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Not so hot: Optimal housing temperatures for mice
to mimic the thermal environment of humans
John R. Speakman 1,2,*, Jaap Keijer 3
ABSTRACT
It has been argued that mice should be housed at 30 1C to best mimic the thermal conditions experienced by humans, and that the current practice of
housing mice at 20–22 1C impairs the suitability of mice as a model for human physiology and disease. In the current paper we challenge this notion.
First, we show that humans routinely occupy environments about 3 1C below their lower critical temperature (Tlc), which when lightly clothed is about
23 1C. Second, we review the data for the Tlc of mice. Mouse Tlc is dependent on body weight and about 26–28 1C for adult mice weighing 425 g. The
equivalent temperature to that normally experienced by humans for most single housed adult mice is therefore 23–25 1C. Group housing or providing the
mice with bedding and nesting material might lower this to about 20–22 1C, close to current standard practice.
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1. INTRODUCTION

The mouse is the model of choice for understanding the genetic basis
of human disease. Recommendations on the housing temperature
cover a substantial margin, being between 20 and 26 1C [8], 20 and
24 1C [22] or 19 and 23 1C [7]. Most mouse facilities however are
operated at an ambient temperature of 20–22 1C, which is set primarily
to match the comfort requirements of animal husbandry staff [27]. Mice
have a different thermoregulatory response curve from humans, and
the argument has been made that this housing temperature is not
optimal to provide the best model for human metabolism or disease. In
particular, it is argued that humans normally live at thermoneutral
temperatures, while the thermoneutral zone of the mouse is at 30 1C,
so laboratory mice at 20–22 1C are routinely under mild to moderate
cold stress, because they are 8–10 1C colder than the equivalent
temperature in humans [4,5,11,36,47]. It has been suggested that this
persistent cold stress profoundly affects mouse physiology in ways that
impair its suitability as a model for human physiology and disease [27].
The recommendation has therefore been made that studies of mice
should optimally be made at 30 1C, within the mouse thermoneutral
zone, to best facilitate comparisons to humans ([4,5,11,31,36]—but
see [49] for some practical problems with this recommendation).
Perhaps the best recent example, among metabolic studies, of the
importance of ambient temperature in determining a significant outcome
variable was the finding that the effects of genetic ablation of the
uncoupling protein 1 (UCP-1) were strongly dependent on ambient
temperature. Enerbäck et al. [10] showed that UCP-1 KO mice on a
mixed genetic background of C57BL/6 and sv129 mice, when housed at
21 1C, were cold intolerant but did not become any more obese than wild
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type mice when fed a high fat diet. When these UCP-1 KO mice were
back-crossed onto a pure B6 background, however, they were actually
resistant to weight gain when raised on a high fat diet at 21 1C, relative to
wild type mice that had intact UCP-1 [30]. At 27 1C this difference was
abolished [30]. Moreover, when UCP-1 KO mice on a pure B6 background
were observed at 30 1C, they became obese, even when fed chow, and
substantially more obese than wild-type mice when fed a high fat diet [12].
Hence there was a complete spectrum of responses in these mice, from
protection against high fat diet induced obesity at 21 1C, to no effect at
27 1C and finally susceptibility to obesity at 30 1C. A less publicised
example was the observation that ovariectomised mice become obese [52]
but this effect was attenuated at 30 1C [6]. However, there are many
previous examples, notably from the fields of immunology and parasitology
that show ambient temperature is a key variable influencing the ability of
mice to fight off infections or mount a response to lipopolysaccharide
injections (reviewed in [27]). Temperature also affects chemical toxicity.
One example is the U shaped curve of the lethal dose of salicylate at
different temperatures, with a minimum around 25 1C [2]. Various other
compounds show either increased or decreased toxicity with increasing
temperature. Moreover, core body temperature can be differently affected
by, for example, ethanol, depending on the environmental temperature
[13,32]. Indeed temperature affects many aspects of mouse physiology,
reproduction and behaviour [44,53]. Clearly housing temperature affects
the outcome of many experiments, and analysis at different ambient
temperatures may reveal important aspects of mechanisms that studies at
single temperatures cannot, as is exemplified by the different responses to
a high fat diet of mice without UCP-1, at different ambient temperatures
[10,12,30]. A key question, however, is which ambient temperature allows
for the most optimal translation of mouse data to humans and hence
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Reference Tlc (1C)

[9] 27

[21] 30

[51] 29

[41] 27

[15] 27

[38] 27

[28] 28.6

Average 28

Table 1: Some estimates of lower critical temperature (Tlc) in naked humans.
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Figure 1: The classical Newtonian cooling model for an endotherm (after [40]).
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Figure 2: Lower critical temperatures of some mouse strains plotted against body weight. There was a strong and significant

negative relationship (for data sources see Table 1).

