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Abstract

Let @ : R" x [0,00) — [0, 00) satisfy that ¢(x, -), for any given x € R”, is an Orlicz
function and @(-,t) is a Muckenhoupt Ay, weight uniformly in t € (0,00). The
Musielak-Orlicz Hardy space H?(R") is defined to be the set of all tempered
distributions such that their grand maximal functions belong to the Musielak-Orlicz
space L?(R"). In this paper, the authors establish the boundedness of Marcinkiewicz
integral g from H?(R") to L?(R") under weaker smoothness conditions assumed
on 2. This result is also new even when @(x, t) = ¢(t) for all (x,t) € R" x [0, 00), where
¢ is an Orlicz function.
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1 Introduction

Suppose that §”! is the unit sphere in the #-dimensional Euclidean space R” (1 > 2). Let
2 be a homogeneous function of degree zero on R” which is locally integrable and satisfies
the cancelation condition

/ Q(x)do(x') =0, (L1)
sn-1

where do is the Lebesgue measure and x’ := x/|x| for any x # 0. For a function f on R”, the
Marcinkiewicz integral uq is defined by setting, for any x € R”,

o N
pa(f)(x) = </0 |1-"Q,t(f)(x)|2 t) ,

B
where

Foulf o= [ CEI) 1)ay,

oyl 1® = y|nt

In 1938, Marcinkiewicz [1] first defined the operator ug for n = 1 and () := signt.
The Marcinkiewicz integral of higher dimensions was studied by Stein [2] in 1958. He
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showed that if Q € Lip,(S"!) with o € (0,1], then pgq is bounded on LP(R") with p €
(1,2] and bounded from L(R") to WL (R"). In 1962, Benedek et al. [3] proved that if Q €
C(S™1), then uq is bounded on L7 (R") with p € (1, 00). In 1990, Torchinsky and Wang [4]
proved that, if Q € Lip, (S"™) with « € (0,1], then j1q is bounded on L%,(R") provided that
p € (1,00) and w € A,, where A, denotes the Muckenhoupt weight class. Notice that all
the results mentioned above hold true depending on some smoothness conditions of .
However, in 1999, Ding et al. [5] obtained a celebrated result that g is bounded on L%,(R")

without any smoothness conditions of €2, which is presented as follows.

Theorem A Let g € (1,00), ¢ := q/(q — 1) and Q € L1(S"™) satisfying (1.1). If o7 € A,,
p € (1,00), then there exists a positive constant C independent of f such that

| af) “L{;(JR”) = Cll Nl -

It is now well known that the Hardy space H?(R") is a good substitute of the Lebesgue
space L7(R") with p € (0,1] in the study for the boundedness of operators and hence, in
2003, Ding et al. [6] discussed the boundedness of 11 from the weighted Hardy space to
the weighted Lebesgue space under Q € Lip,(S"™!). In 2007, Lin et al. [7] proved that uq
is bounded from the weighted Hardy space to the weighted Lebesgue space under weaker
smoothness conditions assumed on €2, which is called L7-Dini type condition of order
o (see Section 2 for its definition). For more conclusions of g, readers are referred to
[8-12].

On the other hand, recently, Ky [13] studied a new Hardy space called Musielak-Orlicz
Hardy space H?(R"), which generalizes both the weighted Hardy space (see, for example,
[14]) and the Orlicz-Hardy space (see, for example, [15, 16]), and hence has a wide general-
ity. For more information on Musielak-Orlicz-type spaces, see [17-24]. We refer the reader
to [24] for a complete survey of the real-variable theory of Musielak-Orlicz Hardy spaces.
In light of Lin [7] and Ky [13], it is a natural and interesting problem to ask whether pq is
bounded from H?(R") to LY (R") under weaker smoothness conditions assumed on . In
this paper we shall answer this problem affirmatively.

Precisely, this paper is organized as follows.

In Section 2, we recall some notions concerning Muckenhoupt weights, growth func-
tions, L7-Dini type condition of order « and the Musielak-Orlicz Hardy space H?(R").
Then we present the boundedness of Marcinkiewicz integral g from H?(R”) to L?(R")
under weaker smoothness conditions assumed on Q2 (see Theorem 2.4, Theorem 2.5 and
Corollary 2.6), the proofs of which are given in Section 3.

