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Abstract
In this paper, we make use of the four functionals fixed point theorem to verify the
existence of at least one symmetric positive solution of a second-orderm-point
boundary value problem on time scales such that the considered equation admits a
nonlinear term f whose sign is allowed to change. The discussed problem involves
both an increasing homeomorphism and homomorphism, which generalizes the
p-Laplacian operator. An example which supports our theoretical results is also
indicated.
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1 Introduction
The theory of time scales was introduced by Stefan Hilger [] in his PhD thesis in  in
order to unify continuous and discrete analysis. This theory was developed by Agarwal,
Bohner, Peterson, Henderson, Avery, etc. [–]. Some preliminary definitions and theo-
rems on time scales can be found in books [, ] which are excellent references for calculus
of time scales.
There have been extensive studies on a boundary value problem (BVP) with sign-

changing nonlinearity on time scales by using the fixed point theorem on cones. See [,
] and references therein. In [], Feng, Pang and Ge discussed the existence of triple sym-
metric positive solutions by applying the fixed point theorem of functional type in a cone.
In [], Ji, Bai and Ge studied the following singular multipoint boundary value problem:

(
φp

(
u′))′(t) + a(t)f

(
u(t)

)
= , t ∈ (, ),

u′() –
m–∑
i=

αiu(ξi) = , u′() +
m–∑
i=

αiu(ηi) = ,

where  < ξ < ξ < · · · < ξm– < ,  < η < η < · · · < ηm– < , ξi < ηi, αi >  for i =
, , . . . ,m – . By using fixed point index theory [] and the Legget-Williams fixed point
theorem [], sufficient conditions for the existence of countably many positive solutions
are established.
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Sun,Wang and Fan [] studied the nonlocal boundary value problem with p-Laplacian
of the form

(
φp

(
u�

))∇ (t) + h(t)f
(
t,u(t)

)
= , t ∈ [t, tm)T,

u�(t) –
n∑
j=

θju�(ηj) –
m–∑
i=

εiu(ξi) = , u�(tm) = ,

where  ≤ t < ξ < ξ < · · · < ξm– < tm and t < η < η < · · · < ηn < tm < +∞ and εi > ,
θj ≥  for i = , , . . . ,m –  and j = , , . . . ,n. By using the four functionals fixed point
theorem and five functionals fixed point theorem, they obtained the existence criteria of
at least one positive solution and three positive solutions.
Inspired by the mentioned works, in this paper we consider the following m-point

boundary value problem with an increasing homeomorphism and homomorphism:

(
φ
(
x�

))∇ (t) + h(t)f
(
t,x(t),x�(t)

)
= , t ∈ [, ]T, (.)

x�() –
m–∑
i=

αix(ξi) = , x�() +
m–∑
i=

αix(ηi) = , (.)

where T is a time scale, φ :R →R is an increasing homeomorphism and homomorphism
with φ() = . A projection φ : R → R is called an increasing homeomorphism and ho-
momorphism if the following conditions are satisfied:

(i) If x ≤ y, then φ(x)≤ φ(y) for all x, y ∈R;
(ii) φ is a continuous bijection and its inverse mapping is also continuous;
(iii) φ(xy) = φ(x)φ(y) for all x, y ∈R, where R = (–∞,∞).
We assume that the following conditions are satisfied:
(H) αi ≥ ,

∑m–
i= αi < ,  < ξ < ξ < · · · < ξm– < /, ξi + ηi = , i = , , . . . ,m – ,

/ ∈ T;
(H) f ∈ C([, ]T × [,∞)× (–∞,∞), (–∞,∞)) is symmetric on [, ]T (i.e.,

f (t,u, v) = f ( – t,u, –v) for t ∈ [, ]T);
(H) h ∈ Cld([, ]T, [,∞)) symmetric on [, ]T (i.e., h(t) = h( – t) for t ∈ [, ]T) and

h(t) 	=  on any subinterval of [, ]T.
By using four functionals fixed point theorem [], we establish the existence of at least

one symmetric positive solution for BVP (.)-(.). In particular, the nonlinear term
f (t,x(t),x�(t)) is allowed to change sign. The remainder of this paper is organized as fol-
lows. Section  is devoted to some preliminary lemmas. We give and prove our main re-
sult in Section . Section  contains an illustrative example. To the best of our knowledge,
symmetric positive solutions for multipoint BVP for an increasing homeomorphism and
homomorphism with sign-changing nonlinearity on time scales by using four functionals
fixed point theorem [] have not been considered till now. In this paper, we intend to fill
in such gaps in the literature.
In this paper, a symmetric positive solution x of (.) and (.) means a solution of (.)

