], where users snap available components
together using a jigsaw puzzle metaphor.

Collaboration is a key feature when it comes to the end-
user creation of programs because designing solutions for
complex problems often requires more knowledge than a sin-
gle person possesses, leading to social creativity. This makes
it important for groups of end-user programmers to have
suitable tools to support their collaborative programming
tasks, such as those researched in the field of End-User
Development. Open source communities are an important
reference point in terms of collaboration processes for the
design of new EUD environments, even if open source is
usually oriented to expert programmers. In addition, in
comparisonwith groups of professionals, end-user groups are
very heterogeneous as members do not have the same techni-
cal background and sometimes even their social backgrounds
are different.The users that EUD targets are non-professional
developers: people, who usually are domain experts, have
some basic technological knowledge but are not professional
programmers.

Mutual development [44], co-development [45–47], and
participatory design [48] refer to activities in which end
users are involved in system design but may or may not
be involved in its actual coding. For example, the use
of storyboards, scenarios, and interactive prototyping are
accepted approaches for encouraging participatory design
[49]. In a study of user engagement over seven years,
Letondal and Mackay [50] used a workshop-based approach
to foster collaboration among biologists, bioinformaticians,
and computer scientists.There is a need for novel approaches
to make a participation that encourages finding a common
ground in participatory development of end-user tools aswell
as collaborative development of applications.

End-user development can benefit from using multi-
ple representations with various levels of formality. At the
beginning of the design process, many ideas are unclear,
so it is hard to develop precise specifications. The main
issue of end-user development is how to exploit personal
intuition, familiar metaphors, and concepts to facilitate
design exploration, and subsequently specification and/or
modification of software artefacts. Examples of informal
representations to start to express what the interactive appli-
cation should do are textual descriptions [51] and graphical
sketches [52, 53]. For example, nonprogramming users feel
comfortable with sketch-based systems that allow them to
concentrate on main concepts by exploiting natural interac-
tions allowing them to easily modify the produced descrip-
tions, instead of being distracted by cumbersome low-level
details required by rigid formal languages. Such systemsmust
be able to recognise graphical elements in the sketches and
convert them into formats that can be edited and analysed to

generate computational instructions or infer them from PBE
interaction.

Regarding the use of natural language descriptions in con-
nection with End-User Development, Tam et al. [51] described
a system for the elicitation of user-task models. In particular,
their methodology allows for a domain expert to complete
the elicitation process by providing textual descriptions of
examples of specific interaction scenarios. Interacting with
the expert, the system then identifies the corresponding
tasks, domain objects, and actors. More recently, Liu and
Lieberman [54] introduce the notion of “Programmatic
Semantics” to represent the mapping between NL structures
and basic programming language structures. For example,
noun phrases are interpreted as data structures, verbs as
functions, and adjectives as properties. A similar task is
addressed in [55], illustrating an approach for translating
keyboard commands (such as “click search button” or “Arial
10 point font”) into an executable code. As a general com-
ment, in their attempt to better understand NL commands,
all developments reported so far impose severe limitations
on the expressive power of the communication process by
forcing users to communicate through a “controlled” lan-
guage, and thereby reducing the amount of linguistic analysis,
usually limited to simple steps of information extraction from
the text. The iPhone Siri provides a small example of what
can be done in this direction by using a natural language
user interface to answer questions, make recommendations,
and perform actions by delegating requests to a set of Web
services.

Pane and others [38] followed a different approach in
order to make it easier the development of interactive appli-
cations. They started with general principles and heuristics
developed in the field of HCI that can be applied to help
address such issues, such as Nielsen’s heuristic evaluation
including recommendation such as be consistent, keep it
simple, speak the user’s language, prevent errors, help the
user get started, and so forth. The cognitive dimensions
framework [56, 57] lists additional criteria that can be used
to evaluate design alternatives in programming systems, such
as closeness of mapping, viscosity, hidden dependencies,
imposed guess-ahead and visibility, and so forth. Pane and
others conducted a pair of studies to examine the language
and structure that children and adults used before they
have been exposed to programming. In these studies, they
presented programming tasks to nonprogrammers, who then
had to solve them on paper. The tasks covered a broad set of
essential programming techniques and concepts, such as con-
trol structures, storage and data manipulation. Some of the
features observed in these studies were that an event-based
or rule-based structure was used, where actions were taken
in response to events; aggregate operators (acting on a set of
objects all at once) were used much more often than iterative
operators (which act on each object in the set individually);
datastructures were avoided by using content-based queries.
Then, they developed a new environment (HANDS) based on
such results that represents the computation as a character
sitting at a table, manipulating cards that hold the program
data. This model substitutes familiar ideas for the common
but completely unfamiliar von Neumann machine model



ISRN Software Engineering 5

of computation. The HANDS language provides operators
that closely match those observed in the studies performed.
It uses an event-based style of programming and provides
queries and aggregate operators to allow more concise high-
level expressions for tasks that require the assembly of many
primitives in other languages.

4. EUD for Web Applications

The Web is the most common user interface and can
beaccessed through any type of device. The Document
Object Model (http://www.w3.org/DOM/) provides a com-
mon interface to interactively manipulate Web applications,
thus enabling the possibility of building interactive tools able
to exploit such features. An interesting point is that such
tools allow end users tomanipulateWeb applications without
involving the original developers. Consequently, while first
EUD tools mainly focused on desktop graphical applications,
in recent years a considerable amount of work has been
carried out to apply the EUD approach toWeb environments.

