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Equilibrium structure of monatomic steps on vicinal Si(001)
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The equilibrium structure of monatomic steps on vicinal Si(001) is described in terms of anisotropic
nearest-neighbor and isotropic second-nearest-neighbor interactions between dimers. By comparing
scanning-tunneling-microscopy data and this equilibrium structure, we obtained interaction energies of
0.38 eV between dimers in a row, 0.24 eV between sets of two dimers in adjacent rows, and —0.07 eV for
the diagonal interaction between dimers in adjacent rows.

A substantial amount of research has been devoted to
monatomic steps on the vicinal Si(001) surface. This in-
terest is due to the great influence of these steps on
several surface phenomena, such as preferential reactivity
and the growth of epitaxial overlayers.! The Si(001) sur-
face reconstructs to form rows of dimerized atoms,?
yielding a (2X 1) unit cell. A slight misorientation with
respect to the [001] direction in the [110] direction (the
directions [110] and [110] correspond to the directions of
the dimer rows) results in a vicinal Si(001) surface with
monatomic steps. Proper cleaning of this surface® leads to
a regular step distribution that reflects the macroscopic
misorientation of the sample. Due to the symmetry of
the diamond lattice, two types of steps can be dis-
tinguished on the Si(001) surface: steps running parallel
or perpendicular to the dimer rows of the upper terrace.
Steps parallel to the dimer rows of the upper terrace are
straight ( A-type steps*), whereas the others are ragged
(B-type steps*),® i.e., they exhibit a high density of
thermally excited kinks.> A slight misorientation © with
respect to the [001] direction in the [110] direction re-
sults in a certain number of forced kinks. Especially in
the smooth A-type step edge, a large fraction of the kinks
can be forced due to the step misorientation ©. Energy
considerations show that at zero temperature, a step edge
will tend to be as straight as possible and hence contain
only forced kinks. As the temperature rises, the number
of thermally excited kinks increases. Recently, Swartzen-
truber et al.® analyzed scanning tunneling microscopy
(STM) images of vicinal Si(001) with an equilibrium dis-
tribution of steps and kinks to determine the distribution
of kink separations and kink lengths. From this analysis,
step and kink energies were obtained. According to these
authors, the kink energy fits the form E(n)=nE +C,
where E is an energy per unit step length and C a con-
stant effective corner energy, and n is the kink length per-
pendicular to the step edge, measured in units of the
surface-lattice constant @ (=3.84 A). In the analysis of
the B-type step edge in Ref. 6, no difference between
forced and unforced kinks was made, and in the analysis
of the A-type step edge the problem of forced kinks was
eliminated by dealing only with the thermally excited un-
forced kinks that are in the direction opposite to the
kinks caused by the azimuthal misorientation.

In this paper, the equilibrium structure of the step
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edges of the vicinal Si(001) surface is described in terms
of anisotropic nearest-neighbor interaction and isotropic
second-nearest-neighbor interaction between dimers. It
will be shown that it is possible to analyze step edges that
include forced kinks induced by the misorientation of the
step edge. Moreover, it will also be demonstrated, using
the Burton, Cabrera, and Frank (BCF) theory,’ that
neglecting the presence of forced kinks yields incorrect
results. The corner energy proposed in Ref. 6 will be
reinterpreted as the second-nearest-neighbor interaction
between dimers._

As a model appropriate for the dimer reconstructed
Si(001) 2X 1 surface, we consider a square crystal with
anisotropic nearest-neighbor interactions E, and E,, re-
spectively, and isotropic second-nearest-neighbor interac-
tions E, 4,, (see Fig. 1), where E, is the interaction ener-
gy between sets of two dimers on the same terrace in ad-
jacent rows, E, is the interaction energy between dimers
on the same terrace in a row, and E, 4,, is the diagonal
interaction energy between dimers on the same terrace in
adjacent rows. In principle, two different B-type step
edges can occur because there are two different
configurations, depending on where the dimer row of the
upper terrace ends with respect to the dimer rows of the

@—@ dimer

FIG. 1. Interaction energies between adjacent blocks of two
dimers on the Si(001) surface. The distance between adjacent
rows of dimers and between adjacent dimers in a row is 2a and
a, respectively (a =3.84 A).
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lower terrace. Both type-B monatomic steps have been
observed,’ and thus, occasionally, kink lengths of an odd
number in a do occur, but, in general, kinks are found on
a (2X2) lattice.*® The occasional kinks of odd length in
a are not contained in the model.

In the BCF theory, 3 two different types of kinks, which
are called positive and negative, corresponding to a
“jump” and a ‘“‘drop,” respectively, are distinguished.
Following this theory,> we use the symbol » ., to denote
the probability that there is a jump of length 2ar at a
given position in the step edge in a direction perpendicu-
lar to the step edge. The symbol n_, is used to denote
the probability that at a given position in the step edge
there is a drop of length 2ar in a direction perpendicular
to the step edge; g is the probability that at a given posi-
tion in the step edge there is no kink of any kind. We as-
sume that any of the various possibilities (g,n,) can
occur independently, hence the probability of occurrence
of one specific configuration of the step edge is equal to
the product of the probabilities of occurrence of the indi-
vidual situations that make up this specific configuration
of the step edge. In the BCF theory,’® the equilibrium
structure of a step edge is derived for a Kossel crystal
(cubic crystal with isotropic first- and second-nearest-
neighbor interactions). We have derived the equilibrium
structure of a square crystal with anisotropic nearest-
neighbor interactions and isotropic second-nearest-
neighbor interactions in an analogous manner by apply-

ing the principle of detailed balancing. At any point of
the step edge the normalization condition holds:

