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This paper examines carbon dioxide (CO2) emissions from the perspective of energy consumption,
detailing an empirical investigation into the spatiotemporal variations and impact factors of energy-
related CO2 emissions in China. The study, which is based on a provincial panel data set for the period
1995–2011, used an extended STIRPAT model, which was in turn examined using System-Generalized
Method of Moments (Sys-GMM) regression. Results indicate that while per capita CO2 emissions in China
were characterized by conspicuous regional imbalances during the period studied, regional inequality
and spatial autocorrelation (agglomeration) both decreased gradually between 1995 and 2011, and the
pattern evolutions of emissions evidenced a clear path dependency effect. The urbanization level was
found to be the most important driving impact factor of CO2 emissions, followed by economic level and
industry proportion. Conversely, tertiary industry proportion constituted the main inhibiting factor
among the negative influencing factors, which also included technology level, energy consumption
structure, energy intensity, and tertiary industry proportion. Importantly, the study revealed that the CO2

Kuznets Curve (CKC), which describes the relation between CO2 emissions and economic growth, in fact
took the form of N-shape in the medium- and long-term, rather than the classical inverted-U shape of
the environmental Kuznets Curve (EKC). Specifically, an additional inflection appeared after the U-shape
relationship between economic growth and CO2 emissions, indicating the emergence of a relink phase
between the two variables. The findings of this study have important implications for policy makers and
urban planners: alongside steps to improve the technology level, accelerate the development of tertiary
industry, and boost recycling and renewable energies, the optimization of a country’s energy structure
that can in fact reduce reliance on fossil energy resources and constitute an effective measure to reduce
CO2 emissions.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Global warming has in recent years become an indisputable
fact. Through deepening research into and analysis of the phe-
nomenon, most climate scientists now identify greenhouse gases,
most notably CO2 emissions, as constituting the main cause of
global warming. Despite this knowledge, global emissions of CO2

from fossil fuel combustion and cement production continue to
rise at a staggering rate, and a large amount of CO2 continues to be
spilled into the atmosphere each day. China is the largest devel-
oping country in the world; its economy has undergone rapid and
continuous expansion since the Chinese economic reform in 1978,
with an annual growth rate of 9.9% [1,2]. However, behind this
economic success lies the reality that China is entering the energy-
intensive stages of economic development [3]. As the largest
energy consumer and CO2 emitter in the world, the country is now
facing fossil energy supply crises and mounting international
pressure to curb its CO2 releases [4]. As a result, the Chinese
government has implemented a bold national strategy for energy
saving and CO2 emissions reduction. At the 2009 Copenhagen
climate conference, China set a goal to reduce its carbon intensity
(that is, CO2 emissions per unit of gross domestic product, or GDP)
by 40–45% of 2005 levels by 2020. This target would be binding,
through its inclusion in China's national economic and social
development and long-term plans. In addition, through the 12th
Five-Year Plan, the Chinese government plans to achieve a reduc-
tion of 16% in energy intensity (energy consumption per unit of
GDP) and 17% in carbon intensity. All of these actions demonstrate
the strategic adjustments currently being undertaken by the Chi-
nese government in order to deal with the country's high carbon
intensity. In meeting these goals, China faces the additional chal-
lenges of not only radically curbing fossil-energy use and emis-
sions, but also doing so in an equitable manner, and whilst
maintaining economic growth [5]. China is a vast country, and
marked regional inequalities exist between its provinces, not only
in terms of their population size, economic scale, and industry
structure, but also (and more significantly) in terms of their energy
structure. Given these inequalities and the framework of the
national carbon reduction targets now in play, it is essential that
an analysis be performed of the spatiotemporal variations of CO2

emissions and, further, that key impact factors which will effec-
tively inhibit the rapid growth of emissions be identified.

A number of previous studies have analyzed the distribution of
CO2 emissions, from a range of different perspectives and with
various methods. The literature addressing inequality in carbon
emissions can broadly be divided into two general types. The first
group of studies is primarily concerned with the use and devel-
opment of measures of inequality – for instance, working with
concentration measures such as the Gini coefficient and coefficient
of variation (CV), or entropy measures such as the Theil and
Atkinson indices [6–11]. One example of such scholarship lies in
Heil and Wodon's [6] group decomposition of the Gini coefficient
in order to study inequality in carbon emissions, which found
inequality in per capita CO2 emissions to, on a global level, be
directly related to per capita GDP. Heil and Wodon's [6] findings
also appear to hold true in the context of China. Using data on
China's provincial energy consumption and energy-related carbon
emissions, Yue et al. [12] conducted a study, based on the Theil
index, which found that carbon emissions and per capita emis-
sions were significantly higher in China's eastern region than in
the country's middle and western regions. Mussini and Grossi [13]
analyzed the change in per capita CO2 emission inequality in
Europe using a three-term decomposition of the Gini index. The
within-group and between-group inequalities of CO2 emissions
were identified. Using similar analysis techniques, Grunewald
et al. [14] decompose the inequalities of CO2 emissions in the
primary energy carriers and economic sectors of 90 countries. The
second group of studies mainly focuses on the analysis of either
retrospective (that is, involving historical emissions) or pro-
spective (working with scenario simulation of future trends) data
[10,15]. Almost all of the studies that have so far addressed the
inequality of CO2 emissions were conducted using conventional
econometric measurement indexes, and as a result did not con-
sider spatial effects. By treating research units as independent and
homogeneous individuals, existing research has neglected the
spatial autocorrelation of geographic data, an omission which can
lead to biased results in terms of the distribution of research
objects.