Scaffidi investigated the use of scenario-based require-
ments [58] and proposed novel techniques for data validation
[59]. A simple proposal was EzWeb Enterprise Mashup
[60], a platform that allows the composition of a set of
gadgets for service developers. The resulting environment is
still oriented to professional developers. The programming-
by-example approach has been implemented in Web envi-
ronments through different mechanisms. Nichols and Lau
[61] describe a system that allows users to create a mobile
version of a Website through a combination of navigating
through the desired portion of the site and explicitly selecting
content. Maćıas and Paternò [62] take a similar approach,
in which users directly modify the Web page source code.
Thesemodifications are used as a specification of preferences,
which are then generalized and applied to other pages on the
same site through the support of model-based user interface
description languages. Toomim et al. [63] allow users to select
example data from Websites and automatically generate a
range of user interface enhancements. Lin and others [64]
have proposed a system (Vegemite) using directmanipulation
and programming-by-demonstration techniques to automat-
ically populate tables with information collected fromvarious
Websites. They have addressed a class of ad hoc mashups,
where users want to quickly combine data from multiple
Websites in an incremental, exploratory fashion, often in
support of a one-time or infrequently performed task. Their
tool allows constructing a data table from anywhere and then
running scripts that add columns to that table based on the
data in each row.

Chickenfoot [65] is an extension ofMozilla Firefox, which
allows users to modify Web pages without knowing HTML
and using a tool (the browser) familiar to most. Its main
characteristics are the following: it is directly executed in the
browser so that the users can immediately realise what they
are editing because they immediately see the result; it uses a
syntax based on words that should be widely known by users,
such as “click” and “enter”; it allows users to describe the
components through a small set of intuitive commands (e.g.,

click, enter, pick, keypress, and go). Instead, CoScripter [66]
is a system that allows users to record, share, and automate
tasks to perform in the Web and provides a repository
where the scripts created are shared. It was inspired by
Chickenfoot, which enabled end users to customize Web
pages by writing simplified JavaScript commands that used
keyword patternmatching to identifyWeb page components.
CoScripter uses similar heuristics to label targets on Web
pages, but it uses natural language representation for scripts
that require less effort than Chickenfoot’s JavaScript—based
language. In CoScripter scripts are recorded as natural lan-
guage scripts that can bemodified by the user without having
to understand a programming language. In detail, it consists
of two main parts: a centralised repository of scripts and
a Firefox extension that facilitates creating and running a
script. The two work together: users access the repository to
select a script, which can then be executed in the extension
either step by step or automatically to completion. ActionShot
[67] was a successive tool consisting in an extension to the
Firefox Web browser built on top of the CoScripter Web
recording/playback platform in order to automatically detect
repetition inWeb usage logs and enable retroactive authoring
by allowing users to manually search for, extract, edit, and
rerunprevious actions. For this purpose,ActionShot provides
interfaces to facilitate browsing and searching through this
history, sharing portions of the history through established
social networking tools such as Facebook, and creating scripts
that can be used to repeat previous interactions at a later time.

The existence of a tremendous amount of Web content,
which is not always in a form that supports end users’ needs,
has motivated Marmite [68]. This tool allows users to select
some operators, place them in a data flow representation, and
view the current state of the data corresponding to a particu-
lar operator in a table, which shows what the data looks like
after it has passed through the operator. However, Marmite
is able to manage only a small set of pre-defined data types.
In addition, it has been implemented as a Firefox plug-in,
thus limiting its applicability to this browser only. A different
tool allowing users to combine interactive components from
different Web sites and build new ones as well is presented
in [69]. This solution is browser independent thanks to the
use of an intermediate proxy/mashup server, and enables
people without programming knowledge to create mashups
composed ofWeb components selected directly from existing
Web applications by establishing communication among
components originally belonging to different applications.

Recently, one trend to encapsulate there has been func-
tionalities in Web services that can be accessed through the
Internet through their operations and parameters. In the
area of EUD for service-based interactive applications, d.mix
[70] supports the development of applications based on Web
services through a site-to-service map: the user can navigate
annotated Web sites and select relevant elements. Through a
site-to-service map, d.mix generates the code including the
Web service calls that yield results corresponding to the user’s
selection. Such-code can then be modified through a wiki.
The platform also makes available some examples that can be
further edited, also in this case some programming knowl-
edge is required to be able to exploit the tool features. Another



6 ISRN Software Engineering

approach to such issues has been proposed by Nestler et
al. [71] through a tool for rapid development of composite
applications using annotated Web services starting with the
WSDL service operation descriptions and exploiting Web
services annotations providing suggestions for user interface
development, when available. However, this tool is limited
to create simple form-based user interfaces on desktop
systems and still requires some familiarity with Web services
technology.The authors identified some general guidelines to
consider when supporting EUD for this type of application:
hide programming code and technical details from the users;
use abstraction layers, visual representations, and metaphors
to facilitate and realize theWYSIWYG approach; concentrate
on the most important aspects that require knowledge or
input from the user when modeling the logic of the desired
application; implement common UI guidelines to produce
service-based applications of high usability.

5. EUD for Mobile Applications

Recent years have witnessed the rapid growth of the use
of mobile devices to access interactive applications. Limited
work has been dedicated to EUD for mobile applications.
Previous approaches for desktop applications cannot be sim-
ply reproposed as they are, given the specific characteristics
of mobile devices: they are becoming ever richer in terms
of sensors, such as accelerometers, GPS, and that can be
exploited during the interactions, and the limited screen
size in which applications are accessed requires a careful
and specific design for presenting content and interaction
elements in order to avoid usability problems such as tedious
activities in zooming in and out for viewing the desired piece
of information or touch/based interactions that select the
wrong elements.

The first EUD environments to create applications for
mobile devices have mainly targeted desktop environments:
they assume that people use the desktop for developing the
application, which is then deployed in the mobile device,
thus implying a rigid division between design time and run
time. Examples of domains of desktop EUD environments
targeting mobile applications have been tourism, museum
guides [72, 73], and home applications [74, 75]. Akesson
et al. [76] presented a user-oriented framework to ease the
reconfiguration of ubiquitous domestic environments. The
support, running on a tablet PC, adopts a paradigm based on
jigsaws.