and (.) satisfying x >  and x(t) = x( – t), t ∈ [, ]T.
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2 Preliminaries
To prove the main result in this paper, we will employ several lemmas. These lemmas are
based on the BVP

(
φ
(
x�

))∇ (t) + y(t) = , t ∈ [, ]T, (.)

x�() –
m–∑
i=

αix(ξi) = , x�() +
m–∑
i=

αix(ηi) = . (.)

Lemma . If condition (H) holds, then for y ∈ Cld[, ]T, boundary value problem (.)
and (.) has a unique solution x(t)

x(t) = –
∑m–

i= αi
∫ ηi
 φ–(Ay –

∫ s
 y(τ )∇τ )�s + φ–(Ay –

∫ 
 y(τ )∇τ )∑m–

i= αi

+
∫ t


φ–

(
Ay –

∫ s


y(τ )∇τ

)
�s (.)

or

x(t) =
φ–(Ay) +

∑m–
i= αi

∫ 
ξi

φ–(Ay –
∫ s
 y(τ )∇τ )�s∑m–

i= αi

–
∫ 

t
φ–

(
Ay –

∫ s


y(τ )∇τ

)
�s, (.)

where Ay satisfies

∫ 


φ–

(
Ay –

∫ s


y(τ )∇τ

)
�s = . (.)

Proof Suppose x is a solution of BVP (.), (.). Integrating (.) from  to t, we have

x�(t) = φ–
(
Ay –

∫ t


y(τ )∇τ

)
. (.)

Integrating (.) from  to t, we get

x(t) = x() +
∫ t


φ–

(
Ay –

∫ s


y(τ )∇τ

)
�s,

or integrating the same equation from t to , we achieve

x(t) = x() –
∫ 

t
φ–

(
Ay –

∫ s


y(τ )∇τ

)
�s.

Using boundary condition (.), we get

x(t) = –
∑m–

i= αi
∫ ηi
 φ–(Ay –

∫ s
 y(τ )∇τ )�s + φ–(Ay –

∫ 
 y(τ )∇τ )∑m–

i= αi

+
∫ t


φ–

(
Ay –

∫ s


y(τ )∇τ

)
�s (.)
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or

x(t) =
φ–(Ay) +

∑m–
i= αi

∫ 
ξi

φ–(Ay –
∫ s
 y(τ )∇τ )�s∑m–

i= αi

–
∫ 

t
φ–

(
Ay –

∫ s


y(τ )∇τ

)
�s, (.)

where Ay satisfies (.).
On the other hand, it is easy to verify that if x is the solution of (.) or (.), then x is a

solution of BVP (.), (.). The proof is accomplished. �

Lemma . If y(t) ∈ Cld[, ]T is nonnegative on [, ]T and y(t) 	≡  on any subinterval
of [, ]T, then there exists a unique Ay ∈ (–∞, +∞) satisfying (.). Moreover, there is a
unique σy ∈ (, ) such that Ay =

∫ σy
 y(τ )∇τ .

Proof For any y(t) ∈ (.), define

Hy(c) =
∫ 


φ–

(
c –

∫ s


y(τ )∇τ

)
�s.

So, Hy :R→ R is continuous and strictly increasing. It is easy to see that

Hy() < , Hy

(∫ 


y(τ )∇τ

)
> .

Therefore there exists a unique Ay ∈ (,
∫ 
 y(τ )∇τ ) ⊂ (–∞, +∞) satisfying (.). Further-

more, let

F(t) =
∫ t


y(τ )∇τ .