The factors affecting CO2 emissions are complex. Research is
increasingly being conducted into the major factors influencing
CO2 emissions in different countries and regions, and a range of
different methods have been used in order to examine these
impact factors, amongst which the SDA method [16], the LMDI
method [17–20], the IPAT model [21–24], the STIRPAT model [24–
29], the Panel Granger causality test [30–34], the ARDL model
[35,36], and the Kaya equation [37] are the most popular. Using
the SDA method Ang et al. [16] have examined factor changes in
energy use and gas emissions in Singapore, China, and Korea.
Similar studies were also taken in US by Feng et al. [38], in China
by Guan et al. [39] and Feng et al. [40]. Using the LMDI model and
working within the context of China, Wang et al. [18] were able to
decompose CO2 emissions into population, GDP per capita, energy
consumption intensity, and energy consumption structure. Based
on IPAT formulation, York et al. [23] found population, affluence,
and technology to have different potentials for mitigating different
types of impacts on environmental change, and that all the factors
were equally important. Similar methods were used by York et al.
[24]. Taking Beijing city as an example and using an improved
STIRPAT model, Wang et al. [28] examined the key influencing
factors in relation to CO2 emissions, finding urbanization level,
economic level, and industry proportion to all positively impact on
CO2 emissions, while tertiary industry proportion, energy inten-
sity, and R&D output were identified as having a negative influ-
ence. This finding was supported by similar results in subsequent
studies by Wang et al. in relation to Guangdong province [29], by
Al-mulali [33] in relation to the Middle East, by Soytas et al. [41] in
a study addressing the United States, and by Hamit-Haggar [42] in
relation to Canada. Using a panel model, Al-mulali [33] found total
primary energy consumption, foreign direct investment net
inflows, GDP, and total trade to be important factors in increasing



Table 1
CO2 emissions coefficients.
Sources: IPCC [43] and the National Coordination Committee Office on Climate Change and Energy Research Institute under the National Development and Reform
Commission [44].

Sources Coal Coke Gasoline Kerosene Diesel Fuel oil Natural gas Cement

CO2 emissions coefficient 1.647 2.848 3.045 3.174 3.150 3.064 21.670 0.527
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CO2 emission in Middle Eastern countries, a finding in turn sup-
ported by studies undertaken in relation to eight Asian-Pacific
countries by Niu et al. [31], BRIC countries by Pao and Tsai [32],
and G-7 countries by Kum et al. [34]. Further, Jayanthakumaran
et al. [35] used the ARDL methodology to test long- and short-run
relationships between growth, trade, energy use, and endogen-
ously determined structural breaks in China and India, concluding
that the factors influencing CO2 emissions vary across both China
and India. Similar studies have also been undertaken by Ang [43],
Halicioglu [44], and Jalil and Mahmud [45]. Among the various
methods reviewed above, the STIRPAT model has been widely
used in recent research. Whilst this previous research has certainly
enriched our understanding of the main impact factors for CO2

emissions, a number of shortcomings are also evident in these
previous studies. Importantly, existing research has to a large
extent focused on population and economic and technology levels,
and has, as a result, seldom directed attention towards energy
intensity, energy consumption structure, industrial proportion,
urbanization level, or tertiary industry proportion. These sig-
nificant factors should, it is argued, be examined for their impacts
on CO2 emissions. In addition, most Chinese studies have either
focused on the level of a single city, or else on the national level
[28,29]; this has occurred at the exclusion of the provincial level.
Finally, we note that most models used to examine the factors for
CO2 emissions have been based on time-series data or cross-
sectional data. Whilst it is widely known that panel data sets have
several major advantages over conventional cross-sectional or
time series data sets [46], few studies have to date been based on
panel data models.

Building on this previous research, this study firstly calculated
CO2 emissions in China's 30 provinces over the period 1995–2011,
employing spatial analysis techniques in order to examine the
spatiotemporal variations of CO2 emissions according to Tobler's
first law of geography [47]. Using an extended STIRPAT model, we
then examined the impact of human factors on CO2 emissions.
Finally, we also investigated the CO2 Kuznets curve (CKC), a mea-
sure based on an environmental Kuznets curve (EKC), which we
generated using provincial panel data.

The remainder of the paper is organized as follows. Section 2
focuses on methods and data, presenting the spatial analysis
methods, the extended STIRPAT model and the data used within
the study. Section 3 presents the results of the study and discusses
the ways in which the models proposed in Section 2 were used to
analyze the spatiotemporal variations and impact factors of CO2

emissions in China's provinces. Section 4 sets out the main con-
clusions and details a series of policy implications which can be
drawn from the results of the study.
2. Methodology and research material

2.1. Estimating energy-related CO2 emissions in China's provinces

With reference to Du et al. [46], we calculated CO2 emissions
for China's 30 provinces for the period 1995 to 2011 using the CO2

emissions coefficients published by the Intergovernmental Panel
on Climate Change (IPCC) [48], and the National Coordinat-
ion Committee Office on Climate Change and the Energy Resea-
rch Institute under the National Development and Reform Com-
mission [49]. Energy-related CO2 emissions can be calculated
using:

I¼
X7

i ¼ 1

ðEi � FiÞþQ � C ð1Þ

where I represents the total CO2 emissions; i denotes the different
types of fossil fuel (including coal, coke, gasoline, kerosene, diesel,
fuel oil, and natural gas); Ei refers to the ith kind of primary energy
consumption; Fi is the CO2 emissions coefficient of fossil fuels i; Q
represents the quantity of cement production; and C is the CO2

emissions coefficient of the cement production process (Table 1).

