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A Simulation-Based Process Model for
Managing Complex Design Projects

Soo-Haeng Cho and Steven D. Eppinger, Member, IEEE

Abstract—This paper presents a process modeling and analysis
technique for managing complex design projects using advanced
simulation. The model computes the probability distribution of
lead time in a stochastic, resource-constrained project network
where iterations take place among sequential, parallel, and
overlapped tasks. The model uses the design structure matrix
representation to capture the information flows between tasks.
We use a simulation-based analysis to account for many real-
istic aspects of design process behavior which were not possible
in previous analytical models. We propose a heuristic for the
stochastic, resource-constrained project scheduling problem in
an iterative project network. The model can be used for better
project planning and control by identifying leverage points for
process improvements, and for evaluating alternative planning
and execution strategies. An industrial example is provided to
illustrate the utility of the model.

Index Terms—Design iteration, design structure matrix, process
modeling, project management, project simulation.

I. INTRODUCTION

ODAY’S competitive industrial market has created a

highly challenging environment for product development.
Companies are under increasing pressure to create and sustain
competitive advantage by reducing product development time
and cost, while maintaining a high level of quality. These needs
drive companies to focus more than ever before on streamlining
their product development process [17], [53], [56], [60].

A complex design project usually involves a large number
of tasks executed by a network of professionals from various
disciplines. As complexity increases, it becomes more difficult
to manage the interactions among tasks and people; it may be
impossible to even predict the impact of a single design deci-
sion throughout the development process [25], [55]. Due to the
tremendous complexity of many engineering projects, project
management techniques have played a vital role in the success
of such projects.

Since the introduction of network-based project scheduling
techniques such as the critical path method (CPM) [30] and
program evaluation and review technique (PERT) [37], many
researchers have developed extensions to add new power to

Manuscript received February 11, 2003. Review of this manuscript was
arranged by Department Editor A. Marucheck. This work was supported by
the Center for Innovation in Product Development, Massachusetts Institute of
Technology, Cambridge, MA, and by the Singapore-MIT Alliance.

S.-H. Cho is with the UCLA Anderson School of Management, Los Angeles,
CA 90095-1481 USA (e-mail: scho@anderson.ucla.edu).

S. D. Eppinger is with the Sloan School of Management, Massachusetts Insti-
tute of Technology, Cambridge, MA 02142 USA (e-mail: eppinger @mit.edu).

Digital Object Identifier 10.1109/TEM.2005.850722

these classical methods. Some of the pioneering work includes
the use of Monte Carlo sampling [58] to account for stochastic
task duration, the graphical evaluation and review technique
(GERT) [40] that allows probabilistic routing and feedback
loops, the generalized precedence relations (GPRs) [23], and
various exact and heuristic techniques for the resource-con-
strained project scheduling problem (RCPSP). The classical
RCPSP is the problem of scheduling tasks such that prece-
dence and resource constraints are obeyed and project lead
time is minimized. Given the NP-hardness of the problem [9],
various exact and heuristic approaches have been used. More
recently, researchers have developed techniques for the RCPSP
with random task durations, so-called the stochastic RCPSP.
Extensive literature review for both the classical and stochastic
RCPSPs can be found in [20] and [39].

Iteration is a fundamental characteristic of complex design
projects [5], [25], [31], [61]. However, the network-based
project scheduling techniques discussed above have very
limited capabilities in modeling iterations. Furthermore, as
Smith and Morrow [50] pointed out, it is not clear that the
primary behaviors that those scheduling techniques are able to
capture (precedence task relationships, resource constraints,
stochastic task durations) are the behaviors that are most critical
to engineering design management. For these reasons some
researchers have turned to modeling frameworks other than
CPM/PERT to develop models of design iteration and to better
address other behaviors.

Steward [52] developed the design structure matrix (DSM)
method for such purposes. The DSM provides a compact rep-
resentation of a complex system by showing information de-
pendencies in a square matrix. The DSM method is based on
the earlier work in large-scale system decomposition [34], [44],
[51], [59]. Eppinger et al. [25] extended Steward’s work by ex-
plicitly modeling information coupling among tasks and investi-
gating different strategies for managing task procedures. Some
researchers have used the DSM framework to design iteration
modeling to extend its information-based structuring analysis
to schedule analysis. A recent survey by Browning [14] shows
its increasing use in various application areas including product
development, project planning, project management, systems
engineering, and organization design.

Several analytical models have been developed to charac-
terize timing of iterative design processes. These include se-
quential iteration models, parallel iteration models, and over-
lapping models. Sequential iteration models, wherein tasks are
repeated one after the other by a probabilistic rule, have been
implemented in several approaches. Smith and Eppinger [48]
developed a model based on a reward Markov chain using the
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DSM representation for repetition probabilities and task dura-
tions. Ahmadi and Wang [3] extended the sequential iteration
model by taking into account dynamic iteration probabilities
and learning effects. Belhe and Kusiak [8] included probabilistic
OR and exclusive OR relationships between tasks. Eppinger et
al. [24] first used signal flow graphs to compute the probability
distribution of lead time. Andersson et al. [ 7] extended the signal
flow graph model to include learning effects and other non-
linearities. In parallel iteration models, multiple interdependent
tasks work concurrently with frequent information exchanges.
AitSahlia et al. [4] compared sequential and parallel iteration
strategies in terms of a time-cost tradeoff. Hoedemaker et al.
[28] discussed the limitations of parallel iteration due to in-
creasing communication needs. Smith and Eppinger [49] devel-
oped a model of fully parallel iteration processes, built upon the
DSM framework to predict slow and rapid convergence of par-
allel iteration. In overlapping models, tasks are overlapped to
reduce total lead time. Ha and Porteus [27] analyzed a model
of concurrent product and process design tasks and explored
the optimal review timing to minimize total expected comple-
tion time. Krishnan et al. [33] developed a framework for over-
lapped sequential tasks. They explained appropriate overlapping
strategies based on upstream information evolution and down-
stream iteration sensitivity. Loch and Terwiesch [36] presented
an analytical model for optimal communication policy between
two sequentially overlapped tasks. Roemer et al. [43] discussed
time-cost tradeoffs in multiple overlapped tasks.

