
The Pennsylvania State University
The Graduate School

Department of Computer Science and Engineering

A LOGICAL FRAMEWORK FOR REASONING ABOUT
LOGICAL SPECIFICATIONS

A Thesis in
Computer Science and Engineering

by
Alwen F. Tiu

c© 2004 Alwen F. Tiu

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

May 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/20671632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The thesis of Alwen F. Tiu was reviewed and approved* by the following:

John Hannan
Associate Professor of Computer Science and Engineering
Thesis Adviser
Chair of Committee

Mahmut Kandemir
Assistant Professor of Computer Science and Engineering

Padma Raghavan
Associate Professor of Computer Science and Engineering

Stephen Simpson
Professor of Mathematics

Frank Pfenning
Professor of Computer Science
Carnegie Mellon University
Special member

Raj Acharya
Professor of Computer Science and Engineering
Head of the Department of Computer Science and Engineering

*Signatures are on file in the Graduate School.

iii

Abstract

We present a new logic, Linc, which is designed to be used as a framework for
specifying and reasoning about operational semantics. Linc is an extension of first-
order intuitionistic logic with a proof theoretic notion of definitions, induction and co-
induction, and a new quantifier ∇. Definitions can be seen as expressing fixed point
equations, and the least and greatest solutions for the fixed point equations give rise
to the induction and co-induction proof principles. The quantifier ∇ focuses on the
intensional reading of ∀ and is used to reason about encodings of object systems involving
abstractions. The logic Linc allows quantification over λ-terms which makes it possible
to reason about encodings involving higher-order abstract syntax, a clean and declarative
treatment of syntax involving abstraction and substitution. All these features of Linc
co-exist within the same logic, allowing for expressing proofs involving induction and co-
induction on both first-order and higher-order encodings of operational semantics. We
prove the cut-elimination and the consistency results for Linc, extending the reducibility
technique due to Tait and Martin-Löf. We illustrate the applications of Linc in a number
of areas, ranging from data structures, abstract transition systems, object logic and
functional programming. The expressive power of the full logic is demonstrated in the
encoding of π-calculus, where we show that the notion of names in the calculus can
naturally be interpreted in the quantification theory of Linc.

iv

Table of Contents

List of Tables . vi

List of Figures . vii

Acknowledgments . viii

Chapter 1. Introduction . 1
1.1 A logical treatment of names and abstractions 2
1.2 Outline of the thesis . 4

Chapter 2. The Logic Linc . 5
2.1 Intuitionistic logic with generic judgments 5
2.2 A proof theoretic notion of definitions 9
2.3 Induction and co-induction . 11
2.4 Some derived rules . 14

2.4.1 Complete set of unifiers . 16
2.4.2 Patterned definitions . 17

2.5 Related work . 20

Chapter 3. Properties of Derivations . 22
3.1 Instantiating derivations . 22
3.2 Atomic initial rule . 24
3.3 Weakening and scoping of signatures 25
3.4 Unfolding of derivations . 29
3.5 Logical equivalence . 34
3.6 Horn definitions and ∇ . 35
3.7 Proof search . 37

Chapter 4. Cut Elimination for Linc . 40
4.1 Cut reduction . 42
4.2 Normalizability and reducibility . 53

4.2.1 Normalizability . 53
4.2.2 Generated Sets . 54
4.2.3 Reducibility . 57
4.2.4 Reducibility of unfolded derivations 60

4.3 Cut elimination . 66
4.4 Conclusion . 75

Chapter 5. Reasoning about Logical Specifications in Linc 77
5.1 Natural numbers . 77
5.2 Lists . 81

v

5.2.1 Finite lists . 81
5.2.2 Infinite lists . 84

5.3 Abstract transition systems . 89
5.3.1 Bisimulation . 91

5.4 Object logic . 92
5.5 The lazy λ-calculus . 95
5.6 Conclusion and related work . 97

Chapter 6. Encoding π-calculus . 99
6.1 Finite late π-calculus . 100
6.2 One-step transitions . 102
6.3 Strong bisimilarity . 108
6.4 Strong congruence and distinction 126
6.5 π-calculus with replication . 128
6.6 Conclusion and related work . 133

Chapter 7. Conclusion and Future Work . 136
7.1 Summary of accomplishments . 136
7.2 Future work . 137

References . 139

vi

List of Tables

6.1 Signatures for π-calculus . 101

vii

List of Figures

2.1 The core rules of Linc . 7
2.2 Inference rules for equality, definition and (co-)induction. 15

5.1 A formal proof of the functionality of sum. 79
5.2 A formal proof of the totality of sum. 80
5.3 Freeness property of lists. 81
5.4 A proof of the take lemma. 88
5.5 One-step transition for CCS . 89
5.6 Encoding of one-step transition of CCS in Linc. 90
5.7 Simulation and bisimulation for CCS . 92
5.8 Interpreter for an object-level logic. 93
5.9 A proof of transitivity of applicative simulation. 98

6.1 The operational semantics of the late π-calculus. 103
6.2 The HOAS representation of the late π-calculus. 104
6.3 Definition clauses for one-step transition of π-calculus 105
6.4 The proof of a negation. 106
6.5 Lazy encoding of strong late bisimulation 109
6.6 Example of bisim with bound input . 110
6.7 Example of bisim with bound output 111
6.8 A complete encoding of strong late bisimulation 119
6.9 The late transition rules for π-calculus with replication 127
6.10 The late transition rules for π-calculus with replication (HOAS) 128
6.11 Some derivations in Linc with D!π . 131
6.12 A proof of transitivity of bisim. 134

viii

Acknowledgments

I thank Dale Miller, my former adviser, for his encouragement and guidance dur-
ing the conduct of the research project presented in this thesis. I have benefited from
a number discussions with Catuscia Palamidessi on the subject of π-calculus. Alberto
Momigliano has contributed to this work through our joint work on induction and co-
induction. He has also provided me with many examples and background literatures
on induction and co-induction. I have also benefited from the discussions with Gopalan
Nadathur on the reducibility technique used in the cut-elimination proof in this thesis.
I thank Jamie Gabbay and Alexis Saurin for their interest in my work and for valuable
discussions concerning the ∇ quantifier. I thank John Hannan for accepting the respon-
sibility to be my formal adviser. My former PhD committee members: John Hannan,
Vijay Saraswat, Stephen Simpson have provided helpful suggestions in the early phase of
this work. Alexis, Dale, John and Frank Pfenning have read and reviewed an earlier draft
of this thesis, and made useful suggestions to improve it. I thank Kai Brünnler, Paola
Bruscoli, Alessio Guglielmi, Charles Stewart and Lutz Strassburger for the interesting
discussions during my visit in Dresden. I am grateful for the support and encourage-
ment I received from my family. My stay in State College and Paris would not have been
enjoyable without the company of my friends. I especially thank Bina Gubhaju for her
constant support and friendship, and also for her help in editing the thesis.

This work has been funded in part by NSF grants CCR-9912387, INT-9815645,
and INT-9815731. My stay in France has been kindly supported by LIX, École poly-
technique.

1

Chapter 1

Introduction

The operational semantics of computation systems are commonly specified as
deductive systems, in the style of Plotkin’s structural operational semantics [46] or Kahn’s
natural semantics [26]. Computation in this setting is represented as deduction. In this
representation, it is possible to use the structure of deduction to prove properties of the
specified computation system, by structural induction for example. A deductive system
is usually given as a set of inference rules, which typically admit simple logical reading.
Consider for example the evaluation relation in functional programming language, e.g.,

M ⇓λx.P P [N/x]⇓V

(MN)⇓V

where P [N/x] denotes a term obtained from P by substituting all free occurrences of x
in P with N (of course, incidental capturing of free variables in N must be avoided). The
reading of the rule is usually described at the meta-language (English for example) as
something like “if M evaluates to λx.P and P [N/x] evaluates to V , then (MN) evaluates
to V ”. We may formalize 1 this informal specification as the logical theory

M ⇓λx.P ∧ P [N/x]⇓V ⊃ (MN)⇓V

Given this logical specification, evaluation (computation) of an expression M is inter-
preted as proof search for the formula ∃V.M ⇓V . We thus can equally represent a
deductive system (and hence operational semantics) in logic as logical theories, based on
which proof search is used to model computation. This idea of using logic to represent
computation system is in line with the study of logical frameworks [44].

Reasoning about the properties of computation in its encoding in logic can benefit
from the structural properties of formal (normal) proofs, compositionality of proofs, and
other meta-theories of the specification logic. In this thesis, we introduce a new logic,
called Linc (for a logic with λ-terms, induction, ∇ and co-induction), to be used as a
framework for specifying and reasoning about operational semantics. Linc is an exten-
sion of first-order intuitionistic logic presented in sequent calculus [18]. More specifically,
Linc can be seen as an extension of the logic FOλ∆IN [28]. The main novelties of Linc
are the formalization of induction and co-induction [43] proof principles as explicit proof
rules, and the introduction of a new quantifier, ∇, to facilitate reasoning about generic
judgments, i.e., judgments which involve universal quantifications. The induction rules

1Of course, to be fully formal, we need to formalize substitution as well. We leave out the
explicit representation of substitution to simplify the illustration.

2

extend FOλ∆IN’s natural number induction to allow induction proofs over iterative in-
ductive definitions [27]. Both induction and co-induction proof principles are essential
in reasoning about recursively defined objects, such as fixed points construction in func-
tional programming languages or process calculi, while the∇ quantifier naturally encodes
the dynamics of names in computation systems. The notion of names abstracts the use
of identifiers in performing computation, such as reference to location in memories or
networks, pointers, encryption keys, nonces in security protocols, etc. Underlying these
uses of names are the notions of scoping and freshness of names and distinction among
names. These notions find natural interpretation in the quantification theory of Linc, in
which ∇ plays an essential role.

Our formalization of (co-)induction is actually based on a proof theoretic notion
of definition, following on work by Schroeder-Heister [50], Eriksson [14], Girard [21],
Stärk [55] and McDowell and Miller [29]. Definitions are essentially logic programs
which are stratified so as to avoid cyclic calling through negations. Deductive systems
can alternatively be encoded as definitions. The introduction rules for defined atoms
treat the definitions as “closed” or defining fixed points. This alone gives us the ability
to perform case analyses, which can be used for reasoning about the must-behaviors
of computation systems, i.e., properties which are true for all computation paths. Our
approach to formalizing induction and co-induction is via the least and greatest solutions
of the fixed equations specified by the definitions. Such least and greatest solutions
are guaranteed to exist by the stratification on definitions (which are basically some
monotonicity condition). The proof rules for the induction and co-induction makes use
of the notion of pre-fixed points and post-fixed points [43], respectively. In the inductive
case, this is simply the induction invariant, while in the co-inductive one it corresponds
to the so-called simulation.

Another important feature of Linc is that it allows quantification over λ-terms
which makes it possible to support higher-order abstract syntax (HOAS). Higher-order
abstract syntax is a declarative treatment of syntax involving abstraction and substi-
tution. The idea of HOAS is to use λ-abstraction to encode object-level (computation
system) abstraction and to use β-reduction to encode substitution. Linc has a built-in
equality predicate whose introduction rules make use of unification and matching, on
both first-order and higher-order λ-terms. The full system with ∇ and (co-)induction
allows for expressing a rich class of inductive and co-inductive proofs involving higher-
order abstract syntax, where the notion of freshness and scoping of variables plays an
essential role.

1.1 A logical treatment of names and abstractions

Part of the motivation in having a new quantifier, ∇, in our framework is that
the existing ones are not expressive enough for encoding certain uses of abstractions in
operational semantics. Consider for example the problem of encoding the π-calculus [40].
The static structure of the abstractions in the π-calculus is encoded in Linc as λ-terms,
following the encoding style of higher-order abstract syntax. Name-binding operator in
this object system is mapped to function symbol which takes as argument an abstraction.

3

Consider the following expressions in π-calculus:

(x)P and a(x).P,

where (x) and a(x) are the binding operators and P is a process expression. The binder
(x) is called restriction and a(x) is the input prefix. To represent these terms in Linc,
we first introduce the types n and p corresponding to the syntactic categories of names
and process expressions in π-calculus. We then define the constants

ν : (n → p) → p in : n → (n → p) → p.

The above process expressions are encoded as the meta-level terms νλx.P and in a λx.P.
The use of higher-order abstract syntax produces a better reading of the inference rules
in π-calculus. In particular, complicated side conditions disappear from the description
of the rules, as they are now part of the description of meta-level syntax (see Chapter 6
for details).

The input prefix and the restriction operator have different operational meaning.
An input-prefixed process x(y).P can evolve into the process P [w/y] for any name w,
while the process (y)P can evolve to P [a/y] for some “fresh” name a. These different
dynamics of names are captured in Linc by the use of ∀ (to encode “for all names”) and∇
(to encode the freshness of names). A common approach to encode fresh-name generation
is via the use of ∀-quantifier. The use of universal quantification has been considered
in the extended natural semantics [23]. The operational behavior of this encoding in
proof search is given by eigenvariable, which provides a fresh, scoped constant in proof
search. Eigenvariable has been used in the encoding of restrictions in the π-calculus [34],
nonces in security protocols [6], reference locations in imperative programming [8, 35],
and constructors hidden within abstract data-types [32].

The ∀-encoding is adequate as long as we are concerned only with encoding com-
putations but not with proving properties about the computations. In the latter case,
the use of ∀ for fresh name generation is problematic. To see why, suppose we are given a
computation P x y involving two fresh names x and y. In the ∀-encoding, we would have
a proof for ∀x∀y.P x y. However, since ∀x∀y.P x y ⊃ ∀z.P z z is a theorem of logic, we
would have another computation in which the names x and y are identified. Let us refer
to this theorem as the diagonal property of ∀. Of course, this might not be the intended
meaning of the fresh names in the object system. One key idea in designing ∇ is that
the diagonal property should fail for ∇, that is, ∇x∇y.P x y ⊃ ∇z.P z z should not be
a theorem in Linc. Thus, ∇, by design, does not entails ∀. That is, the extensionality
property, ∇x.Bx ⊃ B t, for any term t, does not hold either. This suggests that ∇ is
suitable for encoding object systems with fresh name generation, where in the course of
computation this fresh name stays unchanged, e.g., the ν-binder in π-calculus and its
variants, and is less suitable for encoding abstraction which implies certain extensionality
behavior, e.g., the λ-binder in λ-calculus. The latter implies that Linc does not directly
capture fully the induction over higher-order abstract syntax, although it can still be
done via an indirect approach as it was done in FOλ∆IN.

4

1.2 Outline of the thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the
logic Linc in an incremental fashion, starting from its core fragment, which is basically
Church’s Simple Theory of Types with the quantifier ∇, followed by the introduction of
definitions and induction and co-induction. Chapter 3 presents the meta-theories of the
logic, some of which are used in the proof of cut-elimination in Chapter 4. Chapter 4
presents the central result of this thesis, that is, the cut-elimination proof for Linc. The
consistency of Linc is shown to be a simple corollary of cut-elimination. Our proof
of cut-elimination extends the cut-elimination proof of FOλ∆IN which makes use of
the technique of reducibility due to Tait [56]. Chapter 5 illustrates the applications of
Linc in a number of areas, ranging from reasoning about (co-)inductive data structures
(natural numbers, finite lists and lazy lists), abstract transition systems, object logic
and functional language (the lazy λ-calculus). These examples illustrate the use of both
induction and co-induction rules, in the first-order and higher-order encodings. The
application of ∇, with induction and co-induction, is demonstrated in the encoding of
π-calculus in Chapter 6. In this chapter we show that the quantifiers in Linc capture the
treatment of names in π-calculus, as illustrated in the encoding of strong late bisimulation
and strong late congruence. Chapter 7 summarizes the thesis and discusses possible
future work.

5

Chapter 2

The Logic Linc

In this chapter we define formally the sequent calculus of the logic Linc. Linc is an
extension of Church’s Simple Theory of Types with a new quantifier ∇, a proof theoretic
notion of definitions and induction and co-induction proof principles. The quantifier ∇
focuses on the intensional reading of ∀, i.e., to provide fresh, scoped constants in proof
search. To incorporate this new quantifier, it is necessary to consider a richer context
in sequents. Section 2.1 shows how this can be done and gives the core rules of Linc.
Section 2.2 formalizes the notion of definitions and Section 2.3 shows how to extend the
notion of definitions to define the induction and co-induction rules. Section 2.4 shows
some derived rules which are useful later in applications. Section 2.5 reviews some related
work.

2.1 Intuitionistic logic with generic judgments

The usual intuitionistic sequent is of the form

Σ ; B1, . . . , Bn −→ B0

where Σ is the (global) signature of the sequent, containing the eigenvariables, and
B0, . . . , Bn are formulas. We can view sequent of this form as a binding structure,
that is, the free variables in the formulas in the sequent are bound by Σ. We consider
introducing a new layer of abstraction into the sequent, whose scope is local to each
formula. This additional layer of abstraction is motivated by applications in reasoning
about object systems involving abstractions [28]. The enriched sequent takes the form

Σ ; σ1 . B1, . . . , σn . Bn −→ σ0 . B0,

where each σi is a local signature, i.e., a list of variables locally scoped over the formula.
The dynamic of the local signature is provided by a new quantifier, ∇, in much the same
way as the dynamic of global signature (eigenvariables) is provided by ∀.

Before we proceed with the inference rules for Linc, let us go through some no-
tational convention. Variables in both global and local signatures are simply typed,
following the type system of Church. That is, types are built from base types and the
binary type constructor →. The variables can have any types as long as they do not
contain the type o, which is reserved for the type of formulas. We refer to types which
do not contain o as object types, and variables and constants of object types are some-
times referred to as object variables and object constants, respectively. Thus variables
in signatures are of object types. Types will be denoted by α, β, and τ , with or without
indexes. The typing judgment is of the form Σ ` t : τ , where Σ is the type context (i.e.,

6

set of type variables). Here we use Church’s type system for simply typed λ terms. If
we need to be explicit about the type of a variable, like when describing signatures, the
type information will be written after the variable, separated by colon, e.g., x : τ . Type
annotation will often be dropped when it is clear from context which type a variable has,
or when the type is irrelevant to the context of discussion.

Given a list of typed variables x̄ = x1 : α1, . . . , xn : αn we sometimes wish to
extract just the type information, in which case we would write τ̂(x̄) to denote the list of
types α1, . . . , αn. In addition to signatures (which are basically variables), we shall also
assume a set of object-typed constants in proof-construction. Since the set of constants
does not grow during proof construction, it will not be written explicitly in the sequent.
We assume that the set of variables and constants are always distinct, i.e., there is no
accidental use of the same name for denoting both variable and constant.

We shall consider sequents to be binding structures in the sense that the signa-
tures, both the global and local ones, are abstractions over their respective scopes. The
variables in Σ and σ will admit α-conversion by systematically changing the names of
variables in signatures as well as those in their scope, following the usual convention of
the λ-calculus. In general, however, we will assume that the local signatures, σ, contain
names different than those in the global signature Σ. The expression σ . B is called a
generic judgment, or simply judgment. To simplify the presentation, we shall often write
a judgment (x, y, z) . B as xyz . B where xyz denotes the list x, y, z. Equality between
judgments follows from the notion of equality of λ-terms, that is, two judgments x̄ . B
and ȳ . C are equal if and only if

λx̄.B =βη λȳ.C.

We use script letters A, B, C, D etc. to denote judgments, and the letter S to denote
sequents. We write simply B instead of σ . B if the signature σ is empty.

The core fragment of Linc consists of introduction rules for the logical constants
∧,∨,⊃,⊥,>,∀, ∃ and ∇ and the structural rules, initial rule and the cut rule. These
inference rules are given in Figure 2.1. The introduction rules for ∇ affect only the local
signatures. The variable y in the ∇ introduction rules follows the usual proviso that it
is not free in λx.B. The interaction between local and global signatures takes place in
∃ and ∀ introduction rules. The quantifiers are of type (α → o) → o, where α is an
object type. Thus the logic is in a sense first-order. In the ∀R (likewise, ∃L), we use
raising [33] to denote that the bound variable x can range over the variables in the global
signature as well as the local signature σ. Here the variable h must not be free in the
lower sequent. In these rules, we use the notation h σ to denote the successive application
of the variable h to the variables in σ. That is, suppose σ is the list x1, . . . , xn, then hσ
is the term (hx1 . . . xn). In ∀L and ∃R, the term t can have free variables from both
Σ and σ. The multicut rule mc is a generalization of the cut rule due to Slaney [53] to
simplify the presentation of cut-elimination proof. Notice that if we remove the ∇ rules
and the local signatures from the sequents, then what we have is the usual intuitionistic
logic.

Note that the use of raising in ∀R and ∃L means that the eigenvariable introduced
(reading the rules bottom-up) might not be of the same type as the quantified variable.

7

Σ ; C, Γ −→ C init Σ ; σ .⊥, Γ −→ B ⊥L Σ ; Γ −→ σ .> >R

Σ ; σ . B,Γ −→ D
Σ ; σ . B ∧ C, Γ −→ D ∧L Σ ; σ . C,Γ −→ D

Σ ; σ . B ∧ C, Γ −→ D ∧L

Σ ; Γ −→ σ . B Σ ; Γ −→ σ . C

Σ ; Γ −→ σ . B ∧ C
∧R

Σ ; σ . B,Γ −→ D Σ ; σ . C,Γ −→ D
Σ ; σ . B ∨ C, Γ −→ D ∨L

Σ ; Γ −→ σ . B

Σ ; Γ −→ σ . B ∨ C
∨R Σ ; Γ −→ σ . C

Σ ; Γ −→ σ . B ∨ C
∨R

Σ ; Γ −→ σ . B Σ ; σ . C,Γ −→ D
Σ ; σ . B ⊃ C, Γ −→ D ⊃ L Σ ; σ . B,Γ −→ σ . C

Σ ; Γ −→ σ . B ⊃ C
⊃ R

Σ, σ ` t : τ Σ ; σ . B[t/x], Γ −→ C
Σ ; σ . ∀τx.B,Γ −→ C ∀L Σ, h ; Γ −→ σ . B[(h σ)/x]

Σ ; Γ −→ σ . ∀x.B
∀R

Σ, h ; σ . B[(h σ)/x], Γ −→ C
Σ ; σ . ∃x.B,Γ −→ C ∃L Σ, σ ` t : τ Σ ; Γ −→ σ . B[t/x]

Σ ; Γ −→ σ . ∃τx.B
∃R

Σ ; (σ, y) . B[y/x],Γ −→ C
Σ ; σ .∇x.B, Γ −→ C ∇L Σ ; Γ −→ (σ, y) . B[y/x]

Σ ; Γ −→ σ .∇x.B
∇R

Σ ; B,B, Γ −→ C
Σ ; B, Γ −→ C cL Σ ; Γ −→ C

Σ ; B, Γ −→ C wL

Σ ; ∆1 −→ B1 · · · Σ ; ∆n −→ Bn Σ ; B1, . . . ,Bn, Γ −→ C
Σ ; ∆1, . . . , ∆n, Γ −→ C mc, where n ≥ 0

Fig. 2.1. The core rules of Linc

8

This is illustrated in the following example.

{x : α, h : τ → γ → β} ; Γ −→ (a : τ, b : γ) . B (h a b) b

{x : α} ; Γ −→ (a : τ, b : γ) . ∀βy.B y b
∀L

{x : α} ; Γ −→ (a : τ) .∇γz.∀βy.B y z
∇R

Notice that the quantified variable y is of type β while its corresponding eigenvariable h
is raised to the type τ → γ → β, taking into account its dependency on a : τ and b : γ.

Below are some theorems of Linc involving ∇ which can be proved by inspection
on the inference rules in Figure 2.1. In these formulas, we use ¬C to abbreviate C ⊃ ⊥
and we write B ≡ C to denote (B ⊃ C) ∧ (C ⊃ B).

Proposition 2.1. The following formulas are provable in the core Linc.

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ∧ Cx) ≡ ∇xBx ∧∇xCx
∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx ∇x(Bx ⊃ Cx) ≡ ∇xBx ⊃ ∇xCx
∇x∀yBxy ≡ ∀h∇xBx(hx) ∇x∃yBxy ≡ ∃h∇xBx(hx)
∇x∀yBxy ⊃ ∀y∇xBxy ∇x> ≡ >, ∇x⊥ ≡ ⊥

As a consequence, ∇ can always be given scope over atomic formulas with the cost of
raising the types of quantified variables in its scope. Operationally speaking, ∇ provides
a declarative way of managing scoping. Below are some non-theorems of Linc involving
∇.

∇x∇yBxy ⊃ ∇zBzz ∇xBx ⊃ ∃xBx
∇zBzz ⊃ ∇x∇yBxy ∇xBx ⊃ ∀xBx
∀y∇xBxy ⊃ ∇x∀yBxy ∃xBx ⊃ ∇xBx

∇xB ≡ B, x not free in B ∀xBx ⊃ ∇xBx
∇x∇yBxy ≡ ∇y∇xBxy

A notational convention

In the following sections, we often need to perform substitution of terms or predi-
cates in formulas, e.g., in describing inference rules or other meta-theoretical properties.
To simplify the meta-theoretical discussions, we adopt the following convention: when a
scheme of term is written in the form

M x1 . . . xn

where x1, . . . , xn are variables, we mean that x1, . . . , xn are not free in any instantiation
of M . For example, under this convention the following formulas

∀x.p x y (p y ∧ q y) (p y ⊃ (r z ∨ q z))

are all instances of the scheme M y. The corresponding instantiations of M are

λy.∀x.p x y λy.(p y ∧ q y) λy.(p y ⊃ (r z ∨ q z)),

9

respectively. Substitution of a term s for y in this representation is then simply denoted
by (the normal form of) M s.

We still keep the informal (first-order) syntax we used previously, which would
allow us to do variable-capture instantiation in certain cases. For example, when we
write down the formula scheme

∀x.B

we still mean that B can be instantiated with a formula containing x. In such cases,
substitution will be written explicitly, as in the inference figure in Figure 2.1 for example.
However, in the scheme ∀x.B x capture-avoiding instantiation is assumed.

We shall also use the above convention for abstracting predicate symbols in a
given formula or judgment whenever it is desired. For example, we would sometimes
write a formula scheme of the form B p x̄. Here the scheme variable B is an abstraction
with arguments p and x̄. With this scheme, instantiation of B must not contain free
occurrences of the predicate p or the variables x̄. Similar convention applies to judgments.
For example, we will use the notation C p to denote a judgment, where C is now an
abstraction over judgments. Using this notation we can express predicate substitution
as β-reduction, e.g., C S denotes the judgment C p with all occurrences of p replaced by
S.

Notice that this notational convention is rather similar to higher-order abstract
syntax (HOAS), in particular, the idea of using β-reduction to express substitution.
However, there is one main difference between this syntax and HOAS: using this con-
vention we cannot express the vacuousness of occurrence of variables in a term directly
in the syntax. That is, ∀x.B does not indicate that x occurs vacuously in B. In such
cases we shall indicate explicitly whether or not a variable occurs vacuously in a term.
To avoid confusion with HOAS, it is best to keep in mind that this convention is just a
way of avoiding writing substitutions explicitly at the meta-level.

2.2 A proof theoretic notion of definitions

We extend the core logic in Figure 2.1 by allowing the introduction of non-logical
constants. An atomic formula, i.e., a formula that contains no occurrences of logical
constants, can be defined in terms of other logical or non-logical constants. Its left and
right rules are, roughly speaking, carried out by replacing the formula corresponding to
its definition with the atom itself. A defined atom can thus be seen as a generalized
connective, whose behaviour is determined by its defining clauses.

The syntax of definition clauses used by McDowell and Miller [29] resembles that
of logic programs, that is, a definition clause consists of a head and a body, with the
usual pattern matching in the head; for example, the predicate nat for natural numbers
is written

{nat z
4
= >, nat s x

4
= nat x}.

We adopt a simpler presentation by putting all pattern matching in the body and combin-
ing multiple clauses with the same head in one clause with disjunctive body. Of course,
this will require us to have explicit equality as part of our syntax. The corresponding

10

nat predicate in our syntax will be written

nat x
4
= [x = z] ∨ ∃y.[x = s y] ∧ nat y

and corresponds to the notion of iff-completion of a logic program [9]. Adopting this form
of syntax will help simplifying the meta-theoretical discussions to follow. However, in
doing examples and application, we shall use the more familiar syntax of logic program,
which we shall show at the end of this chapter to be derivable from the syntax with
explicit equations.

Definition 2.2. A definition clause is written ∀x̄[p x̄
4
= B x̄], where p is a predicate

constant. The atomic formula p x̄ is called the head of the clause, and the formula B x̄ is

called the body, whose free variables are in x̄. The symbol
4
= is used simply to indicate

a definition clause: it is not a logical connective. A definition is a (perhaps infinite) set
of definition clauses. A predicate may occur at most once in the heads of the clauses of
a definition.

We will generally omit the outer quantifiers in a definition clause to simplify the presen-
tation.

Not all definition clauses are admitted in our logic, e.g., definitions with circular
calling through implications (negations) must be avoided. The reason for this restriction
is that without it cut-elimination does not hold [49]. We introduce the notion of levels
of a formula to define a proper stratification on definitions. To each predicate p we
associate a natural number lvl(p), the level of p. The notion of level is extended to
formulas, judgments, sequents and derivations.

Definition 2.3. Given a formula B, its level lvl(B) is defined as follows:

1. lvl(p t̄) = lvl(p)

2. lvl(⊥) = lvl(>) = 0

3. lvl(B ∧ C) = lvl(B ∨ C) = max(lvl(B), lvl(C))

4. lvl(B ⊃ C) = max(lvl(B) + 1, lvl(C))

5. lvl(∀x.B) = lvl(∃x.B) = lvl(∇x.B) = lvl(B).

The level of a judgment σ . B is the level of B, the level of a sequent Σ ; Γ −→ C is the
level of C and the level of a derivation Π is the level of its end sequent. A definition

clause ∀x̄[p x̄
4
= B] is stratified if lvl(B) ≤ lvl(p). A definition is stratified if all its

definition clauses are stratified.

An occurrence of a formula A in a formula C is strictly positive if that particular
occurrence of A is not to the left of any implication in C. We see that the stratification
of definitions above implies that for every definition clause all occurrences of the head in
the body are strictly positive.

11

Given a definition clause p x̄
4
= B x̄, the right and left introduction rules for

predicate p are

Σ ; σ . B t̄,Γ −→ C
Σ ; σ . p t̄, Γ −→ C defL Σ ; Γ −→ σ . B t̄

Σ ; Γ −→ σ . p t̄
defR

.

The rules for equality predicates makes use of substitutions. The notion of sub-
stitutions we use here is the usual capture-avoiding substitution. We recall some basic
definitions related to substitutions. A substitution θ is a mapping (with application writ-
ten in postfix notation) from variables to terms, such that the set {x | xθ 6= x} is finite.
Substitutions are denoted by θ, ρ, δ, γ, with or without subscripts. We assume implicitly
that substitutions are well-typed. That is, given a substitution θ and Σ ` t : α, the
substitution θ is applicable to t only if Σθ ` tθ : α. Here the signature Σθ denotes the
signature that results from removing from Σ the variables in the domain of θ and adding
the variables that are free in the range of θ. Of course, any new variables introduced in
Σθ is also assumed to be typed appropriately beforehand.

Substitutions are extended to mappings from terms to terms in the usual fashion.
But when we refer to the domain and the range of a substitution, we refer to those
sets defined on this most basic function. Composition of substitutions is defined as
x(θ ◦ ρ) = (xθ)ρ, for every variable x. Two substitutions θ and ρ are considered equal
if for all variables x, xρ =η xθ (equal modulo η-conversion). The empty substitution is
written as ε. The application of a substitution θ to a generic judgment x1, . . . , xn . B,
written as (x1, . . . , xn . B)θ, is y1, . . . , yn . B′, if (λx1 . . . λxn.B)θ is equal (modulo λ-
conversion) to λy1 . . . λyn.B′. If Γ is a multiset of generic judgments, then Γθ is the
multiset {Dθ | D ∈ Γ}.

The left and right introduction rules for equality are as follows

{Σρ ; Γρ −→ Cρ | (λx̄.s)ρ =βη (λx̄.t)ρ}
Σ ; x̄ . (s = t), Γ −→ C eqL

Σ ; Γ −→ x̄ . t = t
eqR

The substitution ρ in eqL is called a unifier of s and t. In general there can be more
than one unifier for a given pair of terms. We therefore specify a set of sequents as the
premise of the eqL rule to mean that each sequent in the set is a premise of the rule. This
set can be infinite since there can potentially be infinite numbers of unifiers for a given
pair of terms, and hence the eqL rule is in general not effective. However, in most cases
we need only to consider a finite subset of the unifiers in proof search. We shall return
to this in Section 2.4. Note that in applying eqL, eigenvariables can be instantiated as
a result.

2.3 Induction and co-induction

A definition p x
4
= B px expresses logical equivalence between p x and B p x. This

means that p t is provable for some term t if and only if B p t is provable. Let us collect
all term t such that p t is provable, and call it S, and let F be a function from sets of

12

terms to sets of terms:

F (T) = {s | s ∈ T and B p s is provable }.

Then S is a fixed point of F , that is, F (S) = S. To see why this holds, take any s ∈ S,
then by logical equivalence B p s is provable, so s ∈ F (S). Conversely, for any s ∈ F (S),
B p s is provable and again by logical equivalence p s is provable and hence is in S. In
this sense, the definition clause for p encodes a fixed point equation and provability of
p t means that t is in some solution of the fixed point equation. If we take into account
local signatures, the definition of F would be

F (T) = {λx̄.s | λx̄.s ∈ T and x̄ . B p s is provable },

and S would be the set {λx̄.s | x̄ . p s is provable}. With similar arguments we can show
that S is a fixed point of F . Note that there is no ambiguity with respect to the extra
λ’s since the type of s is fixed.

The introduction rules for definition in the previous section captures only arbitrary
fixed points, not necessarily the least nor the greatest ones. (see e.g., [21] for an example).
Therefore we add extra rules that reflect the least and the greatest solutions, and hence
capturing induction and co-induction in our system. Note that stratification of definitions
guarantee that the associated fixed point operator is monotone, and hence we can use the
notion of pre-fixed point and the post-fixed point to approximate the least and greatest
fixed points, respectively. In the following we assume that definitions are not mutual-
recursively defined. We could deal with mutual recursion directly but we avoid to do
so for clarity of presentation. The results and the technical proofs to follow can be
generalized to the system with mutual recursion.

Let p x̄
4
= B p x̄ be a definition clause and let S be a closed term of the same type

as p. The induction rules for p are

x̄ ; B S x̄ −→ S x̄ Σ ; Γ, ȳ . S t̄ −→ C
Σ ; Γ, ȳ . p t̄ −→ C µL Σ ; Γ −→ ȳ . B p t̄

Σ ; Γ −→ ȳ . p t̄
µR

The closed term S, which is of the same type as p, is an invariant of the induction.
The variables x̄ are new eigenvariables. We can consider S as encoding a set denoting a
pre-fixed point. Notice that the right-rule for induction is defR.

The co-induction rules are defined dually.

Σ ; ȳ . B p t̄, Γ −→ C
Σ ; ȳ . p t̄,Γ −→ C νL

Σ ; Γ −→ ȳ . S t̄ x̄ ; S x̄ −→ (B S x̄)
Σ ; Γ −→ ȳ . p t̄

νR, where lvl(S) ≤ lvl(p)

Dual to the induction rules, S can be seen as denoting a post-fixed point. The νL rule
is the defL rule. The reason for the proviso in νR is mainly technical; it allows us to
prove cut-elimination. We do not think that the proviso is essential (in the sense that

13

inconsistency might result from its removal), but so far we have not encountered co-
inductive proofs which strictly require co-inductive invariants that violate this proviso.

To avoid inconsistency, some care must be taken in applying induction or co-
induction in a proof. One obvious pitfall is when the fixed point equation corresponding
to a definition clause has different least and greatest solutions. In such case, mixing
induction and co-induction on the same definition clause can lead to inconsistency. For

example, let p
4
= p be a definition clause. Given the scheme of rules above without any

further restriction, we can construct the following derivation

−→ > >R > −→ > >R
−→ p νR ⊥ −→ ⊥ ⊥L ⊥ −→ ⊥ ⊥L

p −→ ⊥ µL
−→ ⊥ cut

In the above derivation we use > and ⊥ as the invariants in the instances of νR and µL
rules. This example suggests that we have to use a definition clause consistently through
out the proof, either inductively or co-inductively, but not both. To avoid this problem,
we introduce markings into a definition, whose role is to indicate which introduction
rules are applicable to the corresponding defined atoms.

Definition 2.4. An extended definition is a definition D together with a label on each
definition clause in D. The label on a clause indicates whether the clause is either
inductive, co-inductive, or regular. An inductive clause is written as p x̄

µ
= B x̄, a co-

inductive clause is written as p x̄
ν= B x̄ and a regular clause is written as p x̄

4
= B x̄. An

extended definition is stratified if it is a stratified definition, and it satisfies the following

requirement: for every definition clause p x̄
4
= B x̄ (respectively,p x̄

µ
= B x̄, p x̄

ν= B x̄) it
holds that for every predicate symbol q 6= p in B, lvl(q) < lvl(p).

The difference between extended definition and definition is the level restriction lvl(q) <
lvl(p) above, which is just a way of saying that there is no mutual recursion between p
and q.

Since we shall only be concerned with extended definition from now on, we shall
refer to an extended definition simply as a definition. The induction and co-induction
rules need additional provisos. The µL and µR rules can be applied only to an inductively
defined atom. Dually, the νL and νR rules can only be applied to a co-inductively defined
atom. The defL and defR rules apply only to regular atoms. However, we can show that
defL and defR are derived rules for (co-)inductively defined atoms.

Proposition 2.5. The defL and defR are admissible rules in the core Linc system with
the induction and/or the co-induction rules.

Proof We show here how to infer defL using the core rules of Linc and induction rules.

The other case with co-induction can be done dually. Let p x̄
4
= B p x̄ be the definition

14

under consideration: defL can be inferred from µL using the body B p as the invariant.

Π
x̄ ; B (B p) x̄ −→ B p x̄ Σ ; ȳ . B p t̄,Γ −→ C

Σ ; ȳ . p t̄, Γ −→ C µL
.

We construct the derivation Π by induction on the size of B, i.e., the number of logical
constants in B. In the inductive cases, the derivation is constructed by applying the
introduction rules for the logical connectives in B, coordinated between left and right
introduction rules. For example, if B p x̄ is B1 p x̄ ∧B2 p x̄ we take Π as

Π1
x̄ ; B1 (B p) x̄ −→ B1 p x̄

x̄ ; B1 (B p) x̄ ∧B2 (B p) x̄ −→ B1 p x̄
∧L

Π2
ȳ ; B2 (B p) x̄ −→ B2 p x̄

ȳ ; B2 (B p) x̄ ∧B2 (B p) x̄ −→ B2 p x̄
∧L

x̄ ; B1 (B p) x̄ ∧B2 (B p) x̄ −→ B1 p x̄ ∧B2 p x̄
∧R

where Π1 and Π2 are obtained by induction hypothesis. Since p occurs strictly positively
in (B p) by stratification, the only non-trivial base case we need to consider is when we
reach the sub-formula p t̄ of B p x̄ in which case we just apply the µR rule

Σ ; ū . B p t̄ −→ ū . B p t̄
init

Σ ; ū . B p t̄ −→ ū . p t̄
µR

The inference rules for equality, definition and (co-)induction are summarized in
Figure 2.2. The inference rules of the logic Linc is obtained by augmenting the core
inference rules in Figure 2.1 with those in Figure 2.2. Note that in Linc the equality
predicate is treated as a logical constant.

2.4 Some derived rules

The description of the rules of Linc given in the previous section is mainly aimed
at simplifying the meta-theoretical discussions. In practice, however, when we actually
work with a concrete operational semantics, it would help to have more tractable and
descriptive rules and definitions. One of the simpler derived rule is a variant of ∧L.

B,D, Γ −→ C
B ∧ D, Γ −→ C ∧L

∗

It is derived in Linc as follows.

B,D, Γ −→ C
B,B ∧ D, Γ −→ C ∧L

B ∧ D,B ∧ D, Γ −→ C ∧L
B ∧ D, Γ −→ C cL

15

Equality:

{Σρ ; Γρ −→ Cρ | (λx̄.s)ρ =βη (λx̄.t)ρ}
Σ ; x̄ . (s = t), Γ −→ C eqL

Σ ; Γ −→ x̄ . t = t
eqR

Definition:
Σ ; σ . B t̄,Γ −→ C
Σ ; σ . p t̄, Γ −→ C defL Σ ; Γ −→ σ . B t̄

Σ ; Γ −→ σ . p t̄
defR

,

where p x̄
4
= B x̄.

Induction:

x̄ ; B S x̄ −→ S x̄ Σ ; Γ, ȳ . S t̄ −→ C
Σ ; Γ, ȳ . p t̄ −→ C µL Σ ; Γ −→ ȳ . B p t̄

Σ ; Γ −→ ȳ . p t̄
µR

,

where p x̄
µ
= B p x̄.

Co-induction:

Σ ; ȳ . B p t̄,Γ −→ C
Σ ; ȳ . p t̄,Γ −→ C νL Σ ; Γ −→ ȳ . S t̄ x̄ ; S x̄ −→ (B S x̄)

Σ ; Γ −→ ȳ . p t̄
νR

where p x̄
ν= B p x̄ and lvl(S x̄) ≤ lvl(p).

Fig. 2.2. Inference rules for equality, definition and (co-)induction.

16

The more interesting derived rules are those concerning the equality and defini-
tions. The eqL rule is not effective, since given a pair of terms (s, t), if there is a unifier
for the pairs, then there is an infinite number of them. For example we can take a unifier
θ of (s, t) and extend it with a substitution pair containing new variables which are not
in the domain of θ. We can also vary θ on the choice of new variables introduced. Of
course, these differences are not essential, so in practice we need only consider much
fewer cases. The notion of complete set of unifiers abstracts away from some of these
inessential details.