In the process of the proof of Theorem 2.4, it is worth pointing out that, since the space
variant x and the time variant ¢ appearing in ¢(x, ) are inseparable, we cannot directly use
the method of Lin [7]. We overcome this difficulty via establishing a more subtle estimate
for 1o (b) on the infinite annuluses away from the support set of b (see Lemma 3.4), where
b is a multiple of a (¢, 00, s)-atom. Next, by using the estimate of Lemma 3.4, we find a se-
quence which is convergent, and fortunately, this sequence converges to a number strictly
less than 1, then we can use the uniformly lower type p property of ¢. For more details, we
refer the reader to the estimate of I; in the proof of Lemma 3.7. On the other hand, notice
that the kernel of g may not belong to Schwartz function space, thus, for a tempered
distribution f € H?(R"), o (f) may be senseless. However, we find that H*(R") N L*(R")
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is dense in H*(R") (see Lemma 3.11). Then, for any f € H*(R”) N L*(R"), now pq(f) is well
defined and HY — L¥ boundedness of uq(f) for any f € H¢(R") N L2(R") can be obtained,
which can be further uniquely extended from H?(R") N L2(R") to H(R") (see the proof
of Lemma 3.12 for more details).

Finally, we make some conventions on notation. Let Z, := {1,2,...} and N:= {0} U Z,.
For any 8 := (B1,...,8,) € N", let |8] := B1 + - - - + B,. Throughout this paper the letter C
will denote a positive constant that may vary from line to line but will remain independent
of the main variables. The symbol P < Q stands for the inequality P < CQ.If P < Q S P,
we then write P ~ Q. For any sets E, F C R”, we use E® to denote the set R” \ E, |E| its n-
dimensional Lebesgue measure, x its characteristic function and E + F the algebraic sum
{x+y:x€E,yeF}. Foranys e R, |s] denotes the unique integer such that s —1 < |s] <s.
If there are no special instructions, any space X' (R”) is denoted simply by X'. For instance,
L?*(R") is simply denoted by L?. For any index g € [1,00], ¢’ denotes the conjugate index
of g, namely, 1/q + 1/q' = 1. For any set E of R”, ¢ € [0, 00) and measurable function ¢, let
@(E, t):= fE @(x, t) dx. As usual we use B, to denote the ball {x € R" : |x| < r} with r € (0, 00).

2 Notions and main results

In this section, we first recall the notion concerning the Musielak-Orlicz Hardy space H?
via the grand maximal function, and then present the boundedness of Marcinkiewicz in-
tegral from H? to L.

Recall that a nonnegative function ¢ on R” x [0, 00) is called Musielak-Orlicz function
if, for any x € R”, ¢(x, -) is an Orlicz function on [0, 00) and, for any ¢ € [0,00), ¢(-,£) is
measurable on R”. Here a function ¢ : [0, 00) — [0, 00) is called an Orlicz function if it is
nondecreasing, ¢(0) = 0, ¢(t) > 0 for any ¢ € (0, 00), and lim;_, o, ¢(£) = 0.

For an Orlicz function ¢, the most useful tool to study its growth property may be the
upper and the lower types of ¢. More precisely, an Orlicz function ¢ is said to be of lower
(resp. upper) type p with p € (—o0, 00) if there exists a positive constant C := Cy such that,
for any ¢ € [0, 00) and s € (0,1] (resp. s € [1,0)),

P(st) < Cs" ().

Given a Musielak-Orlicz function ¢ on R” x [0,00), ¢ is said to be of uniformly lower
(resp. upper) type p with p € (—o0, 00) if there exists a positive constant C := C, such that,
for any x € R”, ¢ € [0,00) and s € (0,1] (resp. s € [1,0)),

9%, st) < Cs(x, ).
The critical uniformly lower type index of ¢ is defined by
i(p):= sup{p € (—00,00) : ¢ is of uniformly lower type p}. (2.1)

Observe that i(¢) may not be attainable, namely, ¢ may not be of uniformly lower type
i(p) (see [22], p.415, for more details).

Definition 2.1
(i) Let g € [1,00). A locally integrable function ¢(-,¢) : R” — [0, 00) is said to satisfy the
uniform Muckenhoupt condition A4, denoted by ¢ € A, if there exists a positive
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constant C such that, for any ball B C R” and ¢ € (0,00), when g =1,
1 1
_ / o(x, t) dx{ess sup[ga(y, t)] } <C
|B| Js yeB

and, when g € (1, 00),

1 1 I
E/lgw(x,t)dx{ﬁ‘/jg[w(y,t)] 1 dy} <C.