2.2. Spatial autocorrelation

2.2.1. Global spatial autocorrelation
Spatial autocorrelation is a spatial data analysis method that is

used to estimate and analyze the degree of dependency among
observational units in a geographic space. Spatial autocorrelation
can reveal phenomena of spatial dependence and spatial hetero-
geneity in geographic data [50]. One of the most commonly used
measures of spatial autocorrelation is Moran's I coefficient:

I¼ n
Pn

i ¼ 1

Pn

j ¼ 1
ωij

Pn

j ¼ 1
ωijðxi�xÞðxj�xÞ

Pn

i ¼ 1
ðxi�xÞ2

ð2Þ

where x is a variable measured in each of the i¼1, 2, …, n loca-
tions, and ωij is the element in row i column j of a spatial weights
matrix. At a given level of significance, if Moran's I40, it denotes
positive correlation; if Moran's Io0, this denotes negative corre-
lation. The larger Moran's I is, the larger the correlation degree is.
When Moran's I¼0, this represents a random spatial distribution.
Generally, the z value is used for Moran's I statistic test. The z value
is calculated using Z ¼ I � E Ið Þð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ið Þ

p

2.2.2. Local spatial autocorrelation
Local Moran's I is a local indicator of spatial autocorrelation for

the analysis of spatial clustering. Local Moran's I can provide more
detailed insights into the location-specific nature of spatial
dependence [50]. The specific formula of the local Moran statistic
can be shown as follows:

Ii ¼
ziP
iz

2
i

� zi1 ð3Þ

where zi expresses the observation for region i on a variable as a
deviation from the mean, and zi1 is the spatial lag for location I,
obtained as:

zi1¼
Xn

j ¼ 1

ωijzj ð4Þ

In the local spatial autocorrelation implementation, each
observation could be placed into one of four classes, as summar-
ized in Table 2.

These classifications can be portrayed in a Moran's scatter plot.
The scatter plot allows for the visualization of several geographical



Table 2
Local Moran classifications.
Source: Rey [45].

Class Own value zi Neighbor's value zi1

HH Above average Above average
HL Above average Below average
LH Below average Above average
LL Below average Below average

Table 3
Summary statistics of the variables.

Variables Symbol Unit Mean Std. Dev Min Max

Per capita CO2 I ton 4.33 2.20 0.94 12.91
Urbanization level P % 43.33 16.40 17.19 89.30
Economic level A Yuan 16224.63 14829.06 1853 85213
Technology level T ton/104

Yuan
3.77 1.99 0.97 11.32

Energy intensity EI ton/104

Yuan
1.73 0.98 0.21 7.66

Energy structure ES % 66.08 16.67 24.16 92.10
Industry proportion IP % 45.28 7.90 19.81 60.13
Tertiary industry
proportion

TIP % 39.62 7.16 20.22 76.14
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aspects of the distribution at one point in time [50]. According to
the classifications, we can further divide a Moran scatter plot into
four quadrants (I, II, III, and IV), corresponding to four different
types of regional disparities:

(1) I quadrant (HH): high values surrounded by high values. The
inequality is relatively small;

(2) II quadrant (LH): low values surrounded by high values. The
disparity is relatively large;

(3) III quadrant (LL): low values surrounded by low values. The
imbalance is relatively small; and

(4) IV quadrant (HL): high values surrounded by low values. The
inequality is relatively large.

The definitions of High and Low are compared to the average
for the whole study area.

2.2.3. STIRPAT model
Since the IPAT model has a concise form, it is widely used in

analyzing the impact of human factors on environmental changes
[21–23]. Here, I is the environmental impact, P represents popu-
lation, A is affluence, and T is technology level. After many
improvements, the IPAT model has some derivative forms,
including ImPACT model, which decomposes T into T and C (con-
sumption per unit of GDP) [51]. Since IPAT and ImPACT models do
not allow non-monotonic and non-propositional changes in
human factors, the utilization of the two is limited. To overcome
this shortcoming, Dietz and Rosa [25] reformed the IPAT model
into a random form, establishing the STIRPAT model:

Ii ¼ aPb
i A

c
i T

d
i ei ð5Þ

where I, P, A and T have the same meaning as in the IPAT model; a
is the constant term; b, c, and d are undetermined parameters; and
e denotes the random error. The IPAT model can thus be rewritten
as a particular form of STIRPAT, when a¼b¼c¼d¼1. In empirical
studies, Eq. (4) may be converted to logarithmic form:

ln Ii ¼ ln aþbPiþcAiþdTiþ lnei ð6Þ
where ln(.) is a natural logarithm. In this form, b, c, and d can be
seen as referring to the percentage change in environmental
impact caused by a 1% change in an impact factor when the other
influence factors remain unchanged, which is equivalent to the
elastic coefficient in economics.