2.4.1 Complete set of unifiers

A complete set of unifiers for two terms s and t, written CSU(s, t), is a set of
unifiers for s and t with the following property: if θ is a unifier of (s, t), then there is
a unifier ρ ∈ CSU(s, t) such that θ = ρ ◦ γ for some substitution γ. In the first-order
case, for example, the set which contains only the most general unifier is a complete set
of unifiers. However, in the higher-order case the complete set of unifiers may contain
more than one unifier, sometimes infinitely many of them.

We define an inference rule eqLcsu as follows.

{Σρ ; Γρ −→ Cρ | ρ ∈ CSU(λx̄.s, λx̄.t)}
Σ ; x̄ . s = t,Γ −→ C eqLcsu

We show that this rule is interadmissible with the eqL rule. We refer to the logic Linc
with eqLcsu but without eqL as Linccsu.

Proposition 2.6. The rule eqL and eqLcsu are interadmissible, i.e., for every deriva-
tion of a sequent in Linc, there is a derivation of the same sequent in Linccsu, and vice
versa.

Proof Let Π be a derivation in Linc. The proof is by induction on the height of Π.
The only non-trivial case is when Π ends with eqL.

{
Πθ

Σθ ; Γθ −→ Cθ
}

θ
Σ ; x̄ . s = t,Γ −→ C eqL

where (λx̄.s)θ =βη (λx̄.t)θ. By the definition of CSU , any ρ ∈ CSU(λx̄.s, λx̄.t) also sat-
isfies the equation (λx̄.s)ρ =βη (λx̄.t)ρ. Therefore we construct a derivation in Linccsu

as follows. {
Πρ

1
Σρ ; Γρ −→ Cρ

}

ρ

Σ ; x̄ . s = t,Γ −→ C eqLcsu

Here ρ is a unifier in CSU(λx̄.s, λx̄.t) and Πρ
1 is obtained by induction hypothesis on

Πρ.

17

Conversely, suppose we have a derivation Π in Linccsu ending with eqLcsu

{
Πρ

Σρ ; Γρ −→ Cρ
}

ρ

Σ ; x̄ . s = t,Γ −→ C eqLcsu

We need to show that for every unifier θ of (λx̄.s, λx̄.t) there is a derivation Πθ of
Σρ ; Γρ −→ Cρ. If θ ∈ CSU(λx̄.s, λx̄.t), then by induction hypothesis we have a deriva-
tion Πθ

1 (in Linc) of the sequent Σθ ; Γθ −→ Cθ. Otherwise, by the definition of CSU ,
there must be a substitution γ such that θ = ρ ◦ γ for some ρ ∈ CSU(λx̄.s, λx̄.t) and
some substitution γ. In this case we first apply the induction hypothesis on Πρ to get
a derivation Πρ

1 of Σρ ; Γρ −→ Cρ, and then we apply Lemma 3.5 (see Chapter 3) with
substitution γ to Πρ

1 to get the derivation Πρ
1γ of the sequent Σθ ; Γθ −→ Cθ.

2.4.2 Patterned definitions

In most applications, it is often more convenient to work with definition clauses
with explicit pattern matching on the head. That is, instead of the definition scheme

p x̄
4
= B x̄ we would have a finite list of clauses

p t̄1
4
= B1, p t̄2

4
= B2, · · · , p t̄n

4
= Bn

We shall refer to these clauses as patterned clauses. Formal definition follows.

Definition 2.7. A patterned definition clause is written

∀ȳ.p t̄
4
= B

where the free variables in B are in the set of free variables of t̄, which in turn is in ȳ.
A patterned definition is a set of patterned clauses. There can be more than one

clause, but finitely many of them, in the definition with the same head. The stratification
of the patterned definition is the same as the usual definition and mutual recursion is
not allowed. Patterned (co-)inductive clauses and definitions are defined analogously.

The patterned definition serves only as an abbreviation for the usual definition.
The corresponding definition of a patterned definition is defined as follows.

Definition 2.8. Let D be a patterned definition. The corresponding definition of D is
obtained by replacing the set of definition clauses for p

∀ȳ1.p t11 . . . t1m
4
= B1,

...

∀ȳn.p tn1 . . . tnm
4
= Bn

18

by the definition clause

p x1 . . . xm
4
= ∃ȳ1.(x1 = t11 ∧ . . . ∧ xm = t1m ∧B1) ∨

...
∨ ∃ȳn.(x1 = tn1 ∧ . . . ∧ xm = tnm ∧Bn)

for every predicate p defined in D.

We wish to derive the rules that apply directly to patterned definition, similar to
the definition rules in FOλ∆IN and FOλ∆∇ [38]. As in FOλ∆∇, we need to take into
account the local signature when applying the rules for patterned definition. This makes
the description of the rules slightly complicated. We need a couple more definitions.

Definition 2.9. Let ∀τ1
x1 . . .∀τn

xn.H
4
= B be a patterned definition clause. Let y1,

. . ., ym be a list of variables of types α1,. . .,αm, respectively. A raised patterned def-
inition clause, or raised definition clause for short, with respect to the signature {y1 :
α1, . . . , ym : αm} is defined as

∀h1 . . .∀hn.ȳ . Hθ
4
= ȳ . Bθ

where θ is the substitution [(h1 ȳ)/x1, . . . , (hn ȳ)/xn] and hi, for every i ∈ {1, . . . , n}, is
of type α1 → . . . → αm → τi.

Definition 2.10. The four-place relation dfn(ρ,A, θ,B) holds for the atomic judgment

A, the judgment B, and the substitutions ρ and θ if there is a raised clause H 4
= B in

the given definition such that Aρ = Hθ.

Observe that in the above definition, for the relation dfn(ρ,A, θ,B) to hold, the
judgments A, B and H must share the same local signature (up to α-conversion). We
are now ready to describe the rules for patterned definitions, which we refer to here as
defL= and defR=.

Σ ; Γ −→ Bθ

Σ ; Γ −→ A defR=, where dfn(ε,A, θ,B)

{Σρ ; Bθ, Γρ −→ Cρ | dfn(ρ,A, θ,B)}
Σ ; A,Γ −→ C defL=

Proposition 2.11. The rules defL= and defR= are admissible in Linc.

Proof Follows immediately from Definition 2.8, Definition 2.9 and Definition 2.10.
The defR= is derived by using ∃R, ∧R and eqR rules, while the defL= is derived by
using ∃L, cL, ∧L, and eqL rules.

A variant of defL= rule is to use the notion of CSU , as the following.

{Σρ ; Bρ,Γρ −→ Cρ | H 4
= B is a raised def. clause s.t. ρ ∈ CSU(A,H)}

Σ ; A, Γ −→ C defLcsu

19

where H 4
= B is a raised definition clause. The admissibility of this rule is immediate

from the admissibility of eqLcsu.

Proposition 2.12. The rule defLcsu is admissible in Linc.

We now illustrate the use of Linc to prove a simple property about natural num-
bers in the following example. More elaborate examples are discussed in Chapter 5 and
Chapter 6.

Example 2.13. We can specify the odd and even natural numbers as the following
inductive definition clauses.

odd N
µ
= N = (s z) ∨ ∃M.N = (s (s M)) ∧ odd M.

even N
µ
= N = z ∨ ∃M.N = (s (s M)) ∧ even M.

Here the constants z : nt and s : nt → nt, where nt is the type representing natural
numbers, denote the natural number zero and the successor function, respectively. We
prove that the successor of an odd number is an even number. This is stated formally as

∀Nodd N ⊃ even (s N).

This formula is proved by structural induction on odd, using the invariant

λn even (s n).

The last three rules of the formal proof is as follows.

N ; odd N −→ even (s N)
N ; . −→ odd N ⊃ even (s N)

⊃ R
. ; . −→ ∀Nodd N ⊃ even (s N) ∀R

Applying the µL-rule to the topmost sequent yields two premises

1. N ′ ; N ′ = (s z) ∨ ∃M.N ′ = s (s M) ∧ even (s M) −→ even (s N ′), and

2. N ; even (s N) −→ even (s N).

Notice that in the first premise, the left-hand side of the sequent is the body of the
definition clause of odd with the odd predicate replaced by the invariant λn even (s n).
The second premise is immediately provable by using the init-rule. For the first premise,
we apply first the ∨L-rule, which gives us the following premises.

1.a. N ′ ; N ′ = (s z) −→ even (s N ′),

1.b. N ′ ; ∃M.N ′ = s (s M) ∧ even (s M) −→ even (s N ′).

20

The proof for the sequent 1.a. is the following.

−→ s (s z) = s (s z)
eqR

−→ z = z eqR
−→ z = z ∨ ∃M.z = s (s M) ∧ even M

∨R
−→ even z defR

−→ s (s z) = s (s z) ∧ even z
∧R

−→ ∃M.s (s z) = s (s M) ∧ even M
∃R

−→ (s (s z)) = z ∨ ∃M.s (s z) = s (s M) ∧ even M
∨R

−→ even (s (s z)) defR

N ′ ; N ′ = (s z) −→ even (s N ′)
eqLcsu

Notice that in the application of eqLcsu, the eigenvariable N ′ is instantiated with the
term (s z), and it is removed from the signature of the premise sequent. The proof for
the sequent 1.b. is as follows.

M ; even (s M) −→ even (s (s (s M)))

N ′,M ; N ′ = s (s M), even (s M) −→ even (s N ′)
eqLcsu

N ′,M ; N ′ = s (s M) ∧ even (s M) −→ even (s N ′) ∧L
∗

N ′ ; ∃M.N ′ = s (s M) ∧ even (s M) −→ even (s N ′)
∃L

It is easy to see that the remainder of the proof can be constructed by applying defR,
∨R, ∃R and init rules.

2.5 Related work

The notion of definitions as it is in Linc has been previously studied by Hallnäs
[22], Schroeder-Heister [50], Eriksson [14], Girard [21], Stärk [55] and McDowell and
Miller [29]. We adopt a simpler form of definition clauses by putting all pattern matching
in the body of the definition clause, and formulating separate free equality rules. This
separation corresponds to iff-completion in logic programming [9]. Our formulation of
definitions closely resembles that of FOλ∆IN. In fact, Linc can be seen as a consistent
extension of FOλ∆IN with generalized induction and co-induction proof rules and the
∇-quantifier.

It is natural to ask about possible connections between the ∇-quantifier and the
new quantifier of Gabbay and Pitts [17, 45]. Both are self dual and both have similar sets
of applications in mind. There are significant differences, however: ∇ has a natural proof
theory with a cut-elimination theorem but has no set theoretic semantics, while Gabbay
and Pitts have a model theory based on set theory but no cut-elimination result. While
∇ neither implies nor is implied by ∀ or ∃, the quantifier of Gabbay and Pitts is entailed
by ∀ and entails ∃. Gabbay and Pitts quantifier allows quantification on type name,
which is presupposed to be non-empty, whereas ∇ allows quantification over arbitrary
type and does not presuppose any type inhabitant.

There have been several works on formalization of (co)-induction in sequent sys-
tems. However, Linc is as far as we know the first sequent system which incorporates

21

both generalized induction and co-induction in the same system and still admits cut-
elimination (Chapter 4), from which the consistency of the logic follows. The logic
FOλ∆IN has a formalization of induction, but it is restricted to natural number in-
duction. Eriksson’s calculus of partial inductive definitions [14] has a formalization of
generalized induction but the system has no cut-elimination. The logic CLP∀ [11],
has both induction and co-induction rules, in the setting of constraint logic program-
ming. However, this system does not allow mixing of induction and co-induction in
the same proof, and cut-rule is not present in the system, thus composition of proofs is
not supported in the logic. There are also some recent works in the area of fixed pointed
logics [48, 52, 54, 10], where (co-)induction is formalized via the notion of circular proofs.

Linc can be seen as the meta-theory of the simply typed λ-calculus, in the same
sense in which Schürmann’s Mω [51] is the meta-theory of LF [24]. The logic Mω is a
constructive first-order logic, whose quantifiers range over possibly open LF object over
a signature. In the meta-logic it is possible to express and inductively prove meta-logical
properties of an object logic. By the adequacy of the encoding, the proof of the existence
of the appropriate LF object(s) guarantees the proof of the corresponding object-level
property. However, Mω does not support co-induction yet. The new quantifier ∇ also
gives Linc more expressive power than Mω in terms of reasoning about object-systems
with intrinsic notion of freshness and scoping of names (see Chapter 6).

22

Chapter 3

Properties of Derivations

We discuss several properties of derivations in Linc. Some of them involve trans-
formations on derivations which will be used extensively in the cut-elimination proof
in the chapter to follow. The other properties are concerned with a particular class of
definitions used in proof search, namely Horn definitions (i.e., definitions whose bodies
contain no implications). The interest in this class of definitions is justified by the fact
that there are many specifications of operational semantics that fall into this category,
as we shall see in the following chapters.

Before we proceed, some remarks on the use of eigenvariables in derivations must
be mentioned. In proof search involving ∀R, ∃L µL, νR or eqL, new eigenvariables can
be introduced in the premises of the rules. Let us refer to such variables as internal
eigenvariables, since they occur only in the premise derivations. We view the choice of
such eigenvariables as arbitrary and therefore we identify derivations that differ only in
the choice of the eigenvariables introduced by those rules. Another way to look at it is
to consider eigenvariables as proof-level binders. Hence when we work with a derivation,
we actually work with an equivalence class of derivations modulo renaming of internal
eigenvariables.

In this and the following chapters, we shall leave as much information implicit in
a sequent or a derivation, as long as no ambiguity arises. In particular, we shall avoid
writing the global signature explicitly whenever possible, e.g., when the signature can
be inferred from context. For example, in describing transformation on derivations that
involves only propositional connectives; often in such cases there is no change in the
global signature involved. We shall also omit the local signatures in certain cases. For
this to work, we shall allow a slight abuse of notation by writing for example B ∧ C
instead of ȳ . B ∧ C. Whenever we do this, it is assumed implicitly that B and C share
the same local signature.

3.1 Instantiating derivations

The following definition extends substitutions to apply to derivations. Since we
identify derivations that differ only in the choice of variables that are not free in the end-
sequent, we will assume that such variables are chosen to be distinct from the variables in
the domain of the substitution and from the free variables of the range of the substitution.
Thus applying a substitution to a derivation will only affect the variables free in the end-
sequent.

Definition 3.1. If Π is a derivation of Σ ; Γ −→ C and θ is a substitution, then we
define the derivation Πθ of Σθ ; Γθ −→ Cθ as follows:

23

1. Suppose Π ends with the eqL rule
{

Πρ

Σρ ; Γ′ρ −→ Cρ
}

ρ

Σ ; x̄ . s = t, Γ′ −→ C
eqL

where (λx̄.s)ρ =βη (λx̄.t)ρ. Observe that any unifier for the pair

((λx̄.s)θ, (λx̄.t)θ)

can be transformed to another unifier for (λx̄.s, λx̄.t), by composing the unifier with
θ. Thus Πθ is {

Πθ◦ρ′

Σθρ′ ; Γ′θρ′ −→ Cθρ′
}

ρ′

Σθ ; (x̄ . s = t)θ, Γ′θ −→ Cθ
eqL

,

where (λx̄.s)θρ′ =βη (λx̄.t)θρ′.

2. If Π ends with any other rule and has premise derivations Π1, . . . ,Πn, then Πθ
also ends with the same rule and has premise derivations Π1θ, . . . ,Πnθ.

Among the premises of the inference rules of Linc, certain premises share the
same right-hand side judgment as in the sequent in the conclusion. We refer to such
premises as major premises. This notion of major premise will be useful in proving
cut-elimination, as certain proof transformations involve only major premises.

Definition 3.2. Given an inference rule • with one or more premise sequents, we define
its major premise sequents as follows.

1. If • is either ⊃ L,mc or µL, then its right premise is the major premise

2. If • is νR then its left premise is the major premise.

3. Otherwise, all the premises of • are major premises.

The definition extends to derivations by replacing premise sequents with premise deriva-
tions.

The following two measures on derivations will be useful later in proving many
properties of the logic. Note that given the possible infinite branching of eqL rule, these
measure in general can be ordinals. Therefore in proofs involving induction on those
measures, transfinite induction is needed. However, in most of the inductive proofs to
follow, we often do case analyses on the last rule of a derivation. In such a situation,
the inductive cases for both successor ordinals and limit ordinals are basically covered
by the case analyses on the inference figures involved, and we shall not make explicit use
of transfinite induction.

Definition 3.3. Given a derivation Π with premise derivations {Πi}i, the measure
ht(Π) is the least upper bound of {ht(Πi) + 1}i.

24

Definition 3.4. Given a derivation Π with premise derivations {Πi}i, the measure
ind(Π) is defined as follows

ind(Π) =

{
lub({ind(Πi)}i) + 1, if Π ends with µL,
lub({ind(Πi)}i), otherwise.

Lemma 3.5. For any substitution θ and derivation Π of Σ ; Γ −→ C, Πθ is a derivation
of Σθ ; Γθ −→ Cθ.

Proof This lemma states that Definition 3.1 is well-constructed, and follows by in-
duction on ht(Π).

Lemma 3.6. For any derivation Π and substitution θ, ht(Π) ≥ ht(Πθ) and ind(Π) ≥
ind(Πθ).

Proof By induction on ht(Π). The measures may not be equal because when the
derivations end with the eqL rule, some of the premise derivations of Π may not be
needed to construct the premise derivations of Πθ.

Lemma 3.7. For any derivation Π and substitutions θ and ρ, the derivations (Πθ)ρ and
Π(θ ◦ ρ) are the same derivation.

Proof By induction on the measure ht(Π).

3.2 Atomic initial rule

It is a common property of most logics that the initial rule can be restricted to
atomic form, that is, the rule

Σ ; x̄ . p t̄ −→ x̄ . p t̄
init

where p is a predicate symbol. The more general rule is derived as follows.

Definition 3.8. We construct a derivation IdC of the sequent Σ ; C −→ C inductively
as follows. The induction is on the size of the judgment C. If C is an atomic judgment we
simply apply the atomic initial rule. Otherwise, we apply the left and right introduction
rules for the topmost logical constant in C, probably with some instances of contraction
and weakening rule.

The proof of the following lemma is straightforward by induction on ht(IdC).

Lemma 3.9. For any judgment C, it holds that ind(IdC) = 0.

Restricting the initial rule to atomic form will simplify some technical definitions
to follow. We shall use Id instead of IdC to denote identity derivations since the judgment
C is always known from context.

25

3.3 Weakening and scoping of signatures

The following lemmas state that we can extend both the global and local signa-
tures in a provable sequent without affecting its provability. Again as before, when new
eigenvariables are introduced in the end sequent of a derivation, it is implicitly assumed
that they are different from the eigenvariables occuring in the derivation but not free in
the end sequent.

Definition 3.10. Let Π be a derivation of Σ ; Γ −→ C. Let Σ′ be a signature different
from Σ. We construct a derivation Σ′ :Π by adding Σ′ to the signature of every sequent
in the derivation tree of Π, except in the case µL where Σ′ is added only to the right
premise derivation, and in the case νR where Σ′ is added to the left premise derivation.

Lemma 3.11. Let Π be a derivation of Σ ; Γ −→ C and let Σ′ be a signature distinct
from Σ. Then Σ′ : Π is a derivation of Σ, Σ′ ; Γ −→ C, and ht(Σ′ : Π) = ht(Π) and
ind(Σ′ :Π) = ind(Π).

Proof By induction on ht(Π).
In the following, whenever we write Σ′ : Π, it is assumed that the derivation is

well-formed. This means implicitly the signature Σ′ is distinct from the signature in the
end sequent of Π.

Lemma 3.12. Scope weakening. Let Π be a derivation of

Σ, x ; z̄z̄1 . B1, . . . , z̄z̄n . Bn −→ z̄z̄0 . B0

where x is not in the lists of variables z̄ and z̄0, . . . , z̄n. Then there is a derivation Π′ of

Σ ; z̄xz̄1 . B1, . . . , z̄xz̄n . Bn −→ z̄xz̄0 . B0

such that ht(Π′) ≤ ht(Π) and ind(Π′) ≤ ind(Π).

Proof By induction on ht(Π). We show here the non-trivial cases. In the following
we shall denote z̄z̄i . Bi with Bi and z̄xz̄i . Bi with B′

i
.

1. Suppose Π ends with ∇R (the case with ∇L is symmetric).

Π1
B1, . . . ,Bn −→ z̄z̄0y . B′

B1, . . . ,Bn −→ z̄z̄0 .∇y.B′
∇R .

Then Π′ is the derivation

Π′1
B′1, . . . ,B′

n
−→ z̄xz̄0y . B′

B′1, . . . ,B′
n
−→ z̄xz̄0 .∇y.B′

∇R .

where Π′1 is obtained from induction hypothesis.

26

2. Suppose Π ends with ∀R (the case with ∃L is symmetric).

Π1
Σ, x, h ; B1, . . . ,Bn −→ z̄z̄0 . B′ (h z̄z̄0)

Σ, x ; B1, . . . ,Bn −→ z̄z̄0 . ∀y.B′ y
∀R

We apply the substitution θ = [(λz̄λz̄0.h′ z̄xz̄0)/h] to Π1 to get the derivation Π1θ
of

Σ, x, h′ ; B1, . . . ,Bn −→ z̄z̄0 . B′ (h′ z̄xz̄0).

Since ht(Π1θ) ≤ ht(Π1) we can apply induction hypothesis to Π1θ to get the
derivation Π′1 of

Σ, h′ ; B′1, . . . ,B′
n
−→ z̄xz̄0 . B′ (h′ z̄xz̄0).

The derivation Π′ is thus

Π′1
Σ, h′ ; B′1, . . . ,B′

n
−→ z̄xz̄0 . B′ (h′ z̄xz̄0)

Σ ; B′1, . . . ,B′
n
−→ z̄xz̄0 . ∀y.B′ y

∀R .

3. Suppose Π ends with eqL
{

Πρ

(Σ, x)ρ ; B2ρ, . . . ,Bnρ −→ B0ρ

}

ρ

Σ, x ; z̄z̄1 . s = t,B2, . . . ,Bn −→ B0
eqL

where (λz̄λz̄1.s)ρ =βη (λz̄λz̄1.t)ρ. We need to construct a derivation for the
sequent

Σρ′ ; B′2ρ′, . . . ,B′
n
ρ′ −→ B′0ρ′

for each unifier ρ′ satisfying

(λz̄λxλz̄1.s)ρ′ =βη (λz̄λxλz̄1.t)ρ′.

If x 6∈ dom(ρ′) ∪ ran(ρ′), it can be shown by induction on the structure of terms
that

(λz̄λz̄1.s)ρ′ =βη (λz̄λz̄1.t)ρ′.

Hence in this case we can apply induction hypothesis to Πρ′ to get a derivation

Πρ′
1 of the above sequent. In the case where x ∈ dom(ρ′) ∪ ran(ρ′), notice that ρ′

is also a unifier for the pair (λz̄λwλz̄1.s[w/x], λz̄λwλz̄1.t[w/x]) where w is chosen
to be different from any variable in the above sequent. Therefore, the substitution

27

ρ′′ = [w/x] ◦ ρ′ can be shown to satisfy

(λz̄λz̄1.s)ρ′′ =βη (λz̄λz̄1.t)ρ′′.

By the definition of eqL, there is a derivation, that is, Π[w/x]◦ρ′ of

Σρ′, w ; (z̄z̄2 . B2[w/x])ρ′, . . . , (z̄z̄n . Bn[w/x])ρ′ −→ (z̄z̄0 . B0[w/x])ρ′.

We can then apply induction hypothesis to get a derivation Πρ′
2 of

Σρ′ ; (z̄wz̄2 . B2[w/x])ρ′, . . . , (z̄wz̄n . Bn[w/x])ρ′ −→ (z̄wz̄0 . B0[w/x])ρ′

which is α-equivalent to

Σρ′ ; (z̄xz̄2 . B2)ρ′, . . . , (z̄xz̄n . Bn)ρ′ −→ (z̄xz̄0 . B0)ρ′.

Lemma 3.13. Let Π be a derivation of

Σ ; z̄z̄1 . B1 a, . . . , z̄z̄n . Bn a −→ z̄z̄0 . B0 a

where a is a global constant. Then there is a derivation Π′ of

Σ ; z̄xz̄1 . B1 x, . . . , z̄xz̄n . Bn x −→ z̄xz̄0 . B0 x

without the global constant a, such that ht(Π′) ≤ ht(Π) and ind(Π′) ≤ ind(Π).

Proof The proof is by induction on ht(Π). The case analysis is essentially the same
as the proof for Lemma 3.12 in most cases. The only difference is in case where Π ends
with eqL. In this case we need to show that the set of unifiers for the equation

λz̄λxλz̄i.s x = λz̄λxλz̄i.t x

is included in the set of unifiers of

λz̄λz̄i.s a = λz̄λz̄i.t a

where a is treated as a global constant. Let ρ be a unifier for the first equation. Since a
is not admitted as a constant in the first equation, it cannot occur free in the range of
the substitution ρ. We can assume without loss of generality that the variables in z̄, x, z̄i
are all different from the free variables in ρ (otherwise, apply renaming to both equation
so they are different) so we can push the substitution under the binders. Therefore we
have (s x)ρ = (sρ) x = (tρ) x = (t x)ρ and (sρ) a = (sρ) a. Hence ρ is also a unifier for
the second equation.

28

Lemma 3.14. Local signature weakening. Let Π be a derivation of

Σ ; σ1 . B1, . . . , σn . Bn −→ σ0 . B0

and let x be a variable different from Σ, σ0, . . . , σn. Then there is a derivation l(Π, x) of

Σ ; xσ1 . B1, . . . , xσn . Bn −→ xσ0 . B0

such that ht(l(Π, x)) ≤ ht(Π) and ind(l(Π, x)) ≤ ind(Π)..

Proof Immediate consequence of Lemma 3.11 and Lemma 3.12.

Definition 3.15. Raised sequents. Let Σ be the signature

{h1 : τ1, . . . , hn : τn}

and let ᾱ be the list of types α1, . . . , αm. An ᾱ-raised signature of Σ, written Σᾱ, is the
set

{h′1 : α1 → . . . → αm → τ1, . . . , h′
n

: α1 → . . . → αm → τn}
where the variables h′1, . . . , h′

n
are chosen to be distinct from the ones in Σ. Let ȳ be the

list of pairwise distinct variables y1 : α1, . . . , yn : αm, which are not already in Σ and
Σᾱ, and let θ be the substitution

[(h′1 y1 . . . ym)/h1, . . . , (h′
n

y1 . . . ym)/hn].

Given a sequent
Σ ; σ1 . B1, . . . , σn . Bn −→ σ0 . B0

such that variables in σ0, . . . , σn are all different from Σᾱ and ȳ, we define the ᾱ-raised
sequent as the sequent

Σᾱ ; ȳσ1 . B1θ, . . . , ȳσn . Bnθ −→ ȳσ0 . B0θ

Lemma 3.16. Let Π be a proof of a sequent S. Then for every list of types ᾱ, there is
a proof Π↑ᾱ of the ᾱ-raised sequent S ′ of S such that ht(Π↑ᾱ) ≤ ht(Π) and ind(Π↑ᾱ) ≤
ind(Π).

Proof We apply Lemma 3.11 to introduce the list of new variables ȳ of type ᾱ to the
global context, and then apply the substitution θ (as defined in Definition 3.15), followed
by weakening of the scope of ȳ by Lemma 3.12. Since each step in the construction does
not increase the measures of the derivation, the end derivation does not have higher
measure than the original one.

Definition 3.17. A derivation Π is a raised instance of a derivation Ξ if Π is ob-
tained from Ξ by raising the eigenvariables in the end sequent of Ξ (as described in the
construction in Lemma 3.16), followed by application of a substitution to the resulting
derivation.

Lemma 3.18. If Π is a raised instance of Ξ, then ht(Π) ≤ ht(Ξ) and ind(Π) ≤ ind(Ξ).

29

3.4 Unfolding of derivations

Definition 3.19. Inductive unfolding. Let p x̄
µ
= B p x̄ be an inductive definition. Let

Π be a derivation of Σ ; Γ −→ C p where p occurs strictly positively in C p. Let S be a
closed term of the same type as p and let ΠS be a derivation of the sequent

x̄ ; B S x̄ −→ S x̄.

We define the derivation µ(Π, ΠS) of Σ ; Γ −→ C S as follows.
If C p = C S, then µ(Π, ΠS) = Π. Otherwise, we define µ(Π, ΠS) based on the last

rule in Π.

1. Suppose Π ends with init

Σ ; ȳ . p t̄ −→ ȳ . p t̄
init

.

Then µ(Π,ΠS) is the derivation

ΠS
x̄ ; B S x̄ −→ S x̄

Id
Σ ; S t̄ −→ S t̄

Σ ; ȳ . p t̄ −→ ȳ . S t̄
µL

2. Suppose Π ends with ⊃ L
Π1

Σ ; Γ′ −→ ȳ . D1

Π2
Σ ; ȳ . D2, Γ′ −→ C p

Σ ; ȳ . D1 ⊃ D2,Γ′ −→ C p
⊃ L

Then µ(Π,ΠS) is the derivation

Π1
Σ ; Γ′ −→ ȳ . D1

µ(Π2,ΠS)
Σ ; ȳ . D2,Γ′ −→ C S

Σ ; ȳ . D1 ⊃ D2, Γ′ −→ C S
⊃ L

3. Suppose Π ends with ⊃ R

Π′
Σ ; Γ, ȳ . C1 p −→ ȳ . C2 p

Σ ; Γ −→ ȳ . C1 p ⊃ C2 p
⊃ R

By the restriction on the occurences of p in C p, it must be the case that C1 p = C1 S.
The derivation µ(Π, ΠS) is then defined as follows.

µ(Π′, ΠS)
Σ ; Γ, ȳ . C1 p −→ ȳ . C2 S

Σ ; Γ −→ ȳ . C1 p ⊃ C2 S
⊃ R

30

4. Suppose Π ends with mc

Π1
Σ ; ∆1 −→ B1 . . .

Πm
Σ ; ∆m −→ Bm

Π′
Σ ; B1, . . . ,Bm,Γ′ −→ C p

Σ ; ∆1, . . . ,∆m,Γ′ −→ C p
mc

Then µ(Π,ΠS) is

Π1
Σ ; ∆1 −→ B1 . . .

Πm
Σ ; ∆m −→ Bm

µ(Π′, ΠS)
Σ ; B1, . . . ,Bm, Γ′ −→ C S

Σ ; ∆1, . . . ,∆m, Γ′ −→ C S
mc

5. Suppose Π ends with µL on some predicate q given a definition clause q z̄
µ
= D q z̄.

Ψ
z̄ ; D I z̄ −→ I z̄

Π′
Σ ; ȳ . I t̄, Γ′ −→ C p

Σ ; ȳ . q t̄,Γ′ −→ C p
µL

Then µ(Π,ΠS) is the derivation

Ψ
z̄ ; D I z̄ −→ I z̄

µ(Π′, ΠS)
Σ ; ȳ . I t̄, Γ′ −→ C S

Σ ; ȳ . q t̄, Γ′ −→ C S
µL

6. Suppose Π ends with µR
Π′

Σ ; Γ −→ ȳ . B p t̄

Σ ; Γ −→ ȳ . p t̄
µR

where t̄ = t1, . . . , tm. Then µ(Π,ΠS) is the derivation

µ(Π′, ΠS)
Σ ; Γ −→ ȳ . B S t̄

Ξ
Σ ; ȳ . B S t̄ −→ ȳ . S t̄

Σ ; Γ −→ ȳ . S t̄
mc

where the derivation Ξ is a raised instance of ΠS .

7. If Π ends with any other rules, and has premise derivations {Πi}i∈I for some index
set I, then µ(Π, ΠS) also ends with the same rule and has premise derivations
{µ(Πi, ΠS)}i∈I .

Definition 3.20. Co-inductive unfolding. Let p x̄
ν= B p x̄ be a co-inductive definition.

Let S be a closed term of the same type as p and let ΠS be a derivation of

x̄ ; S x̄ −→ B S x̄.

31

Let C p be a judgment such that lvl(C p) ≤ lvl(p), and let Π be a derivation of Σ ; Γ −→
C S. We define the derivation ν(Π,ΠS) of Σ ; Γ −→ C p as follows.

If C p = C S, then ν(Π, ΠS) = Π. If C p = ȳ . p t̄ then C S = ȳ . S t̄ and ν(Π,ΠS)
is the derivation

Π
Σ ; Γ −→ ȳ . S t̄

ΠS
x̄ ; S x̄ −→ B S x̄

Σ ; Γ −→ ȳ . p t̄
νR

Otherwise, we define ν(Π,ΠS) based on the last rule in Π.

1. Suppose Π ends with ⊃ L
Π1

Σ ; Γ′ −→ ȳ . D1

Π2
Σ ; ȳ . D2,Γ′ −→ C S

Σ ; ȳ . D1 ⊃ D2, Γ′ −→ C S
⊃ L

Then ν(Π,ΠS) is the derivation

Π1
Σ ; Γ′ −→ ȳ . D1

ν(Π2, ΠS)
Σ ; ȳ . D2, Γ′ −→ C p

Σ ; ȳ . D1 ⊃ D2,Γ′ −→ C p
⊃ L

2. Suppose Π ends with ⊃ R

Π′
Σ ; Γ, ȳ . C1 S −→ ȳ . C2 S

Σ ; Γ −→ ȳ . C1 S ⊃ C2 S
⊃ R

Since lvl(C p) ≤ lvl(p), it must be the case that p occurs strictly positively in C p,
hence C1 S = C1 p. Therefore we construct the derivation ν(Π, ΠS) as follows.

ν(Π′, ΠS)
Σ ; Γ, ȳ . C1 S −→ ȳ . C2 p

Σ ; Γ −→ ȳ . C1 S ⊃ C2 p
⊃ R

3. Suppose Π ends with mc

Π1
Σ ; ∆1 −→ B1 . . .

Πm
Σ ; ∆m −→ Bm

Π′
Σ ; B1, . . . ,Bm, Γ′ −→ C S

Σ ; ∆1, . . . ,∆m, Γ′ −→ C S
mc

Then ν(Π,ΠS) is

Π1
Σ ; ∆1 −→ B1 . . .

Πm
Σ ; ∆m −→ Bm

ν(Π′, ΠS)
Σ ; B1, . . . ,Bm,Γ′ −→ C p

Σ ; ∆1, . . . ,∆m,Γ′ −→ C p
mc

32

4. Suppose Π ends with µL on a predicate q t̄, given an inductive definition q z̄
µ
= D q z̄.

Ψ
z̄ ; D I z̄ −→ I z̄

Π′
Σ ; ȳ . I t̄, Γ′ −→ C S

Σ ; ȳ . q t̄, Γ′ −→ C S
µL

Then ν(Π,ΠS) is the derivation

Ψ
z̄ ; D I z̄ −→ I z̄

ν(Π′, ΠS)
Σ ; ȳ . I t̄, Γ′ −→ C p

Σ ; q t̄, Γ′ −→ C p
µL

5. If Π ends with any other rules, and has premise derivations {Πi}i∈I for some index
set I, then ν(Π, ΠS) also ends with the same rule and has premise derivations
{ν(Πi, ΠS)}i∈I .

Lemma 3.21. The derivations µ(Π,ΠS)θ and µ(Πθ, ΠS) are the same derivation.

Proof Suppose Π is a derivation of the sequent Σ ; Γ −→ Cp and ΠS is a derivation of
the sequent x̄ ; B S x̄ −→ S x̄, given an inductive definition p x̄

µ
= B p x̄ and an invariant

S.
The proof is by induction on ht(Π) and case analysis on C. We make use of the

fact that S is a closed term and hence unaffected by the substitution θ, i.e., Sθ = S.
Most cases follow immediately from inductive hypothesis. We show here the interesting
ones. In the following, we omit some information from the sequents when they do not
play active role during the transformation steps.

1. Suppose Π ends with ⊃ R, then C p = ȳ . C1 p ⊃ C2 p. Since p has only strictly
positive occurrences in C p, it is the case that C S = ȳ .C1 p ⊃ C2 S. We show that
applying unfolding and substitution in any order produces the same derivation.

Π′
. . . , ȳ . C1 p −→ ȳ . C2 p

. . . −→ ȳ . C1 p ⊃ C2 p
⊃ R

µ
=⇒1

µ(Π′, ΠS)
. . . , ȳ . C1 p −→ ȳ . C2 S

. . . −→ ȳ . C1 p ⊃ C2 S
⊃ R

⇓2 θ ⇓3 θ

Π′θ
. . . , (ȳ . C1 p)θ −→ (ȳ . C2 p)θ

. . . −→ (ȳ . C1 p ⊃ C2 p)θ
⊃ R

µ
=⇒4

µ(Π′θ, ΠS)
. . . , (ȳ . C1 p)θ −→ (ȳ . C2 S)θ

. . . −→ (ȳ . C1 p ⊃ C2 S)θ
⊃ R

In Step 3, we apply the inductive hypothesis µ(Π′, ΠS)θ = µ(Π′θ, ΠS).

33

2. Suppose Π ends with eqL.

{
Πρ

Γ′ρ −→ (C p)ρ

}

ρ

ȳ . s = t,Γ′ ; C p −→
eqL

µ
=⇒1

{
µ(Πρ, ΠS)

Γ′ρ −→ (C S)ρ

}

ρ

ȳ . s = t, Γ′ −→ C S
eqL

⇓2 θ ⇓3 θ

{
Πθ◦ρ′

Γ′θρ′ −→ (C p)θρ′
}

ρ′

(ȳ . s = t)θ, Γ′θ −→ (C p)θ
eqL

µ
=⇒4





µ(Πθ◦ρ′ ,ΠS)
Γ′θρ′ −→ (C S)θρ′





ρ′

(ȳ . s = t)θ, Γ′θ −→ (C S)θ
eqL

In the transformation in Step 3, we apply eqL to (ȳ . s = t)θ. Note that, by
Definition 3.1, applying substitution to a derivation ending with eqL does not
change or add new premises. Therefore the premise derivations of µ(Π, ΠS)θ are
already contained in the premise set of µ(Π, ΠS). Hence inductive hypothesis is
not needed in this case. And since in Step 2 we apply eqL to the same judgment
(ȳ . s = t)θ, the set of unifiers obtained in Step 2 and Step 3 are exactly the same
and therefore applying Step 2 and 4 produces the same derivations as applying
Step 1 and 3.

3. Suppose Π ends with µR and C p = pū for some ū.

Π′
Γ −→ ȳ . B p ū

Γ −→ ȳ . p ū
µR

µ
=⇒1

µ(Π′,ΠS)
Γ −→ ȳ . B S ū

Ξ
ȳ . B S ū −→ ȳ . S ū

Γ −→ ȳ . S ū
mc

⇓2 θ ⇓3 θ

Π′θ
Γθ −→ (ȳ . B p ū)θ
Γθ −→ (ȳ . p ū)θ

µR
µ

=⇒4

µ(Π′θ, ΠS)
Γθ −→ (ȳ . B S ū)θ

Ξ′
(ȳ . B S ū)θ −→ (ȳ . S ū)θ

Γθ −→ (ȳ . S ū)θ

In Step 3, we apply the inductive hypothesis µ(Π′, ΠS)θ = µ(Π′θ, ΠS). From the
construction of Ξ and Ξ′ as defined in Definition 3.19, we can verify that Ξθ = Ξ′.

Lemma 3.22. The derivations ν(Π,ΠS)θ and ν(Πθ, ΠS) are the same derivation.

Proof By induction on the measure ht(Π). Most cases are similar to the proof of
Lemma 3.21. The only non-trivial case is when C p = ȳ . p ū, i.e., C S = ȳ . S ū. In this

34

case, we have:

Π
Γ −→ ȳ . Siū

ν=⇒1
Π

Γ −→ ȳ . S ū
ΠS

S x̄ −→ B S x̄

Γ −→ ȳ . p ū
νR

⇓2 θ ⇓3 θ

Πθ
Γθ −→ (ȳ . S ū)θ

ν=⇒4
Πθ

Γθ −→ (ȳ . S ū)θ
ΠS

S x̄ −→ B S x̄

Γθ −→ (ȳ . p ū)θ νR

In Step 3, notice that since x̄ are new eigenvariables, and hence not in the domain of θ
(by the definition of substitution of derivations), ΠSθ = ΠS .

The unfolding of derivations obviously commutes with weakening of global signa-
tures.

Lemma 3.23. The derivation µ(Σ:Π,ΠS) and Σ:µ(Π, ΠS) are the same derivation.

Lemma 3.24. The derivation ν(Σ:Π,ΠS) and Σ:ν(Π, ΠS) are the same derivation.

3.5 Logical equivalence

Logical equivalence is defined via implications, i.e., B ≡ C if and only if B ⊃
C ∧C ⊃ B is provable. For all known logics, logical equivalence is a congruence, that is,
it is preserved by arbitrary context. Since we have introduced a new connective ∇ we
need to verify whether this property still holds. We define a context as a formula with a
hole [.], denoted by C[.]. Given a context C[.], C[A] denotes a formula obtained from C[.]
by replacing the hole [.] with A. Note that this replacement is a textual replacement,
hence there can be variable capture, i.e., free variables in A become bound in C[A].

Proposition 3.25. The logical equivalence relation ≡ is a congruence relation, i.e., if
A ≡ B then C[A] ≡ C[B] for arbitrary context C[.].