Then F(t) is continuous and strictly increasing on [, ]T and F() = , F() =
∫ 
 y(τ )∇τ .

Thus

 = F() < Ay < F() =
∫ 


y(τ )∇τ

implies that there exists a unique σy ∈ (, ) such that Ay =
∫ σy
 y(τ )∇τ . Lemma is proved.

�

Remark . By Lemmas . and ., the unique solution of BVP (.), (.) can be rewrit-
ten in the form

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

–∑m–
i= αi

[
∑m–

i= αi
∫ ηi
 φ–(

∫ σy
s y(τ )∇τ )�s – φ–(

∫ 
σy
y(τ )∇τ )]

+
∫ t
 φ–(

∫ σy
s y(τ )∇τ )�s,  ≤ t ≤ σy,

–∑m–
i= αi

[
∑m–

i= αi
∫ 
ξi

φ–(
∫ s
σy
y(τ )∇τ )�s – φ–(

∫ σy
 y(τ )∇τ )]

+
∫ 
t φ–(

∫ s
σy
y(τ )∇τ )�s, σy ≤ t ≤ .

(.)

http://www.boundaryvalueproblems.com/content/2013/1/52
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Lemma . Let (H) hold. If y ∈ C�
ld[, ]T is nonnegative on [, ]T and y(t) 	≡  on any

subinterval of [, ]T, then the unique solution x(t) of BVP (.)-(.) has the following prop-
erties:

(i) x(t) is concave on [, ]T,
(ii) x(t) > ,
(iii) there exists a unique t ∈ (, )T such that x�(t) = ,
(iv) σy = t.

Proof Suppose that x(t) is a solution of BVP (.)-(.), then
(i) (φ(x�))∇ (t) = –y(t) ≤ , φ(x�) is nonincreasing so x�(t) is nonincreasing. This implies

that x(t) is concave.
(ii) We have x�() =

∑m–
i= αix(ξi) = φ–(Ay) >  and x�() = φ–(Ay –

∫ 
 y(s)∇(s)) < .

Furthermore, we get

αx(ξ) – αx() = α

∫ ξ


x�(s)�s≤ αξx�() = αξ

m–∑
i=

αix(ξi),

αx(ξ) – αx() = α

∫ ξ


x�(s)�s≤ αξx�() = αξ

m–∑
i=

αix(ξi).

If we continue like this, we have

αm–x(ξm–) – αm–x() = αm–

∫ ξm–


x�(s)�s≤ αm–ξm–x�()

= αm–ξm–

m–∑
i=

αix(ξi).

Using (H), we obtain

m–∑
i=

αix(ξi) –
m–∑
i=

αix()≤
m–∑
i=

αix(ξi)
m–∑
i=

αiξi <
m–∑
i=

αix(ξi),

which implies that x() > . Similarly,

αx() – αx(η) = α

∫ 

η

x�(s)�s≥ α( – η)x�() = –α( – η)
m–∑
i=

αix(ηi),

αx() – αx(η) = α

∫ 

η

x�(s)�s≥ α( – η)x�() = –α( – η)
m–∑
i=

αix(ηi).

If we continue in this way, we attain that

αm–x() – αm–x(ηm–) = αm–

∫ 

ηm–

x�(s)�s≥ αm–( – ηm–)x�()

= –αm–( – ηm–)
m–∑
i=

αix(ηi).

Using (H), we have
∑m–

i= αix() > , x() > . Therefore, we get x(t) > , t ∈ [, ]T.

http://www.boundaryvalueproblems.com/content/2013/1/52
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(iii) x�() =
∑m–

i= αix(ξi) > , x�() = –
∑m–

i= αix(ηi) <  imply that there is a t ∈ (, )
such that x�(t) = .
If there exist t, t ∈ (, ), t < t, such that x�(t) =  = x�(t), then

 = φ
(
x�(t)

)
– φ

(
x�(t)

)
= –

∫ t

t
y(τ )∇τ < ,

which is a contradiction.
(iv) From Lemmas . and ., we have x�(t) = φ–(

∫ σy
t y(τ )∇τ ). Hence we obtain that

x�(σy) = x�(t) = . This implies σy = t.
The lemma is proved. �

Lemma . If y(t) ∈ Cld[, ]T is symmetric nonnegative on [, ]T and y(t) 	≡  on any
subinterval of [, ]T, then the unique solution x(t) of (.), (.) is concave and symmetric
with x(t)≥  on [, ]T.