The STIRPAT model not only allows each coefficient as a para-
meter to estimate, but also allows the proper decomposition of
each factor [25]. According to the characteristics of each study,
corresponding improvements are often made in the relevant lit-
erature based on the original model in order to carry out a range of
new empirical research studies [24,52]. Considering the char-
acteristics of energy-related CO2 emissions in China, and learning
from the relevant literature, we expanded the STIRPAT model by
incorporating urbanization level, industry proportion, tertiary
industry proportion, energy intensity, and energy structure into
the model. Additionally, we decomposed affluence into linear,
quadratic, and cubic terms in order to fully portray the relation-
ship between per capita CO2 emissions and GDP per capita, and
validate the EKC hypothesis. Existing studies indicate that an
inverted-U curve relationship exists between economic growth
and local pollutant emissions. However, whilst pollutants such as
SO2 and NOx have local effects, CO2 has a cross-period and cross-
country global effect as such, it is essential research into CO2

emissions think beyond the traditional inverted-U trend between
economic growth and CO2 emissions. This study therefore intro-
duces a traditional cubic term into the STIRPAT model, called the
“CKC relink effect.” A number of previous studies have in fact
found the cubic term to be more effective portraying the rela-
tionship between economic growth and CO2 emissions [53–55].
The extended STIRPAT model can thus be established as follows:

ln Iit ¼ a0þa1 ln Aitþa2ðlnAitÞ2þa3ðlnAitÞ3þa4 ln Pit

þa5 ln Titþa6 ln ESitþa7 ln EIit
þa8 ln IPitþa9 ln TIPit ð7Þ

where I denotes per capita CO2 emissions; P represents urbani-
zation level (expressed as the percentage of the urban population
in the total population); A denotes affluence (expressed as GDP per
capita); T refers to technology level (expressed as carbon emission
intensity); ES is energy structure (the percentage of coal con-
sumption to total energy consumption); EI denotes energy inten-
sity (expressed as energy consumption per Yuan GDP); IP repre-
sents industry proportion (expressed as a percentage of the
increased value of secondary industry to GDP); and TIP denotes
tertiary industry proportion (expressed as a percentage of the
increased value of tertiary industry to GDP).

2.3. Data acquisition

All data used in this paper, with the exception of CO2 emissions,
were obtained from the China Statistical Yearbook and China
Energy Statistical Yearbook, from 1995 to 2011. The data on the
CO2 emissions of provinces were derived from calculations using
the method described previously. The total primary energy con-
sumption and consumption of coal, coke, gasoline, kerosene, die-
sel, fuel oil, and natural gas were all converted into standard coal
measures (units of 104 t). The urbanization level, economic level,
technology level, energy intensity, energy structure, industrial
proposition, and tertiary industry proportion were given as a
percentage of the urban population, GDP per capita, carbon
emission intensity (tons/104 Yuan), energy consumption intensity
(tons/104 Yuan), fossil oil consumption to total energy consump-
tion, percentage of the added value of secondary industry to GDP,
added value of tertiary industry to GDP, respectively. To eliminate
the price effect, GDP was deflated by the consumer price index in
the year 2000, which was used to calculate per capita GDP in Yuan
and CO2 emissions intensity and energy intensity in tons per 104

Yuan. Table 3 shows the statistical description of the variables in
30 Chinese provinces from 1995 to 2011.



Fig. 1. Per capita CO2 emissions in China, 1995–2011.
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3. Results and discussion

3.1. The temporal evolution characteristics of per capita CO2

emissions

The per capita CO2 emissions in China over the period 1995–
2011 were calculated using Eq. (1), as indicated in Fig. 1. Per capita
CO2 emissions in China were found to have increased annually
during the study period, from 2.45 t in 1995 to 5.89 t in 2011. The
annual growth rate was 5.3%.

Studies of temporal evolution characteristics often employ a
variety of conventional evolution measurements, like the com-
monly utilized coefficient of variation (CV1). With the develop-
ment of spatial data analysis, indexes explicitly taking into account
spatial effects, such as Moran's I (both global and local) have also
increasingly been employed [56]. This study intends to use both
methods for the exploration of temporal evolution characteristics.
As such, Fig. 2 plots the CV and Moran's I evolution path of per
capita CO2 emissions during the study period. From Fig. 2, we find
that the CV index decreased gradually between 1995 and 2011,
indicating that overall inter-province inequality steadily decreased
over that period. The inequality of per capita CO2 emissions in
Chinese provinces has therefore shown persistent divergence, a
change that can be attributed to energy conservation and emis-
sions mitigation policies. In order to lessen regional disparities and
realize balanced development, China has for a long time imple-
mented regional compensation mechanisms and distinct devel-
opment policies in relation to CO2 emissions.

The conventional evolution method described above does not
take into account spatial effects. For geographic data, a “coin-
cidence of attribute similarity with locational similarity,” or spatial
autocorrelation, is almost inevitable [56]. Such autocorrelation, if
ignored, can lead to biased or even misleading conclusions about
temporal evolution characteristics [56]. From Fig. 2, we can clearly
see two distinct trends of global Moran's I during study period.
Specifically, global Moran's I increased gradually from 0.36 in 1996
to 0.44 in 2002, and then started to decrease from 0.44 in 2002 to
0.29 in 2011, all are significant at 95 percent confidence level via
the randomization assumption. This indicates that a spatial
agglomeration trend, which was not revealed through the
1 CV is a measure of the dispersion of a distribution. It is defined as the ratio of
the standard deviation (σ) to the mean (μ). The larger the CV, the larger the dis-
parity among provinces.
application of conventional methods, in fact took place in Chinese
provinces during the study period.