Proof The proof is by induction on the size of the context C[.], i.e, the number of
logical connectives in C[.]. The non-trivial case is of course when C[.] = ∇x.C′[.]. By
induction hypothesis we know that C′[A] ≡ C′[B]. We distinguish two cases based on
the occurrence of x in A and B. If x is not free in both A and B, by Lemma 3.14 we
have a derivation x . (C′[A] ≡ C′[B]) and hence by applying ∇R rule we also have a
derivation of ∇x.(C′[A] ≡ C′[B]). By Proposition 2.1 we can push ∇ under implication
and conjunction, therefore we get a derivation of ∇x.C′[A] ≡ ∇x.C′[B]. Otherwise,
suppose x is free in A or B. The free variable is treated as an eigenvariable. In this
case we apply Lemma 3.12 to weaken the scope of x so that we have a derivation of
x . C′[A] ≡ C′[B] and hence also a derivation of ∇x.C′[A] ≡ ∇x.C′[B].

35

3.6 Horn definitions and ∇
We observe that the main difference between ∇ and ∀ is in the left-behavior. We

therefore expect that ∇ and ∀ are interchangeable when the formula we are trying to
prove does not make any use of left-rules, especially eqL. In this section we look at
the properties of cut-free proofs (i.e., proofs which do not make use of the mc rule),
under a class of “essentially” Horn definitions, which is characterized by the absence of
implications in the body of the definitions.

Definition 3.26. An hc-goal (named for Horn clauses) is a formula built from the
base set of logic connectives >, ∧, ∨, and ∃. An hc∀-goal is a formula built from these
connectives and ∀; an hc∇-goal is a formula built from the base set and ∇; and an hc∀∇-
goal is a formula admitting those connectives as well as both ∀ and ∇. A definition is
an hc-definition (resp., hc∀-definition, hc∇-definition, and hc∀∇-definition) if the body
of all of its clauses are hc-goals (resp., hc∀-goals, hc∇-goals, and hc∀∇-goals).

Notice that all of these kind of definitions are trivially stratifiable. We shall now
show that when definitions are essentially Horn clauses, the difference between ∇ and ∀
cannot actually be observed. In particular, we show that ∇ and ∀ can be interchanged
for hc∀∇-definitions and hc∀∇-goals without affecting provability. In proving this state-
ment inductively we need a stronger hypothesis, that is, we can interchange the scope
of variables in this case (either global or local) without affecting provability. We con-
sider only the non co-inductive definitions, i.e., definitions which contain only regular or
inductive definitions.

Lemma 3.27. Let D be a non co-inductive hc∀∇-definition, and let G be an hc∀∇-goal.
The sequent Σ ; . −→ (σ1, x, σ2) . G is cut-free provable if and only if the sequent

Σ, h ; . −→ (σ1σ2) . G[(hσ1)/x]

is cut-free provable. Moreover, given a derivation Π of the first sequent, there is a
derivation Π′ of the second sequent such that ht(Π′) ≤ ht(Π), and vice versa.

Proof One direction is an easy consequence of Lemma 3.12. In the other direction,
we would like to construct the derivation Π′ from the derivation Π. Let us assume that
x is not in Σ. We examine the following non-trivial case.

Suppose Π ends with ∀R
Π1

Σ, f ; . −→ σ1xσ2 . G′[(f σ1xσ2)/y]

Σ ; . −→ σ1xσ2 . ∀y.G′
∀R.

By induction hypothesis there is a derivation Π′1 of

Σ, f, h ; . −→ σ1σ2 . G′[(f σ1(hσ1) σ2)/y, (hσ1)/x]

36

such that ht(Π′1) ≤ ht(Π1). We then apply the substitution [(λσ1λxλσ2.f ′ σ1σ2)/f] to
remove the dependency of f on x. The derivation Π′ is then constructed as follows.

Π′1[(λσ1λxλσ2.f ′ σ1σ2)/f]

Σ, h, f ′ ; . −→ σ1σ2 . G′[(f ′ σ1σ2)/y, (hσ1)/x]

Σ, h ; . −→ σ1σ2 . ∀y.G′[(hσ1)/x]
∀R

Note that substitution does not increase the height of the derivation Π′1, therefore
ht(Π′) = ht(Π′1θ) + 1 ≤ ht(Π).

Notice that we restrict the definition D to a non co-inductive one. This is because
in a proof involving co-induction, there could be a replacement of a co-inductive predicate
with arbitrary invariants which may not be Horn goals.

The following proposition is an expected consequence of the preceeding lemma.

Proposition 3.28. Let D be a non co-inductive hc∀∇-definition and let D′ be the non
co-inductive hc∀∇-definition resulting from replacing some occurrences of ∀ and ∇ in in
the body of clauses of D with ∇ and ∀, respectively. Similarly, let G be an hc∀∇-goal and
let G′ be the hc∀∇-goal resulting from replacing some occurrences of ∀ and ∇ in G with
∇ and ∀, respectively. If the sequent Σ ; · −→ σ . G is cut-free provable using definition
D then the sequent Σ ; · −→ σ . G′ is cut-free provable using definition D′.

Proof Let Π be a derivation of Σ ; · −→ σ . G. We construct a derivation Π′ of
Σ ; · −→ σ . G′ by induction on the measure ht(Π). The non-trivial cases are when Π
ends with the introduction rule for the connective being interchanged.

Suppose G = ∀x.H, G′ = ∇x.H ′ and Π ends with ∀R.

Π1
Σ, h ; . −→ σ . H[(hσ)/x]

Σ ; . −→ σ . ∀x.H
∀R

By Lemma 3.27 there is a derivation Π′1 of Σ ; . −→ (σ, x).H such that ht(Π′1) ≤ ht(Π1).
We can therefore apply the induction hypothesis to Π′1 to get a derivation Π2 of Σ ; . −→
(σ, x) . H ′. The derivation Π′ is therefore

Π2
Σ ; . −→ (σ, x) . H ′

Σ ; . −→ σ .∇x.H ′ ∇R

The case where G = ∇x.H, G′ = ∀x.H ′ and Π ends with ∇R is done analogously, since
Lemma 3.27 works on both directions.

37

3.7 Proof search

In the search for a cut-free proof of a sequent, there can be more than one choice
of the applicable rules at a time. Some of these rules can always be applied without
affecting the cut-free provability of the sequent; we call these rules asynchronous rules,
and the other rules are called synchronous. The more general notion of synchrony and
asynchrony in proof search has been already studied in the literature (see e.g., [3]),
and these notions are usually tied to connectives rather than rules. Our attempt to
classify rules as synchronous and asynchronous for logical connectives is of more limited
scope. We do not attempt, for example, to devise a notion of uniform provability [36, 3],
although the following results will be used to establish certain uniform proof search in
limited settings.

Definition 3.29. A rule R is an asynchronous rule if for every sequent Γ −→ C such
that R is applicable to the sequent and such that there is a cut-free proof of the sequent,
there is a cut-free proof of the same sequent ending with R.

Proposition 3.30. The rules ∧R, ∧L∗, ∨L, ⊃ R, >R, ⊥L, ∃L, ∀R, ∇L, ∇R, defL,
defR, eqL, eqR, νL, µR, eqLcsu, defL= and defLcsu are asynchronous rules.

Proof We make use of the cut-elimination result for Linc (Corollary 4.21 in Chapter 4).
Suppose we have a cut-free derivation Π of the sequent Γ −→ C. For each case we
construct a cut-free derivation Π′ ending with the respected rule. The cases with eqR,
>R, ⊥L are trivial. The rules defL= and defLcsu are derivable from defL, eqL, ∃L and
eqLcsu, and hence their asynchrony follows from those rules. The cases with νL and µR
are the same as defL and defR, but in these cases we use the fact that defL and defR
are derived rules for co-inductive and inductive definitions (Proposition 2.5). The case
with eqLcsu is the same as eqL. It remains to check the following cases.

∧R: Suppose C is B ∧ D. We construct a derivation Ξ as follows.

Π
Γ −→ B ∧D

B −→ B init

B ∧ D −→ B ∧L
Γ −→ B mc

Π
Γ −→ B ∧D

D −→ D init

B ∧ D −→ D ∧L
Γ −→ D mc

Γ −→ B ∧D ∧R

By cut-elimination, there is a cut-free derivation Π1 of Γ −→ B and a cut-free
derivation Π2 of Γ −→ D. Therefore we construct the derivation Π′ as follows.

Π1
Γ −→ B

Π2
Γ −→ D

Γ −→ B ∧D ∧R

38

∧L∗: Suppose Γ is B ∧ D, Γ′. We construct the derivation Π′ by cut-elimination on the
following derivation.

B −→ B init

B,D −→ B wL D −→ D init

B,D −→ D wL
B,D −→ B ∧D ∧R Π

B ∧ D, Γ′ −→ C
B,D, Γ′ −→ C

mc

B ∧ D, Γ′ −→ C ∧L
∗

∨L: Symmetric to the ∧R-case.

⊃ R: Suppose C is B ⊃ D. The derivation Π′ is obtained by cut-elimination on the
following derivation.

Π
Γ −→ B ⊃ D

B −→ B init
D −→ D init

D,B −→ D wL
B ⊃ D,B −→ D ⊃ L

Γ,B −→ D mc

Γ −→ B ⊃ D ⊃ R

∃L: Suppose Γ is x̄.∃y.By,Γ′. Then Π′ is obtained by cut-elimination on the derivation

Σ, h ; x̄ . B (h x̄) −→ x̄ . B (h x̄) init

Σ, h ; x̄ . B (h x̄) −→ x̄ . ∃y.By
∃R h :Π

Σ, h ; x̄ . ∃y.By,Γ′ −→ C
Σ, h ; x̄ . B (h x̄), Γ′ −→ C

mc

Σ ; x̄ . ∃y.By,Γ′ −→ C ∃L

∀R: Symmetric to the ∃L case.

∇L: Suppose Γ is x̄.∇y.By,Γ′. Then Π′ is obtained by cut-elimination on the following
derivation.

x̄y . By −→ x̄y . By
init

x̄y . By −→ x̄ .∇y.By
∇R Π

x̄ .∇y.By,Γ′ −→ C
x̄y . By,Γ′ −→ C

mc

x̄ .∇y.By,Γ′ −→ C ∇L

∇R: Symmetric to the ∇L case.

39

defL: Suppose Γ is x̄ . p t̄, Γ′, where the predicate p ȳ is defined by B ȳ. We construct
Π′ by cut-elimination on the following derivation.

x̄ . B t̄ −→ x̄ . B t̄
init

x̄ . B t̄ −→ x̄ . p t̄
defR Π

x̄ . p t̄,Γ′ −→ C
x̄ . B t̄, Γ′ −→ C

mc

x̄ . p t̄,Γ′ −→ C defL

defR: Symmetric to the defL case.

eqL: Suppose Γ is x̄ . s = t, Γ. Then we take Π′ as the derivation
{

Πρ

Σρ ; Γ′ρ −→ Cρ
}

ρ

Σ ; x̄ . s = t, Γ′ −→ C
eqL

where Πρ is obtained by cut-elimination on the derivation

· ; · −→ (x̄ . s = t)ρ
eqR Πρ

Σρ ; (x̄ . s = t)ρ,Γ′ρ −→ Cρ
Σρ ; Γ′ρ −→ Cρ

mc

40

Chapter 4

Cut Elimination for Linc

In this chapter we prove the cut-elimination theorem for Linc, from which the
consistency of the logic follows. The classic proof of cut-elimination for Gentzen’s LK
and LJ is done by induction on the size of the cut formula, i.e., the number of logical
connectives in the formula. His cut-elimination proof is essentially a procedure for per-
muting cut-rule over other rules. During the permutation, a cut on a compound formula
is reduced to several cuts on formulas of smaller size, which by induction hypothesis can
be removed. For example, the derivation

Π1
∆ −→ B1

Π2
∆ −→ B2

∆ −→ B1 ∧B2
∧R

Π′
B1,Γ −→ C

B1 ∧B2, Γ −→ C
∧L

∆, Γ −→ C
mc

reduces to
Π1

∆ −→ B1
Π′

B1, Γ −→ C

∆, Γ −→ C
mc

.

In the case of Linc, the use of definitions and (co-)induction complicates the re-
duction of cut. The eqL rule uses substitutions in the premise, hence when permuting
up the cut rule over eqL we may need to apply the substitutions to some premise deriva-
tions above the cut. The way we handle this issue is similar to that of FOλ∆IN (see
Chapter 3, Section 3.1). The induction and co-induction cases however pose a different
problem. Consider for example a cut involving the induction rules

Π1
∆ −→ B p t

∆ −→ p t
µR

ΠS
B S y −→ S y

Π
S t,Γ −→ C

p t, Γ −→ C
µL

∆,Γ −→ C
mc

.

There are at least two problems in reducing this cut. First, any permutation of the cut
will necessarily involve a cut with S which can be of larger size than p, and hence simple
induction on the size of cut formula will not work. Second, the invariant S does not
appear in the conclusion of the left premise of the cut. The latter means that we need
to transform the left premise so that its end sequent will agree with the right premise.
Any such transformation will most likely be global, and hence simple induction on the
height of derivations will not work either, or at least will not be obvious.

Our proof of cut-elimination uses the technique of reducibility originally due to
Tait. The method was extended by Martin-Löf [27] to the setting of natural deduction,

41

and to sequent calculus by McDowell and Miller for the logic FOλ∆IN. Our proof of
cut-elimination is based on the latter approach. The original idea of Martin-Löf was
to use derivations directly as a measure and to define a well-founded ordering on them.
The basis for the ordering relation is a set of reduction rules that are used to eliminate
the applications of cut rule. Two orderings are defined on derivations: normalizability
and reducibility (called computability in [27]). The well-foundedness of normalizability
ordering implies that the process of applying the reduction rules to a derivation will
eventually terminate in a cut-free derivation of the same sequent. Reducibility ordering
is a superset of normalizability ordering and hence its well-foundedness implies the well-
foundedness of normalizability ordering. The main part of the proof is in showing that
all derivations in Linc are reducible, and hence normalizable.

We prove a stronger lemma from which cut-elimination follows as a corollary. In
a simplified form, this lemma basically says that given any derivation Π of

B1, . . . , Bn, Γ −→ C

and reducible derivations Π1, . . . ,Πn of ∆ −→ B1, . . . ,∆n −→ Bn (n ≥ 0), the deriva-
tion Ξ

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π
B1, . . . , Bn, Γ −→ C

∆1, . . . , ∆n, Γ −→ C
mc

is reducible. The cut-elimination theorem is then just a particular instance of this lemma,
that is, the case where n = 0. The proof proceeds by induction on the height of Π with
subordinate inductions on n and on the (well-founded) reduction tree of Π1, . . . , Πn.

Most of the reduction rules are variants of Gentzen’s reduction rules, except, of
course, for the cases involving induction and co-induction. We outline here the reduction
rules for the cut on µL/µR and νL/νR pairs. In both cases we make use of the notion
of unfolding of derivations (Chapter 3, Section 3.4) to define the reduction rules. In the
µL/µR case above, the cut is reduced to

µ(Π1,ΠS)
∆ −→ B S t

ΠS [t/y]
B S t −→ S t

∆ −→ S t
mc Π

S t,Γ −→ C

∆, Γ −→ C
mc

We recall that the derivation µ(Π1, ΠS) is constructed inductively from Π1 by replacing,
among others, the subderivation of the form

Π2
∆′ −→ B p u

∆′ −→ p u
µR with

µ(Π2, ΠS)
∆′ −→ B S u

ΠS [u/y]
B S u −→ S u

∆′ −→ S u
mc

where µ(Π2, ΠS) is constructed inductively from Π2. There are possibly more cuts
produced in the unfolding process, but those are of smaller rank (i.e., the height of ΠS is
smaller than the height of the original derivation) and hence are reducible by the outer
induction hypothesis.

42

The νR/νL case is more complicated. Suppose we have the derivation Ξ

Π1
∆ −→ S t

ΠS
S y −→ B S y

∆ −→ p t
νR

Π
B p t, Γ −→ C

p t, Γ −→ C
νL

∆,Γ −→ C
mc

The objective of the reduction rule is to reduce the height of the right premise of the
cut. Therefore, we need to do the unfolding on the left premise.

Π1
∆ −→ S t

ν(ΠS , ΠS)[t/y]
S t −→ B p t

∆ −→ B p t
mc Π

B p t, Γ −→ C

∆,Γ −→ C
mc

In constructing the derivation ν(ΠS , ΠS), subderivations of ΠS of the form

Ψ
∆ −→ S u

are replaced by
Ψ

∆ −→ S u
ΠS

S x −→ B S x
∆ −→ p u

νR .

This is the delicate point of the proof since there could be a potentially infinite unwinding
of derivations as we push up the cut. Notice that unlike in the inductive case, the
unfolding process uses only the derivations in the left premise of the cut, and hence the
outer induction hypothesis will not help in establishing the reducibility of the unfolded
derivation. We solve this problem by building into the reducibility ordering a closure
condition which will allow us to establish the reducibility of the unfolded derivation
µ(ΠS , ΠS), given the reducibility of ΠS .

4.1 Cut reduction

Here we define a reduction relation between derivations, which is an adaptation
of the reduction rules used in Gentzen’s original Hauptsatz [18].

Definition 4.1. We define a reduction relation between derivations. The redex is al-
ways a derivation Ξ ending with the multicut rule

Π1
Σ ; ∆1 −→ B1 · · ·

Πn
Σ ; ∆n −→ Bn

Π
Σ ; B1, . . . ,Bn, Γ −→ C

Σ ; ∆1, . . . ,∆n, Γ −→ C mc
.

We refer to the judgments B1, . . . ,Bn produced by the mc as cut judgments.
If n = 0, Ξ reduces to the premise derivation Π.
For n > 0 we specify the reduction relation based on the last rule of the premise

derivations. If the rightmost premise derivation Π ends with a left rule acting on a
cut judgment Bi, then the last rule of Πi and the last rule of Π together determine the
reduction rules that apply. We classify these rules according to the following criteria:
we call the rule an essential case when Πi ends with a right rule; if it ends with a left

43

rule, it is a left-commutative case; if Πi ends with the init rule, then we have an axiom
case; a multicut case arises when it ends with the mc rule. When Π does not end with a
left rule acting on a cut judgment, then its last rule is alone sufficient to determine the
reduction rules that apply. If Π ends in a rule acting on a judgment other than a cut
judgment, then we call this a right-commutative case. A structural case results when Π
ends with a contraction or weakening on a cut judgment. If Π ends with the init rule,
this is also an axiom case; similarly a multicut case arises if Π ends in the mc rule.

For simplicity of presentation, we always show i = 1.
Essential cases:
∧R/ ∧ L: If Π1 and Π are

Π′1
∆1 −→ B′1

Π′′1
∆1 −→ B′′1

∆1 −→ B′1 ∧ B
′′
1

∧R

Π′
B′1,B2, . . . ,Bn, Γ −→ C

B′1 ∧ B
′′
1 ,B2, . . . ,Bn, Γ −→ C ∧L ,

then Ξ reduces to

Π′1
∆1 −→ B′1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π′
B′1,B2, . . . ,Bn, Γ −→ C

∆1, . . . ,∆n, Γ −→ C mc
.

The case for the other ∧L rule is symmetric.
∨R/ ∨ L: If Π1 and Π are

Π′1
∆1 −→ B′1

∆1 −→ B′1 ∨ B
′′
1
∨R

Π′
B′1,B2, . . . ,Bn, Γ −→ C

Π′′
B′′1 ,B2, . . . ,Bn,Γ −→ C

B′1 ∨ B
′′
1 ,B2, . . . ,Bn, Γ −→ C ∨L

,

then Ξ reduces to

Π′1
∆1 −→ B′1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π′
B′1,B2, . . . ,Bn, Γ −→ C

∆1, . . . ,∆n, Γ −→ C mc
.

The case for the other ∨R rule is symmetric.
⊃ R/ ⊃ L: Suppose Π1 and Π are

Π′1
B′1,∆1 −→ B′′1

∆1 −→ B′1 ⊃ B′′1
⊃ R

Π′
B2, . . . ,Bn,Γ −→ B′1

Π′′
B′′1 ,B2, . . . ,Bn, Γ −→ C

B′1 ⊃ B′′1 ,B2, . . . ,Bn,Γ −→ C ⊃ L
.

44

Let Ξ1 be
{

Πi
∆i −→ Bi

}

i∈{2..n}
Π′

B2, . . . ,Bn, Γ −→ B′1
∆2, . . . ,∆n, Γ −→ B′1

mc
Π′1

B′1,∆1 −→ B′′1
∆1, . . . , ∆n, Γ −→ B′′1

mc
.

Then Ξ reduces to

Ξ1
. . . −→ B′′1

{
Πi

∆i −→ Bi

}

i∈{2..n}
Π′′

B′′1 , {Bi}i∈{2..n},Γ −→ C
∆1, . . . , ∆n, Γ, ∆2, . . . ,∆n, Γ −→ C mc

cL
∆1, . . . ,∆n, Γ −→ C .

We use the double horizontal lines to indicate that the relevant inference rule (in this
case, cL) may need to be applied zero or more times.
∀R/∀L: If Π1 and Π are

Π′1
Σ, h ; ∆1 −→ z̄ . B′1[(h z̄)/x]

Σ ; ∆1 −→ z̄ . ∀x.B′1
∀R

Π′
Σ ; z̄ . B′1[t/x],B2, . . . ,Bn,Γ −→ C
Σ ; z̄ . ∀x.B′1,B2, . . . ,Bn,Γ −→ C ∀L

,

then Ξ reduces to

Π′1[λz̄.t/h]

Σ ; ∆1 −→ z̄ . B′1[t/x]

{
Πi

Σ ; ∆i −→ Bi

}

i∈{2..n}
Π′

. . . −→ C
Σ ; ∆1, . . . ,∆n, Γ −→ C mc

.

∃R/∃L: If Π1 and Π are

Π′1
Σ ; ∆1 −→ z̄ . B′1[t/x]

Σ ; ∆1 −→ z̄ . ∃x.B′1
∃R

Π′
Σ, h ; z̄ . B′1[(h z̄)/x],B2, . . . ,Bn,Γ −→ C

Σ ; z̄ . ∃x.B′1,B2, . . . ,Bn, Γ −→ C ∃L
,

then Ξ reduces to

Π′1
Σ ; ∆1 −→ z̄ . B′1[t/x] . . .

Π′[λz̄.t/h]
Σ ; z̄ . B′1[t/x],B2, . . . ,Γ −→ C

Σ ; ∆1, . . . ,∆n, Γ −→ C mc
.

45

∇R/∇L: If Π1 and Π are

Π′1
∆1 −→ z̄y . B′1[y/x]

∆1 −→ z̄ .∇x.B′1
∇R

Π′
z̄y . B′1[y/x], . . . ,Bn, Γ −→ C
z̄ .∇x.B′1, . . . ,Bn, Γ −→ C ∃L

,

then Ξ reduces to

Π′1
∆1 −→ z̄y . B′1[y/x] . . .

Π′
z̄y . B′1[y/x], . . . ,Bn,Γ −→ C

∆1, . . . ,∆n, Γ −→ C mc
.

∗/µL: Suppose Π is the derivation

ΠS
x̄ ; D S x̄ −→ S x̄

Π′
Σ ; z̄ . S t̄,B2, . . . ,Bn, Γ −→ C

Σ ; z̄ . p t̄,B2, . . . ,Bn,Γ −→ C µL

where p x̄
µ
= B p x̄. Then Ξ reduces to

µ(Π1, ΠS)
Σ ; ∆1 −→ z̄ . S t̄ . . .

Π′
Σ ; z̄ . S t̄, . . . ,Bn,Γ −→ C

Σ ; ∆1, . . . , ∆n, Γ −→ C mc

νR/νL: Suppose Π1 and Π are

Π′1
Σ ; ∆1 −→ z̄ . S t̄

ΠS
x̄ ; S x̄ −→ D S x̄

Σ ; ∆1 −→ z̄ . p t̄
νR

Π′
Σ ; z̄ . D p t̄, Γ −→ C

Σ ; z̄ . p t̄, . . . ,Γ −→ C νL

where t̄ = t1, . . . , tm. Apply Lemma 3.16 to ΠS to get a derivation

Π′
S

h1, . . . , hm ; z̄ . S ū −→ z̄ . D S ū

where ū = (h1 z̄), . . . , (hm z̄). Let Ξ1 be the derivation

Π′1
Σ ; ∆1 −→ z̄ . S t̄

Π′
S
θ

Σ ; z̄ . S t̄ −→ z̄ . D S t̄

Σ ; ∆1 −→ z̄ . D S t̄
mc

46

where θ = [(λz̄.t1)/h1, . . . , (λz̄.tm)/hm]. Then Ξ reduces to

ν(Ξ1, ΠS)
Σ ; ∆1 −→ z̄ . D p t̄

{
Πj

Σ ; ∆j −→ Bj

}

j∈{2,...,n}
Π′

Σ ; z̄ . D p t̄, . . . ,Γ −→ C
Σ ; ∆1, . . . , ∆n, Γ −→ C mc

defR/defL: Let p x̄
4
= D p x̄ be a regular definition. Suppose Π1 and Π are

Π′1
∆1 −→ z̄ . D p t̄

∆1 −→ z̄ . p t̄
defR

Π′
z̄ . D p t̄, . . . , Γ −→ C
z̄ . p t̄, . . . ,Γ −→ C defL

.

Then Ξ reduces to

Π′1
∆1 −→ z̄ . D p t̄ . . .

Π′
z̄ . D p t̄, . . . ,Γ −→ C

∆1, . . . ,∆n, Γ −→ C mc
.

eqR/eqL: Suppose Π1 and Π are

Σ ; ∆1 −→ z̄ . s = t
eqR

{
Πρ

Σρ ; B2ρ, . . . ,Bnρ, Γρ −→ Cρ
}

ρ

Σ ; z̄ . s = t,B2, . . . ,Bn, Γ −→ C eqL
.

Then by the definition of eqR rule, s and t are equal terms (modulo λ-conversion),
and hence are unifiable by the empty substitution. Note that in this case Πε ∈ {Πρ}ρ.
Therefore Ξ reduces to

{
Πi

Σ ; ∆i −→ Bi

}

i∈{2..n}
Πε

Σ ; B2, . . . ,Bn,Γ −→ C
Σ ; ∆2, . . . ,∆n, Γ −→ C mc

Σ ; ∆1, ∆2, . . . ,∆n,Γ −→ C wL
.

Left-commutative cases: In the following cases, we suppose that Π ends with a left rule,
other than {cL,wL, µL}, acting on B1.
•L/ ◦ L: Suppose Π1 is 




Πi
1

Σi ; ∆i
1 −→ B1





Σ ; ∆1 −→ B1
•L

,

47

where •L is any left rule except ⊃ L, eqL, or µL. Note that in this case we have Σi ⊇ Σ
for each i. Then Ξ reduces to





Πi
1

Σi ; ∆i
1 −→ B1





Π′
j

Σi ; ∆j −→ Bj





j∈{2..n}
Π′

Σi ; B1, . . . ,Bn,Γ −→ C
Σi ; ∆i

1,∆2, . . . ,∆n, Γ −→ C
mc





Σ ; ∆1,∆2, . . . , ∆n, Γ −→ C •L
.

The derivations Π′
j

and Π′ are obtained from Πj and Π, respectively, by applying Lemma 3.11
(weakening of signature).
⊃ L/ ◦ L: Suppose Π1 is

Π′1
∆′1 −→ D′1

Π′′1
D′′1 , ∆′1 −→ B1

D′1 ⊃ D′′1 , ∆′1 −→ B1
⊃ L

.

Let Ξ1 be

Π′′1
D′′1 ,∆′1 −→ B1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π
B1, . . . ,Bn,Γ −→ C

D′′1 , ∆′1, ∆2, . . . ,∆n,Γ −→ C
mc

.

Then Ξ reduces to

Π′1
∆′1 −→ D′1

wL
∆′1, ∆2, . . . , ∆n, Γ −→ D′1

Ξ1
D′′1 , ∆′1, ∆2, . . . , ∆n, Γ −→ C

D′1 ⊃ D′′1 ,∆′1, ∆2, . . . , ∆n, Γ −→ C ⊃ L
.

µL/ ◦ L: Suppose Π1 is

ΠS
x̄ ; D S x̄ −→ S x̄

Π′1
Σ ; z̄ . S t̄, ∆′1 −→ B1

Σ ; z̄ . p t̄, ∆′1 −→ B1
µL

48

where p x̄
µ
= D p x̄. Let Ξ1 be

Π′1
Σ ; z̄ . S t̄,∆′1 −→ B1 . . .

Πn
Σ ; ∆n −→ Bn

Π
Σ ; B1, . . . ,Bn, Γ −→ C

Σ ; z̄ . S t̄,∆′1,∆2, . . . , ∆n, Γ −→ C
mc

.

Then Ξ reduces to

ΠS
x̄ ; D S x̄ −→ S x̄

Ξ1
Σ ; z̄ . S t̄, ∆′1, . . . ,∆n,Γ −→ C

Σ ; z̄ . p t̄, ∆′1, . . . ,∆n −→ C
µL

eqL/ ◦ L: Suppose Π1 is




Πρ
1

Σρ ; ∆′1ρ −→ B1ρ





Σ ; z̄ . s = t,∆′1 −→ B1
eqL

,

then Ξ reduces to




Πρ
1

Σρ ; ∆′1ρ −→ B1ρ

{
Πiρ

Σρ ; ∆iρ −→ Biρ

}

i∈{2..n}
Πρ

. . . −→ Cρ
Σρ ; ∆′1ρ,∆2ρ, . . . ,∆nρ, Γρ −→ Cρ

mc





z̄ . s = t,∆′1, ∆2, . . . , ∆n, Γ −→ C
eqL

.

Right-commutative cases:
−/ ◦ L: Suppose Π is {

Πi

Σi ; B1, . . . ,Bn, Γi −→ C

}

Σ ; B1, . . . ,Bn, Γ −→ C ◦L
,

where ◦L is any left rule other than ⊃ L, eqL, or µL (but including cL or wL) acting
on a judgment other than B1, . . . ,Bn. Note that Σi ⊇ Σ since in the case ∃L a new
eigenvariable is introduced in the premise. The derivation Ξ reduces to





Π′1
Σi ; ∆1 −→ B1 · · ·

Π′
n

Σi ; ∆n −→ B′
n

Πi

Σi ; B1, . . . ,Bn, Γi −→ C
Σi ; ∆1, . . . , ∆n, Γi −→ C

mc





Σ ; ∆1, . . . ,∆n, Γ −→ C ◦L
,

where Π′1, . . . ,Π′
n

are obtained from applying Lemma 3.11 to Π1, . . . , Πn, respectively.

49

−/ ⊃ L: Suppose Π is

Π′
B1, . . . ,Bn, Γ′ −→ D′

Π′′
B1, . . . ,Bn,D′′, Γ′ −→ C

B1, . . . ,Bn,D′ ⊃ D′′, Γ′ −→ C ⊃ L
.

Let Ξ1 be
Π1

∆1 −→ B1 · · ·
Πn

∆n −→ Bn

Π′
B1, . . . ,Bn, Γ′ −→ D′

∆1, . . . ,∆n,Γ′ −→ D′
mc

and Ξ2 be

Π1
∆1 −→ B1 · · ·

Πn
∆n −→ Bn

Π′′
B1, . . . ,Bn,D′′,Γ′ −→ C

∆1, . . . , ∆n,D′′, Γ′ −→ C
mc

.

Then Ξ reduces to

Ξ1
∆1, . . . , ∆n, Γ′ −→ D′

Ξ2
∆1, . . . , ∆n,D′′, Γ′ −→ C

∆1, . . . ,∆n,D′ ⊃ D′′, Γ′ −→ C ⊃ L
.

−/µL: Suppose Π is

ΠS
x̄ ; D S x̄ −→ S x̄

Π′
Σ ; B1, . . . ,Bn, z̄ . S t̄, Γ′ −→ C

Σ ; B1, . . . ,Bn, z̄ . p t̄,Γ′ −→ C
µL

,

where p x̄
µ
= D p x̄. Let Ξ1 be

Π1
Σ ; ∆1 −→ B1 · · ·

Πn
Σ ; ∆n −→ Bn

Π′
Σ ; B1, . . . ,Bn, z̄ . S t̄, Γ′ −→ C

Σ ; ∆1, . . . ,∆n, z̄ . S t̄,Γ′ −→ C
mc

.

Then Ξ reduces to

ΠS
x̄ ; D S x̄ −→ S x̄

Ξ
Σ ; ∆1, . . . ,∆n, z̄ . S t̄,Γ′ −→ C

Σ ; ∆1, . . . , ∆n, z̄ . p t̄, Γ′ −→ C
µL

.

−/eqL: If Π is {
Πρ

Σρ ; B1ρ, . . . ,Bnρ, Γ′ρ −→ Cρ
}

Σ ; B1, . . . ,Bn, z̄ . s = t,Γ′ −→ C
eqL

,

50

then Ξ reduces to




{
Πiρ

Σρ ; ∆iρ −→ Biρ

}

i∈{1..n}
Πρ

Σρ ; Biρ, . . . , Γ′ρ −→ Cρ
Σρ ; ∆1ρ, . . . , ∆nρ, Γ′ρ −→ Cρ

mc





Σ ; ∆1, . . . , ∆n, z̄ . s = t, Γ′ −→ C
eqL

.

−/ ◦ R: If Π is {
Πi

Σi ; B1, . . . ,Bn, Γi −→ Ci

}

Σ ; B1, . . . ,Bn, Γ −→ C ◦R
,

where ◦R is any right rule except νR, then Ξ reduces to




Π′1
Σi ; ∆1 −→ B1 · · ·

Π′
n

Σi ; ∆n −→ Bn

Πi

Σi ; B1, . . . ,Bn, Γi −→ Ci

Σi ; ∆1, . . . ,∆n, Γi −→ Ci
mc





Σ ; ∆1, . . . ,∆n, Γ −→ C ◦R
,

where Π′1, . . . ,Π′
n

are obtained from Π1, . . . , Πn by Lemma 3.11.
−/νR: Suppose Π is

Π′
Σ ; B1, . . . ,Bn, Γ −→ z̄ . S t̄

ΠS
x̄ ; S x̄ −→ D S x̄

Σ ; B1, . . . ,Bn, Γ −→ z̄ . p t̄
νR

,

where p x̄
ν= D p x̄. Let Ξ1 be

Π1
Σ ; ∆1 −→ B1 · · ·

Πn
Σ ; ∆n −→ Bn

Π′
Σ ; B1, . . . ,Bn, Γ −→ z̄ . S t̄

Σ ; ∆1, . . . ,∆n,Γ −→ z̄ . S t̄
mc

.

Then Ξ reduces to

Ξ1
Σ ; ∆1, . . . , ∆n, Γ −→ z̄ . S t̄

ΠS
x̄ ; S x̄ −→ D S x̄

Σ ; ∆1, . . . ,∆n,Γ −→ z̄ . p t̄
νR

.

Multicut cases:
mc/ ◦ L: If Π ends with a left rule, other than cL, wL and µL, acting on B1 and Π1
ends with a multicut and reduces to Π′1, then Ξ reduces to

Π′1
∆1 −→ B1

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π
B1, . . . ,Bn,Γ −→ C

∆1, . . . ,∆n, Γ −→ C mc
.

51

−/mc: Suppose Π is
{

Πj

{Bi}i∈Ij , Γ
j −→ Dj

}

j∈{1..m}
Π′

{Dj}j∈{1..m}, {Bi}i∈I ′ , Γ
′ −→ C

B1, . . . ,Bn,Γ1, . . . ,Γm, Γ′ −→ C
mc

,

where I1, . . . , Im, I ′ partition the judgments {Bi}i∈{1..n} among the premise derivations

Π1, . . . , Πm,Π′. For 1 ≤ j ≤ m let Ξj be
{

Πi
∆i −→ Bi

}

i∈Ij
Πj

{Bi}i∈Ij , Γ
j −→ Dj

{∆i}i∈Ij , Γ
j −→ Dj

mc
.

Then Ξ reduces to
{

Ξj

. . . −→ Dj

}

j∈{1..m}

{
Πi

∆i −→ Bi

}

i∈I ′
Π′

. . . −→ C
∆1, . . . ,∆n,Γ1, . . . Γm,Γ′ −→ C

mc
.

Structural case:
−/cL: If Π is

Π′
B1,B1,B2, . . . ,Bn,Γ −→ C
B1,B2, . . . ,Bn, Γ −→ C cL

,

then Ξ reduces to

Π1
∆1 −→ B1

{
Πi

∆i −→ Bi

}

i∈{1..n}
Π′

B1,B1,B2, . . . ,Bn, Γ −→ C
∆1, ∆1, ∆2, . . . ,∆n,∆n, Γ −→ C mc

cL
∆1, ∆2, . . . ,∆n,Γ −→ C .

−/wL: If Π is
Π′

B2, . . . ,Bn, Γ −→ C
B1,B2, . . . ,Bn,Γ −→ C wL

,

then Ξ reduces to

Π2
∆2 −→ B2 . . .

Πn
∆n −→ Bn

Π′
B2, . . . ,Bn, Γ −→ C

∆2, . . . ,∆n, Γ −→ C mc

wL
∆1, ∆2, . . . ,∆n,Γ −→ C .

52

Axiom cases:
init/ ◦ L: Suppose Π ends with a left-rule acting on B1 and Π1 ends with the init rule.
Then it must be the case that ∆1 = {B1} and Ξ reduces to

Π2
∆2 −→ B2 · · ·

Πn
∆n −→ Bn

Π
B1,B2, . . . ,Bn, Γ −→ C

B1, ∆2, . . . , ∆n, Γ −→ C mc
.

−/init: If Π ends with the init rule, then n = 1, Γ is the empty multiset, and C must be
a cut formula, i.e., C = B1. Therefore Ξ reduces to Π1.

An inspection of the rules of the logic and this definition will reveal that every
derivation ending with a multicut has a reduct. Because we use a multiset as the left
side of the sequent, there may be ambiguity as to whether a formula occurring on the
left side of the rightmost premise to a multicut rule is in fact a cut formula, and if so,
which of the left premises corresponds to it. As a result, several of the reduction rules
may apply, and so a derivation may have multiple reducts.

The following lemmas show that the reduction relation is preserved by some of
the transformation of derivations defined in previous chapter. Observe that the redexes
of a derivation are not affected by substitution or weakening of signatures, since both
transformations do not change the last rule of a derivation.

Lemma 4.2. Let Π be a derivation of Σ ; Γ −→ C ending with a mc. Let Σ′ be a signature
different from Σ. Then Π reduces to a derivation Π′ if and only if Σ′ :Π reduces to Σ′ :Π′.

Proof By induction on ht(Π) and inspection on the reduction rules. Induction hy-
pothesis is needed in the case mc/ ◦ L. In the cases ∗/µL and νR/νL we make use of
Lemma 3.23 and Lemma 3.24, respectively.

Lemma 4.3. Let Π be a derivation of Σ ; Γ −→ C ending with a mc and let θ be a
substitution. Then Π reduces to a derivation Π′ if and only if Πθ reduces to Π′θ.

Proof By induction on ht(Π), Lemma 3.21 and Lemma 3.22.

Lemma 4.4. Let p x̄
µ
= D p x̄ be an inductive definition and let ΠS be a derivation of

x̄ ; D S x̄ −→ S x̄ for some invariant S. Let C p be a non-atomic judgment in which p
occurs strictly positively. Let Π and Π′ be two derivations of the same sequent Σ ; Γ −→
C p, and Π ends with a mc rule. Then the derivation Π reduces to a derivation Π′ if and
only the derivation µ(Π, ΠS) reduces to µ(Π′, ΠS).

Proof By case analysis on the reduction rules. The case analysis can be much simpli-
fied by the following observation. First, the reduction rules are driven only by outermost
connectives in the formulas in the sequent. Second, the unfolding of a derivation affects
only the right-handside of the sequents appearing in the derivation (or more specifically,
only the branches containing major premises). By a quick inspection on the definition of
reduction rules in Definition 4.1, we see that the only non-trivial case to consider is the
right-commutative case −/◦R. Since C p is non-atomic (and assuming that it has at least

53

one occurrence of p, otherwise it is trivial since Π = µ(Π, ΠS) in this case), the only cases
we need to verify is when its topmost logical connective is either ∧, ∨, ⊃, ∀, ∃, ∇. In
these cases, the unfolding does not change the topmost connective, therefore any reduc-
tion rule that applies to Π also applies to µ(Π,ΠS) and vice versa. Lemma 3.21, 3.22,
3.23 and 3.24 are used when substitutions are involved (right/left commutative cases
with eqL) and when global signature weakening are involved (right/left commutative
cases with ∀ and ∃).

Lemma 4.5. Let p x̄
ν= D p x̄ be a co-inductive definition and let ΠS be a derivation of

x̄ ; S x̄ −→ D S x̄ for some invariant S. Let C p be a non-atomic judgment in which p
occurs strictly positively. Let Π and Π′ be two derivations of the sequent Σ ; Γ −→ C S,
where Π ends with a mc rule. Then the derivation Π reduces to a derivation Π′ if and
only the derivation ν(Π, ΠS) reduces to ν(Π′, ΠS).

Proof Analogous to the proof of Lemma 4.4.

4.2 Normalizability and reducibility

We now define two properties of derivations: normalizability and reducibility.
Each of these properties implies that the derivation can be reduced to a cut-free deriva-
tion of the same end-sequent.

4.2.1 Normalizability

Definition 4.6. We define the set of normalizable derivations to be the smallest set
that satisfies the following conditions:

1. If a derivation Π ends with a multicut, then it is normalizable if every reduct of Π
is normalizable.

2. If a derivation ends with any rule other than a multicut, then it is normalizable if
the premise derivations are normalizable.

These clauses assert that a given derivation is normalizable provided certain (perhaps
infinitely many) other derivations are normalizable. If we call these other derivations
the predecessors of the given derivation, then a derivation is normalizable if and only if
the tree of the derivation and its successive predecessors is well-founded. In this case,
the well-founded tree is called the normalization of the derivation.