While each of the above iteration models captures some
unique aspects of engineering design projects, they do not con-
sider all of the effects handled by generalized project network
scheduling techniques. The sequential iteration models do
not handle resource constraints, repetition of multiple parallel
tasks, and nonzero lag. The parallel iteration models analyze
important aspects of concurrent engineering but use highly
simplified assumptions. The two-task overlapping models
provide the optimal way to reduce the time of two sequential
tasks having the interface of unidirectional information transfer.
However, the concept does not easily apply to multiple tasks,
in particular, having multiple paths with iteration. In addition,
there has not been any significant work resolving resource
over-allocation issues in the overlapped and coupled project
networks where tasks repeat by a probabilistic rule.

Since many of limitations of the above models are due to the
limitation of analytical approaches, some researchers have re-
sorted to simulation. Taylor and Moore [54] used the simula-
tion package Q-GERT [41] for R&D project planning assuming
no resource constraints. The GERT and Q-GERT methods as-
sume that the sequence of tasks is fixed, whereas the sequence of
tasks may sometimes be variable, as in Smith and Eppinger [48].
Adler et al. [2] developed a simulation-based framework using
queuing principles for a multiproject, shared-resources setting.
The model incorporates simple iterative effects on task duration
by grouping iterative tasks together. The duration of the grouped
task is computed by assuming an average number of iterations
of tasks within the group, with constant iteration probabilities
and no learning effects. However, this approach applies only
to a simple network where repetition of multiple parallel tasks,
nonzero lag, and variable task sequence are not permitted. Levitt

et al. [35] proposed the virtual design team (VDT) framework,
which builds organizational simulation models of projects. The
model in this paper differs from the VDT model in that the
objective of the VDT simulation is to predict organizational
breakdowns in performing activities, while the goal of ours is to
predict dynamic behavior of iterative processes. Browning and
Eppinger [15] developed the first DSM-based simulation model
that analyzes design iteration in a more generalized project net-
work than the previous analytical models. However, their model
does not account for resource constraints and is based on rather
restrictive assumptions regarding task concurrency and rework,
which will be further discussed here. Yassine and Browning
[64] used the preference function of various attributes of task,
project, and processor to determine resource priorities in the
first DSM-based simulation model in limited resource settings.
However, the heuristic does not provide a solution toward min-
imizing expected project lead time.

We present in this paper a second-generation, DSM-based
simulation model that extends the previous model-based design
process analysis to a project management tool applicable to a
generalized project network. There are three key contributions
of this paper.

1) The proposed model allows the streamlined interface be-
tween information-based DSM structuring analysis and
network-based project scheduling analysis. The methods
are complementary to each other in that the DSM method
explores the information structure of a project while a net-
work-based project scheduling technique provides a thor-
ough time-based analysis.

2) We have improved the previous iteration models by incor-
porating many more general characteristics of complex
design processes. The simulation approach accounts for
the normal variance of processing time and permits the
relaxation of a “Markovian” transition, meaning that iter-
ation probabilities as well as the amount of rework are no
longer constant in each iteration as in the earlier models.
We also study a risk-based rework control policy that in-
creases task concurrency during iterations. The proposed
model is one of the first iteration process models appli-
cable to a generalized project network having sequential,
parallel, and overlapped tasks with limited resources.

3) We propose a heuristic for the stochastic RCPSP in an
iterative project network where the techniques developed
for the classical and stochastic RCPSPs do not work very
well, as many of the heuristic measures are not defined for
an iterative network.

In order to build such a rich process model, we employ nu-
merical simulation methods. Simulation techniques are effec-
tive for the two analytical purposes: sampling of a task dura-
tion from the known distribution function and modeling of the
dynamic progress of a project. For duration sampling, we use
the simple Latin hypercube sampling (LHS) method [38] for its
ease of implementation. The conditional Monte Carlo sampling
techniques (e.g., [1], [16], and [46]) do not help reduce computa-
tional effort in an iterative project since tasks iterate probabilisti-
cally. We employ the parallel discrete-event simulation method
for modeling the progress of a project as a dynamic system,
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where system variables evolve over time. Note that modeling
such non-Markovian transitions is impossible to represent as a
Markov chain.

The remainder of this paper is organized as follows. Section II
gives an overview of model constructs. Section III presents
the discrete-event simulation scheme as a modeling framework
and how rework of tasks is simulated. We also show why the
heuristic techniques applied to the RCPSP are not valid in an
iterative project network. Section IV is devoted to an applica-
tion of the model to an industrial project example. Section V
discusses applications of the model to project management
and how the model can complement an existing project man-
agement tool. Section VI discusses limitations and possible
extensions. The paper ends with a conclusion in Section VII.

II. MoODEL CONSTRUCTS

We follow the information-based view [5] of design projects
in which a task is the information-processing unit that receives
information from other tasks and transforms it into new infor-
mation to be passed on to subsequent tasks. The information
exchanged between tasks includes both tangible and intangible
types such as parts, part dimensions, bills of material, etc. Model
inputs characterize behaviors of individual tasks and interac-
tions among the tasks from a schedule perspective. The duration
of a task is used to model uncertainty and complexity within the
domain of the task. Precedence and resource constraints deter-
mine the start times of tasks. Iterations are modeled to depict
the patterns of workflows caused by dynamic information ex-
changes among the tasks.

A. Task Durations

A variety of distributions have been used to represent stochas-
ticity of task duration. Our model chooses the triangular prob-
ability distribution to represent task durations since this distri-
bution is simple and familiar to many project managers [62].
For each task, the model receives three estimated values for
the expected duration of one-time execution—optimistic, most
likely and pessimistic (as in some PERT-based analyses). These
values represent the duration of a task from the start to the end
of its continuous work, even though the task may later be re-
peated after its initial completion. Remaining duration decreases
over time as the model simulates the project’s progress. It has
been found that estimating the 10th and 90th percentiles of the
expected duration (as the optimistic and pessimistic values) is
more reliable than the extremes of the PDF which are typically
outside the realm of experience [29], [62].