g+ S (ny,+n_,)=1. (1)

r=1

According to the BCF theory,® the following thermo-
dynamic relations can be derived for a step along the x
axis:

n n_
E /kT=—1n|—5— |, @
q
n r
E, qu/kT=—1n |—22 | ,>5 3)
' Nyl

Formulas (2) and (3) can be understood as coming from a
comparison of two different situations that result in the
same overall displacement of the step edge (the principle
of detailed balancing®). Equation (2) follows from com-
paring a n_, and n ., pair versus a straight step, while
Eg. (3) results from a comparison of a n, _; and n | kink
versus a n, kink alone. Similar formulas can be derived
for a step along the y axis, only E, must be replaced by
E, in (2). Formula (2) shows that the quotient
n,,n_,/q* is independent of the inclination © of the
step edge. A large inclination corresponds to a large
amount of forced kinks in one direction and hence to a
low amount of thermally excited kinks in the other direc-

FIG. 2. Large-area STM image (100X 100 nm?) of Si(001) 0.5° misoriented towards the [110] direction, obtained at —2.0-V sample

bias and 0.5-nA tunneling current.
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TABLE 1. Measured number of kinks (n4,) vs r obtained from our own data ( A- and B-type step

edges) and determined from the data of Ref. 6.

A step (this work)
total length,

B-step (this work)
total length,

1489 X 2a 1504 X 2a B step (Ref. 6)
r n+r n—, ny, n—, n+r+n~r
0 1297 974 0.52
1 59 100 157 163 0.21
2 7 20 51 57 0.077
3 20 24 0.035
4 9 12 0.0156
5 4 7 0.0077
6 0.0038
7 0.0019
8 0.0009

tion, and vice versa. So only counting the kinks in the
direction opposite to the inclination results in a too-low
number and hence overestimation of E,. The distribu-
tions of g, n,,, and n_, as a function of r, as obtained
from several images like Fig. 2, together with the data of
the B-type step edge of Ref. 6, are presented in Table 1.
Using these distributions and formulas (2) and (3), the in-
teraction energies E, , and E, 4,, can be obtained. The
data of Ref. 6 have been extracted from the distributions
shown in Figs. 1 and 3 of that paper. Using n,,, n_,,
and g from Table I and formula (2), we find
E, /kT =3.6%0.2 for the B-type step edge [compared to
E_/kT =3.2 for the data of Ref. 6, assuming that
nyy=n_y=3(ny +n_,)] and E,/kT =5.7£0.3 for
the A-type step edge. The error bars are determined us-
ing the statistical error V'n. According to formula (3),
E, 4iag/kT can be determined for different values of r.
Using our model, the second-nearest-neighbor interaction
E, 4iag must be independent of r. For both the data in
Ref. 6 and our own data, this results in a value of
—120.3 for E, 4, /kT.

It is interesting to note that the value of |E, 4,,/kT]
determined from the B-type step edge increases with r at
low-r values, both for the data in Ref. 6 as well as for our
own data. To overcome this problem, Swartzentruber
et al.® proposed to fit the data with an additional nega-
tive term inversely proportional to r, which can be inter-
preted as the attractive interaction between the ends of a
kink.

In order to translate the parameters, E, , , 4i,,/kT, as
obtained from our analysis, to interaction energies, a
reasonable quench temperature at which the step
configuration is frozen in has to be taken. Our Si(001)
samples were held at a temperature of about 775 K for
several hours, followed by quenching to room tempera-
ture. We know from STM measurements of the Si(001)
surface’ performed at about 725 K that at this tempera-
ture the step edges change significantly on a time scale of
minutes. Furthermore, we know that the quench rate is
very rapid for the first 100 K. Hence a good estimate

(upper limit) of the temperature at which our step
configuration is frozen in is 775 K. Using this tempera-
ture of 775 K, we obtain the following interaction ener-

gies: E,=0.241+0.01 eV, E,=0.38£0.02 eV and
E, 4iag= —0.07£0.02 eV. Using a lower limit of 575 K

(Ref. 6) for the temperature at which the step edges are
frozen in lowers the measured values of the interaction
energies by 25%.

In order to compare our results with the data in Ref. 6,
E, , must be divided by a factor of 4; one factor of 2
comes from sharing the interaction between two blocks,
and the other comes from using energy per 2a instead of
energy per a (which is related to the size of the building
block). The diagonal interaction E, 4,, has to be divided
by a factor of 2 only, due to the translation from interac-
tion energy between two dimers to energy per corner of a
block. The energy of a kink with a length of 2ar, n,, for
a step edge with no forced kinks (©6=0) with respect to
no kink is according to our model E=r(E,,/2)
+(r —1)E, 4,,- As mentioned before, the data in Ref. 6
were fitted with an expression of the form
E =2rEgp 5,4 +C, so the values 1 E, +3E, 4,,=0.026 eV
and ;E,+1E, 4,,=0.06 eV should be compared with
0.028 and 0.09 eV, respectively, as given in Ref. 6. As
expected, in particular the interaction energy related to
E, as determined from the A-type step edge differs from
the data in Ref. 6 due to the presence of a sizeable frac-
tion of forced kinks induced by the misorientation.

To summarize, we have determined the effective in-
teraction energies between dimers by examining the dis-
tribution of kink lengths and applying the BCF theory,
which explicitly includes forced kinks induced by step
misorientations. The corner energy proposed in Ref. 6
has been reinterpreted as the second-nearest-neighbor in-
teraction between dimers.
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FIG. 2. Large-area STM image (100X
bias and 0.5-nA tunneling current.