A visual strategy for developing context-aware applica-
tions was proposed in [77]. Such a system, called iCAP,
allows end-users to design application prototypes by defining
elements (objects, activities) and rules (associations between
actions and situations). The rules are graphically edited
through basic operations like dragging the defined elements
onto rule sheets. Another framework to support people
without programming experience is eBlocks [78]: it facilitates
the creation of customized sensor-based systems and the
configuration of condition tables.

Carmien and Fisher [79] describe a framework for cus-
tomizing mobile applications to help people with cognitive

disabilities. A graphic editor, intended to be used by the
caretakers, facilitates the management of the task-support
scripts for helping the disabled. The reported evaluation of
the editing environment, called MAPS-DE, revealed that
the caretakers appreciated the possibility of customizing
the prompting system for the needs of individuals with
specific disabilities. Hull et al. [80] provided a set of template
applications for tourism. Ghiani et al. [72] have developed an
environment that allows customization of mobile solutions
for museum guides, performed mainly on desktop systems,
and it also allows the generation of application versions for
stationary systems with large screens. Floch [81] describes
the initial design of a city guide that can be tailored by end
users in order to include information from different service
providers according to the visitor’s position and visiting
purpose.

Collapse-to-zoom [82] was a technique for viewing Web
pages on small screen devices by interactively removing irrel-
evant content selected through end user gestures performed
with a pen on the mobile device screen. Thus, it can be
considered an approach to interactively customizing desktop
Web applications for mobile access. A similar approach but
extended with the possibility of preserving the client-side
state of the application even when dynamically migrating it
to a mobile device is presented in [83]. The basic idea is
that users access aWeb application through a desktop system
in order to perform some interaction, and then, when they
have to move, they can migrate the application to a mobile
device in which they can continue their task from the point
they left off. In addition, the users can interactively select
the parts of the Web application they want to migrate, thus
customising a mobile version on-the-fly. This is obtained
through some scripts dynamically inserted in the original
Web application by a migration server. The application state
that can be migrated to the target device includes that of
the interactive forms, cookies, Javascript variable and other
aspects.

Contributions for mobile EUD have addressed aspects,
such as parameterization of the mobile terminal [84], frame-
works to support mobile authoring and execution [85],
creation of UIs through sketching or by adding interactive
techniques in the touch screen [86].

Desktop EUD environments lack the advantages of
enabling end users to create applications opportunistically
while on themove. Recent advances in smart phones in terms
of connectivity, processing power, and interaction resources
have enabled the creation ofmobile EUD environments. Puz-
zle [87, 88] supports editing on a touch-based smartphone
by using the jigsaw metaphor to convey the concepts of
connecting high-level functionalities, and a solution, inspired
by the work of Cuccurullo, Francese et al. [89, 90], using the
colours to indicate the associated data types, thus providing
intuitive cues to help the users to correctly connect the
outputs and inputs of the jigsaw pieces.

Each interaction platform has specific features that deter-
mine its limitations and make it suitable to perform some
tasks [91]. Indeed, even if the computational resources of
mobile devices (e.g., smartphones) are growing, they are
still more limited than those of desktop systems; on the



ISRN Software Engineering 7

other hand, they have a number of sensors and features
that desktop systems do not support. Watching a long video
or making a flight reservation are typical examples of tasks
more suitable for devices with large screens. On the other
hand, location-based tasks such as showing the route from
the current position to a hotel are more suitable for mobile
devices. Thus, users do not use all devices in the same way
and tend to assign different roles to devices both by choice
and by necessity. A recent study [92] highlighted that most
of consumers’ time is spent in front of a variety of interactive
devices, which can be used both sequentially (i.e., by moving
from one device to another) and simultaneously (i.e., using
more than one device at the same time).Thus, it can be useful
to have authoring environments for multidevice applications.
One proposal in this area was Damasks [93], which supports
the use of sketches, design patterns [94], and layers to
generate desktop, mobile, and vocal Web applications. The
layers are used to indicate whether the various parts of the
interactive application description should be supported by all
the platforms or only by one specific platform. MARIAE [95]
supports a larger set of platforms through the use of device-
independent languages, it supports an abstract language and
refinements for various target platforms (desktop, mobile,
vocal, multimodal, etc.). However, such environments are
generally still more appropriate for software professionals
rather than endusers. Moreover, they have yet to consider
multimodal interaction at development time and need to
be better integrated with social support in order to allow
the users to share comments, examples and suggestion. In
addition, systematic empirical validation is necessary in order
to understand the best solutions for the deployment of EUD
environments.

6. Discussion

In general, various dimensions can be used to compare the
various approaches to EUD for interactive applications. One
is the generality of the approach: whether the approach is
specific for one application domain or can be exploited in var-
ious, or even all, domains. Indeed, we have seen approaches
that have targeted specific domain experts, such as care
givers [79], biologists [50], museum curators [72], while
approaches such as App Inventor [41] are not application
domain dependent and have been used for various applica-
tion types. Other EUD tools are able to support applications
for various domains as long as they are developed through
a specific technology, such as most of the tools we have
discussed for Web technologies. Another relevant dimension
is the coverage of the main interactive application aspects:
some approaches focus only on developing the interactive
part, and others aim to cover also the functional parts. For
example, Denim is a tool focusing more on the interactive
part while d.mix and the ServFace builder aim to provide
support for developing access to functionalities implemented
as Web services as well.

A further differentiating aspect is whether and how
abstractions are used to hide the implementation details. For
example, the jigsawmetaphor is an abstract representation of

the structure of an application and its components, whereby
the components corresponding to each jigsaw piece depend
on the environment exploiting such metaphor. It has been
exploited in different ways in different environments:

(i) in Puzzle [88], the jigsaw pieces are associated with
high-level functionalities developed by programmers
so that end users need only to compose them without
knowing how they were implemented;

(ii) App Inventor [41] addresses the application develop-
ment at a more detailed granularity thus asking the
end-user developers to use jigsaw pieces representing
low-level programming constructs and specify what
should be done when low-level events occur.

Thus, App Inventor provides more flexibility in the develop-
ment than Puzzle but requires more programming knowl-
edge.

