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The performance of a number of low-Reynolds number turbulence models is evaluated against direct
numerical simulations (DNS). All models are applied to an unsteady flow comprising a ramp-type excur-
sion of flow rate inside a closed channel. The flow rate is increased linearly with time from an initial Rey-
nolds number of 9308 (based on hydraulic diameter and bulk velocity) to a final Reynolds number of
29,650. The acceleration rate is varied to cover low, intermediate and high accelerations. It is shown that
among the models investigated, the k–e models of Launder and Sharma (1974) and Chang et al. (1995)
[28] and the c–Reh transition model of Langtry and Menter (2009) [38] capture well the key flow features
of these unsteady turbulent flows. For the cases of low and intermediate acceleration rates, these three
models yield predictions of wall shear stress that agree well with the corresponding DNS data. For the
case of high acceleration, the c–Reh model of Langtry and Menter (2009) [38] and the k–e model of Laun-
der and Sharma (1974) yield reasonable predictions of wall shear stress.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction numerical investigations of Chung [18], He et al. [19], Ariyaratne
Unsteady turbulent flows are of interest to turbulence research-
ers because of their wide range of occurrence across many engi-
neering disciplines. A large amount of on-going research is
leading to a better understanding of the complex turbulence mech-
anisms present in such flows. Studies of unsteady turbulent flows
are mainly conducted through two main categories; periodic and
non-periodic.

Numerical and experimental techniques have been employed to
investigate the turbulent flow features associated with periodic
changes of flow rate with time. Brereton and Mankbadi [1] and
Gündoğdu and Çarpinlioğlu [2] present comprehensive reviews.
The experimental studies of Gerrard [3], Mizushina et al. [4], She-
mer et al. [5], Mao and Hanratty [6], Tardu et al. [7] and He and
Jackson [8] and the numerical studies of Scotti and Piomelli
[9,10] and Cotton et al. [11] are all examples of such research.
The research includes study of the flow behaviour for a range of
frequency, amplitude and mean flow rates in the case of pulsating
flow. Efforts on correlating the data on such flows have led to non-
dimensional parameters representing the extent to which shear
waves generated attenuate in terms of wall units.

The experimental studies of Maruyama et al. [12], Lefebvre [13],
He and Jackson [14], Greenblatt and Moss [15,16] and He et al. [17]
are examples of research on non-periodic flows, while the
et al. [20], Seddighi et al. [21], Di Liberto and Ciofalo [22], Jung
and Chung [23] and He and Seddighi [24] examined the effects of
sudden changes in pressure gradient or of linear ramp up/down
in flow rates.

He and Jackson [14] focused their research on linearly increas-
ing and decreasing flow rate in fully developed pipe flows. They
identified three delays associated with the response of turbulence.
Delays in turbulence production, turbulence energy redistribution
and turbulence radial propagation were found to be the key fea-
tures of such unsteady turbulent flows. It was found that the first
response of turbulence to the imposed flow rate initiates from a re-
gion close to the wall where turbulence production is highest (buf-
fer layer). The axial component of the Reynolds stress is the first to
respond to the excursion while the other two normal components
experience a longer delay. Eventually response of turbulence to the
excursion is propagated towards the pipe centre due to the action
of turbulent diffusion.

He et al. [19] identified three stages in the development of wall
shear stress in ramp-type flow rate excursions through numerical
studies. The first stage corresponds to the period of delay in turbu-
lence response (frozen turbulence), occurring when inertial forces
are dominant. This stage covers the period when wall shear stress
first overshoots and then undershoots the corresponding quasi-
steady values. He et al. [19] showed that a non-dimensional
parameter involving inner turbulence time scales associated with
the turbulence production correlates very well with the unsteady
wall shear stress. It was shown by He and Ariyaratne [25] that
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during this first stage the unsteady component of the wall shear
stress behaves in a laminar-like manner. The second stage begins
with the generation of new turbulence which causes the wall shear
stress to escalate. It is shown by He et al. [17] that a correlation ex-
ists between the outer turbulence time scales and the critical Rey-
nolds number at which transition from stage one to two occurs.
The third stage includes the period when the wall shear stress
asymptotically approaches the corresponding quasi steady trend.
He et al. [19] also investigated the effects of fluid properties on
the unsteady wall shear stress behaviour. For this purpose, two
flow cases with different working fluids (water and air) but identi-
cal Reynolds range and acceleration rate were examined. It was
shown that the unsteady wall shear stress deviation from the cor-
responding quasi-steady values is much smaller for air than for
water because of water’s higher density.