The set of all normalizable derivations is denoted by ℵ.

Since a normalization is well-founded, it has an associated induction principle:
for any property P of derivations, if for every derivation Π in the normalization, P holds
for every predecessor of Π implies that P holds for Π, then P holds for every derivation
in the normalization.

Lemma 4.7. If there is a normalizable derivation of a sequent, then there is a cut-free
derivation of the sequent.

54

Proof Let Π be a normalizable derivation of the sequent Γ −→ B. We show by
induction on the normalization of Π that there is a cut-free derivation of Γ −→ B.

1. If Π ends with a multicut, then any of its reducts is one of its predecessors and so
is normalizable. But the reduct is also a derivation of Γ −→ B, so by the induction
hypothesis this sequent has a cut-free derivation.

2. Suppose Π ends with a rule other than multicut. Since we are given that Π is
normalizable, by definition the premise derivations are normalizable. These premise
derivations are the predecessors of Π, so by the induction hypothesis there are cut-
free derivations of the premises. Thus there is a cut-free derivation of Γ −→ B.

The next two lemmas are also proved by induction on the normalization of the
given derivation.

Lemma 4.8. If Π is a normalizable derivation, then for any substitution θ, Πθ is nor-
malizable.

Proof We prove this lemma by induction on the normalization of Π.

1. If Π ends with a multicut, then Πθ also ends with a multicut. By Lemma 4.3 every
reduct of Πθ corresponds to a reduct of Π, therefore by induction hypothesis every
reduct of Πθ is normalizable, and hence Πθ is normalizable.

2. Suppose Π ends with a rule other than multicut and has premise derivations {Πi}.
By Definition 3.1 each premise derivation in Πθ is either Πi or Πiθ. Since Π is
normalizable, Πi is normalizable, and so by the induction hypothesis Πiθ is also
normalizable. Thus Πθ is normalizable.

Lemma 4.9. If Π is a normalizable derivation, then for any signature Σ the derivation
Σ:Π is normalizable.

Proof By induction on the normalization of Π. The proof is analogous to the proof
of Lemma 4.8, but in the case where Π ends with mc we use Lemma 4.2 instead.

4.2.2 Generated Sets

In defining the notion of reducibility in the following section, we will need to
construct a closed set in defining the reducibility of derivations ending with co-induction
rules. The main closure condition is that related to the co-inductive invariants used in
the derivation. We call the least of such closed set the generated set. Its main use will
be in proving that reducibility is preserved under co-inductive unfolding of derivations.

Let L denote the set of all derivations and P(L) denote the power set of L.
Then the set P(L) together with order relation ⊆ (set inclusion), greatest lower bound
operation ∩ and least upper bound operation ∪ defines a complete lattice. The generated
set will be defined as the least fixed point of a monotone function on this lattice. The
precise definition follows.

55

Definition 4.10. Let p x̄
ν= B p x̄ be a co-inductive definition. Let R be a set of deriva-

tions such that for all Ψ ∈ R, it holds that lvl(Ψ) < lvl(p). Let Φ be a derivation of
Σ ; Γ −→ C such that lvl(C) ≤ lvl(p) and let ΠS be a derivation of x̄ ; S x̄ −→ B S x̄ for
some invariant S, such that lvl(S) ≤ lvl(p). We define a function WR,Φ,ΠS

: P(L) →
P(L) (abbreviated as W below) as follows, given an input set K.

1. Φ ∈ W(K),

2. for every derivation Ξ ∈ K and for every substitution θ the derivation Ξθ is in
W(K),

3. for every derivation Ξ ∈ K of the sequent Σ′ ; Γ −→ D and for every signature Σ′′
such that Σ′′ and Σ′ are disjoint, the derivation Σ′′ :Ξ is in W(K),

4. for every derivation Ξ of Σ′ ; ∆ −→ D in K,

(a) if D = z̄ . S ū then

Ξ
Σ′ ; ∆ −→ z̄ . S ū

Π′
S

Σ′ ; z̄ . S ū −→ z̄ . B S ū

Σ′ ; ∆ −→ z̄ . B S ū
mc ,

where Π′
S

is a raised instance of ΠS , is in W(K),

(b) otherwise,

i. if Ξ ends with ⊃ R
Ξ′

∆,D1 −→ D2
∆ −→ D1 ⊃ D2

⊃ R

then Ξ′ ∈ W(K) and for every substitution θ and signature Σ′′ and for
every derivation Ψ of ∆′ −→ D1θ in R, the derivation

Ψ
Γ −→ D1θ

Σ′′ :Ξ′θ
D1θ, ∆θ −→ D2θ

∆′, ∆θ −→ D2θ
mc

is in W(K).
ii. if Ξ ends with mc, then every reduct of Π is in W(C),
iii. if Ξ ends with any other rule then its major premises are in W(C).

The (R, Φ, ΠS)-generated set is defined as the least fixed point of W.

From now on, when we write WR,Φ,ΠS
, it is understood that the derivations Φ

and ΠS take the form as indicated in Definition 4.10, and that the underlying coinductive
definition and invariant are assumed to be given.

56

We define the ordinal powers of W as follows

W0 = W(∅),
Wn+1 = W(Wn)

and Wω =
⋃{Wk | k < ω}.

Lemma 4.11. The function WR,Φ,ΠS
in Definition 4.10 is

1. monotone, i.e., for any sets K1 ⊆ K2, WR,Φ,ΠS
(K1) ⊆ WR,Φ,ΠS

(K2),

2. and continuous, i.e., for any chain

K1 ⊆ K2 ⊆ K3 ⊆

we have
WR,Φ,ΠS

(∪{Ki | i < ω}) =
⋃
{WR,Φ,ΠS

(Ki) | i < ω}.

Proof We abbreviate WR,Φ,ΠS
as simply W.

1. Let Ψ ∈ W(K1). If Ψ = Φ then Ψ ∈ W(K2). Otherwise, Ψ is obtained from a
derivation Ψ′ ∈ K1 by applying one of the operations (1) - (4) in Definition 4.10.
Since Ψ′ ∈ K2, we can apply the same operation to get Ψ in W(K2).

2. We show that ∪{W(Ki) | i < ω} ⊆ W(∪{Ki | i < ω}) and W(∪{Ki | i < ω}) ⊆
∪{W(Ki) | i < ω}.
(a) for every j < ω,

Kj ⊆ ∪{Ki | i < ω} ⇒ (by monotonicity of W)
W(Kj) ⊆ W(∪{Ki | i < ω})

⇒ ∪{W(Ki) | i < ω} ⊆ W(∪{Ki | i < ω})

(b) Let Ψ be an element of W(∪{Ki | i < ω}). If Ψ = Φ then obviously Ψ ∈
∪{W(Ki) | i < ω}. Otherwise, Ψ is obtained from an element Ψ′ in ∪{Ki |
i < ω} by some operation defined in Definition 4.10. Since Ψ′ is also in some
Kk, we have Ψ ∈ W(Kk) ⊆ ∪{W(Ki) | i < ω}.

It is a known fact that for every continous function W (see [4] for example),
the least fixed point of W is Wω. Therefore, the (R,Φ, ΠS)-generated set is exactly
Wω
R,Φ,ΠS

. This characterization will be useful in proving some properties of WR,Φ,ΠS
.

In particular, the fact that Wω
R,Φ,ΠS

is the least fixed point implies that we can use
ordinary induction to prove its properties.

The proof for the following lemma is immediate by induction on the construction
of generated sets, Definition 4.10 and Definition 3.2 (definition of major premises).

57

Lemma 4.12. Let Wω
R,Φ,ΠS

be a generated set with the underlying co-inductive defini-

tion p x̄
ν= B p x̄. Then for every Ξ ∈ Wω

R,Φ,ΠS
, lvl(Ξ) ≤ lvl(p).

Lemma 4.13. Let W1 = WR,Φ1,ΠS
and let W2 = WR,Φ2,ΠS

. If Φ1 ∈ Wω
2 then

Wω
1 ⊆ Wω

2 .

Proof It is enough to show that for every i < ω, Wi
1 ⊆ Wω

2 . The case where i = 0 is

trivial. Suppose Wi
1 ⊆ Wω

2 . We show that Wi+1
1 ⊆ Wω

2 . Note that the only difference

between W1 and W2 is in the operation (1) in Definition 4.10. Let Ξ ∈ Wi+1
1 . If Ξ is Φ1

then Ξ ∈ Wω
2 by inductive hypothesis. Otherwise, suppose Ξ is obtained from Ξ′ ∈ Wi

1
by some operation (2) - (4) in Definition 4.10. Then we can perform the same operation
on Wω

2 , that is, we have Ξ ∈ W2(Wω
2). But we know that Wω

2 is a fixed point of W2,
and therefore Ξ ∈ Wω

2 .

4.2.3 Reducibility

The inductive definition of reducibility is done by induction on the level of the
derivation: in the definition of reducibility for derivations of level i we assume that
reducibility is already defined for all levels j < i. (Recall from Definition 2.3 that the
level of a derivation is defined to be the level of the consequent of its end-sequent.) In
the particular case involving co-induction, a generated set is constructed from reducible
derivations of level j < i. We shall denote the set of all reducible derivations with <.
The notation <i denotes the set of all reducible derivations of level i, while <<i (<≤i)
denotes the set of reducible derivations of level smaller than i (respectively, smaller or
equal to i). In the following definition, we refer to a derivation Π as an i-level derivation
if lvl(Π) = i.

Definition 4.14. For any i, we define the set of reducible i-level derivations to be the
smallest set of i-level derivations that satisfies the following conditions:

1. If an i-level derivation Π ends with a multicut, then it is i-reducible if every reduct
of Π is i-reducible.

2. Suppose the i-level derivation Π ends with the implication right rule

Π′
B,Γ −→ C

Γ −→ B ⊃ C ⊃ R
.

Let j be the level of B and let k be the level of C. Then the derivation is i-reducible if
the premise derivation Π′ is k-reducible and, for every substitution θ, signature Σ′,
multiset ∆ of formulas, and j-reducible derivation Π′′ of ∆ −→ Bθ, the derivation

Π′′
∆ −→ Bθ

Σ′ :Π′θ
Bθ,Γθ −→ Cθ

∆, Γθ −→ Cθ mc

58

is k-reducible.

3. If the derivation ends with the ⊃ L rule or the µL rule, then it is i-reducible if
the right premise derivation is i-reducible and the other premise derivations are
normalizable.

4. Suppose Π ends with νR rule

Π′
Σ ; Γ −→ z̄ . S t̄

ΠS
x̄ ; S x̄ −→ B S x̄

Σ ; Γ −→ z̄ . p t̄
νR

where p x̄
ν= B p x̄. Let j be the level of Π′ and let k be the level of ΠS . Then Π

is i-reducible if Π′ is j-reducible, ΠS is k-reducible, and for every derivation Ψ in
the (<<i, Π

′, ΠS)-generated set, Ψ is lvl(Ψ)-reducible.

5. If the derivation ends with any other rule, with the premise derivations {Πk}k∈I for
some index set I, then it is i-reducible if every derivation Πk is lvl(Πk)-reducible.

These clauses assert that a given derivation is reducible provided certain (perhaps
infinitely many) other derivations are reducible. If we call these other derivations the
predecessors of the given derivation, then a derivation is reducible only if the tree of the
derivation and its successive predecessors is well-founded. In this case, the well-founded
tree is called the reduction of the derivation.

In defining reducibility for a derivation of (writing the signatures explicitly)

Σ ; Γ −→ z̄ . B ⊃ C

ending with ⊃ R we quantify over reducible derivations of

Σθ ∪ Σ′ ; ∆ −→ (z̄ . B)θ,

for some new signature Σ′. This is legitimate since we are defining reducibility for a
derivation having level max(lvl(B)+1, lvl(C)), so the set of reducible derivations having
level lvl(B) is already defined (substitution does not change the level).

For a derivation ending with ⊃ L or µL, some premise derivations may have
consequents with a higher level than that of the consequent of the conclusion. As a result,
we cannot use the reducibility of those premise derivations to define the reducibility of
the derivation as a whole, since the reducibility of the premise derivations may not yet be
defined. Thus we use the weaker notion of normalizability for those premise derivations.

In the νR case, the reducibility of Π is defined only if the generated set induced by
its premises contains only reducible derivations. Lemma 4.12 ensures that the derivations
in the generated set has lower or equal level as Π. Also observe that the consequent of
the premise to the rule defL and defR cannot have a higher level than the consequent
of the conclusion because of the level restriction on definitional clauses. Finally, as with
normalizations, reductions have associated induction principles.

59

From now on, we shall refer to an i-reducible derivation, for some level i, as simply
reducible derivation.

Lemma 4.15. If a derivation is reducible, then it is normalizable.

Proof By induction on the reduction tree and Definition 4.6 (normalizability).

Lemma 4.16. If Π is a reducible derivation, then for any substitution θ, Πθ is reducible.

Proof We prove this lemma by induction on the reduction of Π.

1. If Π ends with a multicut, then Πθ also ends with a multicut. By Lemma 4.3 every
reduct of Πθ is an instance of a reduct of Π. Hence by induction hypothesis all
reducts of Πθ are reducible.

2. If Π ends with the implication right rule then Π and Πθ are

Π′
Σ ; B, Γ −→ C

Σ ; Γ −→ B ⊃ C ⊃ R
Π′θ

Σθ ; Bθ,Γθ −→ Cθ
Σθ ; Γθ −→ (B ⊃ C)θ ⊃ R

.

Πθ is reducible if Π′θ is reducible and, for every substitution θ′, signature Σ′,
multiset ∆, and reducible derivation Π′′, the derivation Ξ

Π′′
Σθθ′ ; ∆ −→ Bθθ′

Σ′ :Π′θθ′
Σθθ′ ; Bθθ′,Γθθ′ −→ Cθθ′

Σθθ′ ; ∆, Γθθ′ −→ Cθθ′
mc

is also reducible. Π′θ is reducible by the induction hypothesis, and Ξ is reducible
since it is a predecessor of Π. Therefore Πθ is reducible.

3. If Π ends with ⊃ L or µL, then the right premise derivation is reducible and
the other premise derivations are normalizable. By Definition 3.1 each premise
derivation in Πθ is obtained by applying θ to a premise derivation in Π. By
the induction hypothesis the right premise derivation of Πθ is reducible, and by
Lemma 4.8 the other premise derivations are normalizable. Thus Πθ is reducible.

4. Suppose Π ends with νR,

Π′
Σ ; ∆ −→ z̄ . S t̄

ΠS
x̄ ; S x̄ −→ D S x̄

Σ ; ∆ −→ z̄ . p t̄
νR

where p x̄
ν= D p x̄. Let W be the (<<i, Π

′, ΠS)-generated set where i = lvl(p).
Then Π′ and ΠS are reducible, and the generated set W contains only reducible
derivations. The derivation Πθ is

Π′θ
Σθ ; ∆θ −→ (z̄ . S t̄)θ

ΠS
x̄ ; S x̄ −→ D S x̄

Σθ ; ∆θ −→ (z̄ . p t̄)θ νR
.

60

The derivation Π′θ is reducible by inductive hypothesis. It remains to show that
the (<<i, Π

′θ, ΠS)-generated set W ′ contains only reducible derivations. From
Definition 4.10 we see that Π′θ ∈ W, and therefore by Lemma 4.13 W ′ ⊆ W and
hence all derivations in W ′ are reducible.

5. Suppose Π ends with any other rule and has premise derivations {Πi}. By Defini-
tion 3.1 each premise derivation in Πθ is either Πi or Πiθ. Since Π is reducible, Πi
is reducible, and so by the induction hypothesis Πiθ is also reducible. Thus Πθ is
reducible.

Lemma 4.17. Let Π be a reducible derivation of Σ ; Γ −→ C. Let Σ′ be a signature
different from Σ. Then the derivation Σ′ :Π is reducible.

Proof By induction on the reduction of Π. The proof is analogous to the proof of
Lemma 4.16. Note that in the case where Π ends with νR, the weakening of global
signature is already included in the definition of generated set (Definition 4.10 (3)).

4.2.4 Reducibility of unfolded derivations

The following lemmas state that reducibility is preserved by (co)inductive unfold-
ing, under certain assumptions.

Lemma 4.18. Inductive unfolding. Let p x̄
µ
= B p x̄ be an inductive definition. Let ΠS be

a reducible derivation of x̄ ; B S x̄ −→ S x̄. Let Π be a reducible derivation of Σ ; Γ −→
C p such that every occurrence of p in C p is strictly positive. Suppose the following
statements hold

1. for every reducible derivation Ξ of Σ′ ; ∆ −→ z̄ . B S ū the derivation

Ξ
Σ′ ; ∆ −→ z̄ . B S ū

Π′
S

Σ′ ; z̄ . B S ū −→ z̄ . S ū

Σ′ ; ∆ −→ z̄ . S ū
mc

is reducible, where Π′
S

is a raised instance of ΠS and

2. for every D, the derivation Id of D −→ D is reducible, and for every reducible
derivation Ξ of ∆ −→ D the derivation

Ξ
∆ −→ D

Id
D −→ D

∆ −→ D mc

is reducible.

Then the derivation µ(Π, ΠS) of Σ ; Γ −→ C S is reducible.

Proof By induction on the reduction of Π. We show the non-trivial cases, assuming
that C S 6= C p.

61

1. Suppose Π ends with init rule on z̄ . p ū. Then µ(Π, ΠS) is the derivation

ΠS
x̄ ; B p x̄ −→ S x̄

Id
Σ ; z̄ . S ū −→ z̄ . S ū

Σ ; z̄ . p ū −→ z̄ . S ū
µL

.

The reducibility of µ(Π,ΠS) follows immediately from the assumptions.

2. Suppose Π ends with ⊃ R, that is, C p = C1 p ⊃ C2 p.

Π′
Γ, C1 p −→ C2 p

Γ −→ C1 p ⊃ C2 p
⊃ R

.

By the restriction on C p, it must be the case that C S = C1 p ⊃ C2 S since p is
vacuous in C1 p. By the definition of reducibility, the derivation Π′ is reducible and
for substitution θ, signature Σ′, multiset of formulas ∆, and reducible derivation
Ψ of ∆ −→ (C1 p)θ, the derivation Ξ

Ψ
∆ −→ (C1 p)θ

Σ′ :Π′θ
Γθ, (C1 p)θ −→ (C2 p)θ

∆ −→ (C2 p)θ
mc

is reducible. We want to show that the derivation µ(Π, ΠS)

µ(Π′, ΠS)
Γ, C1 p −→ C2 S

Γ −→ C1 p ⊃ C2 S
⊃ R

is reducible. This reduces to showing that µ(Π′, ΠS) is reducible and that

Ψ
∆ −→ (C1 p)θ

Σ′ :µ(Π′, ΠS)θ
Γθ, (C1 p)θ −→ (C2 S)θ

∆ −→ (C2 S)θ
mc

is reducible. The first follows from induction hypothesis on Π′. For the second
derivation, we know from Lemma 3.21 and Lemma 3.23 that

Σ′ :µ(Π′, ΠS)θ = Σ′ :µ(Π′θ, ΠS) = µ(Σ′ :Π′θ,ΠS) = µ(Ξ, ΠS).

We can apply induction hypothesis on Ξ, since it is a predecessor of Π. Therefore,
the derivation µ(Π, ΠS) is reducible.

3. Suppose Π ends with µR rule on z̄ . p ū.

Π′
Σ ; Γ −→ z̄ . B p ū

Σ ; Γ −→ z̄ . p ū
µR

.

62

Then µ(Π, ΠS) is the derivation

µ(Π′,ΠS)
Σ ; Γ −→ z̄ . B S ū

Π′
S

Σ ; z̄ . B S ū −→ z̄ . S ū

Σ ; Γ −→ z̄ . S ū
mc

,

where Π′
S

is a raised instance of ΠS . The derivation µ(Π′, ΠS) is reducible by
inductive hypothesis. This, together with the assumptions of the lemma, implies
that µ(Π,ΠS) is reducible.

4. Suppose Π ends with mc.

Π1
∆1 −→ D1 · · ·

Πn
∆n −→ Dm

Π′
D1, . . . ,Dm, Γ′ −→ C p

∆1, . . . ,∆m,Γ′ −→ C p
mc

.

Then µ(Π, ΠS) is the derivation

Π1
∆1 −→ D1 · · ·

Πn
∆n −→ Dm

µ(Π′,ΠS)
D1, . . . ,Dm, Γ′ −→ C S

∆1, . . . ,∆m, Γ′ −→ C S
mc

.

By the definition of reducibility, every reduct of Π is reducible. We need to show
that every reduct of µ(Π, ΠS) is reducible.

From Lemma 4.4, we know that for the case where (C p) is not atomic every reduct
of µ(Π, ΠS) corresponds to some reduct of Π. Therefore inductive hypothesis can
be applied to show the reducibility of each reduct of µ(Π,ΠS). If (C p) is atomic,
that is, suppose (C p) = z̄ . p ū , we have the following two cases.

Suppose Π′ is the derivation

Π′′
Σ ; D1, . . . ,Dm, Γ′ −→ z̄ . B p ū

Σ ; D1, . . . ,Dm, Γ′ −→ z̄ . p ū
µR

.

Let Ξ1 be the derivation
{

Πj
Σ ; ∆j −→ Dj

}

j∈{1,...,m}
Π′′

Σ ; D1, . . . ,Γ′ −→ z̄ . B p ū

Σ ; ∆1, . . . , ∆m, Γ′ −→ z̄ . B p ū
mc

then the derivation

Ξ1
Σ ; ∆1, . . . ,∆m, Γ′ −→ z̄ . B p ū

Σ ; ∆1, . . . ,∆m, Γ′ −→ z̄ . p ū
µR

63

is a reduct of Π (by the reduction rule −/µR), and therefore by the definition of
reducibility both this reduct and Ξ1 are reducible predecessors of Π. Let Ψ be the
derivation

µ(Π′′, ΠS)
Σ ; D1, . . . ,Γ′ −→ z̄ . B S ū

Π′
S

Σ ; z̄ . B S ū −→ z̄ . S ū

Σ ; D1, . . . ,Γ′ −→ z̄ . S ū
mc

Then the derivation µ(Π,ΠS) is the following
{

Πj
Σ ; ∆j −→ Dj

}

j∈{1,...,m}
Ψ

Σ ; D1, . . . ,Γ′ −→ z̄ . S ū

Σ ; ∆1, . . . ,∆m, Γ′ −→ z̄ . S ū
mc

.

The only applicable reduction rule to µ(Π, ΠS) is −/mc, which gives us the reduct
Ξ

Ψ′
Σ ; ∆1, . . . , ∆m, Γ′ −→ z̄ . B S ū

Π′
S

Σ ; z̄ . B S ū −→ z̄ . S ū

Σ ; ∆1, . . . ,∆m, Γ′ −→ z̄ . S ū
mc

,

where Ψ′ is the derivation
{

Πj
Σ ; ∆j −→ Dj

}

j∈{1,...,m}

µ(Π′′,ΠS)
Σ ; D1, . . . , Γ′ −→ z̄ . B S ū

Σ ; ∆1, . . . ,∆m, Γ′ −→ z̄ . B S ū
mc

Notice that Ψ′ is exactly µ(Ξ1,ΠS), and is reducible by inductive hypothesis.
Therefore the assumption on ΠS applies, and the reduct Ξ is reducible.

Otherwise, suppose Π′ ends with init, then D1 = C p and Π is the derivation

Π1
Σ ; ∆1 −→ z̄ . p ū Σ ; z̄ . p ū −→ z̄ . p ū

init

Σ ; ∆1 −→ z̄ . p ū
mc

.

The only reduct of Π is Π1 since the only applicable reduction is −/init. On the
other hand, the derivation µ(Π, ΠS) is

Π1
Σ ; ∆1 −→ z̄ . p ū

ΠS
x̄ ; B S x̄ −→ S x̄

Id
Σ ; z̄ . S ū −→ z̄ . S ū

Σ ; z̄ . p ū −→ z̄ . S ū
µL

Σ ; ∆1 −→ z̄ . S ū
mc

64

Its only reduct is (by ∗/µL)

µ(Π1, ΠS)
Σ ; ∆1 −→ z̄ . S ū

Id
Σ ; z̄ . S ū −→ z̄ . S ū

Σ ; ∆1 −→ z̄ . S ū
mc

.

The derivation µ(Π1,ΠS) is reducible by inductive hypothesis (Π1 is a predecessor
of Π) and therefore assumption on Id applies, and the above reduct is reducible.

Lemma 4.19. Co-inductive unfolding. Let p x̄
ν= B p x̄ be a co-inductive definition.

Let ΠS be a reducible derivation of x̄ ; S x̄ −→ B S x̄ for some invariant S such that
lvl(S) ≤ lvl(p). Let C p be a judgment such that lvl(C p) ≤ lvl(p), and let Π be a reducible
derivation of Σ ; Γ −→ C S.

Suppose there is a (<<i,Φ, ΠS)-generated set W, where i = lvl(p) and Φ is some
reducible derivation, such that all derivations in W are reducible and Π ∈ W. Then the
derivation ν(Π, ΠS) of Σ ; Γ −→ C p is reducible.

Proof By induction on the reduction of Π and case analysis on C. If C S = C p then
ν(Π, ΠS) = Π, which is reducible by assumption. Otherwise, suppose C S 6= C p. We
have two cases to consider.

Suppose C p = z̄ . p ū. Then C S = z̄ . S ū and ν(Π, ΠS) is the derivation

Π
Σ ; Γ −→ z̄ . S ū

ΠS
x̄ ; S x̄ −→ B S x̄

Σ ; Γ −→ z̄ . p ū
νR

.

Let G be the (<<i, Π, ΠS)-generated set. By the definition of reducibility, the above
derivation is reducible if its premises are reducible and the derivations in G are reducible.
The reducibility of the premise derivations is immediate from the assumptions. Since
Π ∈ W, by Lemma 4.13 G ⊆ W, and therefore the derivations in G are reducible.

Otherwise C p is non-atomic judgment and there are several subcases, depending
on the last rule in Π.

1. Suppose Π ends with mc.

Π1
∆1 −→ D1 · · ·

Πn
∆n −→ Dm

Π′
D1, . . . ,Dm,Γ′ −→ C S

∆1, . . . ,∆n, Γ′ −→ C S
mc

Then ν(Π, ΠS) is the derivation

Π1
∆1 −→ D1 · · ·

Πn
∆n −→ Dm

ν(Π′, ΠS)
D1, . . . ,Dm, Γ′ −→ C p

∆1, . . . , ∆n, Γ′ −→ C p
mc

.

65

The derivation ν(Π, ΠS) is reducible if every reduct of ν(Π, ΠS) is reducible. From
Lemma 4.5, it follows that every reduct of ν(Π, ΠS) is of the form ν(Ξ, ΠS) where
Ξ is a reduct of Π. Since all reducts of Π are in W by Definition 4.10, we can apply
the inductive hypothesis to show that ν(Ξ,ΠS) is reducible, and hence ν(Π,ΠS)
is also reducible.

2. Suppose Π ends with ⊃ R.

Π′
Γ, C1 p −→ C2 S

Γ −→ C1 p ⊃ C2 S
⊃ R

Note that p is vacuous in C p, therefore C1 S = C1 p. The reducibility of Π implies
that Π′ is reducible and for any reducible derivation Ψ (which is in <<i because
lvl(C1 p) < lvl(p) = i) and for any substitution θ and signature Σ′, the derivation
Ξ

Ψ
∆′ −→ (C1 p)θ

Σ′ :Π′θ
Γ, (C1 p)θ −→ (C2 S)θ

∆′, Γθ −→ (C2 S)θ
mc

is reducible. By Definition 4.10, Π′,Ξ ∈ W. The derivation ν(Π, ΠS) is

ν(Π′, ΠS)
Γ, C1 p −→ C2 p

Γ −→ C1 p ⊃ C2 p
⊃ R

.

To show that ν(Π,ΠS) is reducible, we need to show that ν(Π′, ΠS) is reducible,
and for every ∆′,θ,Σ′ and reducible derivation Ψ of ∆′ −→ (C1 p)θ, the derivation
Ξ′

Ψ
∆′ −→ (C1 p)θ

Σ′ :ν(Π′,ΠS)θ
Γ, (C1 p)θ −→ (C2 p)θ

∆′,Γθ −→ (C2 p)θ
mc

is reducible. From Lemma 3.24 and Lemma 3.22 we see that Σ′ :ν(Π′,ΠS)θ = ν(Σ′ :
Π′θ, ΠS). So Ξ′ is exactly ν(Ξ,ΠS). Therefore we apply induction hypothesis to
Π′ and to Ξ to get the reducible derivations ν(Π′, ΠS) and Ξ, respectively.

3. Suppose Π ends with ∧R.

Π1
Γ −→ C1 S

Π2
Γ −→ C2 S

Γ −→ C1 S ∧ C2 S
∧R

Since Π is reducible, both Π1 and Π2 are reducible predecessor of Π, and both are
also in the set W by the definition of generated set. Thus it follows from inductive

66

hypothesis that the derivation ν(Π, ΠS)

ν(Π1, ΠS)
Γ −→ C1 p

ν(Π2, ΠS)
Γ −→ C2 p

Γ −→ C1 p ∧ C2 p
∧R

is reducible. The cases where Π ends with ∨R, ∃R, ∀R or ∇R (and the corre-
sponding left-rules) are treated similarly since in these cases all premise derivations
are in the reduction of Π.

4. Suppose Π ends with ⊃ L.

Π1
Γ′ −→ D

Π2
Γ′, E −→ C S

Γ′,D ⊃ E −→ C S
⊃ L

.

By the definition of reducibility, the derivation Π2 is reducible and is the major
premise of Π, and hence in W. The derivation Π1 is normalizable. By inductive
hypothesis, ν(Π2,ΠS) is reducible. Therefore the derivation ν(Π,ΠS)

Π1
Γ′ −→ D

ν(Π2, ΠS)
Γ′, E −→ C p

Γ′,D ⊃ E −→ C p
⊃ L

is reducible. The case where Π ends with µL is treated similarly since in this case
unfolding is also done only in the major premise.

5. Suppose Π ends with a left rule ◦L other than ⊃ L and µL. In this case all premise
derivations are major premises and inductive hypothesis can be applied to show
the reducibility of ν(Π, ΠS).

4.3 Cut elimination

Lemma 4.20. For any derivation Π of B1, . . . ,Bn,Γ −→ C, reducible derivations

Π1
∆1 −→ B1, . . . ,

Πn
∆n −→ Bn

where n ≥ 0, for any substitutions δ1, . . . , δn, γ and signatures Σ1, . . . ,Σn, Σ, such that
Biδi = Biγ, for every i ∈ {1, . . . , n}, the derivation Ξ

Σ1 :Π1δ1
∆1δ1 −→ B1δ1 · · ·

Σn :Πnδn
∆nδn −→ Bnδn

Σ:Πγ
B1γ, . . . ,Bnγ, Γγ −→ Cγ

∆1δ1, . . . , ∆nδn, Γγ −→ Cγ mc

is reducible.

67

Proof The proof is by induction on ind(Π) with subordinate induction on ht(Π), on
n and on the reductions of Π1, . . . ,Πn. The proof does not rely on the order of the
inductions on reductions. Thus when we need to distinguish one of the Πi, we shall refer
to it as Π1 without loss of generality. The derivation Ξ is reducible if all its reducts are
reducible.

If n = 0, then Ξ reduces to Σ:Πγ, thus in this case we show that Σ:Πγ is reducible.
Since reducibility is preserved by substitution and signature weakening (Lemma 4.16 and
Lemma 4.17) it is enough to show that Π is reducible. This is proved by a case analysis
of the last rule in Π. For each case, the result follows easily from the outer induction
hypothesis and Definition 4.14. The ⊃ R case requires that substitution for variables and
weakening of global signatures do not increase the measures of a derivation (Lemma 3.6
and Lemma 3.11). In the cases for ⊃ L and µL we need the additional information
that reducibility implies normalizability (Lemma 4.15). The case for νR requires special
attention. Let p x̄

ν= D p x̄ be a co-inductive definition. Suppose Π is the derivation

Π′
Γ −→ z̄ . S t̄

ΠS
S x̄ −→ D S x̄

Γ −→ z̄ . p t̄
νR

for some invariant S. Let l = lvl(p). To show that Π is reducible we must show that
its premises are reducible and the (<<l, Π

′, ΠS)-generated set contains only reducible
derivations. Reducibility of premises of Π is immediate from inductive hypotheses. Since
ind(ΠS) ≤ ind(Π) and ht(ΠS) < ht(Π) and substitution and weakening of signatures
does not increase these measures, by inductive hypothesis, for every reducible derivation
Ψ of ∆ −→ ȳ . S ū for some ∆, ȳ and ū, the derivation

Ψ
∆ −→ ȳ . S ū

Π′
S

ȳ . S ū −→ z̄ . B S ū

∆ −→ ȳ . B S ū
mc

(∗)

is reducible. Recall that Π′
S

is obtained from Π↑τ̂(ȳ)
S (see Lemma 3.16) by some substitu-

tion and hence ht(Π′
S
) ≤ ht(ΠS) and ind(Π′

S
) ≤ ind(ΠS). We will make use of this fact

to establish the reducibility of all derivations in the (<<lΠ
′,ΠS)-generated set, which we

shall refer to here as G. This is done by induction of the construction of the generated
set (see Definition 4.10). For each natural number j, the state of the construction is
denoted by Wj , and G is the ordinal limit, i.e., Wω. The base case follows immediately
from outer inductive hypothesis. For the inductive case, assume that all derivations in
Wj are reducible. To show that all derivations in Wj+1 are reducible, it is enough to
check that each case (1) - (4) in Definition 4.10 preserves reducibility. The cases (1),
(2) and (3) follow from outer inductive hypothesis (Π′ is reducible), Lemma 4.16, and
Lemma 4.17, respectively. For the case (4.a), since all derivations in Wj are reducible, it
follows from the fact (*) that the resulting derivations from applying (4.a) are reducible.
The remaining cases (4.b) follows from the definition of major premises (Definition 3.2)
and the definition of reducibility.

68

For n > 0, we analyze all possible reductions and show for each case the reduct is
reducible. Some cases follow immediately from inductive hypothesis. We show here the
non-trivial cases.

⊃ R/ ⊃ L: Suppose Π1 and Π are

Π′1
∆1,B′1 −→ B′′1

∆1 −→ B′1 ⊃ B′′1
⊃ R

Π′
B2, . . . ,Γ −→ B′1

Π′′
B′′1 ,B2, . . . , Γ −→ C

B′1 ⊃ B′′1 ,B2, . . . ,Bn, Γ −→ C ⊃ L
.

The derivation Ξ1

Σ1 :Π2δ2
∆2δ2 −→ B2δ2 . . .

Σn :Πnδn
∆nδn −→ Bnδn

Σ:Π′γ
B2γ, . . . ,Bnγ, Γγ −→ B′1γ

∆2δ2, . . . ,∆nδn, Γγ −→ B′1γ
mc

is reducible by induction hypothesis since ind(Π′) ≤ ind(Π) and ht(Π′) < ht(Π). Since
Π1 is reducible, by Definition 4.14 the derivation Ξ2

Ξ1
∆2δ2, . . . ,Γγ −→ B′1γ

Σ′ :Π1δ1
B′1δ1,∆1δ1 −→ B′′1δ1

∆1δ1, . . . ,∆nδn, Γγ −→ B′′1δ1
mc

is a predecessor of Π1 and therefore is reducible. The reduct of Ξ in this case is the
following derivation

Ξ2
. . . −→ B′′1δ1

{
Σi :Πiδi

∆iδi −→ Biδi

}

i∈{2..n}
Σ′ :Π′′γ

B′′1γ, . . . ,Bnγ, Γγ −→ Cγ
∆1δ1, . . . ,∆nδn, Γγ, ∆2δ2, . . . ,∆nγ, Γγ −→ Cγ mc

cL
∆1δ1, . . . , ∆nδn, Γγ −→ Cγ

which is reducible by induction hypothesis and Definition 4.14 (reducibility).
∀L/∀R: Suppose Π1 and Π are

Π′1
∆1 −→ z̄ . B′1[(h z̄)/x]

∆1 −→ z̄ . ∀x.B′1
∀R

Π′
z̄ . B′1[t/x],B2, . . . ,Bn, Γ −→ C
z̄ . ∀x.B′1,B2, . . . ,Bn, Γ −→ C ∀L

Since we identify derivations that differ only in the choice of intermediate eigenvariables
that are not free in the end sequents, we can choose a variable h such that it is not free in
the domains and ranges of δ1 and γ and different from Σ1 and Σ. We can safely assume
that the bound variables z̄ and x are different from free variables in δ1,γ, Σ1 and Σ.

69

This way we can push the substitution inside binders. The derivation Ξ is thus

Σ1 :Π′1δ1
∆1δ1 −→ z̄ . B′1δ1[(h z̄)/x]

∆1δ1 −→ z̄ . ∀x.B′1δ1
∀R

. . .

Σ′ :Π′γ
z̄ . B′1γ[tγ/x], . . . ,Γγ −→ Cγ
z̄ . ∀x.B′1γ, . . . ,Γγ −→ Cγ ∀L

∆1δ1, . . . ,∆nδn, Γγ −→ Cγ mc

Let δ′1 = δ1 ◦ [λz̄.tγ/h]. The reduct of Ξ in this case is

Σ′ :Π′1δ′1
∆1δ1 −→ z̄ . B′1δ1[tγ/x] . . .

Π′γ
z̄ . B′1γ[tγ/x], . . . ,Γγ −→ Cγ

∆1δ1, . . . , ∆nδn, Γγ −→ Cγ mc

which is reducible by induction hypothesis.
eqR/eqL: Suppose Π1 and Π are

∆1 −→ z̄ . s = t
eqR

{
Πρ

B2ρ, . . . ,Bnρ,Γρ −→ Cρ
}

ρ

z̄ . s = t, . . . ,Bn,Γ −→ C eqL

Then Ξ is the derivation

∆1δ1 −→ (z̄ . s = t)δ1
eqR · · ·

{
Σ′ :Πγ◦ρ′

B2γρ′, . . . ,Bnγρ′, Γρ′ −→ Cγρ′
}

ρ′
(z̄ . s = t)γ, . . . ,Bnγ, Γγ −→ Cγ eqL

∆1δ1, . . . , ∆nδn, Γγ −→ Cγ mc

The eqR tells us that s and t are unifiable via empty substitution (i.e., they are the same
normal terms). The reduct of Ξ

Π2δ2
∆2δ2 −→ B2δ2 . . .

Σ′ :Πγ

B2γ, . . . ,Γγ −→ Cγ
∆1δ1, . . . , ∆nδn, Γγ −→ Cγ mc

is therefore reducible by induction hypothesis.
∗/µL: Suppose Π is the derivation

ΠS
D S x̄ −→ S x̄

Π′
z̄ . S t̄, Γ −→ C

z̄ . p t̄,Γ −→ C µL

70

Let z̄ . p ū be the result of applying δ1 to z̄ . p t̄. Then Ξ is the derivation

Σ1 :Π1δ1
∆1δ1 −→ z̄ . p ū · · ·

Σn :Πnδn
∆nδn −→ Bnδn

ΠS
D S x̄ −→ S x̄

Σ:Π′γ
z̄ . S ū,Γγ −→ Cγ

z̄ . p ū,Γγ −→ Cγ µL
∆1δ1, . . . , ∆nδn, Γγ −→ Cγ

mc

The derivation Ξ reduces to the derivation Ξ′

Σ1 :µ(Π1, ΠS)δ1
∆1δ1 −→ z̄ . S ū · · ·

Σn :Πnδn
∆nδn −→ Bnδn

Π′γ
z̄ . S ū,Γγ −→ Cγ

∆1δ1, . . . ,∆nδn, Γγ −→ Cγ mc
.

Notice that we have used the fact that

µ(Σ1 :Π1δ1, ΠS) = Σ1 :µ(Π1δ1, ΠS) = Σ1 :µ(Π1,ΠS)δ1

in the derivation above, which follows from Lemma 3.21 and Lemma 3.23. Therefore, in
order to prove that Ξ′ is reducible, it remains to show that the unfolding of Π1 produces
a reducible derivation.

We observe the following facts. Let Π′
S

be a raised instance of ΠS , i.e., Π′
S

is a
derivation of some sequent ȳ . D S w̄ −→ ȳ . S w̄. By Lemma 3.18 we have ht(Π′

S
) ≤

ht(ΠS) < ht(Π) and ind(Π′
S
) ≤ ind(ΠS) < ind(Π). Therefore, by the outer induction

hypothesis, the result of cutting Π′
S

with any reducible derivation must produce another
reducible derivation. Precisely, given any reducible derivation Ψ of ∆ −→ y . D S w̄, the
derivation

Ψ
∆ −→ ȳ . D S w̄

Π′
S

ȳ . D S w̄ −→ ȳ . S w̄

∆ −→ ȳ . S w̄
mc

is reducible. Additionally, from Definition 3.8, we clearly have ind(IdD) = 0 < ind(Π)
for any judgment D, and therefore at this stage, we have also established that for every
reducible derivation Ψ′ of ∆′ −→ D′, the derivation

Ψ′
∆′ −→ D′

IdD′
D′ −→ D′

∆′ −→ D′
mc

is reducible.
These facts give sufficient conditions for concluding the reducibility of µ(Π1,ΠS)

by applying Lemma 4.18. Therefore, applying the induction hypothesis to Π′, we estab-
lish the reducibility of Ξ′.