Another type of approach is represented by program-
ming-by-example: it does not exploit abstractions and
requires users to provide some specific concrete sequences of
interactions, which are then generalised to implement the de-
sired application behaviour.

7. Possible Future Evolutions

While recent years have seen a considerable increase in novel
proposals to address EUD issues, there is still a lot of work
to be done to realise its full potential, and the continuous
on-going technological evolution poses new challenges and
opportunities to EUD.

According to Gartner Inc., context-aware technologies
will involve $96 billion of annual consumer spending world-
wide by 2015. Thus, there is increasing need for platforms for
general management of applications that can be composed by
end users, which will also offer the possibility to customize
such compositions according to the context of use. Some early
examples in this direction have recently become available in
the marketplace. Tasker [96] is an Android app that allows
users to perform context-sensitive actions based on simple
event-trigger rules. The user is in charge of creating the
context-sensitive rules. However, it is still too limited in
terms of types of applications that can be developed, but a
start nonetheless and moreover demonstrates the utility of
this type of contribution. Locale [97] is another Android
app that allows users to create situations specifying condi-
tions under which the user’s phone settings should change.
Even the latest mobile operating system versions have some
small context-aware improvements (e.g., alerts that launch
on location). A more structured approach is proposed in
IVO [98], which aims to support users in building context-
aware applications by creating workflows that determine the
application behaviour when a specified context is detected. In
theworkflowdescription, it is possible to indicate what events
and conditions can trigger the various activities. Despite the
progressmade, there is still a need formore general solutions,
ready for wide use for developing context-aware applications
in areas of major societal interest. Such solutions should
provide authoring tools that should be executable in various



8 ISRN Software Engineering

types of interactive devices (desktop, tablet, and mobile)
and able to easily manipulate user-customizable context-
dependent adaptation rules (often represented in terms of
events/conditions/actions). Only recently have researchers
started to investigate how people develop through their
mobile phones, in particular, the ways that end users pro-
grammatically use mobile phones’ special hardware (e.g.,
GPS, accelerometer, and gyroscope) for practical everyday
purposes [99], and there is still a lot to understand in this
perspective. The goal is to bridge the gap between what
technologies can provide and what end users require to
realize a full vision of ubiquitous computing [100].

Natural interaction aims to make the interaction with
software environments more similar to interactions among
people. Recent technological advances are making this vision
more and more possible. For example, the vocal modality
is much better supported and is now used in various appli-
cations in the mass market (e.g., Google Voice, iOS SIRI).
The multimodal aspects can refer to combined use of voice
and graphical direct manipulation techniques, even with
gestures, in order to make expressing user intentions more
intuitive. It will be useful to investigate novel metaphors,
intelligent advisors, and multimodal user interfaces exploit-
ingmore recent post-WIMP interaction techniques [101, 102].
New approaches synthesising natural language, sketching,
and graphical representations manipulatable by gestures in
intuitively understandable models could realise fully natural
development [103]. End users will be enabled to create
or modify interactive applications while using conceptual
models and multimodal design languages with intelligent
support that facilitates their development, analysis, and use.
Intelligent critics and advisors can assist end-users with
problem solving in the design and creation of software
artefacts. The purpose of the intelligent advisors tools is to
make such development environments more effective, by
exploiting some mechanisms able to monitor/capture end
user behaviour and learn from it.

Social support will become more and more important
in end-user development activities as well, also given the
availability of platforms, such as Facebook, connecting
millions of people online. Social networks can become useful
tools to share and discuss the design results among user
communities (ActionShot [67] is one of the first examples
in this direction). In addition, crowdsourcing concepts can
be studied and developed to support end-users community
development. In this way, people who need a solution can
pose the problem to a wide community who share similar
interests and see whether someone can provide a suitable
solution for it. Crowdsourcing and social networks need
to be further explored in order to conduct needs analysis
and collect feedback from end users as well as tools to
support social end-user development by which people can
easily share problems and associated solutions, together
with their underlying rationale. Some initial work in this
direction has been carried out. Nebeling and others [104]
have presented an approach for the lightweight development
of Web information systems based on the idea of involving
crowds in the underlying engineering and design processes.
The approach is designed to support developers as well

as nontechnical end users in composing data-driven Web
interfaces in a plug-and-play manner. To enable this, they
introduce the notion of crowdsourced Web site components
whose design can gradually evolve as the crowd associates
the components with more data and functionality.

Another possibility is to investigate new interaction para-
digms in development activities. One promising approach in
this context is tangible interfaces [105]. They are user inter-
faces in which a person interacts with digital information
through the physical environment. Investigation of this type
of approach already started several years ago; for example, the
project on programmable bricks [106] has produced results
that allow children to build and program even robots and
served as inspiration for commercial products, such as LEGO
MindStorms, but with the advent of the Internet of Things is
becoming evermore interesting and actual.

References

[1] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the numbers
of end users and end user programmers,” in Proceedings of
the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC ’05), pp. 207–214, Dallas, Tex, USA,
September 2005.

[2] B. W. Boehm, C. Abts, A. Winsor Brown et al., Software Cost
Estimation with COCOMO II, Prentice Hall PTR, Upper Saddle
River, NJ, 2000.

[3] H. Lieberman, F. Paternò, and V. Wulf, Eds., End-User Develop-
ment, HumanComputer Interaction Series, Springer,NewYork,
NY, USA, 2006.

[4] A. J. Ko, R. Abraham, L. Beckwith et al., “The state of the art in
end-user software engineering,” ACM Computing Surveys, vol.
43, no. 3, article 21, 2011.

[5] A. J. Ko and B. A. Myers, “Designing the whyline: a debugging
interface for asking questions about program behavior,” in
Proceedings of the Conference on Human Factors in Computing
Systems (CHI ’04), pp. 151–158, April 2004.

[6] F. Paternò, Model-Based Design and Evaluation of Interactive
Applications, Springer, New York, NY, USA, 2000.