The ability of Reynolds Averaged Navier–Stokes (RANS) models
to predict the flow behaviour of steady/unsteady channel/pipe
flows has been investigated by a number of researchers. The stud-
ies of Patel et al. [26], Myong and Kasagi [27] and Chang et al. [28]
are some good examples of application of RANS models to steady
pipe/channel flows. Sarkar and So [29] investigated the perfor-
mance of different turbulence models for steady channel flows
(along with Couette, boundary layer and back-step flows). They
examined ten different low-Reynolds number turbulence models,
comparing their results with available DNS and experimental data.
They observed that models with asymptotically consistent near
wall behaviour generally return better predictions of flow features.
Asymptotic behaviour of the turbulent kinetic energy, its dissipa-
tion rate and the Reynolds shear stress near a wall is explained
by Launder [30].

Performance of RANS models in unsteady flows have been stud-
ied by Cotton et al. [11], Scotti and Piomelli [10], Tardu and Da
Costa [31], Al-Sharif et al. [32], Khaleghi et al. [33] and Revell
et al. [34]. The performance of turbulence models in predicting fea-
tures of unsteady flows differ according to the turbulence model
formulations. In most cases researchers compare the performance
of different models against the available experimental or DNS data.
Cotton et al. [11] examined the performance of the second-
moment closure model of Shima [35] and the k–e model of Launder
and Sharma [36] for both oscillatory flat-plate boundary layer and
pulsatile pipe flow. It was found that the second-moment closure
schemes generally performed better in comparison with the k–e
model examined. Scotti and Piomelli [10] assessed the perfor-
mance of five turbulence models against their own DNS data on
pulsating flows (Scotti and Piomelli [9]), while Khaleghi et al.
[33] investigated the performance of four turbulence models for
a ramp-up pipe flow, comparing their results with the experimen-
tal data of He and Jackson [14]. In each of these two studies, the
performance of an algebraic one-equation model, a k–e model, a
k–x model and a k–e–v2 model were examined. It was concluded
from both studies that k–e–v2 model outperforms the rest. How-
ever, these conclusions were based on investigations of only a lim-
ited number of models among the various formulations.
Furthermore, new turbulence models have recently been devel-
oped which were not considered by previous researchers.

The present paper reports on a systematic study of the perfor-
mance of a wide range of low-Reynolds number turbulence models
used to predict the detailed flow characteristics of ramp-up-type
unsteady flows in a channel. Recent DNS results are used as bench-
mark data for the assessment.
2. Methodology

The study reported here involves the assessment of ten differ-
ent turbulence models applied to three accelerating flow test cases.
FLUENT 13.0 is used as the RANS solver for the numerical
investigations.