(i) Let g € (1,00]. A locally integrable function ¢(-,£) : R” — [0, 00) is said to satisfy the
uniformly reverse Holder condition RH,, denoted by ¢ € RH, if there exists a
positive constant C such that, for any ball B C R” and ¢ € (0, 00), when g € (1, 00),

{;ﬁ/]g[go(x,t)]qu}%{%/Bw(y,t)dy}ISC

and, when g = oo,

{esssupw(x,t)}{li?'/jgw(y, t)dy}1 <C.

xeB

Define A, :=J A4 and, forany ¢ € A,

qe[l,00
q(p):=inf{g € [1,00) : p € A }. (2.2)

Observe that, if g(¢) € (1,00), then ¢ ¢ Ay, and there exists ¢ ¢ A; such that g(p) =1

(see, for example, [25]).

Definition 2.2 ([13], Definition 2.1) A function ¢ : R” x [0, 00) — [0, 00) is called a growth
function if the following conditions are satisfied:
(i) ¢ is a Musielak-Orlicz function;
(i) ¢ € Ax;
(iii) @ is of uniformly lower type p for some p € (0,1] and of uniformly upper type 1.

Suppose that ¢ is a Musielak-Orlicz function. Recall that the Musielak-Orlicz space L¢

is defined to be the set of all measurable functions f such that, for some 2 € (0, 00),

/ go(x,M) dx < o0
Rn Al

equipped with the Luxembourg-Nakano (quasi-)norm

IIf Il e :=inf{)\ € (0,00): fn¢<x, @) dx < 1}.

In what follows, we denote by S the set of all Schwartz functions and by S’ its dual space
(namely, the set of all tempered distributions). For any m € N, let S,, be the set of all y € S
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such that ||¥]|s,, <1, where

IWls, = sup sup (1 + |x|)(m+2)(n+1)|aaw(x)|'

aeN" |a|<m+1 xeR”

Then, for any m € N and f € &', the non-tangential grand maximal function f;; of f is
defined by setting, for all x € R”,

fix):=sup  sup )Lf * ()], (2.3)

Y EeSm ly—x|<t,te(0,00

where, for any ¢ € (0,00), ¥,(-) := t7"¥(;). When

m=m(p):= {n(% - 1>J, (2.4)

we denote f simply by f*, where g(¢) and i(¢) are as in (2.2) and (2.1), respectively.

Definition 2.3 ([13], Definition 2.2) Let ¢ be a growth function as in Definition 2.2. The
Musielak-Orlicz Hardy space H? is defined as the set of all f € &’ such that f* € L? en-
dowed with the (quasi-)norm

W Mo 2= 7 -

Throughout the paper, we always assume that € is homogeneous of degree zero and
satisfies (1.1).

Recall that, for any g € [1, 00) and « € (0,1], a function Q € L4(S"!) is said to satisfy the
Li-Dini type condition of order o (when o = 0, it is called the L7-Dini condition) if

/1 ©q(8) ds < 00
0

81+o¢

where w,(3) is the integral modulus of continuity of order g of 2 defined by setting, for
any § € (0,1],

1
q

04(8) = sup ( [ lat)-a@) do (x’))

lyll<s

and y denotes a rotation on S*! with |y || := supycgn-11yy —y'|. For any o, B € (0,1] with
B < a, it is easy to see that if 2 satisfies the L7-Dini type condition of order «, then it also
satisfies the L7-Dini type condition of order 8. We thus denote by DinZ (S”~!) the class of all
functions which satisfy the L7-Dini type conditions of all orders 8 < «. For any « € (0,1],
we define

Ding®($"~") := () Din (s").

q=1

See [7], pp-89-90, for more properties of DinZ(S"™') with g € [1,00] and & € (0,1].
The main results of this paper are as follows, the proofs of which are given in Section 3.
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Theorem 2.4 Let o € (0,1], B := min{e,1/2}, p € (n/(n + B),1), g € (1, 0], and let ¢ be a
growth function as in Definition 2.2. Suppose that Q € L1(S"') N Din}(S"™). If
() ge (L1/pland 97 €A p5 ,o0r
n(1-p)