Whilst the CV index was found to decrease over time and
Moran's I found to increase initially and then decrease during the
same period, there is no contradiction between the two indexes.
Whilst the CV index reflects the discrete degrees evidenced among
regions, it does not address geographic variation. In comparison,
the global Moran's I index takes into account spatial locations, and
can therefore reflect spatial agglomeration or spread during a
given period. Overall, the decrease of the regional inequality of per
capita CO2 emissions in provincial China does not illustrate a trend
of balanced development with respect to CO2 emissions; rather, it
simply reflects the spatial variations of CO2 emissions at the
province level.

3.2. The spatial pattern evolution characteristics of per capita CO2

emissions

Fig. 3 plots the distributions of Moran scatter of per capita CO2

emissions in Chinese provinces according to the temporal char-
acteristics of global Moran's I, showing the local spatial correlation
of per capita CO2 emissions in Chinese provinces spatially and
geographically. The right section of Fig. 3 shows the quadrant
distributions of per capita CO2 emissions: the left section shows
the corresponding spatial patterns of per capita CO2 emissions.
Fig. 3 reveals characteristics of significant local spatial agglom-
eration in the distribution of per capita CO2 emissions. HH and LL
clusters constitute the main types of agglomeration. Whilst pro-
vinces within the HH classification tend to be concentrated in
northeast China, the provinces within the LL cluster were shown
to be highly concentrated in central and southeast coastal China.

The number and the distribution of each cluster of provinces
also display regional dynamic characteristics. For instance, in 1995,
the numbers of provinces belonging to HH and LL cluster were
5 and 19 respectively, accounting for 80% of all Chinese provinces.
Correspondingly, only 20% of all provinces conformed to the
remaining HL and LH classifications. These results indicate the
existence of a significant dual structure in the spatial distribution
of Chinese per capital CO2 emissions in 1995. However, by 2000,
the number of HH and LL provinces had increased and decreased
by 4 and 5 respectively, indicating that the spatial extent of
agglomeration of per capita CO2 emissions had weakened mark-
edly between 1995 and 2000. Further, spatial inequalities in pro-
vincial per capita CO2 emissions in 2005 and 2011 decreased since
2000. From these findings, we can conclude that the pattern



Fig. 2. Global Moran's I and CV of per capita CO2 emissions in China's provinces, 1995–2011.
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evolution of emissions therefore displays a certain path depen-
dency effect.

To further understand the spatial agglomeration characteristics
of CO2 emissions, we calculated the space–time transition matrices
(Table 4). In accordance with Rey's study [50], we subcategorized
the 30 provinces into four types, based on the local Moran sta-
tistics of per capita CO2 emissions, whereby Type I referred to a
transition involving a relative move of only that province, and
Type II involved a transition of only the neighbors in relative space
(whilst the province in question remained in the previous state).
Moreover, Type III referred to a transition of both a province and
its neighbors to a different state, and Type IV denoted a transition
of the province-neighbor pair remains at the same level. The
space–time transition matrix enables the characterization of
spatial-economic asymmetries, highlights the performance of each
province, and provides an indication of the nature of its mobility
(both upward and downward). From Table 4, we find that most of
the diagonal numbers are higher than the non-diagonal numbers,
meaning that it is more likely for each category to remain at the
same level during the period studied. Further, all the diagonal
elements are revealed as belonging to Type IV, with 77%, 77%, and
93% of all provinces being located in the diagonal during the
periods 1995–2000, 2000–2005, and 2005–2011 respectively. This
indicates that the distribution of per capita CO2 emissions in
Chinese provinces displays clear path-dependency and self-
reinforcing agglomeration characteristics. On the other hand, the
results detailed in Table 4 also show that 47%, 47%, and 37% of all
provinces transited to Type LL during the above corresponding
periods. This illustrates a weakening trend in terms of the degree
of concentration witnessed amongst provinces with relatively low
per capita CO2 emissions.

Note: HH¼high values surrounded by high values; LH¼ low
values surrounded by high values; LL¼ low values surrounded by
low values; HL¼high values surrounded by low values.

3.3. Factors influencing CO2 emissions

Multicollinearity refers to a situation in which two or more
independent variables in a multiple regression model are strongly
and linearly related [29]. It is essential to test whether multi-
collinearity exists among explanatory variables in a study like the
present one. As such, we performed a multicollinearity test, based
on pooled regression. None of the variables reported VIFs higher
than 10 in this test, indicating that the independent variables did
not suffer from the problem of multicollinearity. The System-
Generalized Method of Moments (Sys-GMM) was subsequently
employed in order to estimate Eq. (6) [57]. When conducting the
Sys-GMM, we used the Hansen test in order to check the reliability
of the variables. Accordingly, if the estimators were found to be
relatively smaller (i.e., to have a higher p value), we would not
reject the null hypothesis of unsuitable for the variables. Sys-GMM
allows variable correlation at first difference, but not at second
difference. AR (1) and AR (2) were utilized to test whether a serial
correlation existed among random disturbances. The Sys-GMM
regression analysis was performed using Stata11.0 software, and
the results are reported in Table 5 and discussed below.