The model uses the LHS method [38] to incorporate the un-
certainty of the expected duration of each task based on the three
estimated durations. After calculating the extreme values of the
PDF, the LHS method divides the range between them into N
strata of equal marginal probability 1/N, where N is the number
of random values for the expected duration representing the tri-
angular PDF. Then, it randomly samples once from each stratum
and sequences the sampled values randomly.

B. Precedence Constraints

From a schedule perspective, we consider two types of infor-
mation flow in a task: 1) information flow at the beginning or

at the end of the task and 2) information flow in the middle of
the task. Accordingly, we define two types of information flow
between two tasks. The first type represents the case that the
task requires final output information from the upstream task
to begin its work. The second type represents the case that the
task uses final output information from the upstream task in the
middle of its process or begins with preliminary information but
also receives a final update from the upstream task.

The first type of information flow is translated to a
“finish-to-start” precedence constraint between two tasks, while
the second type is translated to a “finish-to-start-plus-lead”
constraint.! With lead time, two tasks are overlapped so that
a successor task starts before a predecessor task is finished.
During information mapping between tasks, this constraint
indicates the possibility of overlapping. The decision of over-
lapping must be made after preliminary scheduling analysis
so that overlapping is effectively used for tasks on a critical
path. The DSM is used to document these information flows
and precedence constraints. The notation DSM(i,j) for
1,7 = 1,...,n represents this two-type scheme in the DSM
having n tasks where:

e« DSM(i,j) = 0 when there is no information flow from
task j to task ;
e DSM(i,j) = 1 when there is a finish-to-start type of
information flow from task j to task i;
e DSM(i,j) = 2 when there is a finish-to-start-plus-lead
type of information flow from task j to task s.
Various sequencing analyses such as partitioning and tearing
[25], [52] can be performed by constructing the DSM using
these inputs.

C. Resource Constraints

The model assumes that there exists a fixed, renewable re-
source pool throughout the entire project duration. It consists
of specialized resources and/or resource groups of which con-
stituents exhibit the same functional performance. Each task has
its own resource requirement which is assumed to be constant
over the entire period the task is processed. When two or more
tasks are competing for limited resources in a certain period of
time, i.e., resources are over-allocated, the model determines
priorities by the heuristic rules explained later in the paper.

D. Iteration

Eppinger et al. [24] defined iteration as the repetition of tasks
to improve an evolving development process. It is generally ac-
cepted that iteration improves the quality of a product in a de-
sign project while increasing development time. Managers must
control the project to address this time-quality tradeoft [25]. In
this paper, iteration is the rework of a task caused by the execu-
tion of other tasks. This definition excludes any repetitive work
within a single task’s execution (that being modeled as variance
in the task’s duration). We include all planned and unplanned it-
erations that can be modeled probabilistically. Some unplanned
iterations cannot be considered because they result in structural

IThe FS (+lead/lag) is the most conventional type of relationship used in
practice, as well as in the project management tools such as MS Project and
Primavera. Note that other relationships in the GPRs can be converted into this
relationship in the case of fixed task durations [23].
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changes to the project. For example, a major project failure
or redirection would involve replanning the entire process, not
simply reworking the established tasks.

The model assumes that rework of a task is generated due to
the following causes (similar to [15], [24], [33], and [48]):

¢ receiving new information from overlapped tasks after
starting to work with preliminary inputs;

e probabilistic failure to meet the established criteria;

e probabilistic change of inputs when other tasks are
reworked.

In the proposed model, the first cause gives rise to overlapping
iteration, and the second and the third causes give rise to se-
quential iteration. Parallel iteration of a limited number of tasks
is simulated in this model by combining overlapping and se-
quential iteration.

1) Overlapping Iteration: Overlapping has been described
as a “core technique for saving development time” [47]. It is
generally acknowledged that overlapping tasks may save time,
but is more costly than the conservative sequential approach.
Suppose two nominally sequential, dependent tasks are par-
tially overlapped. Then, the downstream task will start to work
with the preliminary information from the upstream task. As
the upstream task proceeds, its output information evolves to
its final form and is released to the downstream task according
to its communication policy. The downstream task may repeat
part of its work to accommodate this new information. Such
rework would be unnecessary if the downstream task started to
work only with the final information from the upstream task
(the nonoverlapped case).

In our model, we incorporate the results of previous two-task
overlapping models by Krishnan and Eppinger [33] and by Loch
and Terwiesch [36]. Thus, it is assumed that the desired overlap
amount and the corresponding downstream rework for the over-
lapped tasks can be estimated in the planning stage. For the tasks
i and j of which DSM (i, j) = 2, the notation O A(4, 7) is used
for maximum overlap amount and OI(4, j) for overlap impact
fore,5 = 1,...,n. The former represents the planned overlap
amount between tasks 7 and 7, and it is a fraction of the ex-
pected duration of task ¢, d;. This carries the assumption that the
downstream task cannot be completed before the upstream task
finishes. The latter represents the expected amount of rework
in task ¢ when task ¢ is overlapped with task j by the amount
OA(i,j) X d; and it is a fraction of that amount. OI(4,5) = 1
implies no benefit from overlapping. To implement an overlap-
ping strategy, OI(i, j) should be somewhat less than 1, consid-
ering the additional cost due to the rework, as well as the risk
due to the evolution of volatile preliminary information.

2) Sequential Iteration: The model takes an approach sim-
ilar to Browning and Eppinger [15] by explaining sequential
iteration using rework probability, rework impact, and the
learning curve. Rework probability is a source of uncertainty
in sequential iteration. RP(4,7,7) represents the probability
that task ¢ does rework affected by task j in rth iteration for
i,7=1,...,nandr = 1,2,.... In the case of 7 < j, it repre-
sents the feedback rework caused by the change of information
from downstream task j or by the failure of downstream task j
to meet the established criteria. In the case of ¢ > j, it repre-
sents the feed-forward rework that downstream task ¢ needs to

do since upstream task j has generated new information after
it has done its own rework. As a design process converges to
a solution with iterative rework, there is less new information
generated and fewer errors are discovered. Therefore, rework
probability tends to decrease in each iteration.