The flow domain consists of a rectangular channel section with
smooth wall boundaries and the working fluid is water
(q = 1000 kg/m3, m = 1 � 10�6 m2/s). The channel is 8 m long and
0.05 m high, giving a length to height ratio of L/H = 160 as shown
in Fig. 1. Because of symmetry, the computational domain covers
half the channel height. In this study, only spatial fully developed
flow is of interest; hence, the results presented are taken at
7.5 m from the inlet (L/H = 150, AB line in Fig. 1). Systematic mesh
sensitivity tests were carried out for each group of turbulence
models to obtain mesh-independent solutions. These tests were
conducted by distributing 70, 100 and 180 control volumes in
the wall normal direction (y direction, shown in Fig. 1). It was con-
cluded that distributing 100 control volumes non-uniformly along
the wall normal direction is adequate to achieve mesh indepen-
dent solutions. The number of control volumes used in the axial
direction (x direction, shown in Fig. 1) is 30 but this is of no signif-
icance since only axially developed flow is of interest. This also
means that the level of turbulence intensity at the inlet is of no rel-
evance as long as it is set to a sufficiently high level to initiate tur-
bulence in the pipe. In this work, it is set to be 5% in all simulations.
The non-dimensional distance of the first node from the wall is
maintained within the range of y+ = 0.3–0.9 (y+ = yus/m, us repre-
senting friction velocity) during the excursion to ensure the low-
Reynolds criterion for the models is satisfied.

In all test cases the flow rate is increased linearly from an initial
steady state Reynolds number (Re0 = Ub0Dh/m, Ub0 representing the
bulk velocity) of 9308 to a final Reynolds number (Re1) of 29,650.
The length scale of the Reynolds number is based on the hydraulic
diameter, i.e. Dh = 2H, where H is the full height of the channel.
We consider three acceleration time periods (T): Case A, 8.16 s
(‘‘low’’ acceleration); Case B, 2.86 s (‘‘intermediate’’ acceleration);
Case C, 0.02 s (‘‘high’’ acceleration). Table 1 summarises the
initial and final flow conditions of examined flow cases along
with non-dimensional time scale Dt⁄ = T/(H/2)/Ub1 and ramp rate
(dU/dt = (Ub1–Ub0)/T). Although these simulations are carried out
for water, as long as the boundary conditions such as the initial
and final Reynolds numbers and non-dimensional acceleration rate
are consistent, the choice of fluid is of no significance to the
outcome of the simulations.

The continuity and momentum transport equations along with
the Reynolds stress closure equations are solved for the computa-
tional domain. The flow is assumed to be two-dimensional and
Cartesian coordinates are employed for the governing equations.

Continuity:

@Ui
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¼ 0 ð1Þ

Momentum:
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� uiuj

� �
ð2Þ

where linear eddy viscosity models employ a stress–strain relation
as follows:

uiuj ¼ 2=3kdij � mt
@Ui

@xj
þ @Uj

@xi

� �
ð3Þ

where mt, the eddy viscosity, is obtained by solving a set of turbu-
lence transport equations, the details of which are presented in
the next sections.

Only low-Reynolds number turbulence models can potentially
predict the features of unsteady flows. Here we consider ten low-
Reynolds turbulence models, which can be categorised into four



Fig. 1. Sketch of the channel geometry.

Table 1
Test cases and flow conditions.

Flow case Re0 Re1 Dt⁄ T (s) dU/dt (m/s2)

A 9308 29,650 96.8 8.16 0.025
B 9308 29,650 33.9 2.86 0.071
C 9308 29,650 0.2 0.02 10.17

Note: Dt� ¼ T
ðH=2Þ=Ub1

; dU
dt ¼

Ub1�Ub0
T .

Table 2
Constants for the turbulence models.

Model Cl Ce1 Ce2 rk re

AB 0.09 1.45 1.83 1.0 1.4
LB 0.09 1.44 1.92 1.0 1.3
LS 0.09 1.44 1.92 1.0 1.3
YS 0.09 1.44 1.92 1.0 1.3
AKN 0.09 1.5 1.90 1.4 1.4
CHC 0.09 1.44 1.92 1.0 1.3
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groups: k–e models, k–e based models, the v2–f model of Durbin
[37] and the c–Reh transition model of Langtry and Menter [38].