Proof Clearly, x(t) is concave and x(t) ≥  from Lemma .. We show that x(t) is sym-
metric on [, ]T. For the symmetry of y(t), it is easy to see that Hy(

∫ /
 y(τ )∇τ ) = , i.e.,

σy = /. Therefore, from (.) and for t ∈ [, /]T, by the transformation τ =  – τ̂ , we
have

x(t) =
–

∑m–
i= αi

∫ ηi
 φ–(

∫ /
s y(τ )∇τ )�s + φ–(

∫ 
/ y(τ )∇τ )∑m–

i= αi

+
∫ t


φ–

(∫ /

s
y(τ )∇τ

)
�s

=
∑m–

i= αi
∫ ηi
 φ–(

∫ /
–s y(τ̂ )∇ τ̂ )�s + φ–(

∫ /
 y(τ̂ )∇ τ̂ )∑m–

i= αi

–
∫ t


φ–

(∫ /

–s
y(τ̂ )∇ τ̂

)
�s.

Again, let s =  – ŝ. Then

x(t) =
–

∑m–
i= αi

∫ –ηi
 φ–(

∫ /
ŝ y(τ̂ )∇ τ̂ )�ŝ + φ–(

∫ /
 y(τ̂ )∇ τ̂ )∑m–

i= αi

+
∫ –t


φ–

(∫ /

ŝ
y(τ̂ )∇ τ̂

)
�ŝ

=
–

∑m–
i= αi

∫ 
ξi

φ–(
∫ s
/ y(τ )∇τ )�s + φ–(

∫ /
 y(τ )∇τ )∑m–

i= αi

+
∫ 

–t
φ–

(∫ s

/
y(τ )∇τ

)
�s

= x( – t).

So, x(t) is symmetric on [, ]T. The proof is accomplished. �

http://www.boundaryvalueproblems.com/content/2013/1/52
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Let E = C�
ld[, ]T. Then E is a Banach space with the norm

‖x‖ =max
{

sup
t∈[,]T

∣∣x(t)∣∣, sup
t∈[,]T

∣∣x�(t)
∣∣}.

We define two cones by

P =
{
x : x ∈ E,x(t)≥ , t ∈ [, ]T

}
,

K =

{
x ∈ E : x(t)≥ ,x�() =

m–∑
i=

αix(ξi),x(t) is concave and symmetric on [, ]T

}
.

Define the operator F : P → E by

(Fx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–∑m–
i= αi

∑m–
i= αi

∫ ηi
 φ–(

∫ /
s h(τ )f (τ ,x(τ ),x�(τ ))∇τ )�s

+ ∑m–
i= αi

φ–(
∫ 
/ h(τ )f (τ ,x(τ ),x

�(τ ))∇τ )

+
∫ t
 φ–(

∫ /
s h(τ )f (τ ,x(τ ),x�(τ ))∇τ )�s,  ≤ t ≤ /,

∑m–
i= αi

φ–(
∫ /
 h(τ )f (τ ,x(τ ),x�(τ ))∇τ )

– ∑m–
i= αi

∑m–
i= αi

∫ 
ξi

φ–(
∫ s
/ h(τ )f (τ ,x(τ ),x

�(τ ))∇τ )�s

+
∫ 
t φ–(

∫ s
/ h(τ )f (τ ,x(τ ),x

�(τ ))∇τ )�s, / ≤ t ≤ 

and T : K → E as follows:

(Tx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–∑m–
i= αi

∑m–
i= αi

∫ ηi
 φ–(

∫ /
s h(τ )f +(τ ,x(τ ),x�(τ ))∇τ )�s

+ ∑m–
i= αi

φ–(
∫ 
/ h(τ )f

+(τ ,x(τ ),x�(τ ))∇τ )