Rework impact is a measure of the level of dependency be-
tween tasks in sequential iteration. RI(i, j) represents the per-
centage of task ¢ to be reworked when rework is caused by task
gfori, 7 =1,...,n. Rework impact is assumed to be constant
in each iteration. The learning curve measures a characteristic
of a task when it repeats. (Loi); for i = 1,...,n represents
the fraction of original duration when task ¢ does the same work
for a second time. The model assumes that the learning curve
improves by (Loyi); in each repetition until it reaches (Lmax);,
which is the minimum fraction of the original duration when
task ¢ does the same work repeatedly. Thus, rework amount is
calculated as the original duration multiplied by the rework im-
pact and learning curve.

III. MODEL DESCRIPTION

The model employs a parallel discrete event simulation (e.g.,
[42], [45], and [66]) to compute the distribution of lead time.
Analytical features are included so that the model can describe
the complex behavior of engineering design processes having
overlapped tasks and sequential iterations. This section explains
the underlying structure of the simulation-based model.

A. Modeling Framework

In the discrete event simulation, events trigger state transi-
tions and time advances in discrete steps by the time elapsed be-
tween events. The distinctive feature of the discrete event simu-
lation is that no components within a system need to be scanned
at times between events. A parallel simulation allows multiple
model components to be active and to send their outputs to other
components.

The model uses different expected durations of tasks in
each simulation run which are initially sampled using the LHS
method. With those task durations, it simulates a series of
sequential state transitions incorporating iterations in multiple
paths. States are determined dynamically based on all the inputs
of tasks and task interfaces explained earlier. In each state, it
scans all tasks and determines a set of active tasks satisfying
both precedence and resource constraints. If the amount of
resources required by the tasks satisfying precedence con-
straints exceeds the resource capacity of the project, resource
assignments are made by the heuristic priority rules. It assumes
that a task begins to work as early as possible when it has all
the necessary inputs from upstream tasks and all the required
resources.

An event is defined as the completion of an active task in-
stead of any information transfer. Thus, when any active task in
the current state ¢ is completed, the model makes a transition to
the next state ¢ + 1. The duration of state ¢ (¢ = 0,1,2,...)
is defined as the minimum remaining duration of active tasks in
the state. Before making a transition to the next state, the model
subtracts the duration of the current state from the remaining
durations of all active tasks. If all the remaining durations of
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For each simulation run,

STEPI. Initialize model variables from the inputs at state 0.

STEP2. Initialize model variables in the current state ¢.

STEP3. Identify a set of concurrent active tasks in the current state
satisfying precedence and resource constraints based on the
priority rules.

STEP4. Account for overlapping iteration.

STEP5. Adjust the durations of the active tasks and the lead time.

STEP6. Generate sequential iteration rework.

STEP7. Make a transition to the next state g+1 and go to STEP2, or
complete one simulation run if satisfying the termination
condition.

Fig. 1. Algorithm summary.

tasks are zero (the termination condition), one simulation run is
complete and the lead time is calculated as the sum of all the
state durations. After /N simulation runs, the probability dis-
tribution of lead time can be constructed. Fig. 1 summarizes
the algorithm to compute lead time in one simulation run. A
simulation run starts with initializing model variables from the
model inputs at STEP1. It simulates time advance of tasks by
following STEP2-STEP7 in each state until it satisfies the ter-
mination condition. Note that the state transitions of the pro-
posed algorithm are similar to the so-called parallel scheduling
scheme [13] that many rule-based heuristics for the RCPSP have
employed. Our model is distinguished from the parallel scheme
by modeling iterations, as explained next.

B. Overlapping Iteration Modeling

In each state, the model identifies a set of active tasks which
have started to work in the current state. For each task in this
set, the model simulates that its overlapped work has been per-
formed in prior state(s) and the expected impact due to itera-
tions has been added to the projection in the current state. The
overlap amount of a task is dynamically determined by both
precedence and resource constraints with other tasks in multiple
paths. The model assumes that the overlapped portion of work
has the lowest priority for limited resources and does not start
unless resources are secured during its processing time. When
the amount of overlap is different from the planned amount with
any information-providing task, it computes the overlap impact
by assuming this to be linear to the overlap amount. If a task is
overlapped with multiple tasks, the overlap impact is between
the maximum of single impacts and the sum of them depending
on the amount of duplicate rework caused by those tasks. In this
case, the model takes the latter as a default. Finally, the overlap
amount is subtracted from the remaining duration of the active
task and the overlap impact is added to it.

C. Sequential Iteration Modeling

In each state, the model identifies a set of active tasks which
are supposed to be completed in the current state. It is those
tasks that cause state-transition events. For each task in the set,
the model determines whether it causes feedback and/or feed-
forward rework to other tasks. Rework decisions are simulated
by comparing each rework probability with a randomly chosen
number from the uniform distribution between 0 and 1. When
rework occurs, the amount of rework is computed by the orig-
inal duration of a task doing rework multiplied by a rework im-

@/\

Fig. 2. Network example for sequential iteration.

pact adjusted for learning curve effect. Then rework amounts
are added to the remaining durations of those tasks that are de-
termined to rework. Finally, rework parameters are changed for
the next iteration. The model also simulates that a rework de-
cision can be made before final output information is produced
through overlapping.

Note that feedback rework in an upstream task can cause suc-
cessive feedforward rework in subsequent states to the down-
stream tasks that have been in process or completed before.
For illustration, consider the example iterative network with no
overlapping shown in Fig. 2. Assume that RP (7, j, k+1) = mx
RP(i,7,k), where 0 < m < 1 for k = 1,2,... During states
1, 2, and 3, tasks a, b, and c are executed, respectively. In state
4, task a may be reworked with the probability of RP(1,3,1)
or the project may end with the probability of 1 — RP(1,3,1).
In the former case, rework of task a in state 4 may cause suc-
cessive feedforward rework to task b in state 5, as well as to
task c in state 6. In state 7, after rework of task ¢, task a may
be reworked with the probability of RP(1,3,2) for its second
iteration, and so forth. A key observation in this example is that
a task in each state is dynamically determined by a probabilistic
rule so that there can be an infinite number of states with variable
task sequences unless feedback rework probabilities reach zero.
However, the first DSM-simulation model [15] did not explain
such successive feedforward iterations, ignoring the size of a
feedback loop. Thus, there could be only three scenarios—abc,
abca, and abcab in the order of task execution since it does not
model the possible scenario that rework of task b creates feed-
forward rework of task c. If this successive feedforward rework
is not taken into account, the model may significantly underes-
timate the lead time.