[7] J. M. C. Fonseca, Ed., “W3C model-based UI XG final report
2010,” May 2010, http://www.w3.org/2005/Incubator/model-
based-ui/XGR-mbui-20100504/.

[8] F. Paternò, C. Santoro, and L. D. Spano, “MARIA: a universal,
declarative, multiple abstraction-level language for service-
oriented applications in ubiquitous environments,”ACMTrans-
actions on Computer-Human Interaction, vol. 16, no. 4, article 19,
2009.

[9] R. Jacob, L. Deligiannidis, and S. Morrison, “A Software model
and specification language for non-WIMP user interfaces,”
ACM Transactions on Computer-Human Interaction, vol. 6, no.
1, pp. 1–46, 1999.

[10] P. Szekely, “Retrospective and challenges formodel-based inter-
face development,” in Design, Specification and Verification of
Interactive Systems, Eurographics, pp. 1–27, Springer, Vienna,
Austria, 1996.

[11] B. A. Myers and W. Buxton, “Creating highly-interactive and
graphical user interfaces by demonstration,”Computer Graphics
(ACM), vol. 20, no. 4, pp. 249–258, 1986.

[12] A. Cypher, Watch What I Do: Programming by Demonstration,
The MIT Press, Cambridge, Mass, USA, 1993.



ISRN Software Engineering 9

[13] A. Cypher, “Eager: programming repetitive tasks by example,”
in Proceeding of the CHI Conference on Human Factors in
Computing Systems (CHI ’91), pp. 33–39, ACM Press, New
Orleans, La, USA, 1991.

[14] B. A. Myers, Creating User Interfaces by Demonstration, Aca-
demic Press, San Diego, Calif, USA, 1998.

[15] B. A. Myers, J. Goldstein, and M. A. Goldberg, “Creating charts
by demonstration,” in Proceedings of the Conference on Human
Factors in Computing Systems (CHI ’94), pp. 106–111, April 1994.

[16] G. Fischer and A. Girgensohn, “End-user modifiability in
design environments,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’90), pp. 183–192,
1990.

[17] W. E. Mackay, “Patterns of sharing customizable software,” in
Proceedings of the ACM Conference on Computer-Supported
cooperative work (CSCW ’90), pp. 209–221, ACM Press, Los
Angeles, Calif, USA, 1990.

[18] A. MacLean, K. Carter, L. Lövstrand, and T. Moran, “User-
tailorable systems: pressing the issues with buttons,” in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’90), pp. 175–182, ACMPress, Seattle, Wash, USA,
1990.

[19] B. Nardi, A Small Matter of Programming, MIT Press, Cam-
bridge, Mass, USA, 1993.

[20] A. Mørch, “Three levels of end-user tailoring: customization,
integration and extension,” in Computers and Context, M. Kyng
and L. Mathiassen, Eds., pp. 51–76, MIT Press, Cambridge,
Mass, USA, 1997.

[21] V.Wulf, V. Pipek, andM.Won, “Component-based tailorability:
enabling highly flexible software applications,” International
Journal of Human Computer Studies, vol. 66, no. 1, pp. 1–22,
2008.

[22] J. R. Rasure and C. S. Williams, “An integrated data flow visual
language and software development environment,” Journal of
Visual Languages and Computing, vol. 2, no. 3, pp. 217–246, 1991.

[23] F. Paternò, I. Campari, and R. Scopigno, “The design and
specification of a visual language: an example for customis-
ing geographic information systems functionalities,” Computer
Graphics Forum, vol. 13, no. 4, pp. 199–210, 1994.

[24] M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang, and P.
vanZee, “Scaling up visual programming languages,”Computer,
vol. 28, no. 3, pp. 45–54, 1995.

[25] D. Bricklin, B. Frankston, and D. Fylstra, “VisiCalc, software
arts,” 1979, http://www.bricklin.com/history/intro.htm.

[26] M. Burnett, S. Yang, and J. Summet, “A scalable method for
deductive generalization in the spreadsheet paradigm,” ACM
Transactions on Computer-Human Interaction, vol. 9, no. 4, pp.
253–284, 2002.

[27] J. A. Johnson, B. A. Nardi, C. L. Zarmer, and J. R. Miller, “Ace.
Building interactive graphical applications,”Communications of
the ACM, vol. 36, no. 4, pp. 41–55, 1993.

[28] B. A. Myers, S. E. Hudson, and R. Pausch, “Past, present and
future of user interface software tools,” ACM Transactions on
Computer Human Interaction, vol. 7, no. 1, pp. 3–28, 2000.

[29] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehand-
jiev, “Meta-design: a manifesto for end-user development,”
Communications of the ACM, vol. 47, no. 9, pp. 33–37, 2004.

[30] A. Faaborg andH. Lieberman, “A goal-orientedweb browser,” in
Proceedings of the Conference on Human Factors in Computing
Systems (CHI ’06), pp. 751–760, April 2006.

[31] G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and
E. Kandogan, “Koala: capture, share, automate, personalize
business processes on the web,” in Proceedings of the 25th
SIGCHI Conference on Human Factors in Computing Systems
2007 (CHI ’07), pp. 943–946, May 2007.

[32] M. Burnett, A. Sheretov, B. Ren, and G. Rothermel, “Testing
homogeneous spreadsheet grids with the “what you see is
what you test” methodology,” IEEE Transactions on Software
Engineering, vol. 28, no. 6, pp. 576–594, 2002.

[33] G. Fischer, “Domain-oriented design environments,” Auto-
mated Software Engineering, vol. 1, no. 2, pp. 177–203, 1994.

[34] G. Fischer, K. Nakakoji, and Y. Ye, “Metadesign: guidelines
for supporting domain experts in software development,” IEEE
Software, vol. 26, no. 5, pp. 37–44, 2009.