(i) g € (1/p,00] and P € A 5 ,

n(l-p)
then there exists a positive constant C independent of f such that

”“9(1[) ”Lw < Cllf llae-

Theorem 2.5 Let o € (0,1], 8 := min{e,1/2}, p € (n/(n + B),1], g € (1,00), and let ¢ be a
growth function as in Definition 2.2. Suppose that 2 € Din? (5" ). Ifp? € A(W,Lﬂ_l)q,, then
n g

there exists a positive constant C independent of f such that

”“Q(f)”m < Clf e

Corollary 2.6 Let a € (0,1], 8 := min{w,1/2}, p € (n/(n + B),1], and let ¢ be a growth
function as in Definition 2.2. Suppose that Q € DinJ°(S"). If g € Ap(H Bys then there exists
a positive constant C independent of f such that

|na))] o < Cllf llse-

Remark 2.7
(i) Itis worth noting that Corollary 2.6 can be regarded as the limit case of
Theorem 2.5 by letting g — oo.
(i) Let w be a classical Muckenhoupt weight and ¢ be an Orlicz function.
(a) When ¢(x,t) := w(x)p(¢) for all (x,£) € R” x [0,00), we have HY = H?. In this
case, Theorem 2.4, Theorem 2.5 and Corollary 2.6 hold true for the weighted
Orlicz Hardy space. Even when w = 1, the above results are also new.
(b) When ¢(x,t) := w(x)¢” for all (x,t) € R" x [0,00), namely, H* = Hb,
Theorem 2.4, Theorem 2.5 and Corollary 2.6 are reduced to [7], Theorem 1.4,
Theorem 1.5 and Corollary 1.7, respectively.
(iii) Theorem 2.4, Theorem 2.5 and Corollary 2.6 jointly answer the question: when
Q € Din?(5") with g =1, g € (1, 00) or q = 00, respectively, what kind of additional
conditions on growth function ¢ and € can deduce the boundedness of g from
H? to L??

3 Proofs of main results

To show Theorem 2.4, Theorem 2.5 and Corollary 2.6, let us begin with some lemmas.
Since ¢ satisfies the uniform Muckenhoupt condition, the proofs of (i), (ii) and (iii) of the
following Lemma 3.1 are identical to those of Exercises 9.1.3, Theorem 9.2.5 and Corol-

lary 9.2.6 in [26], respectively, the details being omitted.

Lemma 3.1 Let g € [1,00]. If ¢ € A, then the following statements hold true:
(i) ¢° €A, foranye e (0,1];
(ii) ¢" € A, for some n € (1,00);
(iii) @ € Ay forsomed € (1,q) withq #1.
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Lemma 3.2 ([13], Lemma 4.5) Let ¢ € A, with q € [1,00). Then there exists a positive
constant C such that, for any ball BC R", A € (1,00) and t € (0,00),

@(AB,t) < CA™yp(B,t).

Definition 3.3 ([13], Definition 2.4) Let ¢ be a growth function as in Definition 2.2.
(i) A triplet (¢,q,s) is said to be admissible if q € (q(¢), oc] and s € [m(p), 00) NN,
where g(¢) and m(p) are as in (2.2) and (2.4), respectively.
(ii) For an admissible triplet (¢, g,s), a measurable function « is called a (¢, g, s)-atom if
there exists some ball B C R” such that the following conditions are satisfied:
(a) a is supported in B;

(b) llall ) < llxslz, where

(] g 5= SUPe (0,00 g S5 18010 (x, ) dx]V?, g € [1,00),
19(B) =
! llallzeo ), q = 0%;

(c) fR,, a(x)x® dx = 0 for any o € N” with || <s.

(iii) For an admissible triplet (¢, g, ), the Musielak-Orlicz atomic Hardy space He"* is
defined as the set of all f € &” which can be represented as a linear combination of
(¢, q,s)-atoms, that is, f = Zj bj in S, where b; for each j is a multiple of some
(¢, 4, s)-atom supported in some ball x; + B, with the property

Z(p(xj + Brj) ”bi”L;],(xﬁBr,)) < 0.
j

For any given sequence of multiples of (¢, g, s)-atoms, {b;};, let

. ”b/”Lg(xﬁBri)
Aq({bj}j) = mf{k € (0,00): Zw(xj + By, T) < 1}

J

and then the (quasi-)norm of f € S’ is defined by
I s = inf{ Aq ((B3) ]
where the infimum is taken over all admissible decompositions of f as above.

We refer the reader to [13] and [24] for more details on the real-variable theory of
Musielak-Orlicz Hardy spaces.