2.1. k–e models

Low-Reynolds number k–e turbulence models are based on
solving transport equations for turbulent kinetic energy and its dis-
sipation rate, as follow:

Dk
Dt
¼ @

@xj
mþ mt

rk

� �
@k
@xj

� �
þ Pk � ~e� D ð4Þ

D~e
Dt
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where Pk is the production of turbulent kinetic energy given by

Pk ¼ �uiuj
@Ui

@xj
ð6Þ

Eddy viscosity in k–e models is defined to be mt = Clflk2/e, Cl being a
constant and fl being the damping function. Tt in Eq. (5) is a turbu-
lent time scale, ~e is the modified isotropic dissipation rate, D and E
are near wall correction functions for k and e equations,
respectively.

The six k–e turbulence models examined in this study are des-
ignated as AB for Abid [39], LB for Lam and Bremhorst [40], LS for
Launder and Sharma [36], YS for Yang and Shih [41], AKN for Abe
et al. [42] and CHC for Chang et al. [28]. Note that the performance
of FLUENT’s built-in LS model is found to be unexpectedly poor and
therefore a User Defined Function (UDF) for LS developed by
Mathur and He [43] was also implemented. The FLUENT built-in
implementation of LS is designated LS-FLUENT and the UDF imple-
mentations is designated LS-UDF in what follows.

A summary of the model constants, damping functions and near
wall correction functions are presented in Tables 2–4.

2.2. k–x and shear stress transport (SST) k–x models

FLUENT 13.0 employs the low-Reynolds number k–x model of
Wilcox [44], which solves two transport equations, one for turbu-
lent kinetic energy (same as for the k–e models) and one for its spe-
cific dissipation rate (x / e/k). Further details of this model can be
found in Wilcox [44].

The k–x Shear Stress Transport (SST) model developed by Men-
ter [45] employs a blending function, which retains the near-wall
x equation while switching to e equivalent further from the wall.
Further details of the model can be found in Menter [45].

2.3. v2–f model

Anisotropy of the turbulence stresses is not addressed in linear
eddy viscosity turbulence models. Durbin [46] replaced the ad hoc
damping functions of the k–e models by introducing the wall-nor-
mal stress vv as the velocity scale in the eddy viscosity formula-
tion. An elliptic relaxation function is also solved to model the
redistribution process of wall normal stress transport equation.
However, due to difficulties of implementation of the original for-
mulation, major commercial codes tend to use more numerically
stable formulations. The v2–f version coded in FLUENT, which is
examined in this study, is the due to Iaccarino [47] but with default
constants of those proposed by Lien and Kalitzin [48].

2.4. c–Reh transition model of Langtry and Menter [38]

The performance of a correlation based transition turbulence
model of c–Reh Langtry and Menter [38] available in FLUENT 13.0
is also considered. The model incorporates two extra transport
equations into the SST model, one for the intermittency c and
the other for the transition onset momentum-thickness Reynolds
number fReht . Turbulent kinetic energy and its specific dissipation
rate transport equations of the SST model are customised to in-
clude the additional transport equations.

The following are the transport equations for intermittency and
momentum-thickness Reynolds number:

@qc
@t
þ @qUjc
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¼ Pc � Ec þ

@

@xj
lþ lt
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� �
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@xj
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ð7Þ
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@xj
¼ Pht þ

@

@xj
rht lþ lt

� � @fReht

@xj

" #
ð8Þ

where Pc and Ec are production and dissipation terms of the inter-
mittency transport equation, respectively. Pht is the production term
of momentum-thickness in the Reynolds number transport equa-
tion. rf and rht are the constants of intermittency and momen-
tum-thickness Reynolds number transport equations, respectively.

Intermittency is a measure of the regime of the flow. For in-
stance, in a growing boundary layer over a flat plate, intermittency
is zero before the transition onset and reaches a value of one when



Table 3
Functions in the turbulence models.

Model fl f1 f2
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Table 4
D and E terms along with the boundary conditions.