D. Risk-Based Rework Control Policy

When tasks iterate sequentially, a choice of rework control
policy may allow additional concurrency to accelerate rework
time. For illustration, consider the simple example given in
Fig. 3. In the example, there is a 20% chance that task c causes
rework of both tasks a and b after its completion. In this case,
do we wait for task a to be completed before starting task b even
though there is only 10% chance that task a will cause feedfor-
ward rework to task b? The surveyed literature for sequential
iteration models tells us to wait because task b cannot start
before task a is finished due to the finish-to-start constraint.
This is based on the underlying assumption that the precedence
constraint between tasks a and b should also be respected when
tasks iterate. However, in practice, a project manager may
prefer a different policy when there is a small chance that task
a will produce new information also causing task b to rework.
By performing the rework of both tasks a and b concurrently,
the lead time can be reduced with small additional risk.

We introduce the rework concurrency (RC) parameter to
model this strategic decision upon task concurrency during
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(b)

Fig. 3. Network example for task concurrency. (a) Task(or activity)-on-node
network. (b) RP(¢,7,1) (1,5 = 1,2,3).

1] 21 3] 4] 5] 6 1 2 3 4 5 6

1 1

2]0.5 0.4 2 ]10.50

3 0.5 3]10.25 | 0.50

4 0.5 0.1 4 10.25 | 0.50 | 0.00

5 0.1]10.4 510.13 10.25 ]0.10 | 0.40

6 0.4 6 ]10.05]0.10 | 0.04 | 0.16 ]| 0.40
(a) (b)

Fig. 4. Example of computing RC. (a) RP(i,5,1) (i,j = 1,...,6).

(b) RC(i,5) (i,j = 1....,6).

iteration. It represents total direct and indirect feedforward
rework probabilities which control the level of concurrency in
sequential iteration. RC is a lower-triangular matrix which takes
direct rework probabilities from RP(%,j,k) (1 = 2,...,n;
7 =1,...,1—1; k = 1,2,...) and adds them with indirect
rework probabilities. The indirect probability (¢, j) represents
the probability of task 7 doing rework caused by task j through
the intermediary of other tasks between ¢ and j. For example,
RC(5,2) in Fig. 4 is computed as the sum of indirect rework
probabilities between tasks 2 and 5 through tasks 3 and 4 as
intermediaries (0.5 x 0.1 + 0.5 x 0.4 = 0.25). RC(4,j)
(i > 7) is computed at STEP3 of the simulation algorithm
when determining the concurrency of tasks ¢ and j when task j
is reworked. RC is a dynamic variable during state transitions,
so that it is updated whenever there is a feedback rework in
the same loop. The algorithm to compute RC is explained in
Appendix A.

During a simulation run, the model assumes that a task can
be performed even though there exists an upstream dependent
task being reworked if the total rework probability between the
two tasks in the RC is less than the probability Piolerance, @
prespecified rework risk tolerance. In the example of Fig. 3, if
RC(2,1) < Piolerance, the model simulates that both tasks a
and b are reworked concurrently when both must be reworked.
Otherwise, task b waits until the rework of task a is completed,
at which time, new information from task a becomes available.
In the latter case, if the rework of task a does create additional
rework for task b, the total amount of rework of task b is between
the maximum and the sum of reworks generated by tasks a and
c. The model uses the latter as the default amount of rework
required for task b and assumes that this quantity cannot exceed
the task’s original duration, diminished by the learning curve
effect.

Fig. 5. Network example for resource priorities: task(or activity)-on-node
network.

E. Measures and Rules for Resource Priorities

An iterative project network we study in this paper is dis-
tinguished from a project network without iteration in that the
network is dynamic, meaning that a task in each state is prob-
abilistically determined and there can be an infinite number
of states with variable task sequences. Thus, the various exact
approaches and metaheuristic approaches such as genetic al-
gorithms, simulated annealing, and tabu search designed for
a static resource-constrained project network without iteration
(surveyed in [20] and [39]) are not suitable for such a dynamic
network. Also, the best classical priority rules such as the latest
finish time, the minimum slack, the minimum worst case slack,
and the greatest rank positional weight (tested by [6], [10], [19],
[32], and [57]) are not defined in an iterative project network
since a task can be probabilistically repeated after its first exe-
cution. To see this, consider the hypothetical example in Fig. 5,
where it is assumed that a resource conflict exists only between
tasks b and c and there is no learning benefit during iterations.
Without taking into account the possible iterations represented
by an arc from task b to task a, all the classical heuristic rules
mentioned above will give a higher priority for the limited re-
source to task c¢ than task b since task c is on the critical path
while task b is not. However, with 80% chance, task b is more
critical than task c due to the possible rework of task a caused
by task b. Thus, a heuristic measure in an iterative project net-
work must be invented to reflect such iteration effect.

In this paper, a rework-adjusted rank positional weight
(RARPWP) is proposed as a good measure that can help a
project manager to determine task priorities in an iterative,
resource-constrained project. The rank positional weight is one
of the measures that Cooper [18] originally proposed and other
researchers [6], [32], [57] found among the best for minimizing
lead time in project networks without iteration. (See Appendix
B for the definition.) In order to account for iteration, we define
the rework-adjusted duration (RAD) of a task as the expected
value of the sum of its duration and the delay of a project due
to successive rework it creates to its preceding tasks, assuming
no resource constraints in the project network. The RARPW is
computed by replacing the deterministic duration of a task in
Cooper’s definition with the RAD. The model initially com-
putes the RADs and RARPWs of tasks assuming no resource
constraints. During a simulation run with resource constraints,
the RARPWs of active tasks in each state are reduced by the
state duration during iteration as the expected delay of a project
due to iteration decreases. Thus, the RARPW is a dynamic
priority measure having different values during state transitions.