71

νR/νL: Suppose Π1 and Π are

Π′1
∆1 −→ ȳ . S t̄

ΠS
S x̄ −→ D S x̄

∆1 −→ ȳ . p t̄
νR

Π′
ȳ . D p t̄,B2, . . . ,Γ −→ C
ȳ . p t̄,B2, . . . , Γ −→ C νL

where p x̄
ν= D p x̄. Suppose (ȳ . p t̄)δ1 = (ȳ . p t̄)γ = z̄ . p ū. Then Ξ is the derivation

Σ1 :Π′1δ1
∆1δ1 −→ z̄ . S ū

ΠS
S x̄ −→ D S x̄

∆1δ1 −→ z̄ . p ū
νR · · ·

Σ:Π′γ
z̄ . D p ū, . . . ,Γγ −→ Cγ
z̄ . p ū, . . . ,Γγ −→ Cγ νL

∆1δ1, . . . , ∆nδn, Γγ −→ Cγ mc

Let l = lvl(p) and let W be the (<<l, Π
′
1, ΠS)-generated set. Since Π1 is reducible, by

Definition 4.14, the derivations in W are predecessors of Π1 and are reducible. By the
definition of generated set (Definition 4.10), W contains the derivation Σ1 : Π′1δ1 ∈ W
and the derivation Ξ1

Σ1 :Π′1δ1
∆1δ1 −→ z̄ . S ū

Π′
S

z̄ . S ū −→ z̄ . D S ū

∆1δ1 −→ z̄ . D S ū
mc

.

where Π′
S

is a raised instance of ΠS . Therefore by Lemma 4.19 the derivation ν(Ξ1,ΠS)
is reducible. The reduct of Ξ is the derivation

ν(Ξ1, ΠS)
∆1δ1 −→ z̄ . D p ū · · ·

Σn :Πnδn
∆nδn −→ Bnδn

Σ:Π′γ
z̄ . D p ū, . . . ,Bnγ, Γγ −→ Cγ

∆1δ1, . . . ,∆nδn, Γγ −→ Cγ mc.

Its reducibility follows from the reducibility of ν(Ξ1, ΠS) and outer induction hypothesis.
⊃ L/ ◦ L: Suppose Π1 is

Π′1
∆′1 −→ D′1

Π′′1
D′′1 , ∆′1 −→ B1

D′1 ⊃ D′′1 , ∆′1 −→ B1
⊃ L

Since Π1 is reducible, it follows from Definition 4.14 that Π′1 is normalizable and Π′′1 is
reducible. Let Ξ1 be the derivation

Σ1 :Π′′1δ1
D′′1δ1, ∆′1δ1 −→ B1δ1

Σ2 :Π2δ2
∆2δ2 −→ B2δ2 · · ·

Σ:Πγ
B1δ1, . . . ,Γγ −→ Cγ

D′′1δ1, ∆′1δ1, ∆2δ2, . . . ,Γγ −→ Cγ
mc

.

72

Ξ1 is reducible by induction hypothesis on the reduction of Π1 (Π′′1 is a predecessor of
Π1). The reduct of Ξ in this case is the derivation

Σ1 :Π′1δ1
∆′1δ1 −→ D′1δ1

wL
∆′1δ1, ∆2δ2, . . . , Γγ −→ D′1δ1

Ξ1
D′′1δ1, ∆′1δ1, ∆2δ2, . . . , Γγ −→ Cγ

(D′1 ⊃ D′′1)δ1, ∆′1δ1,∆2δ2, . . . ,Γγ −→ Cγ ⊃ L
.

Since Π′1 is normalizable and substitution and signature weakening preserves normaliz-
ability, by Definition 4.6 the left premise of the reduct is normalizable, and hence the
reduct is reducible.
eqL/ ◦ L: Suppose Π1 is {

Πρ

∆′1ρ −→ B1ρ

}

ρ

z̄ . s = t, ∆′1 −→ B1
eqL

Then Ξ is the derivation




Σ1 :Πδ1◦ρ′

∆′1δ1ρ′ −→ B1δ1ρ′





ρ′

∆′1δ1 −→ B1δ1
eqL Σ2 :Π2δ2

∆2δ2 −→ B2δ2 · · ·
Σ:Πγ

B1γ, . . . ,Γγ −→ Cγ
(z̄ . s = t)δ1,∆′1δ1, ∆2δ2, . . . , Γγ −→ Cγ

mc

Notice that each premise derivation Πδ1◦ρ′ of Π1δ1 is a also a premise derivation of Π1,

and therefore it is a predecessor of Π1. Let Ξρ′ be the derivation

Σ1 :Πδ1◦ρ′
1

∆′1δ1ρ′ −→ B1δ1ρ′
(Σ2 :Π2δ2)ρ′

∆2δ2ρ′ −→ B2δ2ρ′ . . .
(Σ:Πγ)ρ′

B1γρ′, . . . ,Γγρ′ −→ Cγρ′

∆′1δ1ρ′,∆2δ2ρ′, . . . , Γγρ′ −→ Cγρ′
mc.

Observe that in the derivation Σ2 : Π2δ2, by the definition of weakening of signature,
the variables in Σ2 are not free in the end sequent of Π2θ2. Now since substitution
affects only the free variables in the end sequent, we can equally write the derivation
(Σ2 :Π2δ2)ρ′ as Σ′2 :Π2δ2ρ′ where Σ′2 is a signature containing variables in Σ′2ρ′ but not
already in the free variables of the end sequent of Π2δ2ρ′. Having observed this, we can
now apply the induction hypothesis (on the reduction of Π1) to establish the reducibility

73

of Ξρ′ . The reduct of Ξ
{

Ξρ′

∆′1δ1ρ′, . . . , Γγρ′ −→ Cγρ′
}

ρ′

(z̄ . s = t)δ1, ∆′1δ1, . . . , Γγ −→ Cγ
eqL

is then reducible by Definition 4.14.
µL/ ◦ L: Suppose Π1 is

ΠS
D S x̄ −→ S x̄

Π′1
ȳ . S t̄,∆′1 −→ B1

ȳ . p t̄, ∆′1 −→ B1
µL

.

Since Π1 is reducible, it follows from the definition of reducibility that Π′1 is reducible
predecessor of Π1 and ΠS is normalizable. Suppose z̄ . p ū = (ȳ . p t̄)δ1 = (ȳ . p t̄)γ. Let
Ξ1 be the derivation

Σ1 :Π′1δ1
z̄ . S ū,∆′1δ1 −→ B1δ1 · · ·

Σn :Πnδn
∆nδn −→ Bnδn

Σ:Πγ
B1γ, . . . ,Bnγ, Γγ −→ Cγ

z̄ . S ū,∆′1δ1, . . . ,∆nδn, Γγ −→ Cγ
mc

.

Ξ1 is reducible by induction on the reduction of Π1, therefore the reduct of Ξ

ΠS
D S x̄ −→ S x̄

Ξ1
z̄ . S ū,∆′1δ1, . . . ,∆nδn, Γγ −→ Cγ

z̄ . p ū,∆′1δ1, . . . ,∆nδn,Γγ −→ Cγ
µL

is reducible.
−/ ⊃ L: Suppose Π is

Π′
B1, . . . ,Bn,Γ′ −→ D′

Π′′
B1, . . . ,Bn,D′′, Γ′ −→ C

B1, . . . ,Bn,D′ ⊃ D′′, Γ′ −→ C ⊃ L
.

Let Ξ1 be

Σ1 :Π1δ1
∆1δ1 −→ B1δ1 · · ·

Σn :Πnδn
∆nδn −→ Bnδn

Σ:Π′γ
B1γ, . . . ,Bnγ, Γ′γ −→ D′γ

∆1δ1, . . . ,∆nδn,Γ′γ −→ D′γ
mc

74

and Ξ2 be

Σ1 :Π1δ1
∆1δ1 −→ B1δ1 · · ·

Σn :Πnδn
∆nδn −→ Bnδn

Σ:Π′′γ
B1γ, . . . ,Bnγ,D′′γ, Γ′γ −→ Cγ

∆1δ1, . . . ,∆nδn,D′′γ, Γ′γ −→ Cγ
mc

.

Both Ξ1 and Ξ2 are reducible by induction hypothesis. Therefore the reduct of Ξ

Ξ1
∆1δ1, . . . ,∆nδn, Γ′γ −→ D′γ

Ξ2
∆1δ1, . . . ,∆nδn,D′′γ, Γ′γ −→ Cγ

∆1δ1, . . . ,∆nδn, (D′ ⊃ D′′)γ, Γ′γ −→ Cγ ⊃ L
.

is reducible (recall that reducibility of Ξ1 implies its normalizability by Lemma 4.8).
−/νR: Suppose Π is

Π′
B1, . . . ,Bn, Γ −→ ȳ . S t̄

ΠS
S x̄ −→ D S x̄

B1, . . . ,Bn, Γ −→ ȳ . p t̄
νR

,

where p x̄
ν= D p x̄. Suppose z̄ . p ū = (ȳ . p t̄)δ1 = (ȳ . p t̄)γ. Let Ξ1 be the derivation

Σ1 :Π1δ1
∆1δ1 −→ B1δ1 · · ·

Σ:Πnδn
∆nδn −→ Bnδn

Σ:Π′γ
B1γ, . . . ,Bnγ, Γγ −→ z̄ . S ū

∆1δ1, . . . , ∆nδn, Γγ −→ z̄ . S ū
mc

.

The derivations Σ:Π′γ, ΠS , Ξ1 and the derivation

Ψ
∆′ −→ ā . S w̄

Π′
S

ā . S w̄ −→ ā . D S w̄

∆′ −→ ā . D S w̄
mc

,

where Ψ is any reducible derivation and Π′
S

is a raised instance of ΠS , are reducible
by induction hypothesis on the length of Π. Again, we use the same arguments as in
the case where n = 0 to show that the (<<lvl(p),Ξ1, ΠS)-generated set contains only
reducible derivations. Therefore by Definition 4.14, the reduct Ξ

Ξ1
∆1δ1, . . . ,∆nδn, Γγ −→ z̄ . S ū

ΠS
S x̄ −→ D S x̄

∆1δ1, . . . , ∆nδn, Γγ −→ z̄ . p ū
νR

is reducible.
mc/ ◦ L: Suppose Π1 ends with a mc. Then any reduct of Σ1 : Π1δ1 corresponds to a
predecessor of Π1 by Lemma 4.3 and Lemma 4.2. Therefore the reduct of Ξ is reducible
by induction on the reduction of Π1.
−/init: Ξ reduces to Σ1 :Π1δ1. Since Π1 is reducible, by Lemma 4.16 and Lemma 4.17,
Σ1 :Π1δ1 is reducible and hence Ξ is reducible.

75

Corollary 4.21. Given a fixed stratified definition, a sequent has a proof in Linc if
and only if it has a cut-free proof.

The consistency of Linc is an immediate consequence of cut-elimination. By
consistency we mean the following: given a fixed stratified definition and an arbitrary
formula C, it is not the case that both C and C ⊃ ⊥ are provable.

Corollary 4.22. The logic Linc is consistent.

Proof Suppose otherwise, that is, there is a formula C such that there is a proof Π1
of C and another proof Π2 for C ⊃ ⊥. By cut-elimination, Π2 must end with ⊃ R, that
is, Π2 is

Π′2
C −→ ⊥
−→ C ⊃ ⊥ ⊃ R

Cutting Π1 with Π′2 we get a derivation of · −→ ⊥, and applying the cut-elimination
procedure we get a cut-free derivation of · −→ ⊥. But there cannot be such derivation
since there is no right-introduction rule for ⊥, contradiction.

4.4 Conclusion

The proof of cut-elimination for Linc closely resembles that of FOλ∆IN. In par-
ticular, the notion of reducibility is defined by induction on the level of the derivation
as in FOλ∆IN. We argue that the side condition on νR is imposed by the use of this
framework of reducibility. More precisely, suppose we lift the side condition on νR.
Then given a co-inductive definition p x

ν= B p x and a derivation Π

Π′
Γ −→ S t

ΠS
S x −→ B S x

Γ −→ p t
νR

where lvl(S x) > lvl(p), the reducibility of Π cannot depend on the reducibility of its
premises. Therefore the only way to make the reducibility argument go through is by
directly defining the co-inductive unfolding of Π′ as the predecessor of Π. But we see
there is a problem with this scheme of reducibility. Suppose we are given a co-inductive
definition p

ν= p. Let Π be the derivation

Π′−→ p p −→ p init

−→ p νR

Let Π1 be the derivation
Π′−→ p p −→ p init

−→ p mc

76

Then Π is reducible if the result of unfolding Π1 is reducible, that is, if the following
derivation Π2

Π′−→ p p −→ p init

−→ p mc p −→ p init

−→ p νR

is reducible. Now, Π2 is reducible if the following derivation Π3 is reducible.

Π2
−→ p p −→ p init

−→ p mc p −→ p init

−→ p νR

We can easily see that this leads to infinite descending chains and hence this notion of
reducibility is not well-founded. In our formulation of reducibility, this infinite descend
is avoided since the unfolded derivation Π2 is not a predecessor of Π. However, this does
not mean that the side condition on νR cannot be removed. Doing so would probably
require a very different proof technique than the one we currently use.

77

Chapter 5

Reasoning about Logical Specifications in Linc

In this chapter, we illustrate the use of Linc to encode logical specifications and
to reason about them. Both first-order and higher-order encodings are shown. The
examples of first-order encoding are given in Section 5.1, Section 5.2 and Section 5.3.
In these examples the ∇ quantifier plays no significant role, therefore we shall omit
writing explicitly the local signatures. Section 5.1 shows the examples of encoding natural
numbers in Linc. In particular, we show that the natural number induction rule in
FOλ∆IN is derivable in Linc. Section 5.2 presents some examples of lists, both finite
and infinite, and show how we can derive the (co)-induction principle for lists and use
it to derive properties about functions on lists. Section 5.3 shows an encoding of CCS
[39] with fixed point operator. We illustrate the use of co-induction proof technique in
proving the similarity of processes in CCS.

The next two sections illustrate the encodings involving higher-order abstract
syntax. Section 5.4 shows an encoding of a simple object-logic, Horn logic with univer-
sal quantification. We show an example of reasoning about the provability of generic
judgments in the object-logic which makes an essential use of ∇ in interpreting the
object-logic universal quantification. We also discuss in this section a limitation of ∇ in
dealing with certain inductive proofs involving higher-order abstract syntax. Section 5.5
presents an encoding of the lazy λ-calculus and the notion of applicative bisimulation [1].
Section 5.6 concludes this chapter and discusses some related work.

5.1 Natural numbers

We introduce a type nt to encode natural numbers. The type nt has the following
constructors:

z : nt s : nt → nt

which denote the natural number zero and the successor function, respectively. The
membership predicate is encoded as the inductive predicate nat with the following
definition clause

nat x
µ
= (x = z) ∨ ∃y.(x = (s y)) ∧ nat y.

Given this definition, we can derive the natural number induction rule as in FOλ∆IN

(i.e., the natL, see [28]).

Proposition 5.1. The rule natL
−→ B z i ; B i −→ B (s i) B I,Γ −→ C

nat I,Γ −→ C
natL

78

is derivable in Linc.

Proof We show that there is a derivation from the given premises of natL to its
conclusion, using the rules in Linc.

−→ B z
j ; j = z −→ B j

eqLcsu

i ; B i −→ B (s i)
j, k ; j = (s k), B k −→ B j

eqLcsu

j, k ; j = (s k) ∧B k −→ B j
∧L∗

j ; ∃k.j = (s k) ∧B k −→ B j
∃L

j ; (j = z) ∨ ∃k.j = (s k) ∧B k −→ B j
∨L

B I,Γ −→ C

nat I, Γ −→ C
µL

Given the derivability of natL in Linc, all previous examples in FOλ∆IN can be
trivially carried over to Linc without much effort. For example, we can show that Linc
with the definition nat above encodes the intuitionistic version of Peano’s arithmetic, a
result which is shown for FOλ∆IN in [30]. We illustrate the use of this derived rule in
the following example.

Example 5.2. The sum function can be encoded using the predicate sum : nt → nt →
nt → o, defined inductively as follows.

sum I J K
µ
= (I = z ∧ J = K) ∨

∃M∃N.I = (sM) ∧K = (sN) ∧ sum M J N.

Note that since sum is already an inductive definition we can prove certain properties
about it directly by structural induction on its definition, that is, if the predicate sum
appears on the assumptions on the properties to be proved. Some other properties must
still be proved with the assumption that the arguments of sum are natural numbers.
Consider for example proving the functionality and the totality of sum on its first two
arguments. The functionality property is stated formally as follows (we leave out the
type nt)

∀I∀J∀Msum I J M ⊃ ∀N.sum I J N ⊃ M = N

and the totality property is specified as

∀I.nat I ⊃ ∀J.nat J ⊃ ∃K.sum I J K.

The former property is proved by induction on the predicate sum while the latter is by
induction on nat . In both cases, the induction invariants are simply the right hand-side
of the outermost implications, i.e., the corresponding invariants for the above cases are:

D1 = λIλJλM.∀N.sum I J N ⊃ M = N
D2 = λI∀J.nat J ⊃ ∃K.sum I J K.

The informal proof for the functionality property is done by induction on the first ar-
gument of sum, followed by case analyses on the definition of sum. The formal proofs

79

Πz
−→ D z J J

Πs
D I J M −→ D (s I) J (sM) D I J M −→ D I J M

init

sum I J M −→ D I J M
sumL

−→ ∀I∀J∀Msum I J M ⊃ D I J M
∀R;⊃ R

where
D = λIλJλM.∀N.sum I J N ⊃ M = N,

Πz is

J = N −→ J = N
init

z = z ∧ J = N −→ J = N
∧L

z = (sM) −→ J = N
eqL

z = (sM) ∧N = (s N ′) ∧
sum M J N ′ −→ J = N

∧L

∃M∃N ′.
[

z = (sM) ∧N = (sN ′) ∧
sumM J N ′

]
−→ J = N

∃L

(z = z ∧ J = N) ∨
∃M∃N ′.z = (sM) ∧N = (sN ′) ∧ sum M J N ′ −→ J = N

∨L

sum z J N −→ J = N
defL

−→ sum z J N ⊃ J = N
⊃ R

−→ ∀N.sum z J N ⊃ J = N
∀R

and Πs is

· · · , s I = z −→ sM = N
eqL

· · · , s I = z∧
J = N

−→ sM = N

∧L

sum I J Q −→ sum I J Q
init

−→ s M = sM
eqR

M = Q −→ sM = sQ
eqL

sum I J Q ⊃ M = Q, sum I J Q −→ sM = sQ
⊃ L

D I J M, sum I J Q −→ sM = sQ
∀L

· · · ,
s I = sP∧
N = (sQ)∧
sum P J Q

−→ sM = N

∧L∗; eqL

· · · , ∃P∃Q.




s I = sP∧
N = (sQ)∧
sum P J Q


 −→ sM = N

∃L

D1 I J M,

[
s I = z ∧ J = N ∨

∃P∃Q.s I = s P ∧N = s Q ∧ sum P J Q

]
−→ s M = N

∨L

D I J M, sum (s I) J N −→ (sM) = N
defL

D I J M −→ ∀N.sum (s I) J N ⊃ sM = N
∀R;⊃ R

Fig. 5.1. A formal proof of the functionality of sum.

80

Πz
−→ F z

Πs
F I −→ F (s I) F I −→ ∀J.nat J ⊃ ∃K.sum I J K

init

nat I −→ ∀J.nat J ⊃ ∃K.sum I J K
natL

−→ nat I ⊃ ∀J.nat J ⊃ ∃K.sum I J K
⊃ R

−→ ∀I.nat I ⊃ ∀J.nat J ⊃ ∃K.sum I J K
∀R

where F is λI.∀J.nat J ⊃ ∃K.sum I J K, the derivations Πz is

nat J −→ z = z
eqR

nat J −→ J = J
eqR

nat J −→ z = z ∧ J = J
∧R

nat J −→ (z = z ∧ J = J) ∨ ∃M∃N.z = (sM) ∧ J = (s N) ∧ sum M J N
∨

nat J −→ sum z J J
defR

nat J −→ ∃K.sum z J K
∃R

−→ nat J ⊃ ∃K.sum z J K
⊃ R

−→ ∀J.nat J ⊃ ∃K.sum z J K
∀R

Πs is

nat J −→ nat J
init

Π′
s

sum I J K, nat J −→ sum (s I) J (sK)
sum I J K, nat J −→ ∃K.sum (s I) J K

∃R
∃K.sum I J K, nat J −→ ∃K.sum (s I) J K

∃L
nat J ⊃ ∃K.sum I J K, nat J −→ ∃K.sum (s I) J K

⊃ L
∀J.nat J ⊃ ∃K.sum I J K, nat J −→ ∃K.sum (s I) J K

∀L
∀J.nat J ⊃ ∃K.sum I J K −→ nat J ⊃ ∃K.sum (s I) J K

⊃ R
∀J.nat J ⊃ ∃K.sum I J K −→ ∀J.nat J ⊃ ∃K.sum (s I) J K

∀R

and Π′
s

is

· · · −→ s I = s I
eqR · · · −→ s I = s I

eqR
· · · −→ s I = s I ∧ s K = sK

∧R
sum I J K, nat J −→ sum I J K

init

sum I J K, nat J −→ s I = s I ∧ sK = sK ∧ sum M J K
∧R

sum I J K, nat J −→ ∃M∃N.s I = s M ∧ sK = sN ∧ sum M J N
∃R

sum I J K, nat J −→ (s I = z ∧ J = sK) ∨
∃M∃N.s I = s M ∧ sK = sN ∧ sum M J N

∨R

sum I J K, nat J −→ sum (s I) J (s K) defR

Fig. 5.2. A formal proof of the totality of sum.

81

given in Figure 5.1 and Figure 5.2 follow exactly this structure of informal proofs. In
Figure 5.1 we make use of a derived induction rule for sum:

−→ D z J J D I J K −→ D (s I) J (sK) D R S T,Γ −→ C

sumR S T,Γ −→ C
sumL

where I, J,K are eigenvariables in their respected sequents. This rule can be derived in
Linc in the similar way as we derive natL.

5.2 Lists

Lists over some fixed type α are encoded as the type lst, with the usual construc-
tors nil : lst for empty list and :: : α → lst → lst. We consider some functions on lists
and their properties, for both finite lists and infinite lists.

−→ z = z eqR −→ x :: L = x :: L
eqR

L1 = L2 −→ x :: L1 = x :: L2
eqLcsu

· · · , L1 = L2 −→ L1 = L2
init

list L1, list L2, eqx L1 L2 −→ L1 = L2

eqxL

−→ > >R
−→ eqx nil nil

defR=
eqx L

′
1
L
′
2
−→ eqx L

′
1
L
′
2

init

eqx (x :: L
′
1
) (x :: L

′
2
) −→ eqx L

′
1
L
′
2

defLcsu

eqx L L, list L −→ eqx L L
init

list L, list L −→ eqx L L
listL

list L1, list L2, L1 = L2 −→ eqx L1 L2
eqLcsu

Fig. 5.3. Freeness property of lists.

5.2.1 Finite lists

Finite lists over α are generated by the constructors nil and ::, from the elements
of the type α. The membership predicate is defined as follows.

list L
µ
= L = nil ∨ ∃x∃L′.L = x :: L′ ∧ list L′

82

Its corresponding induction rule is

−→ D nil D L −→ D (x :: L) D l,Γ −→ C

list l,Γ −→ C
listL

List is an example of free inductive data type (just as natural number is), that is, two
lists are (extensionally) equal if and only if they are syntactically equal. More precisely,
we can define the equality predicate for lists as follows.

eqx L1 L2
µ
= (L1 = nil ∧ L2 = nil)∨

(∃x∃L′1∃L
′
2.L1 = (x :: L′1) ∧ L2 = (x :: L′2) ∧ eqx L′1 L′2).

We can equally write this definition as a patterned definition as follows

eqx nil nil
µ
= >, eqx (X :: L′1) (X :: L′2)

µ
= eqx L′1 L′2.

This patterned definition is used when we apply defLcsu.
The freeness property above can be stated formally as

∀L1∀L2.list L1 ⊃ list L2 ⊃ (eqx L1 L2 ≡ (L1 = L2)).

Its two subproofs are shown in Figure 5.3. In one of the subproofs, we make use of a
derived induction rule for eq, that is,

−→ D nil nil D L1 L2 −→ D (x :: L1) (x :: L2) D l l′,Γ −→ C

eqx l l′,Γ −→ C
eqxL

This rule can be shown to be derivable in Linc, following the same scheme for deriving
natL and sum as seen previously. The induction invariant in the first proof in the figure
is λL1λL2.L1 = L2, while in the second it is λL.eqx L L.

We next consider the append function on finite lists and prove one of its properties,
i.e., associativity.

Example 5.3. Associativity of app. The append function can be encoded as the fol-
lowing definition clauses.

appL1 L2 L3
µ
= (L1 = nil ∧ L2 = L3) ∨

∃x, L′1, L′3.L1 = (x ::L′1) ∧ L3 = (x ::L′3) ∧ appL′1 L2 L′3.

We can alternatively see this as coding the patterned definition clause

app nilLL
µ
= >, app (X :: L1) L2 (X :: L3)

µ
= appL1 L2 L3.

The associated induction principle for app is as follows.

−→ D nil L L D L1 L2 L3 −→ D (x :: L1) L2 (X :: L3) D l1 l2 l3,Γ −→ C

app l1 l2 l3, Γ −→ C
appL

83

The associativity of app is stated formally as follows.

∀L1∀L2∀L12∀L3∀L4.(appL1 L2 L12 ∧ appL12 L3 L4) ⊃
∀L23.appL2 L3 L23 ⊃ appL1 L23 L4.

(5.1)

Proving this formula requires us to prove first that the definition of append is functional,
that is,

∀L1∀L2∀L3∀L4.appL1 L2 L3 ∧ appL1 L2 L4 ⊃ L3 = L4.

This is done by induction on appL1 L2 L3. The invariant in this case is

I = λL1λL2λL3.∀R.appL1 L2 R ⊃ R = L3.

It is a simple case analysis to check that this is the right invariant:

Π1
−→ I nil LL

Π2

I L′
1

L2 L′
3
−→ I (X :: L′

1
) L2 (X :: L′

3
)

Π3
I L1 L2 L3, . . . −→ L3 = L4

appL1 L2 L3, appL1 L2 L4 −→ L3 = L4
appL

−→ app L1 L2 L3 ∧ app L1 L2 L4 ⊃ L3 = L4
⊃ R;∧L∗

−→ ∀L1∀L2∀L3∀L4.appL1 L2 L3 ∧ app L1 L2 L4 ⊃ L3 = L4
∀R

where Π1, Π2 and Π3 are the following derivation.

−→ nil = nil
eqR

app nil nil L −→ L = nil defLcsu

−→ ∀L.app nil nil L ⊃ L = nil
∀R;⊃ R

app L′
1

L2 L′ −→ app L′
1

L2 L′
init

appL′
1

L2 L′′ −→ X :: L′′ = X :: L′′
init

appL′
1

L2 L′, L′ = L′
3
−→ X :: L′ = X :: L′

3

eqLcsu

app L′
1

L2 L′ ⊃ L′ = L′
3
, app L′

1
L2 L′ −→ X :: L′ = X :: L′

3

⊃ L

∀R.app L′
1

L2 R ⊃ R = L′
3
, appL′

1
L2 L′ −→ X :: L′ = X :: L′

3

∀L

I L′
1

L2 L′
3
, appX :: L′

1
L2 L −→ L = X :: L′

3

defLcsu

I L′
1

L2 L′
3
−→ ∀L.app X :: L′

1
L2 X :: L′

3
⊃ L = X :: L′

3

∀R;⊃ R

app L1 L2 L4 −→ appL1 L2 L4
init

L3 = L4, app L1 L2 L4 −→ L3 = L4
init

appL1 L2 L4 ⊃ L4 = L3, app L1 L2 L4 −→ L3 = L4
⊃ L

∀R.app L1 L2 R ⊃ R = L3, app L1 L2 L4 −→ L3 = L4
∀L

84

We are now ready to prove the associativity of append. The problem of associa-
tivity is reduced to proving the following sequent

appL1 L2 L12, appL12 L3 L4, appL2 L3 L23 −→ appL1 L23 L4. (5.2)

We then proceed by induction on the list L1, that is, we apply the appL rule to the
hypothesis appL1 L2 L12 using the invariant

S = λL1λL2λL12.∀L3∀L4.appL12 L3 L4 ⊃ ∀L23.appL2 L3 L23 ⊃ appL1 L23 L4.

Applying the µL rule, followed by ∨L, to sequent (5.2) reduces the sequent to the
following sub-goals

(i) −→ S nil L2 L3,

(ii) S L′1 L2 L′3 −→ S (X :: L1) L2 (X :: L3),

(ii) S L1 L2 L12, appL12 L3 L4, appL2 L3 L23 −→ appL1 L23 L4,

The proof for the first sequent is straightforward. The proof for the second sequent is
done by a series of case analysis. The third sequent reduces to

appL12 L3 L4, appL12 L3 L23 −→ app nilL23 L4.

This follows from the functionality of append (which identifies L4 and L23) and defR.

5.2.2 Infinite lists

Unlike finite lists, infinite lists are not characterized by the finite constructions
from its constructors. Instead, it is characterized by the destructor operations (also called
observation) on lists, i.e., taking the head and the tail of the list. In a list of the form
x :: L, the element x is the head and L is the tail of the list. This leads to a different
notion of equivalence of lists, that is, two lists are equivalent if they are observationally
equivalent. This notion of equivalence is typically defined via bisimulation (a more
general notion, involving transition systems, will be given in Section 5.3). In the case
of lists, the observables are the empty list nil and the constructor ::. The equivalence
relation for the (possibly) infinite lists is defined as follows.

eqiL1 L2
ν= (L1 = nil ⊃ L2 = nil) ∧ (L2 = nil ⊃ L1 = nil)∧

(∀X∀L′1.L1 = X :: L′1 ⊃ ∃L′2.L2 = X :: L′2 ∧ eqi L′1 L′2)
(∀X∀L′2.L2 = X :: L′2 ⊃ ∃L′1.L1 = X :: L′1 ∧ eqi L′2 L′1)

It can be verified that the relation defined by eqi obeys the usual equality laws, i.e.,
reflexive, symmetric and transitive.

One interesting property concerning equality of infinite lists is that it can be
defined via finite approximation. That is, two infinite lists are equal (in the above sense)
if and only if every finite prefix of one list is (syntactically) equal to the prefix of the

85

same length of the other list. This is also known as the take lemma [5]. We show the
proof of the take lemma in the following example.

Example 5.4. The take lemma. Let us define the tk predicate as follows.

tk z L nil
4
= >.

tk N nil nil
4
= >.

tk (sN) (X :: L) (X :: R)
4
= tk N LR.

Given a natural number n and a list L, the tk predicate “outputs” a list R such that R
is the first n elements of L. The definition consisting of eqi and tk can be stratified by
assigning eqi with a level higher than the level of tk.

Let eqfL1 L2 denotes the formula ∀N.nat N ⊃ ∀L.tkN L1 L ≡ tk N L2 L. The
take lemma can be stated formally as eqiL1 L2 ≡ eqf L1 L2. We first prove the forward
direction, that is,

eqiL1 L2 ⊃ ∀N.nat N ⊃ ∀L.tkN L1 L ≡ tk N L2 L.

Proving this formula reduces to proving the sequent

eqiL1 L2,nat N −→ ∀L.tkN L1 L ≡ tk N L2 L.

This is done by induction on N with the invariant

I = λN.∀L1∀L2.eqiL1 L2 ⊃ ∀L.tk N L1 L ≡ tkN L2 L.

The proof for the base case is as follows.

eqiL1 L2 −→ > >R
eqiL1 L2 −→ tk z L2 nil defR= eqinilL2 −→ > >R

eqinil L2 −→ tk z L2 nil defR=

eqiL1 L2, tk z L1 L −→ tk z L2 L defLcsu

The inductive cases are given by the sequents

I N, eqiL1 L2, tk (s N)L1 L −→ tk (sN) L2 L

and
I N, eqiL1 L2, tk (sN) L2 L −→ tk (sN) L1 L.

We show the proof for the first sequent, since the proof for the latter can be obtained
from the first by substitution (exchanging L1 and L2) and the symmetry of eqi. The
proof starts with case analyses (defLcsu) on tk, followed by eqi. The detail of the formal
proof is rather involved, but it is basically some mechanical checking of cases. We look
at the particular case where both L1 and L2 are instantiated to non-nil terms, i.e.,
L1 = X :: L′1 and L2 = X :: L′2 for some X, L′1 and L′2. This subproof is given in the

86

following.

. . . , eqi L′
1

L′
2
−→ eqi L′

1
L′

2

init Π
∀L.tk N L′

1
L ≡ tk N L′

2
L, · · · −→ tk N L′

2
L′

eqi L′
1

L′
2
⊃ ∀L.tk N L1 L ≡ tk N L2 L, eqi L′

1
L′

2
, tk N L′

1
L′ −→ tk N L′

2
L′

⊃ R

I N, eqi L′
1

L′
2
, tk N L′

1
L′ −→ tk N L′

2
L′

∀L

Here the subproof Π is

· · · , tk N L′
1

L′ −→ tk N L′
1

L′
init · · · , tk N L′

2
L′ −→ tk N L′

2
L′

init

tk N L′
1

L′ ⊃ tk N L′
2

L, · · · −→ tk N L′
2

L′
⊃ L

tk N L′
1

L′ ≡ tk N L′
2

L, · · · −→ tk N L′
2

L′
∧L

∀L.tk N L′
1

L ≡ tk N L′
2

L, · · · −→ tk N L′
2

L′
∀L.

The other direction, i.e., eqfL1 L2 ⊃ eqiL1 L2 is proved by co-induction. The
invariant in this case is λL1λL2.eqf L1 L2. Applying νR, followed by applications of
asynchronous rules, give us the following premises

1. eqf nilL2 −→ L2 = nil

2. eqf L1 nil −→ L1 = nil

3. eqf (X :: L′1) L2 −→ ∃L′2.L2 = (X :: L′2) ∧ eqfL′1 L′2.

4. eqf L1 (X :: L′1) −→ ∃L′1.L1 = (X :: L′1) ∧ eqfL′1 L′2.

5. eqf L1 L2 −→ eqfL1 L2.

We show the proof for the first and the third sequents. The second and the fourth are
symmetric to the first and the third. The proof for the first sequent is given in the
following.

−→ > >R
−→ nat (s z) defR=

−→ > >R
−→ tk (s z) nil nil defR= −→ nil = nil

eqR
tk (s z) L2 nil −→ L2 = nil defLcsu

tk (s z) nil nil ⊃ tk (s z) L2 nil −→ L2 = nil
⊃ L

tk (s z) nil nil ≡ tk (s z) L2 nil −→ L2 = nil ∧L
∀L.tk (s z) nilL ≡ tk (s z) L2 L −→ L2 = nil ∀L

nat (s z) ⊃ ∀L.tk (s z) nilL ≡ tk (s z) L2 L −→ L2 = nil
⊃ L

∀N.nat N ⊃ ∀L.tk N nilL ≡ tk N L2 L −→ L2 = nil ∀L

In the proof of the third sequent, we make use of the following lemma

eqf (X :: L) (X :: R) ⊃ eqfLR,

87

which essentially says that the set denoted by eqf is downward-closed. The proof of this
lemma is given below. We refer to this proof as Ξ.

Ξ1

· · · −→ tk M L L′ ⊃ tk M R L′
Ξ2

· · · −→ tk M R L′ ⊃ tk M L L′
eqf (X :: L) (X :: R), nat M −→ tk M LL′ ≡ tk M R L′

∧R

eqf (X :: L) (X :: R) −→ eqfL R
∀R;⊃ R

The proof Ξ1 is symmetric to Ξ2, therefore we show here only Ξ1, which is the following
derivation.

nat M −→ nat (sM)
defR=; init

Ξ3

tk (sM) (X :: L) (X :: L′) ⊃
tk (sM) (X :: R) (X :: L′),

nat M, tk M L L′ −→ tk M R L′

tk (sM) (X :: L) (X :: L′) ≡
tk (sM) (X :: R) (X :: L′),

nat M, tk M L L′ −→ tk M R L′

∀P.[tk (sM) (X :: L)P ≡
tk (s M) (X :: R)P],

nat M, tk M LL′ −→ tk M R L′

∀L

nat (sM) ⊃
∀P.tk (sM) (X :: L)P ≡ tk (sM) (X :: R)P , nat M, tk M L L′ −→ tk M R L′

⊃ L

eqf (X :: L) (X :: R), nat M, tk M LL′ −→ tk M R L′
∀L

eqf (X :: L) (X :: R), nat M −→ tk M L L′ ⊃ tk M R L′
⊃ R

where Ξ3 is the derivation

tk M L L′ −→ tk (sM) (X :: L) (X :: L′)

tk M R L′, · · · −→ tk M R L′
init

tk (s M) (X :: R) (X :: L′),
nat M, tk M LL′ −→ tk M R L′

defLcsu

tk (sM) (X :: L) (X :: L′) ⊃ tk (sM) (X :: R) (X :: L′),
nat M, tk M L L′ −→ tk M R L′

⊃ L

The complete proof of sequent (3) is given in Figure 5.4.

Example 5.5. Co-recursive append. The co-recursive append requires case analysis on
all arguments.

coapp L1 L2 L3
ν= (L1 = nil ∧ L2 = nil ∧ L3 = nil) ∨

(L1 = nil ∧ ∃x∃L′2∃L
′
3.(L2 = (x ::L′2) ∧ L3 = (x ::L′3)

∧ coapp nil L′2 L′3) ∨
(∃x∃L′1∃L

′
3.L1 = (x ::L′1) ∧ L3 = (x ::L′3)

∧ coapp L′1 L2 L′3).

88

−→ > >R
−→ nat (s z) defR=

Π
tk (s z) (X :: L′

1
) (X :: nil) ≡

tk (s z)L2 (X :: nil), eqf (X :: L′
1
)L2 −→ · · ·

∀L.tk (s z) (X :: L′
1
) L ≡

tk (s z)L2 L, eqf (X :: L′
1
)L2 −→ · · ·

∀L

nat (s z) ⊃
∀L.tk (s z) (X :: L′

1
)L ≡

tk (s z) L2 L, eqf (X :: L′
1
)L2 −→ · · ·

⊃ L

eqf (X :: L′
1
)L2, eqf (X :: L′

1
)L2 −→ ∃L′

2
.L2 = (X :: L′

2
) ∧ eqf L′

1
L′

2

∀L

eqf (X :: L′
1
) L2 −→ ∃L′

2
.L2 = (X :: L′

2
) ∧ eqf L′

1
L′

2

cL

Π :

−→ > >R
−→ tk (s z) (X :: L′

1
) (X :: nil)

defR=

Π1
tk (s z) L2 (X :: nil),

eqf (X :: L′
1
)L2 −→ · · ·

tk (s z) (X :: L′
1
) (X :: nil) ⊃

tk (s z) L2 (X :: nil),
eqf (X :: L′

1
) L2

−→ ∃L′
2
.L2 = (X :: L′

2
) ∧ eqf L′

1
L′

2

⊃ L

tk (s z) (X :: L′
1
) (X :: nil) ≡

tk (s z) L2 (X :: nil),
eqf (X :: L′

1
) L2

−→ ∃L′
2
.L2 = (X :: L′

2
) ∧ eqf L′

1
L′

2

∧L

Π1 :

· · · −→ X :: L3 = X :: L3
eqR Ξ

eqf (X :: L′
1
) (X :: L3) −→ eqfL′

1
L3

eqf (X :: L′
1
) (X :: L3) −→ (X :: L3) = (X :: L3) ∧ eqf L′

1
L3

∧R

eqf (X :: L′
1
) (X :: L3) −→ ∃L′

2
.(X :: L3) = (X :: L′

2
) ∧ eqf L′

1
L′

2

∃R

tk (s z) L2 (X :: nil),
eqf (X :: L′

1
) L2 −→ ∃L′

2
.L2 = (X :: L′

2
) ∧ eqfL′

1
L′

2

defLcsu

Fig. 5.4. A proof of the take lemma.

89

The corresponding associativity property is stated analogously to the inductive one and
as in the inductive case, the main statement reduces to proving the sequent

coapp l1 l2 l12, coapp l12 l3 l4, coapp l2 l3 l23 −→ coapp l1 l23 l4.

We apply the νR rule to coapp l1 l23 l4, using the simulation

I = λl1λl2λl12.∃l23∃l3∃l4.coapp l12 l3 l4 ∧ coapp l2 l3 l23 ∧ coapp l1 l23 l4.

Subsequent steps of the proof involve mainly case analysis on coapp l12 l3 l4. As in the
inductive case, we have to prove the sub-cases when l12 is nil. However, unlike in the
former case, case analyses on the arguments of coapp suffices.

5.3 Abstract transition systems

We consider a subset of the calculus of communicating systems (CCS) [39] with
a fixed point operator µ. The process expressions of CCS are generated by the following
grammar.

P ::= 0 | X | α.P | P|Q | P + Q | µX.P
α ::= x | x̄ | τ.

Processes can make transitions and perform actions. The process 0 is the inert process
which does not make any transition. The ‘.’ (dot) operator is the action prefix. The
process α.P can perform an action α and changes its state into process P . Actions come
in pairs, that is, for every action a, there is a complement action ā. There is a special
action, τ , which denotes silent transition and which does not have any complementary
action. An action is identified with its double-complement, i.e., a = ¯̄a. The + is the
choice operator and | is the parallel composition. The variable X above denotes a process
variable. We consider only closed process expressions, that is, all occurrences of process
variables are bound by the µ operator. The µ operator is the fixed point operator.
The operational meaning of these operators is given by the operational semantics in
Figure 5.5.