Model D E Wall BC

AB 0 0 ew ¼ m @2 k
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the flow is fully turbulent. In order to determine the condition of a
developing boundary layer, correlations exist between the location
of the transition onset and the free stream turbulence intensity,
pressure gradient and transition momentum-thickness Reynolds
number (Abu-Ghannam and Shaw [49] and Mayle [50]). Both alge-
braic and transport equations have been developed by researchers
to determine the intermittency factor. Langtry and Menter [38]
couples the transport equations for intermittency and transition
onset momentum-thickness Reynolds number to Menter [45] SST
model. The production term in the turbulent kinetic energy trans-
port equation is modified to account for the changes in the inter-
mittency of the flow.

The transition onset momentum-thickness Reynolds number is
mainly responsible for capturing the nonlocal effects of turbulence
intensity and pressure gradient outside the boundary layer. Further
details regarding the formulation of the model and its performance
in different test cases can be found in Langtry and Menter [38].
3. Comparisons for steady flow

DNS results for two steady flow scenarios, corresponding to the
initial and final Reynolds numbers (Re0 = 9308 and Re1 = 29650) of
the unsteady flow cases to be discussed in the next section, are
used to assess the performance of the ten different low-Reynolds
number turbulence models applied to two-dimensional, fully
developed, steady channel flow.

Fig. 2 shows the predications of mean axial velocity, turbulent
kinetic energy, turbulent shear stress and turbulent viscosity with
the DNS results for the initial and final Reynolds number flows.
Bulk velocity (Ub) which represents the ratio of flow rate to cross
sectional area and kinematic viscosity (m) are used to normalise
the mean and turbulence quantities.

All turbulence models with the exception of LS-FLUENT give an
acceptable prediction of the axial velocity profile across the
channel. However, the performance of the various models is rather
different for the predictions of turbulent kinetic energy, turbulent
shear stress and turbulent viscosity.

Most models are successful in predicting the location of the
peak of turbulent kinetic energy for both steady flow cases. The
predictions of the turbulent kinetic energy of LB, v2–f and k–x
are the closest to DNS in the wall region, whereas the kinetic en-
ergy predictions of AB, AKN, CHC, LS-UDF and c–Reh match better
the DNS data in the core region. The last three models significantly
under-predict the peak of turbulent kinetic energy for both flows
even though they show superior performance in predicting the un-
steady flows (as discussed in Section 4). It is of interest to note that
c–Reh transition SST and the basic k–x SST give rather different
predictions of the turbulent kinetic energy even for these steady
fully developed turbulent flows. This is due to the fact that the
intermittency becomes active in the inner and buffer layers of
the wall shear flow where the local Reynolds number is low.

The turbulent shear stress is well predicted by AKN, LB, YS and
c–Reh. This contrasts with AB, CHC, LS-UDF and v2–f, which slightly
under-predict, and LS-FLUENT, which significantly over-predicts
the shear stress. The turbulent viscosity predictions of most of
the k–e models are quite good in the wall region, with AKN, LB,
YS and k–x being the closest to DNS. In the core region, however,
all models except AKN and k–x predict a monotonic increase of
eddy viscosity that is contrary to the DNS data. The over-prediction
of eddy viscosity in this region is a known shortfall of many k–e
models that results from the under-prediction of dissipation (Bil-
lard and Laurence [51]). Myong and Kasagi [27] argue that in most
k–e models the chosen value of rk is too low in comparison to re
and they therefore suggest using higher rk/re ratios. In the absence
of turbulent energy production in the core region, this ratio bal-
ances the diffusion and dissipation terms in the turbulent kinetic
energy and its dissipation rate transport equations. Among the
k–e models investigated, AKN utilises the highest rk/re ratio
improving its eddy viscosity predictions in the core region.