Review
maximises the suitability of the mouse model (see also discussion of this
issue with respect to temperatures at which experiments should be
performed on rats: [39]).
The suggestion that mice should be housed at 30 1C is based on two main
arguments. First, humans normally live almost continuously at thermoneutral
temperatures, and second 30 1C in mice is thermoneutral. We challenge
here the idea that mice should optimally be held at 30 1C to best mimic
human thermal physiology. We agree that attempting to mimic human
thermal physiology in the mouse is a good idea to maximise its utility as a
model for human physiology and disease. Our argument is based on the
derivation of equivalent ambient temperatures, relative to the thermoregu-
latory curves for humans and mice, which suggests to us that the optimal
temperature to achieve this aim is not 30 1C.
The classic thermoregulatory curve for an endotherm is shown in
Figure 1 (after [40]). The thermoneutral zone is the region where basal
energy expenditure generates more than enough heat to balance heat
losses due to the difference between ambient (Ta) and body tempera-
tures (Tb). At the lower margin of this region (called the lower critical
temperature or Tlc) heat requirements to maintain Tb and basal
metabolic rate are exactly matched. At higher temperatures basal
metabolic rate provides too much heat and this needs to be dissipated.
Generally this is achieved by elevating evaporative water loss. At some
upper critical temperature (Tuc) however other mechanisms need to be
recruited and these paradoxically require an elevation of metabolism.
Below Tlc metabolic rates must be higher than basal levels to balance
heat loss, hence metabolic rate increases linearly as temperature
declines and the gradient of this relationship reflects the degree of
external insulation. Greater levels of external insulation lower the
gradient of this line and hence also lower Tlc. These curves extrapolate
on the x-axis to body temperature.
The thermoregulatory curve for naked humans has a lower critical
temperature averaging about 28 1C (Table 1). Providing light clothing
increases external insulation, lowers the gradient of the thermal
response line and lowers the lower critical temperature. Light clothing
such as would typically be worn indoors consisting of a long sleeved
shirt or blouse (Clo¼0.2) and light trousers (Clo¼0.25) provide
together 0.45 Clo units of insulation [54]. The effect of such clothing
6 MOLECULAR
would be to lower the lower critical temperature by 5.1 1C (using the
correction equation for clothing on Tlc in [28]). This results in a lower
critical temperature of 22.9 1C. Humans, however, seldom operate at
basal metabolic rate. Studies using doubly labelled water show that
routinely our energy expenditure is about 1.6–1.8� basal require-
ments [3,46]. If we lived at our lower critical temperature defined from
basal metabolism, we would be under continuous mild heat stress, so
we normally seek out cooler temperatures than thermoneutral, where
our routine heat production is balanced by a thermal gradient that
generates an equivalent heat loss. This is why buildings are regulated
at 19–21 1C (about 3 1C below the lower critical temperature) rather
than within the thermoneutral zone (which for a lightly clothed
individual is 23–27 1C). The UK Workplace (Health, Safety and Welfare)
regulations 1992, for example stipulate that rooms should ideally be
maintained at 19–21 1C to provide a comfortable working environment.
Although it is routinely stated that in mice 30 1C is thermoneutral (after
[18]). Figure 1 emphasises that ‘being thermoneutral’ is not the same
as being at the lower critical temperature. In fact Gordon [18] cites the
thermoneutral zone as spanning from 26 to 34 1C in mice. A review of
some estimates of Tlc in mice is shown in Table 2. There is a strong
negative relationship between Tlc and body weight (Figure 2). For adult
mice weighing 425 g the Tlc is about 28 1C. The predicted Tlc for
mice weighing 40 g is 25.7 1C. Consequently, if we want to keep mice
at an equivalent temperature to that routinely occupied by free-living
humans (3 1C lower than Tlc), this equates to an ambient temperature
of 23–25 1C.
While this calculation is arithmetically equivalent it assumes that the
thermal responses of mice and humans are proportionally the same.
METABOLISM 2 (2013) 5–9 & 2013 Published by Elsevier GmbH. www.molecularmetabolism.com



[1] 6.0 1C

[48] 5.0 1C

[24] 8.0 1C

[37] 9.5 1C

[29] 4.4 1C

[34] 6.0 1C

[17] 7.0 1C

[26] 7.5 1C

[42] high 6.1 1C

low 5.5 1C

[43] 4.0 1C

Mean 6.27 1C

Sd 1.62 1C

Table 3: Approximate reductions in ambient temperature below the lower critical temperature that would be necessary to

achieve an increase in metabolism from basal to 1.7� basal in various studies of mice. For details of studies and strains

refer to Table 2.