+
∫ t
 φ–(

∫ /
s h(τ )f +(τ ,x(τ ),x�(τ ))∇τ )�s, ≤ t ≤ /,

∑m–
i= αi

φ–(
∫ /
 h(τ )f +(τ ,x(τ ),x�(τ ))∇τ )

– ∑m–
i= αi

∑m–
i= αi

∫ 
ξi

φ–(
∫ s
/ h(τ )f

+(τ ,x(τ ),x�(τ ))∇τ )�s

+
∫ 
t φ–(

∫ s
/ h(τ )f

+(τ ,x(τ ),x�(τ ))∇τ )�s, / ≤ t ≤ ,

where f +(t,x(t),x�(t)) = max{f (t,x(t),x�(t)), }. Obviously, x is a solution of BVP (.)-
(.) if and only if x is a fixed point of the operator F .

Lemma . If (H) holds, then supt∈[,]T x(t)≤ M supt∈[,]T |x�(t)| for x ∈ K , where

M =  +
∑m–

i= αi
. (.)

Proof For x ∈ K , one arrives at

 = x() – x()≤ x(ξi) – x()
ξi

,

i.e., x(ξi) ≥ x(). Hence,

m–∑
i=

αix(ξi)≥
m–∑
i=

αix().

http://www.boundaryvalueproblems.com/content/2013/1/52
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By x�() =
∑m–

i= αix(ξi), we get

x()≤ ∑m–
i= αi

x�().

Hence

x(t) =
∫ t


x�(s)�s + x()≤ tx�() + x()≤ tx�() +

∑m–
i= αi

x�()

≤
(
 +

∑m–
i= αi

)
x�() =Mx�(),

i.e.,

sup
t∈[,]T

x(t)≤ Mx�() =M sup
t∈[,]T

x�(t) ≤ M sup
t∈[,]T

∣∣x�(t)
∣∣.

The proof is finalized. �

From Lemma ., we obtain

‖x‖ = max
{

sup
t∈[,]T

∣∣x(t)∣∣, sup
t∈[,]T

∣∣x�(t)
∣∣}

≤ max
{
M sup

t∈[,]T

∣∣x�(t)
∣∣, sup
t∈[,]T

∣∣x�(t)
∣∣}

≤ M sup
t∈[,]T

∣∣x�(t)
∣∣.

Lemma . Suppose that (H)-(H) hold, then T : K → K is completely continuous.

Proof Let x ∈ K . According to the definition of T and Lemma ., it follows that
(φ((Tx)�))∇ (t) ≤ , which implies the concavity of (Tx)(t) on [, ]T. On the other hand,
from the definition of f and h, (Tx)(t) = (Tx)( – t) holds for t ∈ [, /]T, i.e., Tx is sym-
metric on [, ]T. So, TK ⊂ K . By applying the Arzela-Ascoli theorem on time scales, we
can obtain that T(K) is relatively compact. In view of the Lebesgue convergence theo-
rem on time scales, it is obvious that T is continuous. Hence, T : K → K is a completely
continuous operator. The proof is completed. �

3 Existence of one symmetric positive solution
Let α and � be nonnegative continuous concave functionals on P, and let β and θ be
nonnegative continuous convex functionals on P, then for positive numbers r, j, n and R,
we define the sets:

Q(α,β , r,R) =
{
x ∈ P : r ≤ α(x),β(x)≤ R

}
,

U(� , j) =
{
x ∈Q(α,β , r,R) : j ≤ �(x)

}
, (.)