It should be noted that in the framework of eddy viscosity mod-
els the only connection between the turbulence model and the
mean flow field is through the turbulent shear stress uv , which is
mostly dependent on the eddy viscosity. It can be seen that uv is
well predicted by all models (excluding LS-FLUENT) for both the
high and the low Reynolds number flows. This is true despite the
turbulent viscosity being not well predicted in the core region by
some models. In fact, the most important part of the flow is the
wall region, where the turbulent viscosity is predicted fairly well
by most of the models. In the core region, the role of turbulent vis-
cosity is not of major importance to the performance of the models.

Results obtained for the higher Reynolds number flow are gen-
erally more reliable (i.e. agree better with the DNS results) than
those for the lower Reynolds number flow. We note that
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Fig. 2. Steady flows at Re = 9308 (short curves) and 29,650 (longer curves):
Comparisons between predictions of various turbulence models (dashed line) with
DNS data (solid line).
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turbulence models are often tuned for relatively high Reynolds
number flows, and applying such models to relatively low Rey-
nolds number flows can result in poor performance.

Fig. 3 presents the wall shear stress predicted by the various
turbulence models, together with the DNS results. Among the tur-
bulence models considered, AKN, LB and k–x are seen to yield the
most accurate predictions of wall shear stress for both the lower
and higher Reynolds number flows.

In contrast to the LS-FLUENT, LS-UDF performs well overall,
leading to our conclusion that the poor performance of the FLUENT
built-in LS model is due to its implementation within FLUENT, not
due to any inherent fault with the model itself. The results ob-
tained from LS-FLUENT are not further presented or discussed in
the remainder of this paper.
4. Comparisons for unsteady flow

4.1. Key features of unsteady flow from DNS

The main features of the unsteady flows as predicted by DNS are
first summarised in this section in order to facilitate the assess-
ment of the performance of the turbulence models in the next sec-
tion. The discussion largely follows that of He and Jackson [14], He
et al. [17] and He and Seddighi [24], where more detailed discus-
sion can be found.

Fig. 4 shows the DNS-predicted time histories of wall shear
stress, turbulent viscosity, turbulent shear stress and turbulent ki-
netic energy for the three unsteady flow cases. Considering first the
wall shear stress evolution for Case A (Fig. 4(a)), we can identify a
three-stage development in the wall shear stress and turbulence.
Stage 1 is initially dominated by large inertial effects, causing the
wall shear stress to overshoot the corresponding quasi-steady val-
ues. However, due to the delayed turbulence response, the growth
rate of wall shear stress decreases during the final moments of
stage 1. Stage 2 corresponds to the time period when the genera-
tion of new turbulence causes the unsteady wall shear stresses
to increase rapidly towards the corresponding quasi-steady values.
During stage 3, the bulk flow is no longer accelerating and the wall
shear stress gets gradually closer to the quasi-steady flow shear
stress.

The flow acceleration is higher in Case B (Fig. 4(b)), and Re1 is
reached while flow response is still in stage 1 (a). As a result of
the sudden removal of the acceleration, a strong but negative iner-
tial effect is imposed on the flow, which results in a sharp decrease
in the wall shear stress (stage 1 (b)). Afterwards, the trend is re-
versed when turbulence production starts to increase the wall
shear stress, which eventually reaches the quasi-steady values.
Increasing the acceleration even further (Case C, Fig. 4(c)) causes
overshooting of the unsteady wall shear stress over the quasi-stea-
dy wall shear stress to occur in an instant (stage 1 (a), not shown
on the figure), because of the very sudden change in flow rate. This
is then followed by a sharp reduction (stage 1 (b)). During stage 2,
the wall shear stress rapidly increases again as a result of turbu-
lence production. The wall shear stress approaches the correspond-
ing quasi steady values in stage 3.