The model determines priorities by the heuristic rules,
whereby a task has a higher priority if:
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Exp. Duration |[Lear-
D] Task Name Opt. |Likely| Pess/| ning
1 ]Prepare UAV Preliminary DR&O 19| 2.0 3.0 0.35
2|[Create UAV Preliminary Design Configuration 48] 50 88| 0.20
3||Prepare Surfaced Models & Internal Drawings 27| 28] 42| 060
4|[Perform Aerodynamics Analyses & Evaluation 9.0 10.0] 12.5 0.33
5|[Create Initial Structural Geometry 14.3] 15.0] 26.3] 0.40
6||Prepare Structural Geometry & Notes for FEM 9.0] 10.0] 11.0] 1.00
7|[Develop Structural Design Conditions 72| 8.0 10.0] 0.35
8|[Perform Weights & Intertias Analyses 48] 50 8.8 1.00
9|[Perform S&C Analyses & Evaluation 18.0] 20.0] 22.0l| 0.25
10|[Develop Freebody Diagrams & Applied Loads 9.5] 10.0] 17.5| 0.50
11|]Estab|ish Internal Load Distributions 14.3| 15.0] 26.3]| 0.75
12|[Evaluate Structural Strength, Stiffness, & Life 13.5] 15.0] 18.8] 0.3
13|[Preliminary Manufacturing Planning & Analyses || 30.0] 32.5| 36.0]| 0.28
14||Prepare UAV Proposal 45 50| 6.3][0.70
(@)
|2|345678910111213
al
2] 3] 4| s| e 71 8| 9of 10] 11] 12| 13
2 0.2
3l0.5 0.4 X
4 Jos
5] o5 0.1 0.1 0.3]0.1
6 0.4
7 0.4
8 0.5 0.5
9l Josfos 0.5
10 0.1 0.5/0.2]0.1 0.4
11 0.5/0.5/0.5 0.5
12 0.4]0.5 0.5/0.4
13 0.5 0.4
©
Fig. 6. Model inputs for UAV project. (a) Project table. (b) DSM(i,7) (i,j = 1,...,14).(c) RP(4,j,1) and RI(¢,5) (¢,5 = 2,...,13).

1) it has been in process;

2) it has a higher user-specified priority;

3) it has a greater RARPW;

4) it is sequenced more upstream [from 1) to 4) in order of

significance].

Rule 1) implies that a task cannot be interrupted once it has
started (nonpreemption). The user-specified priority rule 2) can
be used when resource priorities should be determined consid-
ering project objectives other than minimum lead time. Rule 3)
stipulates that a higher priority is given to the task that exposes
the project to higher schedule risk. Rule 4) is applied as a tie
breaker when tasks have the same RARPW.

IV. INDUSTRIAL APPLICATION EXAMPLE

Extensive numerical experimentation was undertaken to test
the simulation method. The computer program is written in Vi-
sual Basic and added in to Microsoft Excel which is used to re-
ceive model inputs and to display analysis results. In this paper,
the uninhabited aerial vehicle (UAV) preliminary design process
at an aerospace company is presented as a sample application.
The data are from the first DSM-based simulation model by
Browning and Eppinger [15] and extended to perform further
analyses using additional modeling parameters. Fig. 6 shows the
basic model inputs.

A. Results Using Basic Modeling Parameters

We begin with the same conditions of the first DSM-based
simulation model [15] as follows:

1) 0 and 100th percentiles for optimistic and pessimistic du-
ration estimates;

constant rework probabilities in all iterations;

learning curve benefit only in the first iteration;

zero rework risk tolerance, Piolerance;

2)
3)
4)
5)
0)

Simulation of the model yields an average lead time of
146.8 days and a standard deviation (s.d.) of 17.0 days after
2000 simulation runs. The number of simulation runs must be
chosen such that both the sampled task durations and random
numbers for rework probabilities closely follow the selected tri-
angular and uniform distributions, respectively. The probability
distribution of the lead time shown in Fig. 7 is skewed to the
right because the lead time becomes longer as more iterations
take place. Both the average and standard deviation are higher
than those obtained by Browning and Eppinger (average 138,
s.d. 14). This is mainly because the new model accounts for
all the successive feedforward rework, while the earlier model
does not.

no overlapping;
no resource conflicts.
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Fig. 7. Probability distribution of lead time with basic inputs.
Basic 1) 1), 2 1 -@) M -(4)
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(ii) “(1)-(3)” denotes the results of the model with assumptions (1) through
(3), and soon.

Fig. 8. Results using additional modeling parameters.

B. Results Using Additional Modeling Parameters

The new simulation model allows great flexibility to account
for more general features of dynamic development processes.
Fig. 8 summarizes the results using additional modeling param-
eters as follows.

1) Optimistic and pessimistic duration estimates are 10th and
90th percentiles, respectively.

2) Rework probabilities decrease in each iteration by 50%.

3) Maximum learning curve is 50% of that in the first itera-
tion.

4) Rework risk tolerance P;ojerance = 0.3, 1.€., more concur-
rency is allowed when tasks iterate.

Under the new assumption about task duration estimates in 1),
both the average and standard deviation are greater than those
with 0 and 100th percentile estimates. This is mainly due to the
right-skewness of most of the task duration distributions. Also,
the existence of multiple paths in the project contributes to the
increase of the lead time. Incorporating dynamic characteristics
of sequential iteration in 2) and 3), and increased task concur-
rency in 4), the model predicts smaller averages and standard
deviations of the lead time (average 144.2, s.d. 13.1). The cu-
mulative effect of the additional modeling parameters from 2)
to 4) is a 5.3% decrease from the lead time under the assumption
1). Note that this difference will be more significant with more
tasks and iterations.

Ignoring feedback marks in the DSM, ie., as-
suming no sequential iterations, the path along the tasks
1-2-3-5-6-7-10-11-12-13-14 is a critical path when tasks have
most likely durations. This implies that the lead time can be
reduced by overlapping the tasks along this path such as the
development of surfaced models (task 3) and structural design
(tasks 5-7). Other important leverage points for reducing the
lead time are the feedback marks. By transferring preliminary
review decisions or testing results to upstream tasks, feedback
rework can start earlier. This allows for the accelerations of

iterative rework. Under the following overlapping scenario, the
average lead time is reduced to 137.7 days.