Lemma 3.4 Let b be a multiple of a (¢, 00, s)-atom associated with some ball B,. Then
there exists a positive constant C := Cq independent of b such that, for any x € By \ B
with R € [2r, 00),

2R+r  (R+2r)? :|%

|1a()(x)| < Clb||1e |:1n R—r 202R+rp?
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Proof Observe that, since supp b C B,, it follows that, for any y € B, and x € Byg \ Bg with
R € [2r,00),

R-r<|x—y|<2R+r. (3.1)

On the other hand, for any x € B,y \ Bg with R € [2r, 00), write

w/ L&D 1) dy
|

x—y| <t |x —J/|” !

/ Qx-y) b(y) dy

x—y|<t |x J/|" Jc -yt

2dt
B

2
dt /2R+r /-oo
o + ...
R-r 2R+r

mmmmf=f

0

R-r
./(;

_211+12 +13.

For I}, from ¢t € (0,R - r] and (3.1), it follows that {y € R" : |x — y| < ¢} = ¥ and hence
I,=0.
For I,, by a spherical coordinates transform and Q € L!(S"!) (see (1.1)), we obtain

2R+r t / 2
1091 .- dt
L <|b %cf / "tdpdo(y)) —
2= bl | (Sn_l e P dedoy) )

2R+r
1 2R+r
~ b 200/ b ooln
bl [ Sde~ bl n 2.

R-r

For I3, by (3.1), a spherical coordinates transform and Q € L'(5"!) (see (1.1)), we have

> Q)| |, \’dt
hsw%/ Uw &@ =
2R+r \J Boger\Br_y |Vl t
2R+r 7 2
IQ )I o N\ dt
SCAN (/ [ o))
2R+r \Jsm-1 JR-r 3

1 (R +2r)?
~ bzocR 2 2/ —dt'\" bzooi.
1]l (R + 2r) o B (14157 20R+ 1)

Combining the estimates of I;, I and I3, we obtain the desired inequality. This finishes
the proof of Lemma 3.4. g

Since ¢ satisfies the uniform Muckenhoupt condition, the proofs of Lemmas 3.5 and
3.6 are identical to those of Corollary 6.2 in [27] and Lemma 4.4 in [7], respectively, the
details being omitted.

Lemma 3.5 Letd € (1,00). Then ¢ € Ay, ifand only if ¢ € RH,.

Lemma 3.6 For g € [1,00) and a € (0,1], suppose that Q2 satisfies the L1-Dini type condi-
tion of order o, and B := min{«,1/2}. Let b € L*™ with supp b C B, satisfy

b(x)dx = 0.

B
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(i) Ifq =1, then there exists a positive constant C independent of b such that, for any
R € [2r,00),

r n+f
/ |m(b)(x)\dxscnanooR"(E> :
Byr\Br

(i) Ifq € (1,00) and, for any (x,t) € R" x [0,00), ¢(x,t) > 0, then there exists a positive
constant C independent of b such that, for any R € [2r,00) and t € [0, 00),

1
7

n n+p
f e (B)@)|@(x, t) dx < ClIbllr=[¢7 (Bar, )] 7 R (%) :
Bor\Br

Lemma 3.7 Let o € (0,1], B := min{e,1/2}, p € (n/(n + B),1) and q € (1, 00]. Suppose that
Q e L1(S"Y) N Dinl, (S"). If
() ge (L1/p)and 97 €A p5 ,o0r

n(1-p)
(i) g€ (1/p,00] and P e A 5 ,
n(1-p)
then there exists a positive constant C such that, for any A € (0,00) and multiple of a

(¢, 00,s)-atom b associated with some ball B C R",

[q(b)(x)] 5] 200
v/Rn(p(x,i)\ )dng(p(B, . )

Proof Without loss of generality, we may assume that b is a multiple of a (¢, 00, s)-atom

associated with a ball B, for some r € (0, 00). For the general case, we refer the reader to the
method of proofin [7], Theorem 1.4. We claim that, in either case (i) or (ii) of Lemma 3.7,
there exists some d € (1, pB/[n(1 — p)]) such that

<pq’ €Ay and V0P e, (3.2)

We only prove (3.2) under case (ii) since the proof under case (i) is similar. By

Lemma 3.1(iii) with ¢1?) € A ,5 , we see that there exists some d € (1, pB/[n(1 - p)])
n(1-p)

such that ¢’1-?) € A ;. On the other hand, notice that ¢’ < 1/(1 — p), then, by Lemma 3.1(i),

we know ¢7 € Ay, which is wished.