Among the five models listed in Table 1, only model I reviews the
regression results of GDP per capita, urbanization level, and carbon
emission intensity. To test the robustness of model I, we added a
number of control variables based on the three independent variables-
energy structure, energy intensity, industry proposition, and tertiary
industry proportion, which were put into models II–V sequentially.
Given that the consistency of the Sys-GMM estimator is based on the
hypothesis that no second-order serial correlation exists for the dis-
turbances of the first-differenced equation, we followed Roodman's
[52] method in order to test this hypothesis. On the basis of the test
results for AR (1) and AR (2), which are listed in Table 3, we could not
reject the null hypothesis that no second-order serial correlation was
present for the first-differenced disturbance. Thus, the Sys-GMM
estimator was consistent. In addition, the Hansen test was also
unable to reject the null hypothesis. As such, the selected variables
were therefore considered reliable, and the Sys-GMM test effective.

The results at Table 5 indicate that urbanization level, GDP per
capita, and industry proposition had positive effects on CO2

emissions in Chinese provinces in the study period. On the other
hand, carbon emission intensity, energy consumption structure,
energy intensity, and tertiary industry proportion were found to
have negative effects. Once we controlled for the effects of the new
added variables, we found that the impact of the former variables
mix changed. This is consistent with studies conducted by Wang
et al. [28], Wang et al. [29], Siddiqi [58], Shi [59], and others. From
Table 5, the coefficients of the quadratic term (ln2 A) are shown to
be negative (not significantly), which is consistent with the study
of Du et al. [46]; however, the coefficients of the linear (ln A) and
cubic (ln3 A) terms are shown to be significantly positive. This
indicates that the relationship between CO2 emission and eco-
nomic level takes the form of an N-shape curve. On the basis of the
obvious inflection that is present in the curve, we can conclude
that a significant relink effect exists between CO2 emission and
economic level. These results are consistent with the empirical
conclusions arrived at by researchers studying a number of
industrialized countries. For instance, deBruyn and Opschoor [53]
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argued that whilst environmental pressure and economic growth
perform an inverted-U curve (classical EKC) in the short- and
medium-term, from a medium- and long-term perspective,
environmental pressure and economic growth enter a relink per-
iod due to technological progress and an inadequate rate of change
in industry structure. This constitutes their famous “relinking
Fig. 3. Moran scatter plot of per capital CO2 in 1995, 2000, 2005, and 2010. The right
corresponding spatial patterns of per capita CO2.
hypothesis”: in the long run, environmental pressure and eco-
nomic growth perform an N-shape curve, not an inverted U-shape
curve. A large number of empirical studies have subsequently
verified this hypothesis [54,55]. In relation to the present study,
we can provide a dual explanation for the way in which the rela-
tionship between CO2 emission and economic level takes the form
part shows quadrant distributions of per capital CO2, and the left part shows the



Fig. 3. (continued)

Table 4
Space–time transition matrices.

HH LH LL HL

1995–2000 HH IV (5) I (0) III (0) II (0)
LH I (2) IV (1) II (0) III (0)
LL III (1) II (1) IV (14) I (2)
HL II (1) III (0) I (0) IV (3)

2000–2005 HH IV (7) I (1) III (0) II (1)
LH I (0) IV (3) II (0) III (0)
LL III (0) II (0) IV (12) I (1)
HL II (2) III (0) I (2) IV (1)

2005–2011 HH IV (9) I (0) III (0) II (0)
LH I (0) IV (5) II (0) III (0)
LL III (0) II (1) IV (11) I (1)
HL II (0) III (0) I (0) IV (3)

1995–2011 HH IV (5) I (0) III (0) II (0)
LH I (2) IV (1) II (0) III (0)
LL III (0) II (3) IV (12) I (3)
HL II (3) III (0) I (0) IV (1)

Note: Number of transition provinces in parentheses.
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of an N-shape curve in China in the period 1995–2011. Firstly, the
slowness of both the shift in industrial restructuring and of pro-
gress in the development of environmental and other technologies
plays a significant role in determining the relink rate of CO2

emissions and economic growth: essentially, the heavy nature of
certain industries may necessitate high energy consumption and
high carbon emissions. At the same time, the slowness of the
advance of green technology may directly affect the ability to
improve energy efficiency. Secondly, relaxation of environmental
regulations and failure of regulatory policies will also both result
in the relink. Energy conservation policy should therefore take into
comprehensive consideration aspects like industry structure,
technology progress, and environmental regulation. The relation-
ship between the environment and economic growth is complex,
and it varies definitively in different regions, in response to dif-
ferent measurement indices, and across different observation
periods. At the same time, it is also affected by social and political
factors [28].

The coefficients of Iit-1 generated through this study indicate
that CO2 emissions in the last period maintain a significant posi-
tive correlation in relation to CO2 emissions in the current period,
indicating that CO2 emissions are in fact characterized by a con-
tinuous and dynamic process of adjustment. The urbanization
level was also found to positively correlate with CO2 emissions
(Table 5), indicating that CO2 emissions increased in line with the
urbanization of Chinese provinces. Similar results were found by
Al-mulali et al. [60]. Over the last decade of rapid economic
growth, China has witnessed equally fast-paced urban develop-
ment, with the country’s level of urbanization rising from 29.04%
in 1995 to 51.27% in 2011. At the same time, energy consumption
increased by almost 187% and CO2 emissions increased by 50%. On
the one hand, urbanization can be understood to promote eco-
nomic growth and improve living standards. On the other, it can
also increase energy consumption and CO2 emissions, and, in turn,
produce energy crises [61,62]. Therefore, China should continue to
control population size, promote stable and moderate urbaniza-
tion and pay attention to optimizing population structure and
quality. More important, it is essential to enhance inhabitants'
low-carbon awareness, and strengthen the generalization of low-
carbon urbanization [29]. This conclusion is consistent with results
produced by Wang et al. [28].