[35] A. Repenning and A. Ioannidou, “Agent-based end-user devel-
opment,” Communications of the ACM, vol. 47, no. 9, pp. 43–46,
2004.

[36] A. Repenning and A. Ioannidou, “What makes end-user devel-
opment tick? 13 design guidelines,” in End-User Development,
H. Lieberman, F. Paternò, and V. Wulf, Eds., Human Computer
Interaction Series, pp. 51–85, Springer, New York, NY, USA,
2006.

[37] A. Repenning and J. Sullivan, “The Pragmatic Web. Agent
based multimodal web interaction with no browser in sight,” in
Proceedings of the Conference on Human-Computer Interaction
(INTERACT ’03), IOS Press, 2003.

[38] J. F. Pane, B. A. Myers, and L. B. Miller, “Using HCI techniques
to design a more usable programming system,” in Proceedings
of the IEEE Symposia on Human Centric Computing Languages
and Environments (HCC ’02), pp. 198–206, 2002.

[39] B. A. Myers, J. F. Pane, and A. Ko, “Natural programming
languages and environments,”Communications of the ACM, vol.
47, no. 9, pp. 47–52, 2004.

[40] H. Lieberman, Your Wish Is My Command. Programming by
Example, Morgan Kaufmann, Academic Press, New York, NY,
USA, 2001.

[41] App Inventor MIT, 2012, http://appinventor.mit.edu/.
[42] M. Resnick, J. Maloney, A. Monroy-Hernández et al., “Scratch:

programming for all,” Communications of the ACM, vol. 52, no.
11, pp. 60–67, 2009.

[43] J. Humble, A. Crabtree, T. Hemmings et al., “‘Playing with
the Bits’ user-configuration of ubiquitous domestic environ-
ments,” inUbiComp 2003: Ubiquitous Computing, A. K. Dey, A.
Schmidt, and J. F. McCarthy, Eds., Lecture Notes in Computer
Science, Springer, Berlin, Germany, 2003.

[44] R. Andersen and A. Morch, “Mutual development: a case
study in customer-initiated software product development,” in
Proceedings of the 2nd International Symposium on End-User
Development, vol. 5435 of Lecture Notes in Computer Science, pp.
31–49, Springer, Siegen, Germany, 2009.

[45] M. F. Costabile, D. Fogli, P. Mussio, and A. Piccinno, “End-
user development: the software shaping workshop approach,”
in End User Development, H. Lieberman, F. Paternò, and V.
Wulf, Eds., Human-Computer Interaction Series, pp. 183–205,
Springer, Berlin, Germany, 2006.

[46] M. F. Costabile, A. Piccinno, D. Fogli, and A. Marcante,
“Supporting interaction and co-evolution of users and systems,”
in Proceedings of the Working Conference on Advanced Visual
Interfaces (AVI ’06), pp. 143–150, May 2006.

[47] M. F. Costabile, P. Mussio, L. P. Provenza, and A. Piccinno,
“Supporting end users to be co-designers of their tools,” in



10 ISRN Software Engineering

Proceedings of the 2nd International Symposium on End-User
Development, vol. 5435 of Lecture Notes in Computer Science, pp.
70–85, Springer, Siegen, Germany, 2009.

[48] S. Kuhn and M. J. Muller, “Participatory design—introduction
to the special section,” Communications of the ACM, vol. 36, no.
6, pp. 24–28.

[49] K. Bødker, F. Kensing, and J. Simonsen, Participatory IT Design:
Designing for Business and Workplace Realities, MIT Press,
Cambridge, Mass, USA, 2004.

[50] C. Letondal and W. E. Mackay, “Participatory programming
and the scope of mutual responsibility: balancing scientific,
design and software commitment,” in Proceedings of the 8th
Participatory Design Conference Artful Integration: Interweaving
Media, Matrials and Practices (PDC ’04), pp. 31–41, July 2004.

[51] R. C. M. Tam, D. Maulsby, and A. R. Puerta, “U-TEL: a tool for
eliciting user task models from domain experts,” in Proceedings
of the 1998 International Conference on Intelligent User Interfaces
(IUI ’98), pp. 77–80, January 1998.

[52] J. A. Landay and B. A. Myers, “Sketching interfaces: toward
more human interface design,” Computer, vol. 34, no. 3, pp. 56–
64, 2001.

[53] A. Coyette, S. Kieffer, and J. Vanderdonckt, “Multi-fidelity
prototyping of user interfaces,” in Proceedings of the 11th IFIP
TC 13 International Conference onHuman-Computer Interaction
(INTERACT ’07), vol. 4662 of Lecture Notes in Computer
Science, pp. 149–162, Springer, Rio de Janeiro, Brazil, September
2007.

[54] H. Liu andH. Lieberman, “Programmatic semantics for natural
language interfaces,” in Proceedings of the ACM Conference on
Human Factors in Computing Systems, (CHI ’05), Portland, Ore,
USA, April 2005.

[55] G. Little and R. C. Miller, “Translating keyword commands
into executable code,” in Proceedings of the 19th Annual ACM
Symposium on User Interface Software and Technology (UIST
’06), pp. 135–144, October 2006.

[56] T. R. G. Green and M. Petre, “Usability analysis of visual pro-
gramming environments: a ’cognitive dimensions’ framework,”
Journal of Visual Languages and Computing, vol. 7, no. 2, pp. 131–
174, 1996.

[57] A. F. Blackwell and T. R. G. Green, “A cognitive dimensions
questionnaire optimised for users,” in Proceedings of the 12th
Annual Meeting of the Psychology of Programming Interest
Group, A. F. Blackwell and E. Bilotta, Eds., pp. 137–152, 2000.

[58] C. Scaffidi, A. Cypher, S. Elbaum, A. Koesnandar, and B. Myers,
“Using scenario-based requirements to direct research on web
macro tools,” Journal of Visual Languages and Computing, vol.
19, no. 4, pp. 485–498, 2008.