For any A € (0,00), write

e (b)x)| e (b)x)| )
‘/nqo(x,f> dx:/Bh(p(x,f) dx+/(32r)c 2.11 +12.

For Iy, by the uniformly upper type 1 property of ¢, Theorem A with Q € L(5"!) and
97 € Ay, and Lemma 3.2 with ¢ € A, (which is guaranteed by Lemma 3.1(i) with (3.2)),

we know that, for any A € (0, 00),

d
o e
e () (x)|? 15|00
< 11O\
”fszr<“ A )‘”(" x )d"

bl 1 o (bl
< Br;— )
Ngo(z ! >+||b||gm/w|“9(b)(")| go(x ] )dx
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IIbllLoo> 1 d ( ||b||L°°)

<@l By, ——— ) + b(x) X, dx
~ @\ D2r @

( A MMmBJ | A

61| z0
5¢<Bn ; ,

which is wished.

Now we are interested in I,. For any j € Z,, let E; := By, \ Byj,. By Lemma 3.4, we know
that, for any x € Ej,

1 (@22 2
b < |1bllzee| 1 - .
|.LLQ( )(x)| ~ ” ”L |:Il %1 + 2(2/+1+1)21|

Notice that

Y41 (2427 2 1\? ,
In — + - — (In2+ — <1l asj— oo,
2 -1 221 +1)2 8

then there exists some J € Z, independent of b such that, for anyj € [J + 1,00) N Z,,

Vi1 (2427 2
In — + - 1.
V-1 20112

From this, the uniformly lower type p and the uniformly upper type 1 properties of ¢,
Theorem A with € € L4(S") and ¢7 € A, Lemma 3.2 with ¢ € A, (which is guaranteed
by Lemma 3.1(i) with (3.2)), and Hélder’s inequality, we deduce that, for any A € (0, 00),

]
[a(b)(x)] Iusz(b)(x)l
L - go(i) ( )dx
2 5y I,

j=J+1

J d
lna(b))] ) ( ||b||Loo)d
;/( VAN
[ lua®)@)P 1]
"2 167 ¢@’A )“

j=r+1v

J
6] o 6]
< By, B,,
N'1|:(p<?/1r N )"'(ﬂ( A

j=

[ |pa®d)®)P 15|00
> 1612 ‘”(x’ x )d’“

j=r+1v 5

o) o 1)
< B,, b 4
Nq)( : ”b”ix];l E}|u9( )(&) 1) ax
bl
5¢<Br, ” !L )
1 5 1]l \ ] lp( )p
||b||LmZ(/E,["’(’“’ x )] ) /Eilusxb)(x)wx :

j=J+1
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Notice that ¢/1?) € Ay C A, (see (3.2)). By Lemma 3.5, we have ¢ € RH%. Thus, from
-P
Lemma 3.2 with ¢"1?) € Ay and ¢ € RH% , we deduce that, for any A € (0, c0),
-P

1
bl 177 .\ o bl \ 17
(/ [(p (x’ ” ”L )] p dx) S [‘p 11‘” (BQj+lr, &)}
E A A
1-p
< gjnd1-p) [(pllp <Br; ”b!LOO )}

< Zjnd(l—p)r—np(p (Br ||b||L°° >
~ ’ )\'

Since d < pB/[n(1 - p)], we may choose @ € (0,«) such that d <p,§/[n(1 —p)], where E::
min{&,1/2}. By the assumption Q € Dinllx(S”‘l), Q satisfies the L!-Dini type condition of
order &. Applying Lemma 3.6(i), we obtain

n+p
c\n r i
/ |ka(b))| dx < 1Bl (2'r) (2,—) ~ (1Bl 2.
Ej r

Substituting the above two inequalities back into I, we know that, for any 2 € (0, 00),

12 < 10 B “b“LOO 1+ i 2j(nd—ndp—p;§) < @ B ||b||Loo
~ r» )\‘ < - )\‘ ,

j=/+1

where the last inequality is due to d <p/57/[n(1 -p)l.
Combining the estimates of I; and I,, we obtain the desired inequality. This finishes the
proof of Lemma 3.7. d

The following three lemmas come from [13], Lemma 4.1, Lemma 4.3(i) and Theorem 3.1,
respectively, and also can be found in [24].