A.P
A−−→ P

P
A−−→ P ′

P |Q A−−→ P ′ |Q
Q

A−−→ Q′

P |Q A−−→ P |Q′
P [µX.P/X]

A−−→ Q

µX.P
A−−→ Q

P
A−−→ R

P + Q
A−−→ R

Q
A−−→ R

P + Q
A−−→ R

P
Ā−−→ R Q

A−−→ R

P |Q τ−−→ R | S

Fig. 5.5. One-step transition for CCS

90

The process expressions can be translated into higher-order abstract syntax in
the following way. We introduce the types p and a to denote processes and actions. The
operators above can then be given the following types:

τ : a, ¯: a → a, . : a → p → p,
| : p → p → p, + : p → p → p, µ : (p → p) → p.

The one-step transition judgment is encoded as the predicate .
.−−→ . : p → a → p. The

one-step transition semantics for CCS in Figure 5.5 is translated to the definition clauses
in Figure 5.6.

A.P
A−−→ P

µ
= >.

P + Q
A−−→ P ′ µ

= P
A−−→ P ′.

P + Q
A−−→ Q′ µ

= Q
A−−→ Q′.

P |Q A−−→ P ′|Q µ
= P

A−−→ P ′.
P |Q A−−→ P |Q′ µ

= Q
A−−→ Q′.

µX.P X
A−−→ Q

µ
= P (µX.P X)

A−−→ Q.

P |Q τ−−→ P ′|Q′ µ
= ∃A∃B.comp A B ∧ P

A−−→ P ′ ∧Q
B−−→ Q′

comp A Ā
µ
= >.

comp Ā A
µ
= >.

Fig. 5.6. Encoding of one-step transition of CCS in Linc.

Given this encoding, we can easily see that to infer a one-step transition, we only
need to use right-introduction rules. In the following example we consider proving a
negative statement about the transition system, in which the left-rules (in particular the
induction rule) are used.

Example 5.6. The process µX.X clearly does not make any transition since it has no
action-prefix. This is stated formally as the formula

∀A∀Q.µX.X
A−−→ Q ⊃ ⊥.

91

Finding a proof for this formula reduces to finding a proof for the sequent

µX.X
A−−→ Q −→ ⊥.

Clearly, applying the defLcsu rule will not lead us to a proof, since it will result in the
same sequent in the premise. We need to use induction. The informal proof is done by
induction on the structure of the one-step derivation. In each case, pattern matching
on the clause suffices to show that µX.X does not make any transition. This is proved
formally by using the invariant S = λPλAλQ.P = µX.X ⊃ ⊥.

Π
B (µX.X)A Q −→ ⊥

B P A Q, P = µX.X −→ ⊥ eqL
B P AQ −→ P = µX.X ⊃ ⊥ ⊃ R −→ µX.X = µX.X

eqR ⊥ −→ ⊥ ⊥L
µX.X = µX.X ⊃ ⊥ −→ ⊥ ⊃ L

µX.X
A−−→ Q −→ ⊥

µL

The formula B P AQ denotes the body of the definition clause corresponding to the
patterned definition in Figure 5.6. The premise derivation Π is constructed by a series of
case analyses on the definition of one-step transition. Most cases fail to pattern-match,
and the only case that successfully pattern-match yields the following sequent (using the
sixth clause in Figure 5.6)

µX.X = µX.X ⊃ ⊥ −→ ⊥

which is trivially provable.

5.3.1 Bisimulation

An important notion in reasoning about processes is that of bisimulation. That is,
given two processes P and Q, any transition of P can be simulated by a transition of Q
such that their continuations continue to simulate each other. If we define the behavior
of a process as the actions it is capable of performing (at current state or some “future”
state), then bisimulation gives us a way to say when two processes are behaviorally
equivalent. The original motivation of studying bisimulation [39] is precisely this, that
it will provide us with an equational theory of behaviors. We consider here encoding
simulation (which is, roughly speaking, one-half of bisimulation) and bisimulation. Both
are encoded as coinductive definitions given in Figure 5.7. In the following we show a
simple example of checking simulation between processes. In Chapter 6 we shall consider
more comprehensive examples of bisimulation in π-calculus, an extension of CCS.

Example 5.7. Consider proving the simulation sim (µx.a.x) (µx.(a.x | a.x)). This is
proved using the following simulation predicate

S := λPλQ.(P = µx.a.x) ∧ ∃Q′.Q a−−→ Q |Q′.

92

sim P Q
4
= ∀A∀P ′.P A−−→ P ′ ⊃ ∃Q′.Q A−−→ Q′ ∧ sim P ′ Q′

bisim P Q
4
= [∀A∀P ′.P A−−→ P ′ ⊃ ∃Q′.Q A−−→ Q′ ∧ bisim P ′ Q′]∧

[∀A∀Q′.Q A−−→ Q′ ⊃ ∃P ′.P A−−→ P ′ ∧ bisim Q ′ P ′]

Fig. 5.7. Simulation and bisimulation for CCS

Intuitively, it is enough to characterize µx.(a.x | a.x) by saying that it preserves the
capability of making an a-transition whenever it makes an a-transition. The proof is as
follows. Let R = µx.a.x and T = µx.(a.x | a.x).

Π1

−→ R = µx.a.x ∧ ∃Q′.T a−−→ T |Q′
Π2

P = µx.a.x ∧ ∃Q′.(Q a−−→ Q |Q′) −→ B S P Q

−→ sim R T
νR

where B S P Q is the formula

∀A∀P ′.P A−−→ P ′ ⊃ ∃Q1.Q
A−−→ Q1 ∧ [P ′ = µx.a.x ∧ ∃Q2.Q1

a−−→ Q1 |Q2]

The first premise is provable by instantiating Q′ with a.T . The second premise
derivation reduces to the following derivation, after some simplification steps.

(Q
a−−→ Q |Q′) −→ (Q

a−−→ Q |Q′) ∧ [µx.a.x = µx.a.x ∧ ∃Q2.((Q |Q′) a−−→ (Q |Q′) |Q2)]

(Q
a−−→ Q |Q′) −→ ∃Q1.(Q

a−−→ Q1) ∧ [µx.a.x = µx.a.x ∧ ∃Q2.(Q1
a−−→ Q1 |Q2)]

∃R

We show here the subderivation for the third conjunct, the others are trivially provable.

(Q
a−−→ Q |Q′) −→ (Q

a−−→ (Q |Q′))
init

(Q
a−−→ Q |Q′) −→ ((Q |Q′) a−−→ (Q |Q′) |Q′)

defR

(Q
a−−→ Q |Q′) −→ ∃Q2.((Q |Q′) a−−→ (Q |Q′) |Q2)

∃R

5.4 Object logic

In this section we consider an encoding of a simple object-logic, that is, Horn logic
with universal quantification. The static structure of the object-level quantification is
encoded via abstraction at the meta-level, similar to our previous encoding of the µ-
operator. However, in the previous encoding we essentially deal only with closed terms,

93

pv >̂ 4
= >

pv (G & G′) 4
= pv G ∧ pv G′

pv (∀̂G)
4
= ∇x.pv (Gx)

pv (∃̂G)
4
= ∃x.pv (Gx)

pv A
4
= atom A ∧ ∃D.prog D ∧ bc(D, A)

bc(A,A)
4
= atom A

bc(G ⊃ D, A)
4
= bc(D, A) ∧ pv G

bc(∀̂D, A)
4
= ∃t. bc(D t, A)

Fig. 5.8. Interpreter for an object-level logic.

and hence there is no need to interpret object-level variables at the meta-level. With
object-logic universal quantification the issue is different, since the universally quantified
goal can be replaced by another goal with (object-level) eigenvariables. We illustrate an
example in which we use ∇ to interpret the object-logic eigenvariables and show that
the use of ∇ captures the intensional aspect of object-logic eigenvariables, that is, to act
as fresh constant in (object-logic) proof construction.

The provability of the object-logic is encoded using two predicates: one for encod-
ing the first-order provability and the other for backchaining. The completeness of this
proof system follows from the completeness of uniform provability for intuitionistic logic.
We introduce the type obj to denote object-logic formulas. The object-logic connectives
are encoded as the constants

>̂ : obj, & : obj → obj → obj, ⇒: obj → obj → obj

∀̂ : (i → obj) → obj, ∃̂ : (i → obj) → obj

which denote, respectively, object-level true, conjunction, implication, universal quanti-
fier and existential quantifier. The object-level implication is only used in the program
clause and never in the goal. The type i ranges over first-order object-level terms. The
predicate pv · of type obj → o is used to indicate first-order provability and bc(·, ·) of
type obj → obj → o is used to indicate backchaining. The definition clauses in Figure 5.8
encodes provability for a first-order logic programming language that is restricted to hc∀
and is parametrized by the predicates atom (describing object-level atomic formulas)
and prog (describing object-level logic programs clauses). We illustrate in the following
example reasoning about provability of this object-logic in Linc.

Example 5.8. We recall the motivating example given in [28, 38]. Consider the problem
of proving the formula

∀u∀v[q 〈u, t1〉 〈v, t2〉 〈v, t3〉],

94

where q is a three place predicate, 〈·, ·〉 is used to form pairs, t1 and t2 are some first-
order terms, and the only assumptions for the predicate q are the (universal closure of
the) three atomic formulas: q X X Y , q X Y X and q Y X X. Clearly, this query
succeeds only if terms t2 and t3 are equal. Notice that while the object-level logic here
is hc∀ (since our motivating example is concerned with the provability of a universally
quantified formula), the meta-level definition is hc∇.

The query that captures our intended example is the following formula

∀x, y, z[pv (∀̂u ∀̂ v[q 〈u, x〉 〈v, y〉 〈v, z〉]) ⊃ y = z]

along with the definition consisting of the clauses in Figure 5.8 and the following object-
logic program clauses.

prog (∀̂x ∀̂ y.q x x y)
4
= >.

prog (∀̂x ∀̂ y.q x y x)
4
= >.

prog (∀̂x ∀̂ y.q y x x)
4
= >.

atom (q X Y Z)
4
= >.

Attempting a proof of this formula leads to the following sequent (after applying
some right rules and a pair of defLcsu and ∇L rules):

X,Y, Z ; (s, r) . pv (q 〈s,X〉 〈r, Y 〉 〈r, Z〉) −→ .Y = Z.

A series of defLcsu rules will now need to be applied in order to work through the
encoding of the object-level interpreter. In the end, three separate unification problems
will be attempted, one for each of the three ways to prove the predicate q. In particular,
the defLcsu rule will attempt to unify the term λsλr.(q 〈s,X〉 〈r, Y 〉 〈r, Z〉) with each
of the following three terms:

λsλr.(q (X ′ s r) (X ′ s r) (Y ′ s r))
λsλr.(q (X ′ s r) (Y ′ s r) (X ′ s r))
λsλr.(q (Y ′ s r) (X ′ s r) (X ′ s r))

The first two unification problems fail and hence the corresponding occurrences of
defLcsu succeed. The third of these unification problems is solvable, however, with
X ′ instantiated to λsλr.〈r, Z〉, Y ′ instantiated to λsλr.〈s, Z〉, Y instantiated to Z
(or vice versa), and X uninstantiated. As a result, this third premise is the sequent
· ; · −→ Y = Y , which is provable using eqR.

The more common approach to encoding object-logic provability into a meta-
logic uses the meta-level universal quantifier instead of the ∇ for the clause encoding the
provability of object-level universal quantification: that is, the clause

pv (∀̂x.G x)
4
= ∀x[pv (G x)].

95

is used instead. In this case, attempting a proof of this formula reduces to an attempt
to prove the sequent

X,Y, Z ; .pv (q 〈s1, X〉 〈s2, Y 〉 〈r, Z〉) −→ .Y = Z,

and were s1 and s2 are two terms. To complete the proof, these two terms must be chosen
to be different. While this sequent can be proved, doing so requires the assumption that
there are two such distinct terms (the domain is non-empty and not a singleton). Our
encoding using ∇ allows this (meta-level) proof to be completed in a more natural way
without this assumption.

The extensional nature of ∀̂, that is, pv ∀̂x.P x implies pv P t for arbitrary term
t, can be proved indirectly in Linc as a consequence of the meta-properties of Linc.

Proposition 5.9. If pv ∀̂x.P x is provable then ∀t.pv P t is provable.

Proof Proving the goal pv ∀̂x.P x reduces to proving the subgoal ∇x.pv P x. Note
that since the definition for pv is hc∇, by Proposition 3.28, in proving hc∇ goals, ∇ can
be interchanged with ∀ without affecting provability. Therefore if we have a proof of
∇x.pv P x then we also have a proof of ∀x.pv P x.

However, we cannot directly prove the implication

pv ∀̂x.P x ⊃ ∀x.pv P x (5.3)

in Linc, even with induction. To see why, consider the following proof attempt with
induction. · · · x . S (P x) −→ ∀x.pv P x

x . pv P x −→ ∀x.pv P x
µL

∇x.pv P x −→ ∀x.pv P x
∇L

pv ∀̂x.P x −→ ∀x.pv P x
defLcsu

−→ pv ∀̂x.P x ⊃ ∀x.pv P x
⊃ R

Note that the first three rules used in the above derivation are all asynchronous rules,
therefore any proof of the formula (5.3) can be transformed to a proof which ends in
those rules. However such a proof cannot exist since on the left we have an extra local
signature guarding the formula S (P x) which does not match the local signature of the
right-hand side of the sequent, regardless of what invariant S we choose. This example
illustrates the fact that our current formulation of induction and co-induction do not
interact much with ∇.

5.5 The lazy λ-calculus

We consider an untyped version of the pure λ-calculus with lazy evaluation [1],
following the usual HOAS style, i.e., object-level λ-operator and application are encoded
as constants lam : (tm → tm) → tm and @ : tm → tm → tm, where tm is the syntactic
category of object-level λ-terms. The evaluation relation is encoded as the following

96

inductive definition

lamM ⇓ lamM
µ
= >.

M @N ⇓T
µ
= M ⇓(lamP) ∧ (P N)⇓T.

Notice that object-level substitution is realized via β-reduction in the meta-logic.

Applicative simulation

We show some simple properties about applicative simulation of λ-expressions in
this language. Simulation is encoded as the (stratified) co-inductive definition

sim R S
ν= ∀T.R⇓ lamT ⊃ ∃U.S ⇓ lamU ∧ ∀P.sim (T P) (U P).

Consider the reflexivity property of simulation, i.e., ∀s.sim s s. This is proved co-
inductively by using the simulation λxλy.[x = y]. After applying ∀R and νR, it remains
to prove the sequents −→ [s = s], and

x = y −→ ∀x1.x⇓ lamx1 ⊃ (∃x2.y ⇓ lamx2 ∧ ∀x3.(x1 x3) = (x2 x3)) .

The first sequent is provable by an application of eqR rule. The second sequent is proved
as follows.

z ⇓ lam x1 −→ z ⇓ lam x1
init

z ⇓ lam x1 −→ (x1 x3) = (x1 x3)
eqR

z ⇓ lam x1 −→ ∀x3.(x1 x3) = (x1 x3) ∀R
z ⇓ lamx1 −→ (z ⇓ lam x1 ∧ ∀x3.(x1 x3) = (x1 x3)) ∧R

z ⇓ lamx1 −→ (∃x2.z ⇓ lamx2 ∧ ∀x3.(x1 x3) = (x2 x3)) ∃R
x = y, x⇓ lam x1 −→ (∃x2.y ⇓ lam x2 ∧ ∀x3.(x1 x3) = (x2 x3))

eqL

x = y −→ x⇓ lam x1 ⊃ (∃x2.y ⇓ lam x2 ∧ ∀x3.(x1 x3) = (x2 x3))
⊃ R

x = y −→ ∀x1.x⇓ lam x1 ⊃ (∃x2.y ⇓ lam x2 ∧ ∀x3.(x1 x3) = (x2 x3)) ∀R

The transitivity property is expressed as the formula

∀r∀s∀t.sim r s ∧ sim s t ⊃ sim r t.

Its proof involves co-induction on sim r t with the following simulation

S := λuλv.∃w.sim u w ∧ sim w v,

followed by case analyses (i.e., defL and eqL rules) on sim r s and sim s t. The rest of
the proof is basically a series of manipulation of logical connectives.

Π
S u v −→ B S u v

sim r s, sim s t −→ sim r s
init

sim r s, sim s t −→ sim s t
init

sim r s, sim s t −→ sim r s ∧ sim s t
∧R

sim r s, sim s t −→ ∃w.sim r w ∧ sim w t
∃R

sim r s, sim s t −→ sim r t
νR

−→ ∀r∀s∀t.sim r s ∧ sim s t ⊃ sim r t
∀R;⊃ R

97

B S u v is the formula

∀x.u⇓ lamx ⊃ ∃y.v ⇓ lam y ∧ ∀z.S (x z) (y z).

The derivation Π is given in Figure 5.9.

Divergence

The existence of a divergent term can be proved formally in Linc, using the
following encoding of divergence.

divrg T
ν= (∃T1∃T2.T = (T1@T2) ∧ divrg T1) ∨

(∃T1∃T2.T = (T1@T2) ∧ ∃E.T1 ⇓ lamE ∧ divrg (E T2)).

Let Ω be the term (lamx.(x@x))@ (lamx.(x@x)). We show that divrg Ω holds. The
proof is straightforward by co-induction using the simulation S := λs.s = Ω. Applying
the νR produces the sequents −→ Ω = Ω and T = Ω −→ S1 ∨ S2 where

S1 := ∃T1∃T2.T = (T1@T2) ∧ (S T1), and

S2 := ∃T1∃T2.T = (T1@T2) ∧ ∃E.T1 ⇓ lamE ∧ S (E T2).

Clearly, only the second disjunct is provable, i.e., by instantiating T1 and T2 with the
same term lamx.(x@x), and E with the function λx.(x@x).

5.6 Conclusion and related work

We have seen several examples of reasoning about logical specifications in Linc.
Both first-order and higher-order encodings are shown. We have shown that the natural
number induction in FOλ∆IN can be derived in Linc. This implies that applications
and examples that were previously done in FOλ∆IN, e.g., [28, 31, 57], can be carried
out in Linc without any essential modification. For example, the encoding of CCS in
Section 5.3 has been studied in [31]. However, in their encoding simulation and bisim-
ulation are encoded indirectly via natural number induction because FOλ∆IN does not
support co-induction. In our example, simulation and bisimulation are encoded directly
as co-inductive definitions. Part of Section 5.5 has appeared in [42] and Section 5.4 has
appeared in [38]. We note that the current formulation of (co)-induction does not allow
certain proofs which require reference to local signatures, as we have seen in the object-
logic encoding. This limitation implies that certain forms of induction over higher-order
abstract syntax do not benefit from the presence of ∇. The subject-reduction theorem
for functional languages, for example, does not admit simple formalization in Linc, al-
though it can still be done via the encoding style as in [12, 28]. We shall see in Chapter 6,
there are still interesting uses of ∇ in reasoning with (co-)induction.

98

−→ lam x⇓ lam x
defR

Π1
∀n.sim (xn) (mn),
(lam m)⇓(lam m) ⊃

∃p.v ⇓ lam p ∧ ∀n.sim (m n) (p n) −→ · · ·
∀n.sim (xn) (mn),

∀r.(lam m)⇓(lam r) ⊃
∃p.v ⇓ lam p ∧ ∀n.sim (r n) (p n) −→ · · ·

∀L

∀n.sim (xn) (m n), sim (lam m) v −→ · · · defL
w ⇓ lam m,∀n.sim (xn) (mn), sim w v −→ · · · defLcsu

∃m.w ⇓ lamm ∧ ∀n.sim (xn) (mn), sim w v −→ · · · ∃L;∧L

lam x⇓ lam x ⊃ ∃m.w ⇓ lamm ∧ ∀n.sim (xn) (mn), sim w v −→ · · · ⊃ L
∀r.lam x⇓ lam r ⊃ ∃m.w ⇓ lamm ∧ ∀n.sim (r n) (mn), sim w v −→ · · · ∀L

sim (lam x) w, sim w v −→ ∃y.v ⇓ lam y ∧ ∀z.S (x z) (y z) defL

S (lam x) v −→ ∃y.v ⇓ lam y ∧ ∀z.S (x z) (y z)
∃L;∧L

S u v, u⇓ lam x −→ ∃y.v ⇓ lam y ∧ ∀z.S (x z) (y z) defLcsu

S u v −→ ∀x.u⇓ lamx ⊃ ∃y.v ⇓ lam y ∧ ∀z.S (x z) (y z)
∀R;⊃ R

Π1 :

−→ (lam m)⇓(lam m) defR

· · · −→ lam p⇓ lam p
defR Π2

· · · −→ ∀z.S (x z) (p z)

∀n.sim (xn) (mn),
∀n.sim (mn) (p n) −→

lam p⇓ lam p∧
∀z.S (x z) (p z)

∀n.sim (xn) (mn),
∀n.sim (mn) (p n) −→

∃y.lam p⇓ lam y∧
∀z.S (x z) (y z)

∃R

∀n.sim (xn) (mn),
v ⇓ lam p,

∀n.sim (mn) (p n) −→
∃y.v ⇓ lam y∧
∀z.S (x z) (y z)

defLcsu

∀n.sim (xn) (mn),
v ⇓ lam p ∧ ∀n.sim (mn) (p n) −→

∃y.v ⇓ lam y∧
∀z.S (x z) (y z)

∧L

∀n.sim (x n) (mn),
∃p.v ⇓ lam p ∧ ∀n.sim (mn) (p n) −→

∃y.v ⇓ lam y∧
∀z.S (x z) (y z)

∃L

∀n.sim (xn) (mn),
(lam m)⇓(lam m) ⊃

∃p.v ⇓ lam p ∧ ∀n.sim (m n) (p n) −→ ∃y.v ⇓ lam y ∧ ∀z.S (x z) (y z)

⊃ L

Π2 :

· · · −→ sim (x z) (mz)
init · · · −→ sim (mz) (p z)

init

sim (x z) (mz), sim (mz) (p z) −→ sim (x z) (mz) ∧ sim (m z) (p z) ∧R

∀n.sim (xn) (mn), ∀n.sim (mn) (p n) −→ sim (x z) (mz) ∧ sim (mz) (p z) ∀L
∀n.sim (xn) (m n), ∀n.sim (m n) (p n) −→ ∃q.sim (x z) q ∧ sim q (p z) ∃R
∀n.sim (xn) (mn),∀n.sim (mn) (p n) −→ ∀z.∃q.sim (x z) q ∧ sim q (p z) ∀R

Fig. 5.9. A proof of transitivity of applicative simulation.

99

Chapter 6

Encoding π-calculus

In this chapter we consider an encoding of the operational semantics of the π-
calculus [40]. Central to the calculus is the notion of names which represent communi-
cation links between processes. The dynamics of names in π-calculus, i.e., the creation
of new names and the changes in the scoping of names as the process evolves, construe
a notion of mobility in which the movement of processes is interpreted as the changing
of communication links. The notion of new name generation is not unique to π-calculus.
It also appears in the area of, for example, security protocol, where the creation of fresh
value (nonces) is common in the specification of the protocols. A common approach
to encoding fresh names generation in logic is via the use of eigenvariable (or universal
quantifier). This approach is taken in the encoding of π-calculus in [34], nonces in se-
curity protocols [6], references to locations in imperative programming languages [8, 35]
and constructors hidden within abstract data types [32]. In these works, the main in-
terest is in encoding computation, while we are also interested in doing reasoning about
computation. This approach does not scale easily to suit our purpose because of the
following reason. Suppose we would like to verify that a certain computation, F , follows
from some other computation Gxy under the assumption that x and y are different fresh
names. In other words, we would like to say that if Gxy holds genericly (with respect
to x and y) then F is true. This type of statement often occurs in checking bisimu-
lation where the closure with respect to one-step transitions is a requirement. Using
the ∀ encoding above we would have to prove the sequent ∀x∀y.Gxy −→ F . However,
the assumption that x and y are distinct are not enforced in this sequent, since there
might be a proof in which x and y are identified. Thus we do not capture faithfully the
intended assumption on genericity of x and y, at least not without additional non-logical
encoding. Our solution to this problem is to use ∇, instead of ∀, to encode fresh names
generation. Using this new encoding, the above sequent becomes ∇x∇y.Gxy −→ F ,
which can be proved only by instantiating x and y to different names.

We are mainly interested in reasoning about the bisimilarity and equivalence
of processes. We first consider an encoding of the finite π-calculus (all execution of
processes always terminate) and study the bisimulation relations and congruence in this
subcalculus. The full π-calculus which includes non-terminating processes is studied
later in the chapter. In Section 6.1 we introduce the syntax of π-calculus, for the finite
case, and its encoding into higher-order abstract syntax. The encoding of the operational
semantics of one-step transitions is given in Section 6.2 in which the adequacy of the
encoding is also shown. Section 6.3 studies the encoding of a variant of bisimulation, the
strong late bisimulation. This notion of bisimulation gives rise to the strong congruence
relation, which is the subject of Section 6.4. In Section 6.5 we consider the π-calculus
with replications, which allows us to express some non-terminating processes. Here we

100

see that co-induction proof method is needed to prove the bisimilarity of processes. We
show an example on how the informal co-inductive proof can be carried over to formal
proofs in Linc. The correctness of the encoding of bisimulation and congruence for the
full π-calculus is also shown. Section 6.6 concludes this chapter with some conjectures
and related work.

6.1 Finite late π-calculus

In this section, we consider the finite late π-calculus as defined in [40], that is,
the fragment of π-calculus without recursion (or replication). The main emphasis in this
section is thus on the treatment of names in logic. The syntax of processes is defined as
follows

P ::= 0 | x̄y.P | x(y).P | τ.P | (x)P | [x = y]P | P|Q | P + Q.

We use the notation P, Q, R, S and T to denote processes. Names are denoted by
a, b, c, d, x, y, z. The occurrence of y in the process x(y).P and (y)P is a binding occur-
rence, with P as its scope. The set of free names in P is denoted by fn(P), the set of
bound names is denoted by bn(P). We write n(P) for the set fn(P) ∪ bn(P).

The one-step transition in π-calculus is denoted by P
α−−→ Q, where P and Q are

processes and α is an action. The kinds of actions are the silent action τ , the free output
action x̄y, the bound input action x(y) and the bound output action x̄(y). The name y
in x(y) and x̄(y) is a binding occurrence. Just like we did with processes, we use fn(α),
bn(α) and n(α) to denote free names, bound names, and names in α. An action without
binding occurrences of names is a free action, otherwise it is a bound action.

We encode the syntax of process expressions using higher-order syntax as follows.
We shall require three primitive syntactic categories: n for names, p for processes, and
a for actions, and the constructors corresponding to the operators in π-calculus. We
assume an infinite set of constants of type n. Other constants and their types are given
in Table 6.1. We abbreviate νλx.P as simply νx.P . Notice that when τ is written as a
prefix, it has type p → p, and when it is written as an action, it has type a.

The one-step judgment of π-calculus is given the type o′ in Linc. We distinguish
two different kinds of one-step transitions: those with free actions and those with bound

actions. The former is encoded using the constant · ·−−→ · of type p → a → p → o′,
and the latter using the constant · ·−−⇀ · of type p → (n → a) → (n → p) → o′. We
need an additionaly constant ¦ : nt → o′ → o to coerce the type o′ into o. The type
nt denotes natural numbers, which we use here to distinguish the two kinds of one-step

transitions. Formally speaking, the free one-step transition P
x̄z−−→ Q is translated to

¦ 0 (P
x̄z−−→ Q) and the bound transition P

x(y)
−−→ Q is translated to ¦ 1 (P

↑x
−−⇀ λy.Q).

However, to simplify the presentation, when writing down these translations we shall
leave the ¦ and the indices 0 and 1 implicit. The precise translation between π-calculus
syntax and HOAS is given in the following definition.

101

π-calculus syntax HOAS
Names n
Actions a
Processes p

x̄y ↑ xy ↑: n → n → a
τ τ τ : a
x(y) λy ↓ x y ↓: n → n → a
x̄(y) λy ↑ x y

0 0 0 : proc
τ.P τ P τ : p → p
x̄y.P out x y P out : n → n → p → p
x(y).P in x λy.P y in : n → (n → p) → p
P + Q P + Q + : p → p → p
P|Q P |Q | : p → p → p
[x = y]P match x y P match : n → n → p → p
(x)P νλx.P x ν : (n → p) → p

Table 6.1. Signatures for π-calculus

102

Definition 6.1. We define a translation function 〈.〉 from process expressions to βη-
long normal terms of type p as follows.

〈0〉 = 0 〈τ.P〉 = τ 〈P〉
〈x̄y.P〉 = out x y 〈P〉 〈x(y).P〉 = in x λy.〈P〉
〈P + Q〉 = 〈P〉+ 〈Q〉 〈P|Q〉 = 〈P〉 | 〈Q〉

〈[x = y]P〉 = match x y 〈P〉 〈(x)P〉 = νλx.〈P〉

The one-step transition judgments is translated to atomic formulas as follows (we over-
load the symbol 〈.〉).

〈P
x̄y
−−→ Q〉 = 〈P〉

↑xy
−−→ 〈Q〉 〈P τ−−→ Q〉 = 〈P〉 τ−−→ 〈Q〉

〈P
x(y)
−−→ Q〉 = 〈P〉

λy↓x y
−−⇀ λy.〈Q〉 〈P

x̄(y)
−−→ Q〉 = 〈P〉

λy↑x y
−−⇀ λy.〈Q〉

Lemma 6.2. The function 〈.〉 is a bijection.

Proof By induction on the structure of process expressions and the structure of normal
λ-terms.

Given the above bijection, we shall omit writing explicitly the function symbol 〈.〉
when referring to p-term obtained via the translation.

6.2 One-step transitions

The operational semantics of one-step transition is given in Figure 6.1 [40]. There
are symmetric counterparts of the rules SUM, PAR, CLOSE and COM which are not
shown in the figure but can be easily derived. Figure 6.2 (taken from [37]) contains
the inference rules specifying the transitions in Figure 6.1 using higher-order abstract
syntax. The variables in these rules denote schema variables: these schema variables
have primitive types such as a, n, and p as well as functional types such as n → a and
n → p. Notice that for clarity we have η-expanded some terms in Figure 6.1. These
inference rules can trivially be written as definition clauses. These clauses are presented
in Figure 6.3. Here, schema variables are universally quantified (implicitly) at the top-
level of such clauses.

Notice that the complicated side conditions in the original specification of π-
calculus are no longer present, as they are now treated directly and declaratively by the
meta-logic. For example, the side condition that x 6= y in the open rule is implicit, since
x is outside the scope of y and therefore cannot be instantiated with y. The restriction
operator is interpreted at the meta-level as the ∇ quantifier. The use of ∇, instead of ∀,
allows to prove negative statements about the transitions, as illustrated in Example 6.3.
To simplify the presentation, we mix the syntax of π-calculus and HOAS and use the
usual abbreviations in writing process expressions: when a name z is used as a prefix,
it denotes the prefix z(w) where w is vacuous in its scope; when a name z̄ is used as
a prefix it denotes the output prefix z̄a for some fixed constant a. We also abbreviate
(y)x̄y.P as x̄(y).P and the process term 0 is omitted if it appears as the continuation

103

τ.P
τ−−→ P

TAU−ACT
x̄y.P

x̄y
−−→ P

OUTPUT−ACT

x(z).P
x(w)
−−→ P[w/z]

INPUT−ACT, w 6∈ fn((z)P) P
α−−→ P′

[x = x]P
α−−→ P′

MATCH

P
α−−→ P′

P + Q
α−−→ P′

SUM
P

α−−→ P′

P | Q α−−→ P′ | Q
PAR, bn(α) ∩ fn(Q) = ∅

P
x̄y
−−→ P′ Q

x(z)
−−→ Q′

P | Q τ−−→ P′ | Q′[y/z]
COM

P
x̄(w)
−−→ P′ Q

x(w)
−−→ Q′

P | Q τ−−→ (w)(P′ | Q′)
CLOSE

P
α−−→ P′

(y)P
α−−→ (y)P′

RES, y 6∈ n(α)
P

x̄y
−−→ P′

(y)P
x̄(w)
−−→ P′[w/y]

OPEN, y 6= x, w 6∈ fn((y)P′)

Fig. 6.1. The operational semantics of the late π-calculus.

104

τ P
τ−−→ P

τ
P

A−−→ Q

match x x P
A−−→ Q

match
P

X−−⇀ Q

match x x P
X−−⇀ Q

match

P
A−−→ R

P + Q
A−−→ R

sum
Q

A−−→ R

P + Q
A−−→ R

sum
P

X−−⇀ R

P + Q
X−−⇀ R

sum
Q

X−−⇀ R

P + Q
X−−⇀ R

sum

P
A−−→ P ′

P |Q A−−→ P ′ |Q
par

Q
A−−→ Q′

P |Q A−−→ P |Q′
par

P
X−−⇀ λyMy

P |Q X−−⇀ λn(Mn |Q)
par

Q
X−−⇀ λyNy

P |Q X−−⇀ λn(P |Nn)
par

∇n(Pn
A−−→ P ′n)

νn.Pn
A−−→ νn.P ′n

res
∇n(Pn

X−−⇀ λm P ′nm)

νn.Pn
X−−⇀ λm νn.(P ′nm)

res
∇y(My

↑xy
−−→ M ′y)

νy.My
λy↑xy
−−⇀ λyM ′y

open

out x y P
↑xy
−−→ P

out
in x M

↓x
−−⇀ M

in

P
λy↓xy
−−⇀ λy My Q

λy↑xy
−−⇀ λy Ny

P |Q τ−−→ νn.(Mn |Nn)
close

P
λy↑xy
−−⇀ λyMy Q

λy↓xy
−−⇀ λyNy

P |Q τ−−→ νn.(Mn |Nn)
close

P
λy↓xy
−−⇀ λyMy Q

↑xy
−−→ Q′

P |Q τ−−→ (My) |Q′
com

P
↑xy
−−→ P ′ Q

λy↓xy
−−⇀ λyNy

P |Q τ−−→ P ′ | (Ny)
com

Fig. 6.2. The HOAS representation of the late π-calculus.

105

τ P
τ−−→ P

4
= >. in X M

↓X
−−⇀ M

4
= >. out x y P

↑xy
−−→ P ′ 4= >.

match x x P
A−−→ Q

4
= P

A−−→ Q. match x x P
A−−⇀ Q

4
= P

A−−→ Q.

P + Q
A−−→ R

4
= P

A−−→ R. P + Q
A−−→ R

4
= Q

A−−→ R.

P + Q
A−−⇀ R

4
= P

A−−⇀ R. P + Q
A−−⇀ R

4
= Q

A−−⇀ R.

P |Q A−−→ P ′ |Q 4
= P

A−−→ P ′. P |Q A−−→ P |Q′ 4= Q
A−−→ Q′

P |Q A−−⇀ λn(M n |Q)
4
= P

A−−⇀ M. P |Q A−−⇀ λn(P |N n)
4
= Q

A−−⇀ N.

νn.Pn
A−−→ νn.Qn

4
= ∇n(Pn

A−−→ Qn). νn.Pn
A−−→ νn.Qn

4
= ∇n(Pn

A−−→ Qn).

νy.Py
↑X
−−⇀ νy.Qy

4
= ∇y(Py

↑Xy
−−→ Qy).

P |Q τ−−→ νy.My |Ny
4
= ∃X.P

↓X
−−⇀ M ∧Q

↑X
−−⇀ T

P |Q τ−−→ νy.My |Ny
4
= ∃X.P

↑X
−−⇀ M ∧Q

↓X
−−⇀ T

P |Q τ−−→ MY |Q′ 4= ∃X.P
↓X
−−⇀ M ∧Q

↑XY
−−→ Q′

P |Q τ−−→ P ′ |NY
4
= ∃X.P

↑XY
−−⇀ P ′ ∧Q

↓X
−−→ N

Fig. 6.3. Definition clauses for one-step transition of π-calculus

106

of a prefix. We assume that the operators | and + associates the right, e.g., we write
P + Q + R to denote P + (Q + R).

Example 6.3. In this example we illustrate how the scoping constraints in the π-
calculus is handled at the meta-level. Consider the process (y)[x = y]x̄z.0. This process
cannot make any transition since the bound variable y denotes a name different from x.
We would therefore expect that the following is provable.

∀x∀z∀Q∀α.[((y)[x = y](x̄z.0)
α−−→ Q) ⊃ ⊥]

This type of statement naturally occurs when one is asking whether two processes are
bisimilar (see Section 6.3), where it is necessary to know what transitions a process can
make and what it cannot.

{x, z, Q, α} ; w . ([x = w](x̄z.0)
α−−→ Q) −→ ⊥

defLcsu

{x, z, Q, α} ; . .∇y.([x = y](x̄z.0)
α−−→ Q) −→ ⊥

∇L

{x, z, Q, α} ; . . ((y)[x = y](x̄z.0)
α−−→ Q) −→ ⊥

defLcsu

{x, z, Q, α} ; −→ . . ((y)[x = y](x̄z.0)
α−−→ Q) ⊃ ⊥

⊃ R

Fig. 6.4. The proof of a negation.

To appreciate better the role of ∇, let us look at a different encoding of one-
step transition using ∀. That is, suppose we replace ∇ with ∀ in the inference rules in
Figure 6.2. Attempting to prove the above formula given this definition would reduce to
attempting a proof of the sequent

{x, z,Q, α} ; ∀y.([x = y](x̄z.0)
α−−→ Q) −→ ⊥.

Since cut-elimination holds (Corollary 4.21), the only applicable rule is ∀L, followed by
defLcsu. For the sequent to be provable, x and y would have to be instantiated with
different terms so that the defLcsu rule will produce the empty premise. However, we
see that there are at least two instantiations of variables that identify them: namely, the
substitution {w/y, w/x, w̄z/α, 0/Q} gives us

{z} ; ([w = w](w̄z.0)
w̄z−−→ 0) −→ ⊥

107

and the substitution {x/y, x̄z/α, 0/Q} gives us

{z} ; ([x = x](x̄z.0)
x̄z−−→ 0) −→ ⊥.

In the first case, the scoping of variables at the object-level is lost at the meta-level, while
in the second case, the newness assumption on y is violated. However, these two aspects
are captured precisely by ∇, as it is shown in the derivation in Figure 6.4. The success
of the topmost instance of defLcsu depends on the failure of the unification problem
λw.x = λw.w. Notice that the scoping of object variables is maintained at the meta-
level by the separation of (global) eigenvariables and (locally bound) generic variables.
The “newness” of w is internalized as λ-abstraction and hence it is not subject to any
instantiation.

We now prove the adequacy of the encoding of one-step transition. We denote the
set of definition clauses in Figure 6.3 with Dπ. We use the term π-derivation to refer to
a derivation in the operational semantics of one-step transition of π-calculus. The term
(logic) derivation is reserved for the derivation in the logic Linc. We shall often use the
term proof and logic derivation interchangeably.

Proposition 6.4. Let P and Q be processes and α an action. The transition P
α−−→ Q is

derivable in π-calculus if and only if the sequent . ; . −→ 〈P α−−→ Q〉 is provable in Linc
with definition Dπ.

Proof
⇒: If P

α−−→ Q then . ; . −→ 〈P α−−→ Q〉 is provable. The proof is by induction on

the π-derivation of P
α−−→ Q. Most cases follow immediately from induction hypothesis.

The non-trivial cases are the RES- and OPEN-rules which require the creation of fresh
names. Suppose the transition is inferred by the RES rule

Π
P′ α−−→ Q′

(y)P′ α−−→ (y)Q′
RES, y 6∈ n(α),

then by induction hypothesis there is a derivation Ξ of the sequent . ; . −→ .〈P α−−→ Q〉.
By Lemma 3.13 there is a derivation Ξ′ of . ; . −→ y . 〈P′ α−−→ Q′〉. Hence we can
construct the following derivation

Ξ′
. ; . −→ y . 〈P α−−→ Q〉

. ; . −→ .∇y.〈P′ α−−→ Q′〉
∇R

. ; . −→ 〈(y)P′ α−−→ (y)Q′〉
defR=

⇒: If . ; . −→ 〈P α−−→ Q〉 is provable then P
α−−→ Q. In this case, we need to prove a

stronger statement: If . ; . −→ ā.〈P α−−→ Q〉 is provable then for all renaming substitution

108

θ such that dom(θ) ⊆ ā, the one-step transition (P
α−−→ Q)θ is derivable in π-calculus.

The reason for the need for renaming is because we consider judgments as equal modulo
α-conversion, or renaming of locally bound names.

Let Ξ of be a derivation of the judgment . ; . −→ ā . 〈P α−−→ Q〉. The proof is
by induction on ht(Ξ). Again, the non-trivial cases are when there is a creation of new
names. We look at the case with RES rule. Suppose Π is

Ξ′
. ; . −→ āy . 〈P′ α−−→ Q′〉

. ; . −→ ā .∇y.〈P′ α−−→ Q′〉
∇R

. ; . −→ ā . 〈(y)P′ α−−→ (y)Q′〉
defR

Then by induction hypothesis for all renaming substitution ρ such that dom(ρ) ⊆ āy,

(P′ α−−→ Q′)ρ is derivable in π-calculus. This includes a renaming which maps y to a
fresh name not occuring in P, α and Q. Therefore we have the following derivation in
π-calculus

Π′
P′ α−−→ Q′

(y)P′ α−−→ (y)Q′
RES, y 6∈ n(α)

where Π′ is obtained from induction hypothesis.

6.3 Strong bisimilarity

There are many variants of bisimulation studied in the literature related to π-
calculus; we will not attempt to cover all of them here. We consider here only strong
bisimulation, that is, bisimulation in which all actions, observable or not, are considered.
More precisely, we consider encoding strong late bisimulation. The notion of strong
bisimulation for late π-calculus is defined as follows.

Definition 6.5. [40] A binary relation S on processes is a strong late simulation if it
satisfies the following requirements:

1. if P
α−−→ P′ and α is a free action, then for some Q′, Q α−−→ Q′ and P′SQ′,

2. if P
x(y)
−−→ P′ and y 6∈ n(P,Q), then for some Q′, Q

x(y)
−−→ Q′ and for all w,

P′[w/y] S Q′[w/y],

and

3. if P
x̄(y)
−−→ P′ and y 6∈ n(P, Q) then for some Q′, Q

x̄(y)
−−→ Q′ and P′ S Q′.