Industry proportion and energy structure were also found to
have positive impacts on CO2 emissions, a finding which is con-
sistent with both our initial expectations and with common sense
(Table 5). Industrialization is widely known to be a key engine of
economic growth. In addition, secondary industry is more energy-
intensive than other types of industry, and thus produces greater
CO2 emissions. Rapid development through industrialization pro-
motes increased energy consumption and further results in rapid
increases in CO2 emissions. Despite this, the present study found
industry proportion to be less significant in relation to CO2 emis-
sions than either GDP per capita or urbanization level. Energy
consumption is another important positive factor for economic
growth; it is also a source of environmental pollution and CO2

emissions. Different kinds of energy sources have different CO2

emission coefficients, with coal ranking first. As such, the larger
the percentage of coal consumption to total energy consumption,
the larger CO2 emissions will be. In recent years, however, low-
carbon energy technologies have developed rapidly in China and
clean and renewable energy, such as wind power, is beginning to
have some inhibitory effect on CO2 emissions.

Results show energy intensity and carbon emission intensity to
be negatively correlated with CO2 emissions during the study
period (Table 5), reflecting the existence of inhibitory effects in
relation to CO2 emissions. Further, energy intensity was found to
have greater significance than carbon emission intensity. This
suggests that decreases in energy intensity or in carbon emissions
intensity do reduce CO2 emissions (although the effect is relatively
small compared to the promoting factors). Despite this, techno-
logical progress in terms of energy intensity and carbon emission



Table 5
Estimation results for different models.

Independent variables Model I Model II Model III Model IV Model V

Iit-1 0.727080a (0.011090) 0.625439a (0.012543) 0.615673a (0.014695) 0.643312a (0.021224) 0.687645a (0.024731)
ln A 0.163267a (1.129871) 0.174532a (1. 237794) 0.182269a (1. 118493) 0.155322a (1. 122382) 0.161768a (1. 165375)
(ln A)2 �0.054664b (0.122146) �0.014343b (0.230529) �0.040112b (0.129756) �0.022094b (0.106526) �0.051815a (0.140719)
(ln A)3 0.011674 a (0.004398) 0.00843 a (0.003018) 0.012122a (0.005017) 0.016283a (0.004678) 0.017561a (0.006984)
ln P 0.444016a (0.013027) 0. 383194 a (0.023052) 0. 423578 a (0.051790) 0. 441815a (0. 129756) 0. 410622 a (0.015589)
ln T �0.095324a (0.024183) �0. 104330 a (0.020604) �0.097654 a (0.020783) �0.098942a (0.235582) �0.106547a (0.029809)
ln ES �0.200234c (0.00560) �0.179395c (0.00572) �0.211714a (0.012343) �0.160454a (0.013278)
ln EI �0.095432c (0.013492) �0.087636c (0.014783) �0.0772311a (0.016294)
ln IP 0.156725 (0.016345) 0.148324b (0.014322)
ln TIP �0.343478a (0.010878)
CKC type N N N N N
Inflection 0.556453 (1.414445) 0.604533 (1.536721) 0.512456 (1.40712) 0.621890 (1.473218) 0.608257 (1.154672)
AR (1) �1.675342 (0.034444) �1.686758 (0.096597) �1.652975 (0. 051522) �1.642168 (0.041777 �1.675425 (0.044693)
AR (2) 1.362532 (0.301162) 1.376754 (0.222342) 1.362543 (0.341564) 1.381232 (0.223221) 1.363241 (0.200932)
Hansen test (p) 32.342133 (0.044561) 33.302319 (0.087345) 32.332458 (0.091435) 34.665463 (0.048234) 28.543694 (0.040453)
Observations 510 510 510 510 510

Note: Standard errors in parentheses for factors. p values in parentheses for AR and Hansen test.
a Denotes significant at 1% level.
b Denotes significant at 10% level.
c Denotes significant at 5% level.
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intensity has proven to be relatively slow in China, and its
potential influence in inhibiting CO2 emissions can as Wang et al.
warn be offset by accompanying rapid increases in energy con-
sumption [26].

Tertiary industry proportion was found to have a significant
negative impact on CO2 emissions during the study period
(Table 5). The tertiary industries are light industries (i.e., the ser-
vice industry) which produce less CO2 emissions than heavy
industry. The proportion of heavy industry in China has to some
extent decreased in recent years. At the same time, China's gradual
transition toward a green-oriented globalizing economy has gen-
erated spectacular development in the tertiary industries, espe-
cially in developed and wealthy cities [28,29]. In fact, China's ter-
tiary industry development evidences a trend towards continual
acceleration. With the implementation of energy conservation and
emissions mitigation policies, industry structure is being gradually
optimized in most Chinese cities, and this, we can conclude, is
beginning to have bring about some inhibitory effects in relation
to CO2 emissions.
4. Conclusions and policy implications