Lemma 3.8 Let ¢ be a growth function as in Definition 2.2. Then there exists a positive
constant C such that, for any (x,t;) € R” x [0, 00) with j € Z,,

10 (x, Z t,») <C Z @, t)).
j=1 j=1

Lemma 3.9 Let ¢ be a growth function as in Definition 2.2. For a given positive constant
C, there exists a positive constant C such that, for any X € (0,00),

If )]

f @(x’ T) dx<C impliesthat ||f|Le < Ch.
Rn

Lemma 3.10 Let (¢, q,s) be an admissible triplet as in Definition 3.3. Then
HY = Hy"

with equivalent (quasi-)norms.
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Lemma 3.11 ([24], Remark 4.1.4(i)) Let ¢ be a growth function as in Definition 2.2. Then
H? N L? is dense in H?.

The following lemma gives a criterion of the boundedness of operators from H to L?.

Lemma 3.12 Let ¢ be a growth function as in Definition 2.2. Suppose that a linear or a
positive sublinear operator T is bounded on L*. If there exists a positive constant C such
that, for any X € (0,00) and multiple of a (¢, q, s)-atom b associated with some ball B C R”,

bl a
(s ) < (3, ) 6
- A A

then T extends uniquely to a bounded operator from H? to LY.

Proof We first assume that f € H¥ N L2. By the well-known Calderén reproducing formula
(see also [28], Theorem 2.14), we know that there exists a sequence of multiples of (¢, g, s)-
atoms {b;};cz, associated with balls {x; + By }jez., such that

k
f= klirglo Z bj =: klggoﬁ( in & and also in L2. (3.4)
j=1

From the assumption that the linear or positive sublinear operator T is bounded on L?
and (3.4), it follows that

Jim | T¢) = T < Jim | T¢ ~f)] 2 S Jim If ~fell2 = 0

which implies that

k ]
T(f) = klggo T(f) < klggo Z T(bj) = Zl: T(b;) almost everywhere.
j= j=

By this, Lemma 3.8 and (3.3), we obtain

() (x ) < T (k) (x)|>d
/ ﬁ”(" A, (i) Z/ A )
i |b”qu+B,
B,., 7 kebyBy) <1,
121:(/7<x}+ o q({b]}}) )w

which, together with Lemma 3.9, further implies that

[T 10 S Aa(iByy).

Taking infimum for all admissible decompositions of f as above and using Lemma 3.10,
we obtain that, for any f € H? N L2,

I TE 0 S W llgoas S I - (3.5)
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Next, suppose f € H?. By Lemma 3.11, it follows that H¢ N L? is dense in H?. From
this, (3.5) and a standard density argument, we deduce that T extends uniquely to a
bounded operator from H? to L?, namely, || T(f)llze < ||flme. This finishes the proof of
Lemma 3.12. g

Proof of Theorem 2.4 Obviously, (g is a positive sublinear operator. From Theorem A
with @ =1 and Lemma 3.7, it follows that uq is bounded on L? and, for any A € (0, 00)
and multiple of a (¢, 00, s)-atom b associated with some ball B C R”,

[a(b)(x)] 5] 100
v/ww(x,ik )dxng(B,—k )

Applying Lemma 3.12 with g = oo, we know that ||[ua(f)|lze < ||f|lme. This finishes the
proof of Theorem 2.4. g

Proof of Theorem 2.5 By using the same method as in Theorem 2.4 and repeating the
estimate of J in the proof of [7], Theorem 1.5, with [7], Lemma 4.4(a), replaced by
Lemma 3.6(ii), it is quite believable that Theorem 2.5 holds true. We leave the details to
the interested reader. |

Proof of Corollary 2.6 By Lemma 3.1(ii) with ¢ € A g, 8y We see that there exists some
d n

d € (1,00) such that ¢* € Ap(l+§

1/q)q > p(1 + B/n) and hence ¢ € A

)-Foranyq € (1,00), by p>n/(n+ B), we have (p + pB/n —

(2 Ly Thus, we may choose g = d/(d — 1) such
that
i
¢ =9 e A(m%—%)q’
and hence Corollary 2.6 follows from Theorem 2.5. O

4 Conclusions

What we have seen from the above is the boundedness of Marcinkiewicz integral j1g from
HY to L? under weaker smoothness conditions assumed on €2, which generalizes the cor-
responding results under the setting of both the weighted Hardy space (see, for example,
[14]) and the Orlicz-Hardy space (see, for example, [15, 16]), and hence has a wide gener-

ality.
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