V (θ ,n) =
{
x ∈Q(α,β , r,R) : θ (x)≤ n

}
.

http://www.boundaryvalueproblems.com/content/2013/1/52
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Theorem . [] If P is a cone in a real Banach space E, α and � are nonnegative contin-
uous concave functionals on P, β and θ are nonnegative continuous convex functionals on
P and there exist positive numbers r, j, n and R such that

A :Q(α,β , r,R)→ P

is a completely continuous operator, and Q(α,β , r,R) is a bounded set. If
(i) {x ∈U(� , j) : β(x) < R} ∩ {x ∈ V (θ ,n) : r < α(x)} 	= ∅;
(ii) α(Ax)≥ r for all x ∈ Q(α,β , r,R), with α(x) = r and n < θ (Ax);
(iii) α(Ax)≥ r for all x ∈ V (θ ,n), with α(x) = r;
(iv) β(Ax)≤ R for all x ∈ Q(α,β , r,R), with β(x) = R and �(Ax) < j;
(v) β(Ax)≤ R for all x ∈ U(� , j), with β(x) = R.

Then A has a fixed point x in Q(α,β , r,R).

Suppose ω, z ∈ T with  < ω < z < /. For the convenience, we take the notations

� =
∫ z

w
h(τ )∇τ , � =

∫ 


h(τ )∇τ , L =

∑m–
i= αi

 –
∑m–

i= αiξiηi

and define the maps

α(x) = min
t∈[ω,z]T

x(t), θ (x) = max
t∈[,]T

x(t), β(x) = �(x) = sup
t∈[,]T

∣∣x�(t)
∣∣ (.)

and let Q(α,β , r,R), U(� , j) and V (θ ,n) be defined by (.).

Theorem. Assume (H)-(H) hold. If there exist constants r, j, n,Rwithmax{ r
ω ,R} ≤ n,

max{ L+L j, L+
Lω(–ω)+ r} < R and suppose that f satisfies the following conditions:

(C) f (t,u, v)≥ 
�

φ( r
ω
) for (t,u, v) ∈ [ω, z]T × [r,n]× [–R,R];

(C) f (t,u, v)≤ 
�

φ(R) for (t,u, v) ∈ [, ]T × [,MR]× [j,R];
(C) f (t,u, v)≥  for (t,u, v) ∈ [, ]T × [,MR]× [–R,R].

Then BVP (.)-(.) has at least one symmetric positive solution x ∈ P such that

min
t∈[ω,z]T

x(t)≥ r, max
t∈[,]T

x(t)≤ R.

Proof Boundary value problem (.)-(.) has a solution x = x(t) if and only if x solves
the operator equation x = Tx. Thus we set out to verify that the operator T satisfies four
functionals fixed point theorem, which will prove the existence of a fixed point of T .
We first show that Q(α,β , r,R) is bounded and T : Q(α,β , r,R) → K is completely con-

tinuous. For all x ∈Q(α,β , r,R) with Lemma ., we have

‖x‖ ≤ M sup
t∈[,]T

∣∣x�(t)
∣∣ =Mβ(x) ≤MR,

which means that Q(α,β , r,R) is a bounded set. According to Lemma ., it is clear that
T :Q(α,β , r,R)→ K is completely continuous.
Let

x =
R

L + 
(
Lt( – t) + 

)
.
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Tokmak and Karaca Boundary Value Problems 2013, 2013:52 Page 10 of 12
http://www.boundaryvalueproblems.com/content/2013/1/52

Clearly, x ∈ K . By direct calculation,

α(x) = x(ω) =
R

L + 
(
Lω( –ω) + 

)
>

L + 
Lω( –ω) + 

r
Lω( –ω) + 

L + 
= r,

β(x) = sup
t∈[,]T

∣∣x�
 (t)

∣∣ ≤ R
L + 

L < R, ψ(x) = β(x)≥ j,

θ (x) = x(/) =
R

L + 
(
L(/)( – /) + 

)
=

L + 
(L + )

R < R≤ n.

So, x ∈ {x ∈ U(� , j) : β(x) < R} ∩ {x ∈ V (θ ,n) : r < α(x)}, which means that (i) in Theo-
rem . is satisfied.
For all x ∈Q(α,β , r,R), with α(x) = r and n < θ (Tx), we have from concavity

α(Tx) = Tx(ω) ≥ ω

/
Tx(/) = ωθ (Tx) > ωn≥ r.