5) For the six information flows marked by “2” in the DSM
in Fig. 6(b), tasks are planned to complete 25% of work
with preliminary inputs before receiving final updates,
and expected to redo 50% of work completed without final
updates.

The above scenario includes the overlapping between tasks 12
and 5 in feedback rework. The following scenario, for example,
would cause such overlapping.

As a result of structural evaluation in task 12, it may
become necessary to redesign the structural geometry
of specific subsystems before having evaluation results
for the entire system. The need to redesign some sub-
systems (task 5) can be detected early in a series of tests
in task 12, whereas the need for additional weight and
inertial analyses (task 8) can be determined only at the end
of the tests.

All the above analyses are performed under the assumption
that there is no resource conflict among the tasks in the UAV
project. This assumption is reasonable because tasks that can
be performed in parallel are related to different disciplines,
therefore, no resource sharing is necessary between those tasks.
In multiple project environments, however, the resources be-
longing to the same functional group may need to get involved
in tasks in different projects during a certain period of time. In
this case, optimal resource allocation toward project objectives
becomes an important issue. For the purpose of illustration, an
example situation is tested as follows.

6) Tasks 7 and 8 compete for limited resources and one of
them should be delayed.

Under assumptions 1)-5), the RARPWs of tasks 7 and 8 are
computed as 104.5 and 122.9, respectively. Following the re-
source priority rules, the model assigns resources to task 8 and
delays task 7. Then, both tasks 7 and 8 become critical and the
project is delayed by the duration of task 8. The average com-
putation time of 2000 simulation runs with additional modeling
parameters in 1)-6) is 8 s in the system of Pentium 4 1.60 GHz
CPU with 256 MB RAM.

Fig. 9 shows an example of a simulated Gantt chart. This
is only one of many simulation runs under assumptions 1)-6).
The numbers inside the bars indicate the amounts of overlapped
work performed in prior state(s). Even though the scenario
shows that tasks rework during states 5 and 1419, it delays the
entire project only in states 5 and 14 since no rework is added
to task 13 after starting earlier. This is due to the predetermined
work policy for increased task concurrency during iterations.
Since total rework probabilities are less than 0.3 except for task
5, preliminary manufacturing planning and analyses (task 13)
are simulated to work concurrently with functional performance
analyses (tasks 8—11) after redesigning structural geometry
(task 5).

V. APPLICATIONS TO MANAGERIAL DECISION MAKING

Previous design process models have provided practical in-
sights for process understanding and improvements. The dis-
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ID \ State] D (w/o rework)| D (w. rework) | 1 2 |13] 4 6 7 9 10 11 12 13 20 21
1 2.0 2.0
2 5.9 5.9
3 2.9 3.8
4 8.9 8.9
S 17.0 19.2
6 9.0 10.1 2.2
7 10.3 10.3
8 7.7 11.5
9 20.2 21.7
10 16.3 18.7
11 15.5 238 3.9 06|
12 14.8 16.7 3.7
13 34.7 34.7
14 50 5.0
Fig. 9. Example of a simulated Gantt chart.
Cumulative increasing process

tinctive feature of this model is that it has greater flexibility and
generality to describe real engineering design processes. Engi-
neering management can benefit from this richer model through
better project planning and control in several ways discussed in
this section.

A. Finding an Effective Task Ordering

The process model presented in this paper is a predictive
model, not an optimization model. However, the model can be
easily utilized to find an effective task ordering by comparing
the predicted outcomes of different task sequences. A relevant
objective function might be, for instance, a function of the mean
and variance of lead time, and the project due date. Note that
finding an optimal task ordering is an O(n!) operation (where n
is the number of tasks) if we allow tasks to be positioned any-
where in the sequence [15]. By fixing some logical precedence
relationships between tasks, computation time can be reduced.

B. Setting Appropriate Due Date and Buffer

By analyzing the probability distribution of lead time, an ap-
propriate due date can be chosen with predictable confidence
[15]. When the schedule deadline is given, the risk that the
project fails to complete before this date can be assessed via the
simulation. When such schedule risk is high, the model can be
used to evaluate different improvement efforts such as adding re-
sources, overlapping tasks, executing fewer or faster iterations,
etc. This perspective may facilitate decision making and com-
munications between senior management and the project team.
When a working project plan is constructed (usually with deter-
ministic task durations), a project buffer can be added at the end
representing the necessary aggregate safety time based on the
simulation result. Such analysis adds rigor to Goldratt’s critical
chain method [26].

C. Finding Areas for Process Improvement

The model can be used to evaluate various process im-
provements through simulation by adjusting model parameters.
Below are examples of model applications for this purpose.

» Task criticality: The sensitivity of project lead time to
variation in task duration provides a measure of task criti-
cality (see Elmaghraby [22] for a review of various sensi-
tivity measures). The classical measures such as path crit-

probability of robustness

completion A

Lead Time

Fig. 10. Process robustness.
icality index and activity criticality index are not defined
in an iterative project network where tasks repeat prob-
abilistically and their sequences are not fixed. The cru-
ciality index Williams [63] proposed can be computed in
our model but it has significant drawbacks [22]. Thus, we
suggest to use the sensitivity of the mean and variance
of the project lead time, in particular, derivatives of the
project lead time with respect to the mean and variance
of task duration owing to its ease of computation [12].
These measures can be effectively used in a resource-con-
strained iterative environment, where conventional slack
and resource-constrained slack [11] cannot be defined.

¢ Strategic work policy for concurrency: The rework risk
tolerance defined earlier can be used as guidance for work
policy during iterations. Lead time can be reduced by
increasing concurrency level strategically, although this
may result in increased development costs.

e Faster and/or fewer iterations: Smith and Eppinger
[49] proposed two general strategies for accelerating
iterative processes. Faster iterations can be achieved
by increasing learning curve and/or decreasing rework
impact, i.e., reducing the amount of rework. For in-
stance, the efficient use of information technology such
as computer-aided tools could help enable this effect.
Fewer iterations can be achieved by decreasing rework
probabilities. Well-defined interfaces between tasks, and
well-established coordination and communication routes
between project members could reduce the number of
iterations. The proposed model can be used to identify
the most efficient points for such improvements.
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Fig. 11. Integrated project management framework.