This paper has investigated the spatiotemporal variations and
impact factors of energy-related CO2 emissions in one of the world's
largest developing countries, China. Results confirm the applicability
of spatial analysis techniques and the extended STIRPAT model in
empirical research into China's CO2 emissions at the provincial level.
The study found per capita energy-related CO2 emissions in China to
have increased annually over the period 1995–2011, from 2.45 t in
1995 to 5.89 t in 2011, with an annual growth rate of 5.3%. Further, it
concluded that CO2 emissions are sensitive to rapid urbanization,
industrialization, economic structural change, energy consumption
structure, and other factors that are addressed by China's energy
saving and emissions reduction policy. By emphasizing the com-
plexity of the impact of human factors on CO2 emissions, this paper
also corresponds to other scholars' interests in the impact factors of
CO2 emissions from an evolutionary and comparative perspective
[28,29]. Finally, the estimation of a CO2 Kuznets Curve between
economic growth and CO2 emissions was also performed and dis-
cussed through this study.
The application of orthodox neoclassical approaches and spatial
analysis techniques has enabled us to generate some important
findings [63]. China's rapid development of urbanization and
industrialization has generated considerable attention in relation to
the issue of differences in the growth of CO2 emissions between
various Chinese provinces. Using the conventional evolution method
of CV, we found per capita CO2 emissions to have grown in all of
China's provinces in the period 1995 to 2011. It is, however, worth
noting that inequality among provinces in terms of regional CO2

emissions actually decreased gradually during the period studied.
Orthodox methods can detect changing trends in inequality, but they
do not take into account spatial effects. Considering the “coincidence
of attribute similarity with locational similarity,” we calculated the
global Moran's I index, allowing us to measure spatial autocorrela-
tion. Findings showed that spatial agglomeration decreased at the
provincial level during the study period. Combined with the local
Moran's I, the results reveal that whilst provinces with either high or
low values demonstrated a certain spatial dependence, spatial dif-
ferences in fact decreased during study period. The space–time
transition matrices of per capita CO2 emissions supported the results
of the Moran scatter plots.

The results generated from the application of the extended
STIRPAT model are capable of better explaining the factors
underlying changes in CO2 emissions in Chinese provinces over
time. Many factors – including the urbanization level, the eco-
nomic level, and industry proportion – were found to positively
increase CO2 emissions at the provincial level. The urbanization
level in particular was identified as the main positive influencing
factor of CO2 emissions during the period 1995–2011. Further, the
study also identified a series of factors – technology level, energy
consumption structure, energy intensity, and tertiary industry
proportion – which could be linked to decreases in CO2 emissions,
amongst which tertiary industry proportion was found to con-
stitute the key inhibiting factor. Importantly, the CO2 Kuznets
Curve, which describes the relationship between CO2 emissions
and economic growth, was found to take the form of an N-shape in
the medium- and long- term, rather the classical inverted-U shape
(EKC). Specifically, an additional inflection appeared after the U-
shape relationship between economic growth and CO2 emissions,
demonstrating the emergence of a relink phase between the two
variables. A growing literature has found that there was an
inverted-U curve between economic growth and CO2 emissions.
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However, our study provided evidence that the relationship
between CO2 emission and economic level takes the form of an N-
shape curve. The additional inflection appeared after the U-shape
relationship between economic growth and CO2 emissions, indi-
cating the emergence of a relink phase between the two variables.
We can provide an illustration for the phenomenon: First, in the
early stage of economic growth, CO2 emissions increased rapidly
due to the slowness of progress in the development of technolo-
gies. However, macroeconomic fluctuations and strengthening
environmental regulation will lead to the emergence of the relink
effect. For example, the emergence of global financial crisis and
simultaneous the Olympic Games held in 2008 made significant
influence on CO2 emissions. After the financial crisis, the govern-
ment promoted economic recovery by investing large scale infra-
structure projects, leading an increase of CO2 emissions. Thus, the
relationship between CO2 emission and economic level takes the
form of an N-shape curve in China during the period studied. This
result is considered particularly significant. This result is con-
sidered particularly significant.

The findings detailed above contribute to the existing literature
and suggest meaningful theoretical and policy implications [64].
China is urbanizing and industrializing at an unprecedented rate.
Rapid economic growth has, however, been achieved through
huge increases in energy consumption, leading to high CO2

emissions, which in turn have placed significant pressure on the
sustainable development of the country’s economy, society, and
environment [65,66]. Whilst China has made great efforts to cut
CO2 emissions, challenges still remain in curbing emissions while
maintaining rapid economic growth. To achieve this goal, China
must become a low-carbon economy. This paper proposes several
measures which might be used to move China onto this low-
carbon pathway. Firstly, China should continue to control the scale
of urban populations in order to maintain healthy levels of
population urbanization. Secondly, it is necessary to optimize the
country’s industrial structure, enhancing the proportion of tertiary
industry and reducing the proportion of secondary industry.
Thirdly, China should devote considerable effort to developing
low-carbon technologies, boosting recycling and renewable ener-
gies, and reducing energy intensity. Fourthly, regional energy
supply and demand must be balanced. Fifth, China should cut its
reliance on fossil energy resources in order to optimize its energy
structure.

From a methodological perspective, this paper underscores the
promising aspects of employing spatial analysis techniques such as
spatial autocorrelation (both global and local) and space–time tran-
sition matrices in understanding the spatiotemporal variations of CO2

emissions. Our empirical analysis of Chinese provinces also demon-
strates the appropriateness of the spatial method and the extended
STIRPAT model for analyzing CO2 emissions by addressing their
spatial-temporal dynamic evolution process. The spatial analysis
techniques and STIRPAT model are widely used in existing studies
due to their high universalities. We believe that this analysis process
is relevant not only to specific countries such as China and that in fact
this analysis method constitutes a critical tool for building a more
comprehensive understanding of the varied spatial patterns and
dynamics of CO2 emissions in any country or region.
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