109

The relation S is a strong late bisimulation if both S and its inverse are late simulations.
The relation .∼, strong late bisimilarity, on processes is defined by P

.∼ Q if and only if
there exists a late bisimulation S such that PSQ.

bisim P Q
4
= ∀A∀P ′ [(P

A−−→ P ′) ⊃ ∃Q′.(Q A−−→ Q′) ∧ bisim P ′ Q′] ∧
∀A∀Q′ [(Q

A−−→ Q′) ⊃ ∃P ′.(P A−−→ P ′) ∧ bisim Q′ P ′] ∧
∀X∀P ′ [(P

↓X
−−⇀ P ′) ⊃ ∃Q′.(Q

↓X
−−⇀ Q′) ∧ ∀w.bisim (P ′w) (Q′w)] ∧

∀X∀Q′ [(Q
↓X
−−⇀ Q′) ⊃ ∃P ′.(P

↓X
−−⇀ P ′) ∧ ∀w.bisim (Q′w) (P ′w)] ∧

∀X∀P ′ [(P
↑X
−−⇀ P ′) ⊃ ∃Q′.(Q

↑X
−−⇀ Q′) ∧∇w.bisim (P ′w) (Q′w)] ∧

∀X∀Q′ [(Q
↑X
−−⇀ Q′) ⊃ ∃P ′.(P

↑X
−−⇀ P ′) ∧∇w.bisim (Q′w) (P ′w)]

Fig. 6.5. Lazy encoding of strong late bisimulation

We first attempt to do a straightforward encoding of strong bisimulation defined
above, that is, by replacing the English words “if ... then ...”, “and”, “for all”, etc., with
logical connectives. Let us call this encoding the lazy encoding of strong bisimulation
(the use of the term “lazy” will be clear later). This encoding is shown in Figure 6.5,
and has also appeared in [38]. We denote by Dπ,

.∼ the definition Dπ augmented with
the bisim clause.

Notice that the difference between bound output and bound input is captured by
the use of ∇ and ∀ quantifiers. We illustrate this in the following example.

Example 6.6. Consider the following processes expressions.

P = x(y).(y|z̄), Q = x(y).(y.z̄ + z̄.y + [y = z]τ), R = x̄(y).(y|z̄), T = x̄(y).(y.z̄ + z̄.y).

The process P is bisimilar to Q and the process R to T . Note that we need the match
prefix in Q since P is capable of performing the silent transition in the case where the
input value y is z. We don’t need the match prefix in T since y in this case can only be
instantiated with a fresh name different from z. We would therefore expect the following
sequents to be provable.

· ; · −→ bisim x(y).(y|z̄) x(y).(y.z̄ + z̄.y + [y = z]τ)

· ; · −→ bisim x̄(y).(y|z̄) x̄(y).(y.z̄ + z̄.y)

110

(a.1) · ; · −→ x(y).(y.z̄ + z̄.y + [y = z]τ)
↓x
−−→ λy(y.z̄ + z̄.y + [y = z]τ)

∧ ∀w.bisim (w|z̄) (w.z̄ + z̄.w + [w = z]τ)

(a.2) · ; · −→ x(y).(y.z̄ + z̄.y + [y = z]τ)
↓x
−−→ λy(y.z̄ + z̄.y + [y = z]τ)

(a.3) w ; · −→ bisim (w|z̄) (w.z̄ + z̄.w + [w = z]τ)

(a.4) w, R,A ; (w|z̄)
A−−→ R −→ ∃T.(w.z̄ + z̄.w + [w = z]τ)

A−−→ T ∧ bisim R T

(a.5) w, T, A ; (w.z̄ + z̄.w + [w = z]τ)
A−−→ T −→ ∃R.(w|z̄)

A−−→ R ∧ bisim T R

(a.6) w, U,X ; (w|z̄)
↓X
−−⇀ U −→ ∃V.(w.z̄ + z̄.w + [w = z]τ)

↓X
−−⇀ V ∧ ∀n.bisim Un V n

(a.7) w, V, X ; (w.z̄ + z̄.w + [w = z]τ)
↓X
−−⇀ V −→ ∃U.(w|z̄)

↓X
−−⇀ U ∧ ∀n.bisim V n Un

(a.8) w, U,X ; (w|z̄)
↑X
−−⇀ U −→ ∃V.(w.z̄ + z̄.w + [w = z]τ)

↑X
−−⇀ V ∧ ∇n.bisim Un V n

(a.9) w, V,X ; (w.z̄ + z̄.w + [w = z]τ)
↑X
−−⇀ V −→ ∃U.(w|z̄)

↑X
−−⇀ U ∧ ∇n.bisim V n Un

(a.10) w ; · −→ ∃T.(w.z̄ + z̄.w + [w = z]τ)
↑za
−−→ T ∧ bisim (w|0) T

(a.11) w,X ′, Y, R′,M ; w
↓X′
−−⇀ M, z̄

↑X′Y
−−→ R′ −→ ∃T.

[
(w.z̄ + z̄.w + [w = z]τ)

τ−−→ T

∧ bisim (M ′Y |R′) T

]

(a.12) · ; · −→ ∃T.(z.z̄ + z̄.z + [z = z]τ)
τ−−→ T ∧ bisim (0|0) T

(a.13) w ; · −→ ∃R.(w|z̄)
↑za
−−→ R ∧ bisim w R

(a.14) w, T,A ; [w = z]τ
A−−→ T −→ ∃R.(w|z̄)

A−−→ R ∧ bisim T R

(a.15) · ; · −→ ∃R.(z|z̄)
τ−−→ R ∧ bisim 0 R

Fig. 6.6. Example of bisim with bound input

111

(iii.1) R,A ; w . (w|z̄)
Aw−−→ Rw −→ w . ∃T.(w.z̄ + z̄.w

Aw−−→ T ∧ bisim Rw T

(iii.2) T, A ; w . (w.z̄ + z̄.w)
Aw−−→ Tw −→ w . ∃R.(w|z̄)

Aw−−→ R ∧ bisim Tw R

(iii.3) M, X ; w . (w|z̄)
↓(Xw)
−−⇀ Mw −→ w . ∃N

[
(w.z̄ + z̄.w)

↓(Xw)
−−⇀ N

∧ ∀n.bisim Mwn Nn

]

(iii.4) N,X ; w . (w.z̄ + z̄.w)
↓(Xw)
−−⇀ Nw −→ w . ∃M

[
(w.z̄ + z̄.w)

↓(Xw)
−−⇀ M

∧ ∀n.bisim Nwn Mn

]

(iii.5) M,X ; w . (w|z̄)
↑(Xw)
−−⇀ Mw −→ w . ∃N

[
(w.z̄ + z̄.w)

↑(Xw)
−−⇀ N

∧ ∇n.bisim Mwn Nn

]

(iii.6) N, X ; w . (w.z̄ + z̄.w)
↑(Xw)
−−⇀ Nw −→ w . ∃M

[
(w.z̄ + z̄.w)

↑(Xw)
−−⇀ M

∧ ∇n.bisim Nwn Mn

]

(iii.7) M, X, R′, Y ;


 w . w

↓X
−−⇀ Mw,

w . z̄
↑XY
−−→ R′w


 −→ w . ∃T.

[
(w.z̄ + z̄.w)

τ−−→ T

∧ bisim (MwY |R′w) T

]

(iii.8) R′, Y ; w . z̄
↑wY
−−→ R′w −→ w . ∃T.(w.z̄ + z̄.w)

τ−−→ T ∧ bisim (0|R′w) T

Fig. 6.7. Example of bisim with bound output

112

Since we have cut-elimination, we need only consider cut-free proofs in proving these
sequents. Therefore to prove the first sequent, we first apply defR followed by ∀R and
∧R, resulting in the following six sequents.

(1) P ′, A ; x(y).(y|z̄)
A−−→ P ′ −→ ∃Q′.x(y).(y.z̄ + z̄.y +[y = z]τ)

A−−→ Q′ ∧ bisim P ′ Q′

(2) Q′, A ; x(y).(y.z̄ + z̄.y +[y = z]τ)
A−−→ Q′ −→ ∃P ′.x(y).(y|z̄)

A−−→ P ′ ∧ bisim Q′ P ′

(3) M,X ; x(y).(y|z̄)
↓X
−−⇀ M −→ ∃N.


 x(y).(y.z̄ + z̄.y + [y = z]τ)

↓X
−−⇀ N ∧

∀w.bisim Mw Nw


.

(4) N,X ; x(y).(y.z̄ + z̄.y + [y = z]τ)
↓X
−−⇀ N −→ ∃M.


 x(y).(y|z̄)

↓X
−−⇀ M ∧

∀w.bisim Nw Mw


.

(5) M,X ; x(y).(y|z̄)
↑X
−−⇀ M −→ ∃N.


 x(y).(y.z̄ + z̄.y + [y = z]τ)

↑X
−−⇀ N ∧

∇w.bisim Mw Nw


.

(6) N,X ; x(y).(y.z̄ + z̄.y + [y = z]τ)
↑X
−−⇀ N −→ ∃N.


 x(y).(y|z̄)

↑X
−−⇀ M ∧

∇w.bisim Nw Mw


.

Next, we apply the defLcsu to each sequent. Since the outermost constructor of the
process P is the input prefix, the only matching definition clause is

in X ′ M ′ ↓X ′
−−⇀ M ′ 4= >.

The unification succeeds only on sequents (3) and (4) with the respective (most general)
unifiers

[λy(y|z̄)/M, x/X] and [λy(y.z̄ + z̄.y + [y = z]τ)/N, x/X].

It fails on the other sequents, and hence the proofs for those sequents succeed. The
corresponding premises of sequents (3) and (4) are the sequents

(a) · ; · −→ ∃N.x(y).(y.z̄ + z̄.y + [y = z]τ)
↓x
−−⇀ N ∧ ∀w.bisim (w|z̄) Nw and

(b) · ; · −→ ∃M.x(y).(y|z̄)
↓x
−−⇀ M ∧ ∀w.bisim (z̄ + z̄.y + [y = z]τ) Mw.

We proceed by applying ∃R to both sequents. It is obvious that for the sequent (a) we
should instantiate N with λy(y.z̄ + z̄.y +[y = z]τ) and for the sequent (b) we instantiate
M with λy(y|z̄). We show here an outline of the proof for the continuation of (a). The
proof for (b) is completely symmetric.

A list of premises of (a) is listed in Figure 6.6. Here the sequent (a.1) is the
immediate premise of (a), after applying ∃R. The proof branches to sequent (a.2)
and (a.3). The sequent (a.2) is provable by one step application of defR=. We apply
defLcsu to (a.3) (followed by instances ∧R, ∀R and ⊃ R) to get the six premises (a.4)

113

- (a.9). We highlight the proof for the sequent (a.4) and (a.5) since they illustrate the
important role of eigenvariables in encoding bound input. We see from the definition
clauses in Figure 6.2 that applying defLcsu repeatedly to sequent (a.4) leaves us with
two premises: (a.10) and (a.11). In the case of (a.10), we infer that (w|z̄) has made a
free output ↑ za (a is a constant). This sequent is provable by instantiating T with w. In
(a.11), we would like to infer the τ transition from (w|z̄). This reduces to inferring that
w makes an input transition to some process and z̄ makes an output transition on the
same channel, which is represented here as X ′. We continue applying defLcsu to (a.11).

We see that in order for the w
↓X ′
−−⇀ M to succeed, X ′ must be instantiated to w and M

to λy.0. We are then left with the remaining one-step transition: z̄
↑wa
−−→ R′. Again, for

this transition to succeed w needs to be instantiated with z, which is what happens when
we apply the defLcsu. Note that w is an eigenvariable so it can be instantiated when
applying defLcsu. The resulting sequent is (a.12) which can be verified to be provable.
In the symmetric case with (a.5), the subcase where w gets instantiated is given in the
sequent (a.14). Here the unification of w and z is driven by the match prefix [w = z]τ .
The result of applying defLcsu to (a.14) is the sequent (a.15), where w is instantiated
with z, A with τ and T with 0. The resulting sequent can be shown provable.

The sequent · ; · −→ bisim x̄(y).(y|z̄) x̄(y).(y.z̄ + z̄.y) is proved in similar fashion,
that is, the proof starts with an instance of defR=, followed by asynchronous rules (see
Chapter 3, Section 3.7), and defLcsu. We get the corresponding six premises as in
(1)− (6). In particular, the cases involving bound output are now

(5′) M,X ; x̄(y).(y|z̄)
↑X
−−⇀ M −→ ∃N.x̄(y).(y.z̄ + z̄.y)

↑X
−−⇀ N ∧ ∇w.bisim Mw Nw

(6′) N,X ; x̄(y).(y.z̄ + z̄.y)
↑X
−−⇀ N −→ ∃M.x̄(y).(y|z̄)

↑X
−−⇀ M ∧ ∇w.bisim Nw Mw

We apply defLcsu followed by ∃R and ∧R. In the premises of defLcsu, the eigenvariable
M and X in (5′) get instantiated to λy(y|z̄) and x, while in (6′), N and X get instantiated
to λy(y.z̄ + z̄.y). In the instances of ∃R, we instantiate N in (5′) with the term λy(y.z̄ +
z̄.y) and M in (6′) with λy(y|z̄). We thus arrive at the following premise sequents

(i) · ; · −→ x̄(y).(y.z̄ + z̄.y)
↑x
−−⇀ λy(y.z̄ + z̄.y)

(ii) · ; · −→ ∇w.bisim (w|z̄) (w.z̄ + z̄.w)

(iii) · ; · −→ x̄(y).(y|z̄)
↑x
−−⇀ λy(y|z̄)

(iv) · ; · −→ ∇w.bisim (w.z̄ + z̄.w) (w|z̄)

Sequents (i) and (ii) are provable by two applications of defR=. We look at the proof of
sequent (iii) (the proof of (iv) is basically the same as (iii)). By unfolding the definition
of bisim we get the six premises (iii.1) - (iii.6) in Figure 6.7, which are analogous to the
sequents (a.4) - (a.9) in Figure 6.6. Notice that the variable w now has local scope. For
the sequent (iii.1) to be provable, it is necessary that the process (w|z̄) does not make
a τ transition. This reduces to showing that the sequent (iii.7), which is obtained from

(iii.1) by defLcsu, is provable. We first apply defLcsu to the judgment w . w
↓Xw
−−⇀ Mw.

114

This will unify the variable X with λw.w and M with λw.0. The resulting sequent is

(iii.8). We then apply defLcsu to w . z̄
↑wY
−−→ R′w. The applicable definition clause is

the out-rule (see Figure 6.2). For the defLcsu to succeed we need to identify z and w.
But since w has local scope its corresponding unification problem is λw.w = λw.z (recall
that local variables are interpreted as λ-abstraction in applying eqL and defLcsu), which
has no solution. Therefore the proof for sequent (iii.8) succeeds. Notice the difference
with the sequent (a.11) in which the corresponding unification problem is w = z, which
is solvable since w in that case is an eigenvariable which is subject to instantiation.

We now show that the bisim clause does encode bisimulation.

Theorem 6.7. Let P and Q be two processes. If the sequent

. ; . −→ ū . bisim P Q,

where free names in P and Q are either in ū or global constants, is provable in Linc with
the definition Dπ,

.∼ then P
.∼ Q.

Proof We show that the set

S = {(R, T) | . ; . −→ w̄ . bisim R T}

where free names in R and T are either in w̄ or global constants, is a strong late bisim-
ulation. Given the cut-elimination theorem, we know that the proof of w̄ . bisim R T
must end with an instance of defR. By unfolding the definition clause of bisim and
applying the introduction rules for the asynchronous logical connectives, we arrive at six
sequents in the premise. We show here three of them, the other three are symmetric (by
interchanging R and T):

(1) A,R′ ; w̄ . R
Aw̄−−→ R′ w̄ −→ w̄ . ∃T ′.T A w̄−−→ T ′ ∧ bisim (R′ w̄) T ′

(2) X, M ; w̄ . R
↓(Xw̄)
−−⇀ M w̄ −→ w̄ . ∃N.T

↓(Xw̄)
−−⇀ N ∧ ∀n.bisim (M w̄ n) (N n)

(3) X, M ; w̄ . R
↑(Xw̄)
−−⇀ M w̄ −→ w̄ . ∃N.T

↑(Xw̄)
−−⇀ N ∧∇n.bisim (M w̄ n) (N n)

Let Π1, Π2, Π3 be the proofs of the sequents (1), (2) and (3), respectively. We need to
show that for every transition that R can perform, T can make the same transition and
their continuations are in S. We distinguish three cases, depending whether α is a free
action, a bound input or a bound output. These cases correspond to the sequents (1),
(2) and (3) above.

For case (1), suppose we have a transition R
α−−→ R1, then by Proposition 6.4

we have derivation of . ; . −→ R
α−−→ R1, where the free names w̄ are treated as global

constants. By Lemma 3.13 we can weaken the scope of w̄ so that we have a derivation

115

Π of . ; . −→ w̄ . R
α−−→ R1. We instantiate the derivation Π1 with the substitution

θ = [λw̄.R1/R′, λw̄.α/A] and then cut this derivation with Π to obtain the derivation Ξ

Π
. ; . −→ w̄ . R

α−−→ R1

Π1θ

. ; w̄ . R
α−−→ R1 −→ w̄ . ∃T ′.T α−−→ T ′ ∧ bisim R1 T ′

. ; . −→ w̄ . ∃T ′.T α−−→ T ′ ∧ bisim R1 T ′
mc

By cut-elimination, there is a cut-free proof of the sequent

. ; . −→ w̄ . ∃T ′.T α−−→ T ′ ∧ bisim R1 T ′.

The two last rules of this proof must be instances of ∃R and ∧R. Hence there must exist
a process term T1 such that

. ; . −→ w̄ . T
α−−→ T1 and . ; . −→ w̄ . bisim R1 T1

are provable. By Proposition 6.4 there is a transition T
α−−→ T1, and from the definition

of S, clearly (R1, T1) ∈ S.

In case (2), we are given a transition R
↓x
−−⇀ λy.M y, and we need to show that

there is an abstraction N (of type n → p) such that w̄ . T
↓x
−−⇀ λy.N y is provable and

that for every name a, (M a, N a) ∈ S. By similar arguments as in case (1), we show that
there is indeed a term N such that

. ; . −→ w̄ . T
↓x
−−⇀ N

and
. ; . −→ w̄ . ∀y.bisim (M y) (N y)

are provable. In the second sequent, we can instantiate y with any constant of type name
(either global or local). That is, w̄ . bisim (M a) (N a) is provable for every a, and hence
(M a, N a) ∈ S. Case (3) is similar to case (2), the only difference is that in this case we
need only to show that (M a, N a) ∈ S for a fresh name a not in the free names of (R, T).
Applying the same arguments as above, we arrive at the (cut-free) derivation

Ξ′
; −→ w̄a . bisim (M a) (N a)

; −→ w̄ .∇y.bisim (M y) (N y) ∇R.

Hence (M a, N a) ∈ S. We have thus shown that S is indeed a bisimulation set, and
therefore the soundness of our encoding.

The converse of Theorem 6.7 is not true, that is, there are some processes that
are bisimilar but their encoding is not provable in Linc with Dπ,

.∼. A counterexample
is given below.

116

Example 6.8. Consider the processes

P = y(z).(x + x.z), Q = y(z).(x + x.z + x.[z = a]z).

We show that P
.∼ Q but bisim P Q is not provable. Let

R = {(P, Q)}⋃{(x + x.w, x + x.w + x.[w = a]w) | for some name w }⋃{(0, [w = a]w) | for some name w 6= a }⋃{(a, [a = a]a), (0, 0)}

and let S be the symmetric closure ofR, i.e., S = {(R, T), (T, R) | (R, T) ∈ R}. We show
that S is a bisimulation set by case analysis on all possible pairs in S. The interesting
case is to check that the continuations of (x + x.w, x + x.w + x.[w = a]w) are in S.
Let R = x + x.w and T = x + x.w + [w = a]w. There are two possible transitions

from R: either R
x−−→ 0 or R

x−−→ w. In the first case, we choose for T the transition

T
x−−→ 0 (i.e., by selecting the first summand x). In the second case, we choose for T

the transition T
x−−→ w. In both cases the continuation pairs are in S.

Conversely, there are three possible transitions from T : T
x−−→ 0, T

x−−→ w and

T
x−−→ [w = a]w. For the first two cases, we choose for R the transition R

x−−→ 0 and

R
x−−→ w, respectively. For the third case, if w = a, we choose the transition R

x−−→ w,

otherwise take the transition R
x−−→ 0. In all cases it is obvious that the continuations

are in S.
Let us now attempt to prove the sequent · ; · −→ bisim P Q, where all the

free names in (P, Q) are encoded as constants. It can be checked that, using only
asynchronous rules, the proof of this sequent reduces to a proof of the sequent

; −→ ∀w.bisim (x + x.w) (x + x.w + [w = a]w). (6.1)

Now we apply ∀R, defR and the necessary introduction rules for the logical connectives
in bisim . We get six sequents as the premise, corresponding to free action, bound input
and bound output transitions. Among the premises is the sequent

X,R′ ; (x + x.w + x.[w = a]w)
↓X
−−⇀ R′ −→ ∃T ′.x + x.w

↓X
−−⇀ T ′ ∧ ∀n.bisim R′n T ′n.

Applying defLcsu on this sequent gives us three premises. The interesting one is the
sequent

X,R′ ; x.[w = a]w
↓X
−−⇀ R′ −→ ∃T ′.x + x.w

↓X
−−→ T ′ ∧ ∀n.bisim R′n T ′n.

Another application of defLcsu gives us

w ; · −→ ∃T ′.x + x.w
↓x
−−→ T ′ ∧ ∀n.bisim [w = a]w T ′n. (6.2)

Notice that w is not instantiated since it plays no active role in inferring the transition
from (x+x.w). Now we claim that there is no proof for this sequent. Suppose otherwise,

117

then we must choose a T ′ to proceed with the proof. There are only two choices, either
we instantiate T ′ with λn.w or λn.0. The first choice leads to the premise w ; · −→
bisim [w = a]w x while the second leads to w ; · −→ bisim [w = a]w 0. We first apply
defR and other logical rules to the atom bisim [w = a]w x to get the following premise
(among other ones)

w,X ′, R′′ ; x
↓X ′
−−⇀ R′′ −→ ∃T ′′.[w = a]

↓X ′
−−⇀ T ′′ ∧ ∀n.bisim (R′′n) (T ′′n)

Applying defLcsu once we get

w ; −→ ∃T ′′.[w = a]w
↓x
−−⇀ T ′′ ∧ ∀n.bisim 0 (T ′′n)

where X ′ is instantiated with x and R′′ with λn.0. Now notice that w is again not

instantiated. This means that there is no way we can prove [w = a]
↓x
−−⇀ T ′′ for any T ′′,

since w and a are different (recall that eigenvariables are not instantiated when applying
any right-introduction rules).

The sequent w ; · −→ bisim ([w = a]w) 0 is not provable either since its proof
would reduce to a proof of

w, Y, U ; [w = a]w
↓Y
−−⇀ U −→ ∃V.0

↓Y
−−⇀ V ∧ ∀n.bisim (Un) (V n)

which in turns would reduce to (by an application of defLcsu)

· ; · −→ ∃V.0
↓a
−−⇀ V ∧ ∀n.bisim 0 (V n).

In the latter sequent above, w gets instantiated to a. Clearly this sequent is not provable
since the process 0 cannot perform any action.

A complete encoding of late bisimulation

What seems to be the problem in Example 6.8 is that we need to do case analyses
on the possible name w can take in the sequent (6.2) before we instantiate T ′. More
generally, our use of eigenvariable in encoding bound input forces lazy instantiation of
the variable, i.e., only at the point when it is needed, e.g., in inferring the one-step
transition (on the left-hand side of the sequent). We come to a simple solution to this
problem by forcing an explicit enumeration of all names in the case involving bound
input. For this to work, we need to maintain a list of free names of the processes being
checked for their bisimilarity. More specifically, the bisimulation relation is encoded as
the following predicate

lbisim : nlist → p → p → o.

where the type nlist denotes the list of names, with the usual constructors: nil for empty
list and :: : n → nlist → nlist for constructing a list from a name and another list. The
relation P

.∼ Q is now encoded as lbisim L P Q where L is a list of names containing free

118

names in P and Q. The definition clause for lbisim is given in Figure 6.8. The predicate
lname X L is used to enumerate all possible instantiation of X with the names in L.
Notice that now the lbisim clause for input-prefix case has explicit assumptions about
the possible name w can take, either it is in the list of free names in L, or it is a new
name not in L, P or Q, which in this case is given by the quantifier ∇. Whenever we
introduce a new name via ∇, the name has to be added to the list L. We refer to the
definition clause given in Figure 6.8 and Figure 6.3 as Dπ,

.∼l
.

Theorem 6.9. Let P and Q be two processes. If the sequent

. ; . −→ ū . lbisim Lū P Q,

where L is a ground term and the free names in P and Q are in the list L ū, is provable
in Linc with the definition Dπ,

.∼l
then P

.∼ Q.

Proof The proof is very similar to the proof of Theorem 6.7, that is, we show that
the set

S = {(R, T) | . ; . −→ w̄ . lbisim L w̄ R T}
where L is a ground term and the free names of R and T are included in L, is a bisimulation
set. The non-trivial case is when R makes an input transition. In this case the proof of
w̄ . lbisim L w̄ R T reduces to

X, M ; w̄ . R
↓(Xw̄)
−−⇀ M w̄ −→ w̄ . ∃N.




T
↓(Xw̄)
−−⇀ N

∧ ∀n.lname w L w̄ ⊃ lbisim L w̄ (M w̄ n) (N n)
∧ ∇n.lbisim (n :: L) Mw̄ Nn




Suppose we are given a transition w̄ . R
↓α
−−⇀ R′ then by cut and cut-elimination there is

some term T′ and name α such that the following sequents are provable.

(1) · ; · −→ w̄ . T
↓α
−−⇀ T′

(2) h ; w̄ . lname hw̄ Lw̄ −→ w̄ . lbisim Lw̄ R′(hw̄) T′(hw̄)

(3) · ; · −→ w̄n . lbisim (n :: Lw̄) R′n T′n

Since defL, eqL and ∨L are asynchronous rules, we can rearrange the proof of (2) so
that those left-rules are applied before any other rules. The rearranged proof is of the
shape

Πa1

· ; · −→ w̄ . lbisim Lw̄ R′a1 T′a1 · · ·
Πan

· ; · −→ w̄ . lbisim Lw̄ R′an T′an

h ; w̄ . lname hw̄ Lw̄ −→ w̄ . lbisim Lw̄ R′(hw̄) T′(hw̄)

where a1, . . . , an are the names in Lw̄. We need to show that the continuation pairs
(R′a, T′a) ∈ S for every a. If a ∈ {a1, . . . , an} then (R′a, T′a) ∈ S by the proof Πa.

119

lbisim L P Q
4
= ∀A∀P ′ [(P

A−−→ P ′) ⊃ ∃Q′.(Q A−−→ Q′) ∧ lbisim L P ′ Q′] ∧
∀A∀Q′ [(Q

A−−→ Q′) ⊃ ∃P ′.(P A−−→ P ′) ∧ lbisim L Q′ P ′] ∧

∀X∀P ′



(P
↓X
−−⇀ P ′) ⊃ ∃Q′.(Q

↓X
−−⇀ Q′)

∧∀w.lname x L ⊃ lbisim L (P ′w) (Q′w)
∧∇w.lbisim (w :: L) (P ′w) (Q′w)


 ∧

∀X∀Q′



(Q
↓X
−−⇀ Q′) ⊃ ∃P ′.(P

↓X
−−⇀ P ′)

∧ ∀w.lname x L ⊃ lbisim (Q′w) (P ′w)
∧∇w.lbisim (w :: L) (P ′w) (Q′w)


 ∧

∀X∀P ′

 (P

↑X
−−⇀ P ′) ⊃ ∃Q′.(Q

↑X
−−⇀ Q′)

∧∇w.lbisim (w :: L) (P ′w) (Q′w)


 ∧

∀X∀Q′

 (Q

↑X
−−⇀ Q′) ⊃ ∃P ′.(P

↑X
−−⇀ P ′)

∧∇w.lbisim (w :: L) (Q′w) (P ′w)




lname X (Y :: L)
4
= (X = Y) ∨ lname X L

Fig. 6.8. A complete encoding of strong late bisimulation

120

Otherwise, a is a fresh name not in Lw̄,R, and T. In this case, (R′a, T′a) ∈ S follows from
the proof of the sequent (3).

We now prove the converse of Theorem 6.9. For this we need a few more definitions
and lemmas. The following definition makes use of multiset. We use v to denote multiset
ordering. We write P < Q if the multiset P is strictly smaller than Q, i.e., P v Q and
S 6= Q.

Definition 6.10. We define the measures pr and # on normal p-terms as follows.

• if P is either τ P
′, out x y P

′ then pr(P) = 1 + pr(P ′), and #(P) = 1 + #(P ′),

• if P is in x P then pr(P) = 1 + pr(P y) and #(P) = 1 + #(P y), for some y not
free in P ,

• if P is match x y P
′ then pr(P) = pr(P ′) and #(P) = 1 + #(P ′),

• if P is ν P
′, then pr(P) = pr(P ′y) and #(P) = 1 + #(P ′y) for some y not free in

P ,

• if P is P1 + P2 or P1 |P2 then pr(P) = pr(P1) + pr(P2) and #(P) = 1 + #(P1) +
#(P2),

• otherwise pr(P) = 0 and #(P) = 0.

The measure pr counts the number of prefixes in the term and # counts the number of
constructors (except 0). We extend these measures to apply to one-step transition:

pr(P
A−−→ Q) = pr(P

A′−−⇀ Q
′) = pr(P), #(P

A−−→ Q) = #(P
A′−−⇀ Q

′) = #(P).

Given a formula B, the measure M(B) is the multiset

{#(P) | P A−−→ Q or P
A−−⇀ Q is a subformula occurrence in B},

where each occurrence of P in B is counted only once. The measure M is extended to
judgments and sequents as follows.

M(x̄ . B) = M(B), M(Γ) =
⋃
{M(J) | J ∈ Γ}.

Lemma 6.11. If a process P makes a transition to Q then pr(P) > pr(Q).

Proof By induction on the π-derivation of P
α−−→ Q.

Definition 6.12. An occurrence of a one-step-transition predicate P
X−−→ Q (likewise,

P
X−−⇀ Q) in a judgment w̄ . C is a ground-head occurrence if the free variables in P

are either in w̄ or it is bound by a ∇ quantifier in C. Let C be a judgment in which
the only occurrences of predicate symbols are the one-step-transition predicates. If every

121

occurrence of the one-step predicate in C is ground-head then we say that C is a ground-
head judgment. A sequent Γ −→ C is a ground head sequent if all judgments in Γ are
ground head judgments.

Lemma 6.13. Let A be a ground head judgment. Then for any substitution θ, Aθ is a
ground head judgment and M(A) = M(Aθ).

Lemma 6.14. Let A be a ground head judgment. For any raised definition clause H 4
= B

in D
π,

.∼l
, if Aθ = Hθ then M(Bθ) < M(A)

Proof By case analyses on the definition clauses in Figure 6.3 and Lemma 6.13.
In the following we shall need a notion of partial derivation. A partial derivation

is constructed inductively as derivations, but we do not require that every leaf to be
closed, i.e., some leaves may be instances of rules with one or more premises. We call a
branch in a partial derivation an open branch if its leaf is an instance of a rule with one
or more premise, otherwise it is closed. Obviously, a derivation is a partial derivation in
which all branches are closed. We then define a partial proof strategy for constructing
partial derivations for the particular case of lbisim .

Definition 6.15. The lbisim-(partial) proof strategy for a given sequent is defined as
follows.

Step 1 Given a sequent Γ −→ C, apply the introduction rules ∃L, ∇L and ∧L until
neither of them is applicable. Let Γ′ −→ C be the resulting sequent.

Step 2 Apply defLcsu to some atomic judgment in Γ′, if there is any, otherwise the
strategy terminates. For every premise sequent Γ′′ −→ C′, repeat Step 1.

This strategy is non-terminating in general, however, we see that in a specific case it is
terminating, although the resulting partial derivation may not be a valid derivation.

Lemma 6.16. Let S be either the ground head sequent

P
′
, A ; x̄ . P

Ax̄−−→ P
′
x̄ −→ C or M, X ; x̄ . P

Xx̄−−⇀ Mx̄ −→ C,

where x̄ are of type n. Then the following statements hold.

(a) The application of lbisim strategy on S terminates.

(b) Let Π be the resulting partial derivation after applying the lbisim-strategy. Suppose
there is an open branch Ψ in Π. Let θ = θ1 ◦ . . . ◦ θ

n
where θ

i
is the substitution

applied to the premise of of the i-th instance of defLcsu in Ψ. Then P
′
θ and Aθ

(likewise, Mθ and Xθ) are closed terms and either one of the sequents

· ; · −→ (x̄ . P
Ax̄−−→ P

′
x̄)θ

· ; · −→ (x̄ . P
Xx̄−−⇀ Mx̄)θ

is provable.

122

Proof As a consequence of Lemma 6.13 and Lemma 6.14, we observe the following
invariant in the lbisim-strategy: given a ground head sequent Γ −→ C, the resulting
sequents from applying lbisim-strategy are all ground head sequents. Let size(Γ) be the
number of logical connectives in Γ. To show the termination of the lbisim-strategy we
assign the measure

〈M(Γ), size(Γ)〉
to a given ground-head sequent Γ −→ C and show that each step of the strategy produces
sequents of smaller measure. Step 1 removes logical connectives and does not introduce
any new occurrence of one-step predicate, therefore it clearly reduces size(Γ) whileM(Γ)
remains unchanged. Step 2 reduces M(Γ) by Lemma 6.13 and Lemma 6.14. Since we
start with a fixed ground head sequent, applying this strategy eventually terminates.

The proof of (b) is by induction on the length of Ψ. We can write each sequent
appearing in the branch Ψ below the i + 1-th application of defLcsu as

Γθ1 ◦ · · · ◦ θ
i
−→ Cθ1 ◦ · · · θi

.

Let us denote the substitution θ1 ◦ . . . ◦ θ
i

with θ
i. We claim that for any sequent

Γθ
i −→ Cθi in Ψ and any judgment Aθ

i ∈ Γθ
i, Aθ is a ground judgment (i.e., no

occurrence of eigenvariables) and there is a derivation Ξ of the sequent · −→ Aθ. In the
base case, we have an instance of defLcsu (we show here only the premise that is in Ψ)

>,>, . . . ,> −→ Cθn−1 ◦ θ
n

Aθ
n−1

,>, . . . ,> −→ Cθn−1 defLcsu

where Aθ
n−1

θ
n

= Aθ = Hθ
n

for some raised definition clause H 4
= w̄ .>. By inspection

on the definition clauses of D
π,

.∼l
we see that this instance of defLcsu must have used

either one of the definition clauses

τ M
τ−−→ P

4
= >, in X M

↓X
−−⇀ M

4
= >, or out x y P

↑xy
−−→ P

′ 4= >

or their raised versions. Since Aθ
n−1 is a ground-head judgment, applying defLcsu to it

using the above clauses will fully instantiate the variables in A with ground terms, and
therefore Aθ is a ground judgment. We then take Ξ to be the derivation

−→ > >R
−→ Aθ defR=

.

For the inductive cases we have either defLcsu, ∧L∗, ∇L, or ∃L. We assume
that the free variables in θ

i and Γθ
i are different from the new eigenvariables introduced

above the sequent Γθ
i −→ Cθi and different from the bound variables in the sequent.

123

1. Suppose defLcsu is applied to Γθ
i

Ψ′
Bθ

i+1, Γ′θi ◦ θ
i+1 −→ Cθi ◦ θ

i+1

Aθ
i
, Γ′θi −→ Cθi defLcsu

for some raised definition clause H 4
= B such that Hθ

i+1 = Aθ
i ◦ θ

i+1. Since we

can choose the variables in H to be different from the free variables in θ
i and in

the sequent, we have Bθ
i+1 = Bθ

i ◦ θ
i+1. By induction hypothesis we know that

Bθ is a ground term and there is a derivation of Ξ′ of · −→ Bθ. We see that in
most definition clauses for the one-step transition, the variables that appear in the
head of the clause also appear in the body. In these cases, clearly Hθ is a ground
judgment and hence Aθ is also a ground jugdment. The exceptions are with the
par- and sum-rules, e.g.,

R + T
Y−−→ R

′ 4= R
Y−−→ R

′
.

But since Aθ
i is a ground-head judgment, unifying Aθ

i with the above clause will
instantiate R and T with ground terms, while the variable R

′
θ is a ground term

following from the induction hypothesis. Therefore Aθ is also a ground judgment.
We construct the derivation Ξ as follows

Ξ′
· −→ Bθ
· −→ Aθ defR=

.

The above instance of defR= is valid since we have Aθ
i ◦ θ

i+1 = Hθ
i ◦ θ

i+1 and
hence Aθ = Hθ

i+1 ◦ . . . ◦ θ
n
.

2. Suppose ∧L∗ is applied to Γθ
i

Ψ′
B1θ

i
,B2θ

i
, Γ′θi −→ Cθi

B1θ
i ∧ B2θ

i
, Γ′θi −→ Cθi ∧L∗

Then we construct Ξ as follows

Ξ1
· −→ B1θ

Ξ2
· −→ B2θ

· −→ B1θ ∧ B2θ
∧R

124

where Ξ1 and Ξ2 are obtained from induction hypothesis. The judgments B1θ and
B2θ are both ground judgments by induction hypothesis, so obviously B1θ ∧ B2θ

is also a ground jugdment.

3. Suppose ∃L is applied to Γθ
i

Ψ′
ū . Bθ

i (hū), Γ′θi −→ Cθi

ū . ∃y.Bθ
i
y, Γ′θi −→ Cθi ∃L

By induction hypothesis we get a derivation Ξ′ of · −→ ū.(B (hū))θ where (B (hū))
is a ground judgment. The terms (λū.B)θ and hθ are ground terms, so obviously
ū . ∃y.Bθ y is a ground judgment. We therefore construct Ξ as follows

Ξ′
· −→ ū . (B (hū))θ
· −→ ū . ∃y.Bθ y

∃R

4. Suppose ∇L is applied to Γθ
i

Ψ′
ūy . (By)θi

, Γ′θi −→ Cθi

u .∇y.(By)θi
, Γ′θi −→ Cθi ∇L

By induction hypothesis we have a derivation Ξ′ of · −→ ūy . (By)θ, where ūy .
(By)θ is a ground judgment. Obviously, ūy .∇y.(By)θ is a ground judgment. We
therefore take Ξ to be the derivation

Ξ′
· −→ ūy . (By)θ
· −→ ū .∇y.(By)θ ∇R

We note that the use ∇ to encode restriction makes it possible to dualize an
open branch of the partial derivation to obtain a valid derivation. If we had used ∀,
which is not an asynchronous connective on the left, we would not be able to dualize
the proof, since on the left-side we would have been required to instantiate it with some
name (could be already occurring in the sequent), while on the right we would have been
forced to use a fresh eigenvariable.

Theorem 6.17. If P .∼ Q then for any finite list L such that L contains the free names
of P and Q, the sequent

· ; · −→ lbisim L P Q

is provable in Linc with the definition D
π,

.∼l
.

125

Proof The proof is by induction on the measure #(P) + #(Q). We attempt to prove
lbisim L P Q by applying defR followed by instances of ∧R,∀R and ⊃ R. We get
six premises. We show here the construction of the derivations for three of them, the
derivations for the other three can be constructed analogously.

(a) P
′
, A ; P

A−−→ P
′ −→ ∃Q′.Q A−−→ Q

′ ∧ lbisim L P
′
Q
′

(b) M,X ; P
↓X
−−⇀ M −→ ∃N. Q

↓X
−−⇀ N ∧ ∀w.lname w L ⊃ lbisim L Mw Nw

∧ ∇w.lbisim (w :: L) Mw Nw

(c) M,X ; P
↑X
−−⇀ M −→ ∃N.Q

↑X
−−⇀ N ∧ ∇w.lbisim (w :: L) Mw Nw

We apply the lbisim-strategy to the above sequents. Let Π
a
, Π

b
and Π

c
be the partial

derivations for (a), (b) and (c), respectively. In all cases, if there are no open branches
then we are done. Otherwise, suppose there is an open branch Ψ

a
in Π

a
. The leaf of Ψ

a
has the judgment

· ; · −→ ∃Q′.Q Aθ−−→ Q
′ ∧ lbisim L P

′
θ Q

′ (6.3)

in the premise, where θ is the composition of all substitutions appearing in Ψ
a
. Since

(a) is a ground-head sequent, by Lemma 6.16 there is a derivation of · ; · −→ P
Aθ−−→ P

′
θ.

That is, P makes an Aθ-transition to P
′
θ. Hence, by the definition of bisimulation, there

is a transition from Q
Aθ−−→ R such that P

′
θ

.∼ R, for some process R. By Proposition 6.4

there is a proof Ξ of Q
Aθ−−→ R. From Lemma 6.11 we know that pr(P ′θ) + pr(R) <

pr(P) + pr(Q), and therefore we can apply the induction hypothesis to get a derivation
Π′ of lbisim L P

′
θ R. We thus complete the proof for sequent (6.3) as follows.