* Process robustness: Yassine et al. [65] discussed process
robustness in a product development project as the ability
of a process to absorb design changes. Fig. 10 shows that
more robust processes are less sensitive to variance of
project parameters, leading to less variance of project lead
time. The model in this paper is useful to assess the robust-
ness of alternative process configurations.

D. Ongoing Risk Assessment

The inputs of our model can be easily updated to incorpo-
rate current information as the project progresses. For instance,
initial estimates for task durations, overlap amounts, and im-
pacts can be updated or replaced with actual values as they be-
come available. Rework parameters may be updated to repre-
sent foreseeable iterations. As uncertainties diminish while the
project advances, the variance of lead time becomes smaller.
The schedule risk can be identified quantitatively and its assess-
ment can facilitate proactive risk management efforts.

E. Evaluating Multiple Projects

The model can also be applied in a multiproject environment
by representing each project on a different path. In this manner,
it is possible to consider resource allocation across the projects
and the effect of such constraints on completion of all of the
projects.

VI. DISCUSSION
A. Limitations and Extensions of the Model

The model assumes that the processing time of each task
is independent of those of other tasks. However, when uncer-
tainties affect multiple tasks, independent duration distributions
cannot be assumed [62]. Various methods have been developed
to model interdependencies, from estimation of correlation co-
efficients between tasks to use of joint distributions. Sampling
of task duration using such methods are possible in commer-
cial software packages such as @RISK. However, difficulties
remain in assessing correlation among task durations.

The model does not guarantee optimal resource allocation to
minimize lead time. This is a limitation of a richer model incor-
porating iteration and overlapping in multiple paths. A heuristic
resource priority rule can no longer exploit slack (float) under
the existing definition in the iterative project network where
a probabilistic rule is applied. Thus, the model resorts to the
heuristic rule using the RARPW accounting for probabilistic re-
work, and uses the sensitivity of project lead time to variation
of a task duration as a measure of criticality. However, a com-
prehensive test of the RARPW in numerical examples is left for
future work.

In this model, we assume a fixed resource pool for the
project and constant resource requirements for tasks. The
model can be extended by allowing variable resource capacity
and requirements.

The model uses a simple assumption that cumulative overlap
impact is the sum of single impacts when a task is overlapped
with more than one task. This is not useful to predict the progress
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of concurrent execution of tightly coupled tasks. More accuracy
can be achieved if we could model frequent bidirectional in-
formation exchange and consequent impacts between parallel
tasks.

Finally, the model can be further extended by incorporating
development cost as in Browning and Eppinger [15]. An inter-
esting modeling issue is how tightly to correlate the cost and
time of each development task in the model.

B. Integrated Project Management Framework

The process model in this paper can be incorporated into
an integrated project management framework as illustrated in
Fig. 11. The framework streamlines project planning and con-
trol through structuring, modeling, and scheduling. In the struc-
turing module, the DSM method is used to structure the infor-
mation flows among tasks and capture the iteration loops. In the
modeling module, the generalized process model in this paper
predicts complex behaviors of iterative processes. Using the re-
sults of analyses from the structuring and modeling modules, a
network-based schedule in the form of the Gantt chart is devel-
oped in the scheduling module. The schedule can be used as the
basis for monitoring and control of the project. Under this inte-
grated framework, the positive aspects of the methods used in
each module can be utilized, while overcoming the limitations
of standalone applications.

C. Validity of the Model

The work presented in this paper is a methodological work
rather than a theoretical or empirical work. The proposed
predictive model can improve important managerial decision
making in various ways, as discussed. It has a high “face va-
lidity” according to the criteria of Smith and Morrow [50] since
it addresses an important managerial issue, possesses reason-
able computational tractability, and uses modeling parameters
and assumptions based on the existing literature surveyed in
Section I. Smith and Morrow also observed that limitations in
the applicability of process models arise from the modeler’s
need to reduce the complex situation to a more structured form
in order to have it fit in the modeling framework and from
the lack of quantitative modeling approach. Our model has
improved the applicability of earlier process models in this
context because it addresses various limitations they faced.
However, although the model was tested using real industrial
data under some hypothetical scenarios to show its utility,
more extensive applications in various project settings need
to be undertaken to further demonstrate the applicability and
validity of the model. Currently, these extended efforts are
undergoing by several (volunteer) project managers through the
industry collaboration program at our schools and the website
www.dsmweb.org. We, therefore, expect follow-up empirical
work using the integrated framework proposed in this paper.
One of them is found already in Duniam [21].

VII. CONCLUSION

This paper presents a DSM-based process model using ad-
vanced simulation. The model accounts for important charac-

teristics of engineering design processes, including information
transfer patterns, uncertain task durations, resource conflicts,
overlapping and sequential iterations, and task concurrency.
The model addresses several limitations of previous analytical
and simulation-based approaches. It can be applied to a wide
range of processes, where iteration takes place among sequen-
tial, parallel, and overlapped tasks in a resource-constrained
project. Increased understanding of realistic behavior of engi-
neering design processes can be achieved through modeling
information flows and predicting distributions of project lead
time. The model is also useful for evaluating different project
plans and for identifying strategies for process improvements.
Proactive risk management can be achieved by assessing the
status of the project as it progresses.

APPENDIX A
ALGORITHM TO COMPUTE REWORK CONCURRENCY (RC)

The RC between tasks a and b is computed as follows.

Fort =a+1,...,0b,
1) Set RC(%,j) = RP(3,4,1) forj = a,...,b—1.
2) For ¢ > a + 1, execute the following loop:

for j = ¢ — 2 to 1 decreasing by 1

fork=j+1tos—1
RC(i, j) = RC(i, ) + RP(k, 5, 1) x RC(i, k)

next k
next j

APPENDIX B
DEFINITION OF THE RANK POSITIONAL WEIGHT

Cooper [18] defined a rank positional weight of task ¢ as
follows:

rpw; = d; + Z dj

J

where
d; expected duration of task ¢;
>_;d; sum of all expected durations over all successors of

task i.
(Note: a set of successors includes all downstream tasks that
receive outputs from the task.)
By adding the summation part in the above definition, the
RPW reflects the global importance of a task.
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