Strain BM (g) Tlc (1C) Reference

– – 28.5 [48]

Hairless – 29 [1]

– – 25 [24]

Hairless 32.8 32 [35]

LACA 31.5 29 [37]

Wild 15.5 30.0 [26]

FVB 33.0 29.4 [29]

DTA-UCP 54.7 29.7 [29]a

MF1 33.3 28.0 [45]

MH 30.3 28.0 [42]

ML 27.8 28.0 [42]

C3HeB/FeJ 27.8 28.7 [34]

Sma1 (þ /� ) 18.2 30.2 [34]

Sma1 (� /� ) 10.9 30.7 [34]

TR-KO 22.2 30.0 [17]

Mixed 30.6 26.0 [17]

C57BL/6 30.0 29.0 [25]b

Ob/Ob (6)c �45 25.5 [25]b

Ob/Ob (10)c �50 25.0 [25]b

Db/Db 40.0 24.3 [25]b

Trpv1 KO 45.0 32.5 [14]d

WT 40.0 31.5 [14]d

C57BL/6e 21.9 30.1 [33]

C57Bl/6 26.8 27.7 [33]

C57BL/6f 25.8 28.1 [33]

MF1 35.2 26.0 [43]

Table 2: Some estimates of lower critical temperatures (Tlc) in different mouse strains. a UCP diphtheria toxin A mice with

impaired thermoregulatory function. b Precise weights not given. c (6) and (10) refer to weeks old. d Measured using the

thermal camera method. Not comparable to other data. e Under caloric restriction. f Fed rapamycin.
That is it assumes a reduction of temperature by 3 1C has the same
impact on a mouse as a human. Another way to approach this
calculation is to calculate how much of a reduction in ambient
temperature below the lower critical temperature in the mouse would
be necessary to increase the metabolic rate from basal to 1.7� basal
(the average level of energy expenditure in free living humans: [3,46]).
Using the published thermoregulation curves in some of the papers
cited in Table 2 we have made this calculation and the results are
shown in Table 3. These data suggest that to increase metabolic rate to
1.7� BMR the temperature would need to be on average about 6.3 1C
below the lower critical temperature. Consequently, this might suggest
it would be most appropriate to keep mice weighing 25–40 g at
ambient temperatures of 19.4–21.7 1C. However, this is probably an
overestimate because the value of 1.7� BMR for humans is based on
our total daily energy demands, including periods when we are
physically active and outdoors, while the temperature we regulate
our buildings at (3 1C below lower critical) is geared towards balancing
heat production during light activities such as sitting, computer use,
preparing and having lunch and visiting the rest-room etc. If we use a
value of 1.3–1.4� BMR for these activities [50] then the equivalent
reduction in ambient temperature below lower critical temperature, to
generate a 1.3–1.4 fold increase in metabolism, is a reduction by 2.7–
3.6 1C. This suggests the estimate of 23–25 1C as an equivalent
temperature at which solitary mice should be housed to mimic humans
is probably appropriate.
The estimates of Tlc for mice are based on respirometry measurements
of solitary mice in respirometry chambers. Two common aspects of
housing that are normally absent in such measures might further lower
this estimate of the optimal housing temperature to mimic human
MOLECULAR METABOLISM 2 (2013) 5–9 & 2013 Published by Elsevier GmbH. www.molecularmetab
physiology. First, mice that are group housed can huddle together to
lower their thermoregulatory requirements [19,20]. This effectively
lowers the Tlc, in part because of the reduced combined surface area
[23]. Similarly, providing mice with bedding or nesting material acts as
additional insulation which shifts the position of the thermoregulatory
response line (see Figure 1) also lowering the Tlc [20]. This might
further lower the optimal temperature. However, it is difficult to
estimate to what extent, since mice will adapt their behaviour to the
environmental temperature. Depending on the temperature, they will or
will not bury themselves in bedding and nesting material or huddle
together [16,20]. Consequently, this may suggest that the optimal
housing temperature for comparison to humans of 3 1C below Tlc (23–
25 1C) may be further decreased to as low as 20–22 1C with the
availability of deep bedding, nesting material and/or group housing.
2. SUMMARY

The argument that to best mimic human physiology in mouse studies
we should set the thermoregulatory conditions so that the metabolism
of the two species is well matched makes a lot of sense. However,
comparing the thermoregulatory curves of humans and mice, combined
with the temperatures routinely selected by humans, suggests that the
optimal temperature to achieve this is in the range from 23 to 25 1C for
single housed mice, and around 20–22 1C for group housed mice.
Keeping mice at 30 1C as has been recently advocated probably does
not mimic well the situation in humans.
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