[59] C. Scaffidi, B. A. Myers, and M. Shaw, “Fast, accurate creation
of data validation formats by end-user developers,” in End-User
Development, V. Pipek, M. B. Rosson, B. de Ruyter, and V.Wulf,
Eds., vol. 5435 of Lecture Notes in Computer Science, pp. 242–
261, Berlin, Germany, 2009.

[60] J. Soriano, D. Lizcano, M. A. Canas, M. Reyes, and J. J.
Hierro, “Fostering innovation in a mashup-oriented enterprise
2.0 collaboration environment,” in Proceedings of the SIWN
International Conference on Adaptive Business Systems (ICABS
’07), pp. 62–669, Chengdu, China, 2007.

[61] J. Nichols and T. Lau, “Mobilization by demonstration: using
traces to re-author existing web sites,” in Proceedings of the 13th
International Conference on Intelligent User Interfaces (IUI ’08),
pp. 149–158, January 2008.

[62] J. A.Maćıas and F. Paternò, “Customization ofWeb applications
through an intelligent environment exploiting logical interface
descriptions,” Interacting with Computers, vol. 20, no. 1, pp. 29–
47, 2008.

[63] M. Toomim, S. M. Drucker, M. Dontcheva, A. Rahimi, B.
Thomson, and J. A. Landay, “Attaching UI enhancements to
websites with end users,” in Proceedings of the ACM Conference
on Human Factors in Computing Systems, pp. 1859–1868, 2009.

[64] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau, “End-user
programming of mashups with vegemite,” in Proceedings of the
13th International Conference on Intelligent User Interfaces (IUI
’09), pp. 97–106, February 2009.

[65] R. C. Miller, M. Bolin, L. B. Chilton, G. Little, M. Webber, and
Y. Chen-Hsiang, “Rewriting the web with chickenfoot,” in No
Code Required: Giving Users Tools to Transform theWeb, pp. 39–
62, Elsevier, Burlington, Mass, USA, 2010.

[66] G. Leshed, E. M. Haber, T. Matthews, and T. Lau, “CoScripter:
automating & sharing how-to knowledge in the enterprise,”
in Proceedings of the 26th Annual CHI Conference on Human
Factors in Computing Systems (CHI ’08), pp. 1719–1728, April
2008.

[67] I. Li, J. Nichols, T. Lau, C. Drews, and A. Cypher, “Here’s
what i did: sharing and reusing web activity with ActionShot,”
in Proceedings of the 28th Annual CHI Conference on Human
Factors in Computing Systems (CHI ’10), pp. 723–732, April 2010.

[68] J. Wong and J. I. Hong, “Making mashups with marmite:
towards end-user programming for the web,” in Proceedings of
the 25th SIGCHI Conference on Human Factors in Computing
Systems (CHI ’07), pp. 1435–1444, May 2007.

[69] G. Ghiani, F. Paternò, and L. D. Spano, “Creating mashups by
direct manipulation of existing web applications,” in End-User
Development, vol. 6654 of Lecture Notes in Computer Science,
pp. 42–52, Springer, Berlin, Germany, 2011.

[70] B. Hartmann, L. Wu, K. Collins, and S. R. Klemmer, “Pro-
gramming by a sample: rapidly creating web applications with
d.mix,” in Proceedings of the 20th Annual ACM Symposium on
User Interface Software and Technology (UIST ’07), pp. 241–250,
October 2007.

[71] T. Nestler, A. Namoun, and A. Schill, “End-user development of
service-based interactive web applications at the presentation
layer,” in Proceedings of the 3rd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS ’11), pp. 197–
206, June 2011.

[72] G. Ghiani, F. Paternò, and L. D. Spano, “Cicero designer:
an environment for end-user development of multi-device
museum guides,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 5435, pp. 265–274, 2009.

[73] A. Celentano and M. Marek, “An end-user oriented building
pattern for interactive art guides,” in End-User Development,
M. Costabile, Y. Dittrich, G. Fischer, and A. Piccinno, Eds.,
vol. 6654 of Lecture Notes in Computer Science, pp. 187–202,
Springer, Berlin, Germany, 2011.

[74] A. F. Blackwell and R. Hague, “AutoHAN: an architecture for
programming the home,” in Proceedings of the IEEE Symposia
onHuman-Centric Computing Languages andEnvironments, pp.
150–157, September 2001.

[75] A. F. Blackwell, “End-user developers at home,” Communica-
tions of the ACM, vol. 47, no. 9, pp. 65–66, 2004.

[76] K. P. Akesson, A. Crabtree, P. Hansson et al., “‘Playing with
the Bits’ User-Configuration of Ubiquitous Domestic Environ-
ments,” in Proceedings of the 5th International Conference on



ISRN Software Engineering 11

UbiquitousComputing (UbiComp ’03), vol. 2864 ofLectureNotes
in Computer Science, pp. 256–263, 2003.

[77] A. K. Dey, T. Sohn, S. Streng, and J. Kodama, “iCAP: interactive
prototyping of context-aware applications,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 3968, pp.
254–271, 2006.

[78] S. Cotterell and F. Vahid, “A logic block enabling logic config-
uration by non-experts in sensor networks,” in Proceedings of
the Extended Abstracts on Human Factors in Computing Systems
(CHI ’05), pp. 1925–1928, 2005.

[79] S. P. Carmien andG. Fischer, “Design, adoption, and assessment
of a socio-technical environment supporting independence
for persons with cognitive disabilities,” in Proceedings of the
26th Annual CHI Conference on Human Factors in Computing
Systems (CHI ’08), pp. 597–606, April 2008.

[80] R. Hull, B. Clayton, and T. Melamed, “Rapid authoring of
mediascapes,” Tech. Rep. HPL-2004-154, 2004.

[81] J. Floch, “A framework for user-tailored city exploration,” in
End-User Development, vol. 6654 of Lecture Notes in Computer
Science, pp. 239–244, Springer, Berlin, Germany, 2011.