Ξ

−→ Q
Aθ−−→ R

Π′
−→ lbisim L P

′
θ R

−→ Q
Aθ−−→ R ∧ lbisim L P

′
θ R

∧R

−→ ∃Q′.Q Aθ−−→ Q
′ ∧ lbisim L P

′
θ Q

′
∃R

The sequent (b) is proved in a similar fashion. In this case, however, we are given a
derivation of lbisim L

′
Ma Na for any name a and any finite list of names L

′, and we
need to construct a derivation for each of the sequents

w ; lname w L −→ lbisim L Mw Nw and · ; · −→ w . lbisim (w :: L) Mw Nw.

The first is proved by unwinding the predicate lname w L by applying defL, ∨L and
eqL. This will result in the premises

−→ lbisim L Ma1 Na1, · · · ,−→ lbisim L Ma
k

Na
k

126

where a1, . . . , a
k

are the names in L. These premises are provable from induction hy-
pothesis. The derivation for the sequent −→ w . lbisim (w :: L) Mw Nw is obtained
from induction hypothesis, i.e., a derivation of −→ lbisim (c :: L) Mc Nc for some name
(constant) c not in L, and then applying Lemma 3.13 to weaken the scope of c to local
context. The proof for (c) is similar to this case.

6.4 Strong congruence and distinction

It is a well-known fact that the late bisimulation relation is not a congruence since
it is not preserved by input prefix. For a simple example, consider the processes P = (x|ȳ)
and Q = (x.ȳ + ȳ.x). P and Q are bisimilar but x(y).P 6 .∼ x(y).Q since in the latter case
we need to show that for every name a, P [a/y] .∼ Q[a/y]. In particular, a could be x, and
hence P can make a τ -transition which cannot be simulated by Q. Part of the reason
why the congruence property fails for .∼ is that π-calculus makes no syntactic distinction
between instantiable names and non-instantiable names. In Linc this distinction is made
by the use of eigenvariables to encode the former and constants (or variables in local
context) to encode the latter. In π-calculus, this lack of syntactic distinction is remedied
by considering a variant of bisimulation relation which is closed under all substitutions of
names. The resulting relation is shown in [40] to be a congruence. The precise definition
follows.

Definition 6.18. [40] The processes P and Q are strong late congruent, written P ∼ Q,
if Pθ .∼ Qθ for every (name) substitution θ.

In the above definition, strictly speaking we do not need to consider all substitu-
tions. It is enough to consider substitutions the domain of which is included in the set of
free variables of P and Q. To encode strong congruence in Linc we therefore interpret the
quantification over “all substitutions” as simply universal quantification over free names
in P and Q. This is true for both bisim and lbisim. The soundness of this encoding
follows straightforwardly from the property of universal quantifier and Theorem 6.7 and
Theorem 6.9.

Theorem 6.19. Let P and Q be two processes and let ȳ be the free names in P and Q. If
∀ȳ.bisim P Q is provable in Linc with the definition D

π,
.∼ then P ∼ Q.

Theorem 6.20. Let P and Q be two processes and let ȳ be the free names in P and Q.
Let L be a list of names containing only those in ȳ. If ∀ȳ.lbisim L P Q is provable in
Linc with the definition D

π,
.∼l

then P ∼ Q.

The notion of bisimulation can be further refined by explicitly specifying the
distinction among names, e.g., certain names remain distinct after substitutions. This
notion is formally defined as follows.

Definition 6.21. [40] A distinction is a finite symmetric and irreflexive relation on
names. A substitution θ respects a distinction D if (x, y) ∈ D implies xθ 6= yθ.

127

Definition 6.22. [40] Let D be a distinction. Then P and Q are strong D-bisimilar,
written P ∼D

Q if Pθ .∼ Qθ for each θ that respects D.

It is enough to consider distinctions which mention only the free variables in P

and Q when checking P ∼D
Q. That is, we have P ∼D

Q if and only if P ∼D′
Q where

D
′ = D ∩ (fn(P, Q) × fn(P, Q)). A class of distinctions that often arises in practice is of

the form (N × N) − I where N is a finite set of names and I is the identity relation on
names. Let us call such a distinction as complete distinction. We abbreviate a complete
distinction (N × N) − I as simply N. It is obvious that any substitution θ that respects
N and whose domain is a subset of N is a renaming substitution. This suggests that we
can encode ∼N by quantifying the names in N with ∇ and the rest free variables with
∀. The precise statements are given in the following two theorems. The proofs of the
theorems make use of the following result (which can be proved analogously to the proofs
of Theorem 6.7 and Theorem 6.9):

• If ∇ȳ.bisim P Q is provable then Pθ
.∼ Qθ for every renaming substitution θ such

that dom(θ) ⊆ {ȳ}.
• If ∇ȳ.lbisim L P Q is provable then Pθ

.∼ Qθ for every renaming substitution θ such
that dom(θ) ⊆ {ȳ}.

Theorem 6.23. Let N = {x1, . . . , x
n
} be a complete distinction. Let P and Q be two pro-

cesses and let ȳ be a list of free names in P and Q but not in N . If ∇x1 . . .∇x
n
∀ȳ.bisim P Q

is provable with the definition D
π,

.∼ then P ∼N
Q.

Theorem 6.24. Let N = {x1, . . . , x
n
} be a complete distinction. Let P and Q be two

processes and L be a finite list of names containing the free names in P and Q, and let
ȳ be a list of free names in P and Q but not in N . If ∇x1 . . .∇x

n
∀ȳ.lbisim L P Q is

provable with the definition D
π,

.∼l
then P ∼N

Q.

P
α−−→ P

′

!P
α−−→ P

′ | !P
!act,bn(α ∩ fn(P) = ∅)

P
x̄y
−−→ P

′
P

x(z)
−−⇀ P

′′

!P
τ−−→ (P′ | P′′[y/z]) | !P

!comm
P

x̄(z)
−−⇀ P

′
P

x(z)
−−⇀ P

′′

P
τ−−→ (z)(P′ | P′′) | !P

!close

Fig. 6.9. The late transition rules for π-calculus with replication

128

P
A−−→ P

′

!P
A−−→ P

′ | !P
!act

P
X−−⇀ M

!P
X−−⇀ λy(My | !P)

!act

P
↑xy
−−→ P

′
P

↓x
−−⇀ M

!P
τ−−→ (P ′ | My)

!comm
P

↑x
−−⇀ M P

↓x
−−⇀ N

P
τ−−→ νz.(Mz | Nz) | !P

!close

Fig. 6.10. The late transition rules for π-calculus with replication (HOAS)

6.5 π-calculus with replication

We now consider an extension to the finite π-calculus which will allow us to
represent non-terminating processes. There are at least two ways of encoding non-
terminating processes in π-calculus, e.g., via recursive definitions or replications [47].
We consider here the latter approach since it leads to a simpler presentation of the
operational semantics. To the syntax of finite π-calculus we add the process expression
!P . The processes !P can be understood as the infinite parallel composition of P , i.e.,
P |P | · · · |P | · · ·. Thus it is possible to have a process which retains a copy of itself

after making a transition, e.g., !P
α−−→ P

′|!P . The operational semantics for one-step
transitions of the π-calculus with replication (in HOAS) is given in Figure 6.2 plus the
additional rules in Figure 6.10. We use the same symbol to encode replication in HOAS,
i.e., ! : p → p. The original specification, taken from [47], is given in Figure 6.9

Let us denote the definition clauses for π-calculus with replication with D!π. The
definition D!π,

.∼ denotes the definition D!π augmented with the bisim clause, and D!π,
.∼l

denotes D!π augmented with lbisim clause. Note that the bisim and lbisim clauses have
now to be marked as co-inductive definitions in order for the co-induction rules to be
applicable.

Example 6.25. Let P =!(z)(z̄a | z(y).x̄y) and Q =!τ.x̄a. The only action P can make is
the silent action τ since the channel z is restricted internally within the process. It is

easy to see that P
τ−−→ x̄a | P. That is, the continuation of P is capable of outputting a

free name a or making a silent transition. Obviously Q can make the same τ action and
results in a bisimilar continuation. Let us try to prove bisim P Q. The proof strategy as
in the finite case (i.e., unfolding the bisim clause via defR and applying the necessary
introduction rules for logical connectives) will not work here. It is easy to check that
applying this strategy, after the first defR on bisim (but before the second defR on
bisim) we arrive at the sequent bisim ((z)(0 | x̄a) | P) (x̄a | Q). Since P and Q still occur
in the continuation pair, it is obvious that this strategy is non terminating. We need to
use the co-induction proof rules instead.

129

The informal proof as it is done in π-calculus starts by finding a bisimulation set S
such that (P, Q) ∈ S. Let R

i
, for any natural number i, be either (z)(0 | x̄a) or (z)(0 | 0),

and T
i

be either x̄a or 0. and let S′ = {(R1 | · · · | Rn
| P, T1 | · · · | Tn

| Q) | n ≥ 0}.
Define S to be the symmetric closure of S ′. It can be verified that S is a bisimulation set
by showing the set is closed with respect to one-step transitions. To prove this formally
in Linc we need someway to represent the set S. We code the set S as the following
inductive definition.

inv P Q
µ
= >. inv Q P

µ
= >.

inv ((z)(0 | 0) | M) (0 | N)
µ
= inv M N.

inv (0 | N) ((z)(0 | 0) | M)
µ
= inv N M.

inv ((z)(0 | x̄a) | M) (x̄a | N)
µ
= inv M N.

inv (x̄a | N) ((z)(0 | x̄a) | M)
µ
= inv N M.

Note that the resulting definition from adding inv to D!π,
.∼ can be stratified by assigning

a level to inv such that lvl(inv) < lvl(bisim). The set of pairs encoded by inv can be
shown to be symmetric, i.e., the formula ∀R∀T.inv R T ⊃ inv T R is provable inductively
(using the same formula as the induction invariant).

We then apply the νR rule to bisim P Q, using the predicate inv as the invariant.
This application of νR yields the following two premises: −→ inv P Q and

R, T ; inv R T −→ B R T

where B R T is the formula

∀A∀P ′ [(R
A−−→ R

′) ⊃ ∃Q′.(T A−−→ T
′) ∧ inv R

′
T
′] ∧

∀A∀T ′ [(T
A−−→ T

′) ⊃ ∃R′.(R A−−→ R
′) ∧ inv T

′
R
′] ∧

∀X∀R′ [(P
↓X
−−⇀ R

′) ⊃ ∃T ′.(T
↓X
−−⇀ T

′) ∧ ∀w.inv (R′w) (T ′w)] ∧
∀X∀T ′ [(T

↓X
−−⇀ T

′) ⊃ ∃R′.(R
↓X
−−⇀ R

′) ∧ ∀w.inv (R′w) (R′w)] ∧
∀X∀R′ [(R

↑X
−−⇀ R

′) ⊃ ∃T ′.(T
↑X
−−⇀ T

′) ∧∇w.inv (R′w) (T ′w)] ∧
∀X∀T ′ [(T

↑X
−−⇀ T

′) ⊃ ∃R′.(R
↑X
−−⇀ R

′) ∧∇w.inv (T ′w) (R′w)]

The sequent reads, intuitively, that the set defined by inv is symmetric and is closed
under one-step transitions. This is proved by induction on inv. Formally, this is done
by applying µL to inv R T , using the invariant

λRλT.inv R T ⊃ B R T.

The sequents corresponding to the base cases of the induction are

inv P Q −→ B P Q and inv Q P −→ B Q P

130

and the inductive cases are given by

inv R T ⊃ B R T −→ inv ((z)(0 | 0) | R) (0 | T) ⊃ B ((z)(0 | 0) | R) (0 | T),
inv R T ⊃ B R T −→ inv ((z)(0 | x̄a) | R) (x̄a | T) ⊃ B ((z)(0 | x̄a) | R) (x̄a | T)

and their symmetric variants. The proof involves quite a number of cases. We show
here one particular case, the other cases can be proved pretty much in the same way.
We consider a case for free input, where we have the sequent (after applying some right-
introduction rules)

R, T, R
′
, A ;





inv R T ⊃ B R T,
inv ((z)(0 | x̄a) | R) (x̄a | T),

((z)(0 | x̄a) | R)
A−−→ R

′




−→ ∃T ′.(x̄a | T)

A−−→ T
′ ∧ inv R

′
T
′

(6.4)
to prove. Its symmetric case can be proved by using cut, since the predicate inv is
symmetric. The sequent (6.4) can be simplified by applying defLcsu to the inv predicate,
followed by an instance of ⊃ L. The resulting sequent is





B R T, inv R T

((z)(0 | x̄a) | R)
A−−→ R

′



 −→ ∃T ′.(x̄a | T)

A−−→ T
′ ∧ inv R

′
T
′ (6.5)

There are three ways in which the one-step transition in the left-hand side of the
sequent (6.4) can be inferred (via defLcsu), i.e., either A is x̄a and R

′ is ((z)(0 | 0) | R),

or R
A−−→ R

′′ and R
′ is (z)(0 | x̄a) | R

′′), or A is τ and R
↓X
−−⇀ M , R

′ is ((z)(0 | 0)|Ma)
for some X and M . These three cases correspond to the following sequents.

(a) B R T, inv R T −→ ∃T ′.(x̄a | T)
x̄a−−→ T

′ ∧ inv ((z)(0 | 0) | R) T
′

(b) B R T, inv R T, R
A−−→ R

′′ −→ ∃T ′.(x̄a | T)
A−−→ T

′ ∧ inv (z)(0 | x̄a) | R
′′) T

′

(c) B R T, inv R T, R
↓X
−−→ M −→ ∃T ′.(x̄a | T)

τ−−→ T
′ ∧ inv ((z)(0 | 0)|Ma) T

′

The proofs for the first and second sequents are given in Figure 6.11. The proof for the
third sequent is not given but it is easy to see that it has similar structure as the proof
for the second one.

We note that in the above example it is necessary to consider an extension of
D!π,

.∼ in order to describe the invariant set. The following results of soundness of the
encoding of bisimulation take into account such extensions. We call a stratified definition
D a consistent extension of another stratified definition D′ if all the definition clauses
appearing in D′ also appear in D.

The proof of the adequacy of the encoding of one-step transitions in the extended
calculus is basically the same as in the proof of Proposition 6.4. The additional clauses for
replications do not complicate the proof of the proposition. The soundness of the bisim
and lbisim still hold for the π-calculus with replication. The proofs for Theorem 6.27 and
Theorem 6.28 follow the same structure as the proofs of Theorem 6.7 and Theorem 6.9.

131

· · · −→ > >R

· · · −→ (x̄a | T)
x̄a−−→ (0 | T)

defR · · · , inv R T −→ inv R T
init

· · · , inv R T −→ inv ((z)(0 | 0) | R) (0 | T) defR

B R T, inv R T −→ (x̄a | T)
x̄a−−→ (0 | T) ∧ inv ((z)(0 | 0) | R) (0 | T)

∧R

B R T, inv R T −→ ∃T ′.(x̄a | T)
x̄a−−→ T ′ ∧ inv ((z)(0 | 0) | R) T ′

∃R

(a)

R
A−−→ R′′ −→ R

A−−→ R′′
init Π

∃V.T
A−−→ V ∧ inv R′′ V −→ · · ·

R
A−−→ R′′ ⊃ ∃V.T

A
′

−−→ V ∧ inv U V , R
A−−→ R′′ −→ · · ·

⊃ L

∀U∀A′ R
A−−→ U ⊃ ∃V.T

A
′

−−→ V ∧ inv U V ,R
A−−→ R′′ −→ · · ·

∀L; ∀L

B R T, R
A−−→ R′′ −→ ∃T ′.(x̄a | T)

A−−→ T ′ ∧ inv (z)(0 | x̄a) | R′′) T ′
∧L

(b)

where Π is

T
A−−→ V −→ T

A−−→ V

init

T
A−−→ V −→ (x̄a | T)

A−−→ (x̄a | V)
defR inv R′′ V −→ inv R′′ V

init

inv R′′ V −→ inv (z)(0 | x̄a) | R′′) (x̄a | V)
defR

T
A−−→ V, inv R′′ V −→ (x̄a | T)

A−−→ (x̄a | V) ∧ inv (z)(0 | x̄a) | R′′) (x̄a | V)
∧R

T
A−−→ V, inv R′′ V −→ ∃T ′.(x̄a | T)

A−−→ T ′ ∧ inv (z)(0 | x̄a) | R′′) T ′
∃R

∃V.T
A−−→ V ∧ inv R′′ V −→ ∃T ′.(x̄a | T)

A−−→ T ′ ∧ inv (z)(0 | x̄a) | R′′) T ′
∃L;∧L

Fig. 6.11. Some derivations in Linc with D!π

132

To maintain this same structure, it is necessary that we can always delay the application
of the νR rule in a derivation (see Chapter 3, Section 3.4).

Proposition 6.26. Let P and Q be processes and α an action. The transition P
α−−→ Q

is derivable in π-calculus if and only if the sequent . ; . −→ 〈P α−−→ Q〉, is provable in
Linc with any consistent extension of D!π.

Theorem 6.27. Let P and Q be two processes. If the sequent

. ; . −→ ū . lbisim Lū P Q,

where L is a ground term and the free names in P and Q are in the list L ū, is provable
in Linc with any consistent extension of D!π,

.∼l
then P

.∼ Q.

Theorem 6.28. Let P and Q be two processes. If the sequent

. ; . −→ ū . lbisim Lū P Q,

where L is a ground term and the free names in P and Q are in the list L ū, is provable
in Linc with any consistent extension of D

π,
.∼l

then P
.∼ Q.

The relations given by bisim and lbisim clauses can be shown to be equivalent
relations.

Theorem 6.29. The following formulas

∀P.bisim P P, ∀P∀Q.bisim P Q ⊃ bisim Q P and
∀P∀Q∀R.bisim P Q ∧ bisim Q R ⊃ bisim P R

are provable in Linc with any consistent extension of the definition D!π,
.∼. Similarly,

the formulas

∀L∀P.lbisim L P P, ∀L∀P∀Q.lbisim L P Q ⊃ lbisim L Q P and
∀L∀P∀Q∀R.lbisim L P Q ∧ lbisim L Q R ⊃ lbisim L P R

are provable in Linc with any consistent extension of D!π,
.∼l

.

Proof The proof for the reflexivity of bisim is done co-inductively with the invariant
λPλQ.P = Q. The proof for the symmetry of bisim is done by case analyses on the
bisim clause (by defL) and does not involve co-induction. The proof of the transitivity
property makes use of co-induction with the invariant λPλR ∃Q.bisim P Q∧bisim Q R.
In all cases there is no need for using defL on any predicate other than bisim. The proofs
are done by synchronizing left and right introduction rules. We show here a subproof for
the transitivity property. In this case, after applying instances of ∀R and an instance of
νR followed by instances of ∧R, we obtain the premises

bisim P Q, bisim Q R −→ ∃Q.bisim P Q ∧ bisim Q R,

133

which is trivially provable, and

(1) bisim P Q, bisim Q R −→ ∀A∀P ′ [(P
A−−→ P ′) ⊃ ∃R′.(R A−−→ R′)

∧ ∃Q′.bisim P ′ R′ ∧ bisim Q′ R′]

(2) bisim P Q, bisim Q R −→ ∀X∀P ′ [(P
↓X
−−⇀ P ′) ⊃ ∃R′.(R

↓X
−−⇀ R′)

∧ ∀w.∃Q′.bisim (P ′w) (Q′w) ∧ bisim Q′w R′w]

(3) bisim P Q, bisim Q R −→ ∀X∀P ′ [(P
↑X
−−⇀ P ′) ⊃ ∃R′.(R

↑X
−−⇀ R′)

∧∇w.∃Q′.bisim (P ′w) (Q′w) ∧ bisim Q′w R′w]

and their symmetric variants (by interchanging P and R). The proof for sequent (1) is
shown in Figure 6.12. Here the rule scheme R1 denotes the sequence of rules ∀R;∀R;⊃
R, R2 denotes defL;∧L, R3 denotes ∀L;∀L;⊃ L, and R4 denotes ∃L;∧L∗. The proofs
for sequent (2) and (3) follow the same structure. The symmetric variants of (1)− (3)
are obtained from the proofs of (1) − (3) via the substitution [P/R, R/P]. The proofs
for the corresponding formulas involving lbisim are done analogously.

6.6 Conclusion and related work

We have shown that the operational semantics of one-step transitions of π-calculus
can be encoded naturally in Linc, making use of the higher-order nature of the logic. With
the additional feature of definitions in Linc we can reason about certain properties of the
transition sytem, namely, bisimulation and congruence relations between processes. The
dynamics of names, i.e., the scoping constraint and freshness of names, in π-calculus
are captured properly by the use of quantifiers ∀ and ∇ in Linc. In particular, the
different proof-level binders in Linc (i.e., global and local signatures) generated by ∀ and
∇ capture precisely the different nature of names that are implicit in π-calculus, that
is, there are names that are instantiable and names that are not. The scoping between
names is handled by the alternation of quantifiers. The use of ∇ in the encoding of
one-step transition makes it possible to reason about certain negative behavior, e.g., to
show that some process does not make any transitions. This aspect of ∇ turns out to
be crucial in proving the completeness of one of our encodings of bisimulation.

We have given two encodings of late bisimulation: bisim and lbisim. Both are
sound with respect to the notion of bisimulation in π-calculus, but the first one is not
complete while the second is. We retain the bisim encoding because we think it looks
natural and it does in fact generate an equivalent relation (Theorem 6.29). We would
like to think that bisim gives rise to the “true” bisimulation, while other variants of
bisimulation can be obtained from bisim with appropriate logical theories. To make our
point clear, let us recall the counterexample to the completeness of bisim (Example 6.8).
For the proof of bisimulation in this example to succeed, it is necessary to do case
analyses on the possible name w can take. We take this literally when we consider
the fix in lbisim, by enumerating all the free names in the processes being checked for
their bisimilarity. However, what the informal proof in the example suggests is that this
enumeration might be too strong. In fact, what we need to check is only whether w is a
or it is not a. This suggests another, cleaner, approach to encoding bisimulation: simply

134

P
A−−→ P ′ −→ P

A−−→ P ′
init

Π

Q
A−−→ Q′, bisim P ′ Q′, bisim Q R −→ · · ·

∃Q′.Q A−−→ Q′ ∧ bisim P ′ Q′, bisim Q R −→ · · ·
R4

∀A∀P ′.P A−−→ P ′ ⊃ ∃Q′.Q A−−→ Q′ ∧ bisim P ′ Q′,bisim Q R, P
A−−→ P ′ −→ · · ·

R3

bisim P Q, bisim Q R, P
A−−→ P ′ −→ ∃R′.R A−−→ R′ ∧ ∃Q′.bisim P ′ Q′ ∧ bisim Q′ R′

R2

bisim P Q, bisim Q R −→ ∀A∀P ′ [(P
A−−→ P ′) ⊃ ∃R′.(R A−−→ R′)

∧ ∃Q′.bisim P ′ R′ ∧ bisim Q′ R′]

R1

where Π is the derivation

Q
A−−→ Q′ −→ Q

A−−→ Q′
init

Π1

bisim P ′ Q′,∃R′.R A−−→ R′ ∧ bisim Q′ R′ −→ · · ·

Q
A−−→ Q′, · · · , ∀Q′∀A.Q

A−−→ Q′ ⊃ ∃R′.R A−−→ R′ ∧ bisim Q′ R′ −→ · · ·
R3

Q
A−−→ Q′, bisim P ′ Q′, bisim Q R −→ ∃R′.R A−−→ R′ ∧ ∃Q′.bisim P ′ Q′ ∧ bisim Q′ R′

R2

and Π1 is

· · · −→ R
A−−→ R′

init

· · · −→ bisim P ′ Q′
init · · · −→ bisim Q′ R′

init

· · · −→ bisim P ′ Q′ ∧ bisim Q′ R′
∧R

· · · −→ ∃Q′.bisim P ′ Q′ ∧ bisim Q′ R′
∃R

· · · −→ R
A−−→ R′ ∧ ∃Q′.bisim P ′ Q′ ∧ bisim Q′ R′

∧R

bisim P ′ Q′, R′
A−−→ R′, bisim Q′ R′ −→ ∃R′.R A−−→ R′ ∧ ∃Q′.bisim P ′ Q′ ∧ bisim Q′ R′

∃R

Fig. 6.12. A proof of transitivity of bisim.

135

add the law of excluded middle on names to the encoding of bisim. More precisely,
consider the following encoding of late bisimulation

bisim
l

P Q
4
= (∀x∀y.(x = y) ∨ (x = y ⊃ ⊥)) ⊃ bisim P Q.

We conjecture that this encoding is sound and complete. Note that we need to mention
explicitly the excluded middle in bisim

l
because it is not a theorem in intuitionistic

logic. This brings forward another interesting conjecture: the bisim encoding is sound
and complete in classical logic. The notion of distinction can also be encoded explicitly
as the assumptions in the form x = y ⊃ ⊥. That is, a distinction D is encoded as the
conjunction

F
D
≡

∧
{x

i
= y

i
⊃ ⊥}(xi,yi)∈D

.

We conjecture that the notion of D-bisimilarity can be faithfully encoded as

(∀x∀y.(x = y) ∨ (x = y ⊃ ⊥)) ⊃ F
D
⊃ bisim P Q.

The encoding of one-step transitions of π-calculus has been done in several set-
tings. In [34], processes are encoded directly as formulas in linear logic and the reflexive
and transitive closures of one-step transitions is shown to be captured by logical en-
tailment. However, this work considers only the fragment of π-calculus without the
restriction operator. Formalization of π-calculus has also been done in the Calculus of
Construction in [25, 13], in the concurrent logical framework by Watkins, et.al., [7], and
in FM-logic [16]. In the latter, the restriction operator is interpreted by the new quanti-
fier [17, 45] in the logic. In these encodings bisimulation is not considered. The encoding
of bisimulation for a class of abstract transition systems, without name binding and
value passing, has been studied in [31] in the logic FOλ

∆IN. The encoding of simulation
for finite π-calculus is considered in [37]. In this work, to encode freshness of names, a
sort of “counter” is maintained in the encoding of simulation such that each creation of
new names results in an increase of the counter. The declarativeness of the encoding
is thus somewhat compromised and reasoning about the properties of the encoding is
complicated by details concerning the representation of the counter.

136

Chapter 7

Conclusion and Future Work

7.1 Summary of accomplishments

In this thesis we present the logic Linc which is designed to be used as a meta-logic
for specifying and reasoning about operational semantics. The logic Linc is an extension
of FOλ

∆IN with the additional features of generalized induction and co-induction proof
rules, and a new quantifier ∇. The quantifier ∇ focuses on the intensional reading of
universal quantifier, and is mainly used for reasoning about generic judgments. As a
connective, the quantifier ∇ is rather weak; it commutes with all other connectives.
Its role is essentially in maintaining the scoping of locally bound variables within the
formula. The logic Linc also allows quantification over λ-terms which makes it possible
to support higher-order abstract syntax. Together with ∇ and the (co-)induction rules,
this provides the ability to perform analyses on object systems involving abstractions, as
we have shown in the encoding of π-calculus. We have shown that the notion of names in
computation systems can be encoded naturally in Linc using quantifiers. We have proved
the cut-elimination and consistency of Linc, extending the proof of McDowell and Miller
for the logic FOλ

∆IN. The proof of cut-elimination is actually based on the technique of
reducibility, originally due to Tait and later extended by Martin-Löf. The main technical
achievement of our proof of cut-elimination is in formalizing the notion of reducibility
in the presence of co-induction. We argue that with the inclusion of co-induction in the
framework of reducibility, the co-induction rules must be “stratified” in order to get a
well-founded reducibility ordering.

We illustrate the application of Linc in specifying and reasoning about data
structures natural numbers and (infinite) lists, abstract transition systems (CCS and
π-calculus), object-logic and evaluation of the lazy λ-calculus. These examples illustrate
the use of both first-order encoding and higher-order encoding, and the induction and
co-induction proof principles. In these encodings, except for the object-logic and π-
calculus encodings, ∇ does not play any significant role. Some of these applications have
been previously done in FOλ

∆IN, where the induction and co-induction proofs are done
indirectly via natural number induction. We show that their encoding in Linc admits
more direct proofs making use of structural induction and co-induction. We also note
that since Linc is a consistent extension of FOλ

∆IN, all previous applications done in
FOλ

∆IN can be carried out in Linc without any essential modifications. The expressive
power of the full Linc is illustrated in the π-calculus example. Here the interpretation
of the restriction operator as the quantifier ∇ plays a crucial role in establishing the
adequacy result for the encoding of late bisimulation.

137

7.2 Future work

Our current formulation of induction and co-induction rules is not strong enough
to express (co-)inductive proofs which require explicit reference to local signatures. This
means that certain forms of judgments, such as the one we have shown in the object-
logic encoding, cannot be proved within Linc. One reason for this lack of expressiveness
is that the current formulation of (co-)induction treats definition clauses as defining
predicates, instead of atomic judgments. This is obvious in the µL rule, where only
the right premise of the rule shares the local signature with the conclusion. In order to
formalize the (co-)induction rules which act on atomic judgments, we need to redefine
the notion of definition to take into account the local signatures. This is not unlike the
notion of raised definition given in Definition 2.9. Definition clauses should be relating
judgments, instead of formula, e.g., we can have the definition clause of the form

xy . p (H x y)
4
= y . ∀x.B p (H xy).

Notice that the local signatures on the left-hand side and the right-hand side of the def-
inition clause are different. Let us refer to this notion of definition as generic definition.
As in raised definition, a generic definition actually represents a family of definitions
obtained by raising. The above definition clause, for example, can be seen as the repre-
sentative of the definition clauses

xy . p (H x y)
4
= y . ∀x.B p (H xy).

xyz . p (H1 x y z)
4
= yz . ∀x.B p (H1 x y z)

...

In the formalization of the induction rule µL on generic definition, instead of substituting
the inductive predicate with an invariant formula, we need to substitute the invariant
(which is now a judgment) for the “atomic judgments” in the body of the definition
clause. Since formulas and judgments are of different syntactic categories, in order
for the µL rule to be well-formed, the substitution of the inductive predicate with the
invariant must be done indirectly via another intermediate defined predicate, whose body
is the actual invariant. For example, the induction rule for the above definition can be
formalized as follows.

H ; y . ∀x.B q (H xy) −→ xy . q x y Σ ; xy . q t,Γ −→ C
Σ ; xy . p t,Γ −→ C µL

where xy . q x y is defined by some invariant D. The co-induction rule νR is defined
dually. Of course, this extension from definition to generic definition must be done
carefully in order not to destroy cut-elimination.

To get the cut-elimination result for Linc, we need to impose the level restriction
on both definitions and the νR rule. It is not clear how the restriction on νR can
be removed while retaining the cut-elimination proof using the reducibility technique.
It would be interesting to investigate the strong normalization proofs for type systems

138

with co-inductive data types [19, 20] to see how their proofs can be carried over to
sequent systems. The level restriction on definitions can probably be weakened to allow
arbitrary monotone definitions. It would also be interesting to explore another notion
of stratification of definitions using the regular word assumption [51] to allow direct
inductive proofs involving higher-order abstract syntax.

There is a prototype implementation of Linc in λProlog, available at
http://www.cse.psu.edu/˜tiu. This prototype has been used to verify most results in
Chapter 5 and Chapter 6. However, this prototype is currently limited to be a proof-
checker and the level of automation is still minimal. We consider adding a tactical
language in the style of [15] to improve the proof automation. A serious implementation
would require more study on the proof search properties of Linc. It is true that with
induction and co-induction there is no hope of automation in general. Nevertheless, a
large subset of the logic may still admit some uniformity in proof search. A fragment
of Linc without ∇ but with (co-)induction has also been separately implemented in the
Hybrid system [2, 41].

Another interesting direction for future work is to investigate the connection be-
tween explicit co-induction rule with circular proofs, which is particularly attractive from
the proof search viewpoint. This could be realized by directly proving a cut-elimination
result for a logic where circular proofs, under termination and guardedness conditions,
completely replace (co)inductive rules. Alternatively, we could reduce “global” proofs in
such a system to “local” proofs in Linc, similarly to [54].

139

References

[1] S. Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research Topics
in Functional Programming, pages 65–116. Addison-Welsey, Reading, MA, 1990.

[2] Simon Ambler, Roy Crole, and Alberto Momigliano. Combining higher order ab-
stract syntax with tactical theorem proving and (co)induction. In V. A. Carreño, ed-
itor, Proceedings of the 15th International Conference on Theorem Proving in Higher
Order Logics, Hampton, VA, 1-3 August 2002, volume 2342 of LNCS. Springer Ver-
lag, 2002.

[3] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3):297–347, 1992.

[4] K. R. Apt and M. H. van Emden. Contributions to the theory of logic programming.
Journal of the ACM, 29(3):841–862, 1982.

[5] Richard Bird and Philip Wadler. Introduction to Functional Programming. Prentice
Hall, 1988.

[6] Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and Andre
Scedrov. A meta-notation for protocol analysis. In R. Gorrieri, editor, Proceedings
of the 12th IEEE Computer Security Foundations Workshop — CSFW’99, pages
55–69, Mordano, Italy, 28–30 June 1999. IEEE Computer Society Press.

[7] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A concurrent
logical framework ii: Examples and applications. Technical Report CMU-CS-02-
101, Department of Computer Science, Carnegie Mellon University, March 2002.
revised May 2003.

[8] Jawahar Chirimar. Proof Theoretic Approach to Specification Languages. PhD
thesis, University of Pennsylvania, February 1995.

[9] K. L. Clark. Negation as failure. In J. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293–322. Plenum Press, New York, 1978.

[10] Robin Cockett. Deforestation, program transformation, and cut-elimination. Elec-
tronic Notes in Theoretical Computer Science, 1, 2001.

[11] Sorin Craciunescu. Proving the equivalence of CLP programs. In International Con-
ference on Logic Programming , Copenhagen, Denmark 2002 (ICLP 2002), 2002.

[12] Joelle Despeyroux, Amy Felty, and Andre Hirschowitz. Higher-order abstract syn-
tax in Coq. In Second International Conference on Typed Lambda Calculi and
Applications, pages 124–138, April 1995.

140

[13] Jolle Despeyroux. A higher-order specification of the π-calculus. In Proc. of the
IFIP International Conference on Theoretical Computer Science, IFIP TCS’2000,
Sendai, Japan, August 17-19, 2000., August 2000.

[14] Lars-Henrik Eriksson. A finitary version of the calculus of partial inductive defini-
tions. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors, Proceedings
of the Second International Workshop on Extensions to Logic Programming, volume
596 of Lecture Notes in Artificial Intelligence, pages 89–134. Springer-Verlag, 1991.

[15] Amy Felty. Implementing tactics and tacticals in a higher-order logic programming
language. Journal of Automated Reasoning, 11(1):43–81, August 1993.

[16] M. J. Gabbay. The π-calculus in FM. In Fairouz Kamareddine, editor, Thirty-five
years of Automath. Kluwer, 2003.

[17] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2001.

[18] Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland Publishing
Co., Amsterdam, 1969.

[19] Herman Geuvers. Inductive and coinductive types with iteration and recursion. In
B. Nordström, K. Pettersson, and G. Plotkin, editors, Informal Proceedings Work-
shop on Types for Proofs and Programs, B̊astad, Sweden, 8–12 June 1992, pages
193–217. Dept. of Computing Science, Chalmers Univ. of Technology and Göteborg
Univ., 1992. ftp://ftp.cs.chalmers.se/pub/cs-reports/baastad.92/proc.ps.Z.

[20] Eduardo Giménez. Un Calcul de Constructions Infinies et son Application a la
Verification des Systemes Communicants. PhD thesis PhD 96-11, Laboratoire de
l’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, December 1996.

[21] Jean-Yves Girard. A fixpoint theorem in linear logic. Email to the lin-
ear@cs.stanford.edu mailing list, February 1992.

[22] Lars Hallnäs. Partial inductive definitions. Theoretical Computer Science, 87:115–
142, 1991.

[23] John Hannan. Extended natural semantics. J. of Functional Programming,
3(2):123–152, April 1993.

[24] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, 1993.

[25] D. Hirschkoff. A full formalisation of π-calculus theory in the calculus of construc-
tions. In Proceedings of TPHOL’97, number 1275 in LNCS, pages 153–169, 1997.

[26] Gilles Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical
Aspects of Computer Science, volume 247 of LNCS, pages 22–39. Springer-Verlag,
March 1987.

141

[27] Per Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive def-
initions. In J.E. Fenstad, editor, Proceedings of the Second Scandinavian Logic
Symposium, volume 63 of Studies in Logic and the Foundations of Mathematics,
pages 179–216. North-Holland, 1971.

[28] Raymond McDowell. Reasoning in a Logic with Definitions and Induction. PhD
thesis, University of Pennsylvania, December 1997.

[29] Raymond McDowell and Dale Miller. Cut-elimination for a logic with definitions
and induction. Theoretical Computer Science, 232:91–119, 2000.

[30] Raymond McDowell and Dale Miller. Reasoning with higher-order abstract syntax
in a logical framework. ACM Transactions on Computational Logic, 3(1):80–136,
January 2002.

[31] Raymond McDowell, Dale Miller, and Catuscia Palamidessi. Encoding transition
systems in sequent calculus. TCS, 294(3):411–437, 2003.

[32] Dale Miller. Lexical scoping as universal quantification. In Sixth International Logic
Programming Conference, pages 268–283, Lisbon, Portugal, June 1989. MIT Press.

[33] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
pages 321–358, 1992.

[34] Dale Miller. The π-calculus as a theory in linear logic: Preliminary results. In
E. Lamma and P. Mello, editors, Proceedings of the 1992 Workshop on Extensions
to Logic Programming, number 660 in LNCS, pages 242–265. Springer-Verlag, 1993.

[35] Dale Miller. Forum: A multiple-conclusion specification language. Theoretical Com-
puter Science, 165(1):201–232, September 1996.

[36] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

[37] Dale Miller and Alwen Tiu. Encoding generic judgments. In Proceedings of FSTTCS,
number 2556 in LNCS, pages 18–32, December 2002.

[38] Dale Miller and Alwen Tiu. A proof theory for generic judgments: An extended
abstract. In Phokion Kolaitis, editor, Proceedings of LICS 2003, July 2003.

[39] Robin Milner. Communication and Concurrency. Prentice-Hall International, 1989.

[40] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
Part II. Information and Computation, pages 41–77, 1992.

[41] Alberto Momigliano and Simon Ambler. Multi-level meta-reasoning with higher
order abstract syntax. In A. Gordon, editor, FOSSACS’03, volume 2620 of LNCS,
pages 375–392. Springer Verlag, 2003.

142

[42] Alberto Momigliano and Alwen Tiu. Induction and co-induction in sequent calculus.
To appear in the post-proceedings of TYPES 2003, January 2003.

[43] D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor,
Theoretical Computer Science: 5th GI-Conference, volume 104 of Lecture Notes in
Computer Science, pages 167–183, Karlsruhe, Germany, 1981. SV.

[44] Frank Pfenning. Logical frameworks. In Handbook of Automated Reasoning, pages
1063–1147. 2001.

[45] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information
and Computation. To appear. (A preliminary version appeared in the Proceedings
of the 4th International Symposium on Theoretical Aspects of Computer Software
(TACS 2001), LNCS 2215, Springer-Verlag, 2001, pp 219–242.).

[46] G. Plotkin. A structural approach to operational semantics. DAIMI FN-19, Aarhus
University, Aarhus, Denmark, September 1981.

[47] Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile Processes.
Cambridge University Press, 2001.

[48] Luigi Santocanale. A calculus of circular proofs and its categorical semantics. BRICS
Report Series RS-01-15, BRICS, Dept. of Comp. Sci., Univ. of Aarhus, May 2001.

[49] Peter Schroeder-Heister. Cut-elimination in logics with definitional reflection. In
D. Pearce and H. Wansing, editors, Nonclassical Logics and Information Processing,
volume 619 of LNCS, pages 146–171. Springer, 1992.

[50] Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, Eighth
Annual Symposium on Logic in Computer Science, pages 222–232. IEEE Computer
Society Press, IEEE, June 1993.

[51] Carsten Schürmann. Automating the Meta-Theory of Deductive Systems. PhD
thesis, Carnegie-Mellon University, 2000. CMU-CS-00-146.

[52] Alex K. Simpson. Compositionality via cut-elimination: Hennessy-Milner logic for
an arbitrary GSOS. In Proceedings, Tenth Annual IEEE Symposium on Logic in
Computer Science, pages 420–430, San Diego, California, 26–29 June 1995. IEEE
Computer Society Press.

[53] John Slaney. Solution to a problem of Ono and Komori. Journal of Philosophic
Logic, 18:103–111, 1989.

[54] C. Spenger and M. Dams. On the structure of inductive reasoning: Circular and
tree-shaped proofs in the µ-calculus. In A. Gordon, editor, FOSSACS’03, volume
2620 of LNCS, pages 425–440,. Springer Verlag, 2003.

[55] R. F. Stärk. Cut-property and negation as failure. International Journal of Foun-
dations of Computer Science, 5(2):129–164, 1994.

143

[56] W. W. Tait. Intensional interpretations of functionals of finite type I. Journal of
Symbolic Logic, 32(2):198–212, 1967.

[57] Jérémie D. Wajs. Reasoning about Logic Programs Using Definitions and Induction.
PhD thesis, Pennsylvania State University, 2002.

Vita

Alwen F. Tiu was born in Selat Panjang, Indonesia, on February 5, 1977. In 1998
he received the B.Sc. degree in Computer Science, cum laude, from Universitas Indonesia
in Depok, Indonesia. From 1998 to 1999 he worked as a programmer at the software
house RoInfo Indonesia. In 1999 he enrolled in the International Master Programme
on Computational Logic at Technische Universität Dresden, Germany, and graduated
with distinction in 2001. In 2001 he enrolled in the Ph. D. program in the Computer
Science and Engineering Department at the Pennsylvania State University. Since 2001
he has been employed in the CSE Department of the Pennsylvania State University as a
research assistant. He has been a visiting student at Laboratoire d’Informatique, École
polytechnique, France since October 2002.