The DNS-predicted time-histories of turbulent viscosity at se-
lected yþ0 locations (where yþ0 ¼ yus0=m, us0 representing friction
velocity at Re0) are also shown in Fig. 4. It can be seen from the
Fig. 4 that turbulent viscosity close to the wall ðyþ0 ¼ 5Þ remains
more or less unchanged during stage 1, but begins to increase rap-
idly at approximately 5, 4 and 2 s for cases A, B and C respectively,
corresponding to the onset of stage 2. It can also be seen that the
delays of turbulent viscosity are roughly constant across the chan-
nel for all three flow cases. However, response of turbulent viscos-
ity to the imposed excursion in the wall region is of greater
importance for modelling purposes as discussed in Section 4.2.

The response of the turbulent shear stress is consistent with
that of the turbulent viscosity. Turbulent shear stress very close
to the wall ðat yþ0 ¼ 5Þ stays mainly constant during stage 1. Its re-
sponse to the acceleration is initially observed in the wall region,
while the delay period becomes progressively longer with distance
from the wall.

The overall picture of the development of turbulent kinetic en-
ergy with time is similar to that of turbulent shear stress. Delays
associated with the response of turbulence increase with distance
from the wall. However, the delay in turbulent kinetic energy in
the wall region is much shorter than that for the shear stress. Also,
turbulent kinetic energy increases slowly during stage 1, while tur-
bulent shear stress and viscosity stay reasonably constant. During
this period, the streamwise turbulent normal stress ðuuÞ increases



Fig. 3. Predictions of steady flow wall shear stress for two Reynolds numbers by the
various turbulence models (symbols) and by DNS (lines).
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due to the stretching of the existing eddies, while the turbulent
shear stress ðuvÞ, the wall-normal stress ðvvÞ and the spanwise
stress ðwwÞ are unaffected (He and Jackson [14]). This strong aniso-
tropic behaviour in the near-wall turbulence is the key feature of
the unsteady flow and is likely to pose a challenge for linear eddy
viscosity models.

4.2. Performance of the turbulence models

Fig. 5 shows the RANS models predictions of wall shear stress
based on the various turbulence models for all three unsteady flow
cases; the benchmark DNS results are also shown. It is seen that
AB, CHC, LS, v2–f and c–Reh (referred to as Group I hereafter) cap-
ture the basic features of the flow exhibited by the DNS results
rather well, whereas the other models (referred to as Group II)
are not able to do so. All Group I models reproduce the three stage
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development: a delay stage followed by a rapid response in stage 2
and then a slow adjustment phase (stage 3). Focusing on more de-
tail, c–Reh appears to predict time scales that are very close to
those of DNS for all three flow cases. The LS and the CHC models
predict time scales close to those of DNS, but are slightly shorter
as the acceleration is increased. Note that CHC shows instability
in the simulation of Case C. Although able to predict the general
features of the unsteady turbulence response, the AB and v2–f re-
sults always show time scales that are much shorter than those
of DNS. The Group II models fail to predict the main features of
the unsteady flows, mostly because of their inability to predict
the delayed response of turbulence which controls the response
of the flow. All of the models (both groups) are able to capture
the initial overshoot of the shear stress in early stage 1 since this
behaviour is due to the effect of the inertial forces, which is not
strongly dependent on turbulence (and hence not dependent on
the choice of turbulence model). We note once more that the sim-
ulations of the LS model are based on the UDF version; predictions
based on FLUENT’s built-in LS model (not presented) are very dif-
ferent from the results described above, with very small delays
that are much like the predictions of Group II models.

The model predictions of turbulent viscosity at yþ0 ¼ 5 due to
the various models are shown in Fig. 6. The turbulent viscosity
time histories reflect the trends in wall shear stress predicted by
each model. It is apparent that the characteristic delay in turbulent
viscosity in the wall region is well reproduced by LS, CHC and
c–Reh, and to some extent by AB and v2–f. Once more, c–Reh slightly
over predicts the delays in all flow cases. CHC predicts the delay
for flow Cases A and B rather accurately, whilst predicting unreal-
istic oscillation for flow Case C (not visible in the current scale of
the figure). Even though v2–f does not predict the delay period cor-
rectly for any of the cases, it is the only model to return accurate
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values of turbulent viscosity during the pre- and post-ramp periods
for all three flows. The delays predicted by AKN, LB and YS are
much shorter than those of DNS, whereas k–x and k–x SST return
even shorter delays. These observations are consistent with the
predictions of wall shear stress from the respective models, as
shown in Fig. 5.