[82] P. Baudisch, X. Xie, C.Wang, andW. Y.Ma, “Collapse-to-zoom:
viewing web pages on small screen devices by interactively
removing irrelevant content,” in Proceedings of the Annual ACM
Symposium on User Interface Software and Technology (UIST
’04), pp. 91–94, October 2004.

[83] G. Ghiani, F. Paternò, and C. Santoro, “On-demand cross-
device interface components migration,” in Proceedings of the
12th International Conference on Human-Computer Interaction
with Mobile Devices and Services (Mobile HCI ’10), pp. 299–307,
September 2010.

[84] U. Tuomela, I. Kansala, J. Hakkila, and J. Mantyjarvi, “Context-
Studio? Tool for personalizing context-aware applications in
mobile terminals,” in Proceedings of the Australasian Computer
Human Interaction Conference (OzCHI ’03), p. 292, Nokia
Research Center, 2003.

[85] J. Danado, M. Davies, P. Ricca, and A. Fensel, “An authoring
tool for user generated mobile services,” in Proceedings of the
3rd Future Internet Conference on Future Internet (FIS ’10), A.
Berre, A. Gomez-Pérez, K. Tutschku, and D. Fensel, Eds., pp.
118–127, Springer.

[86] J. Seifert, B. Pfleging, E. Bahamóndez, M. Hermes, E. Rukzio,
and A. Schmidt, “Mobidev: a tool for creating apps on mobile
phones,” in Proceedings of the 13th International Conference on
Human Computer Interaction with Mobile Devices and Services
(MobileHCI ’11), pp. 109–112, ACM, 2011.

[87] J. Danado and F. Paternò, “A prototype for EUD in touch-based
mobile devices,” in Proceedings of the IEEE Symposium onVisual
Languages and Human-Centric Computing (VL/HCC ’12), pp.
83–86, 2012.

[88] J. Danado and F. Paternò, “Puzzle: a visual-based environment
for end user development in touch-based mobile phones,” in
Human-Centered Software Engineering, vol. 7623 of Lecture
Notes in Computer Science, pp. 199–216, 2012.

[89] S. Cuccurullo, R. Francese,M. Risi, andG. Tortora, “MicroApps
development on mobile phones,” in End-User Development,
M. Costabile, Y. Dittrich, G. Fischer, and A. Piccinno, Eds.,
vol. 6654 of Lecture Notes in Computer Science, pp. 289–294,
Springer, Berlin, Germany, 2011.

[90] A. De Lucia, R. Francese, M. Risi, and G. Tortora, “Generating
applications directly on the mobile device: an empirical evalua-
tion,” in Proceedings of the International Working Conference on
Advanced Visual Interfaces (AVI ’12), pp. 640–647, 2012.

[91] D. Dearman and J. Pierce, “It’s on my other computer, com-
puting with multiple devices,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’08),
pp. 767–776, ACM Press, Florence, Italy, 2008.

[92] Google Research Report, “The new multi-screen world: under-
standing cross-platform consumer behavior,” 2012, http://ser-
vices.google.com/fh/files/misc/multiscreenworld fi- nal.pdf.

[93] J. Lin and J. A. Landay, “Employing patterns and layers for early-
stage design and prototyping of cross-device user interfaces,”
in Proceedings of the 26th Annual CHI Conference on Human
Factors in Computing Systems (CHI ’08), pp. 1313–1322, April
2008.

[94] J. Borchers, A Pattern Approach to Interaction Design, Wiley,
Chichester, UK, 2001.

[95] F. Paternò, C. Santoro, and L. D. Spano, “Engineering the
authoring of usable service front ends,” Journal of Systems and
Software, vol. 84, no. 10, pp. 1806–1822, 2011.

[96] Tasker, http://tasker.dinglisch.net/.
[97] Locale, http://www.twofortyfouram.com/.
[98] V. Realinho, T. Romão, and A. E. Dias, “An event-driven work-

flow framework to develop context-aware mobile applications,”
in Proceedings of the 11th International Conference onMobile and
Ubiquitous Multimedia (MUM ’12), article 12, ACM Press, 2012.

[99] B. Athreya, F. Bahmani, A. Diede, and C. Scaffidi, “End-
user programmers on the loose: a study of programming on
the phone for the phone,” in Proceedings of the IEEE Sym-
posium on Visual Languages and Human-Centric Computing
(VL/HCC ’12), pp. 75–82, 2012.

[100] S. Holloway and C. Julien, “The case for end-user programming
of ubiquitous computing environments,” in Proceedings of the
FSE/SDP Workshop on the Future of Software Engineering
Research (FoSER ’10), pp. 167–171, November 2010.

[101] M. Beaudouin-Lafon, “Instrumental interaction: an interaction
model for designing post-WIMP user interfaces,” in Proceedings
of the Conference on Human Factors in Computing Systems “The
Future is Here” (CHI ’00), pp. 446–453, April 2000.

[102] R. J. K. Jacob, O. Shaer, A. Girouard et al., “Reality-Based
interaction: a framework for post-WIMP interfaces,” inProceed-
ings of the 26th Annual CHI Conference on Human Factors in
Computing Systems (CHI ’08), pp. 201–210, April 2008.

[103] S. Berti, F. Paternò, and C. Santoro, “Natural development of
nomadic iterfaces based on conceptual descriptions,” in End-
User Development, pp. 143–160, Springer, 2006.

[104] M. Nebeling, S. Leone, and M. C. Norrie, “Crowdsourced web
engineering and design,” inWeb Engineering, vol. 7387, 2012, pp.
31–45, Springer, Berlin, Germany.

[105] O. Shaer, N. Leland, E. Calvillo-Gamez, and R. Jacob, “The
TAC paradigm: specifying tangible user interfaces,” Personal
and Ubiquitous Computing, vol. 8, no. 5, pp. 359–369, 2004.

[106] M. Resnick, “Behavior constrction kits,” Communications of the
ACM, vol. 36, no. 7, pp. 64–71, 1993.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