So, α(Tx) > r. Hence (ii) in Theorem . is fulfilled.
For all x ∈ V (θ ,n), with α(x) = r,

α(Tx) = min
t∈[ω,z]T

Tx(t) = (Tx)(ω)

=
–∑m–
i= αi

m–∑
i=

αi

∫ ηi


φ–

(∫ /

s
h(τ )f +

(
τ ,x(τ ),x�(τ )

)∇τ

)
�s

+
∑m–

i= αi
φ–

(∫ 

/
h(τ )f +

(
τ ,x(τ ),x�(τ )

)∇τ

)

+
∫ ω


φ–

(∫ /

s
h(τ )f +

(
τ ,x(τ ),x�(τ )

)∇τ

)
�s

≥
∫ ω


φ–

(∫ /

ω

h(τ )f +
(
τ ,x(τ ),x�(τ )

)∇τ

)
�s

= ωφ–
(∫ /

ω

h(τ )f +
(
τ ,x(τ ),x�(τ )

)∇τ

)

≥ ωφ–
(∫ z

ω

h(τ )f +
(
τ ,x(τ ),x�(τ )

)∇τ

)

≥ ωφ–
(

�

φ

(
r
ω

)∫ z

ω

h(τ )∇τ

)
= r

and for all x ∈U(� , j), with β(x) = R,

β(Tx) = max
t∈[,]T

∣∣(Tx)�(t)∣∣ = (Tx)�()

= φ–
(∫ /


h(τ )f +

(
τ ,x(τ ),x�(τ )

)∇τ

)

≤ φ–
(∫ 


h(τ )f +

(
τ ,x(τ ),x�(τ )

)∇τ

)

≤ φ–
(

�

φ(R)
∫ 


h(τ )∇τ

)
= R.

Thus (iii) and (v) in Theorem . hold true.We finally prove that (iv) in Theorem . holds.
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For all x ∈Q(α,β , r,R), with β(x) = R and �(Tx) < j, we have

β(Tx) = �(Tx) < j <
L

L + 
R < R.

Thus, all conditions of Theorem . are satisfied. T has a fixed point x in Q(α,β , r,R).
Clearly,  ≤ x(t) ≤ MR, t ∈ [, ]T. By condition (C), we have f (t,x(t),x�(t)) ≥ , t ∈
[, ]T, that is, f +(t,x(t),x�(t)) = f (t,x(t),x�(t)). Hence, Fx = Tx. This means that x is a
fixed point of the operator F . Therefore, BVP (.)-(.) has at least one symmetric posi-
tive solution. The proof is completed. �

4 An example
Example . Let T = [,  ]∪{ 

 }∪ [  , ]. If we choosem = , ξ = 
 , η =


 , α = 

 , h(t) = 
in boundary value problem (.)-(.), then we have the following BVP on time scale T:

⎧⎨
⎩(φ(x�))∇ (t) + f (t,x(t),x�(t)) = , t ∈ [, ]T,

x�() – 
x(


 ) = , x�() + 

x(

 ) = ,

(.)

where φ(x) = x,

f
(
t,x(t),x�(t)

)
= t( – t)

(
–


x(t) + 

)
,

(
t,x(t),x�(t)

) ∈ [, ]T × [, +∞)× (–∞, +∞). (.)

Set ω = 
 , z =


 . By simple calculation, we get

� =



, � = , L =



, M = .

Choose r = 
 , n = , j =  and R = . It is easy to check that max{ 

 , } ≤ , max{  ,


 } < .
() f (t,x(t),x�(t)) ≥ 

 ≥ 
�

φ( r
ω
) =  for (t,x(t),x�(t)) ∈ [  ,


 ]T × [ 

 , ]× [–, ];
() f (t,x(t),x�(t)) ≤  ≤ 

�
φ(R) =  for (t,x(t),x�(t)) ∈ [, ]T × [, ]× [, ];

() f (t,x(t),x�(t)) ≥  for (t,x(t),x�(t)) ∈ [, ]T × [, ]× [–, ].
So, all conditions of Theorem . hold. Thus, by Theorem ., BVP (.) has at least one
symmetric positive solution x such that

min
t∈[  ,  ]T

x(t)≥ 


, max
t∈[,]T

x(t)≤ .
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