Figs. 7–9 show the comparisons for turbulent shear stress. For
brevity results obtained from selected turbulence models only
are presented. Focusing on the wall region first ðyþ0 ¼ 15Þ, it is
apparent that once more LS, CHC and c–Reh (some not shown) pre-
dict the initial and the subsequent response rather well, whereas
models AB, AKN, YS, LB and v2–f (some not shown) predict much
shorter delays; hardly any delays are observed from the predic-
tions of the k–x and k–x SST models (not shown). Considering
the turbulent shear stress development in the core region, the
DNS data show progressively longer delays as one moves away
from the wall. All models are capable of capturing this feature, with
some models performing slightly better than others. The delay in
the core region results from the fact that the turbulence response
occurs initially in the wall region, propagating towards the centre
through diffusion. The above comparison shows that all models are
capable of reproducing this feature because the diffusion term is
explicitly included in the transport equations of the turbulent ki-
netic energy and its dissipation rate. Once more CHC and c–Reh

are outperforming the rest in reproducing the trends associated
with the development of turbulent shear stress across the channel;
CHC’s prediction for Case A is nearly indistinguishable from the
DNS data although it is less so for Case B. In Case C, CHC’s instabil-
ity in predicting turbulence quantities in the wall region is once
more evident in the trends of the turbulent shear stress. The LS
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model predicts the delay period fairly well, especially for cases A
and B, but it returns magnitudes that are lower than those of
DNS in the final plateau (not shown). The trends obtained by the
AB and v2–f are close to those of DNS only in the core region, failing
to predict the delays close to the wall.

Figs. 10–12 show the predictions of turbulent kinetic energy for
several wall-normal locations across the channel. Unlike turbulent
shear stress, the turbulent kinetic energy shows a rather small de-
lay in the wall region for the reasons explained in Section 4.1. It is
interesting that all models except CHC, LS and c–Reh can predict
this near wall response fairly well. v2–f prediction of turbulent
kinetic energy in the wall region is almost indistinguishable from
the DNS data during the early stages of the three flows. c–Reh on
the other hand predicts a much longer delay, which is similar to that
of the turbulent shear stress (it is noted that the important require-
ment for any eddy viscosity model is to faithfully represent the tur-
bulent viscosity itself or the turbulent shear stress). In this
particular case, since turbulent kinetic energy and shear stress
show different characteristics, it is actually desirable that the early
response of the kinetic energy is not reproduced so that the turbu-
lent shear stress ðuvÞ can be well represented. This is what CHC, LS
and c–Reh have done in order to capture the delay of the wall shear
stress correctly. Clearly it is desirable for a model to decouple the
prediction of turbulent shear stress and the prediction of turbulent
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kinetic energy so that both can be predicted faithfully. In principle,
this is readily achievable with second momentum closure models.
Regarding the performance of the models in the core region, all
models reproduce the kinetic energy delay fairly well.

One of the main features of the turbulent viscosity formulation
in the k–e models considered in this study is the damping function
(fl), the major role of which is to reduce turbulent viscosity in the
wall region. Fig. 13 shows the across-channel profile of damping
function fl at selected times, as predicted by four k–e models
(AB, YS, LB and CHC) for flow Case B. It is seen that the near-wall
values of fl predicted by CHC is the only one that is sensitive to
the imposed excursion. fl in CHC begins to respond to the imposed
flow rate immediately after the first stage of wall shear stress evo-
lution (inertial-dominated period). The increased fl at the early
stages of the excursion keeps turbulent kinetic energy and there-
fore turbulent shear stress low, reproducing the delay effect
needed.

A damping function does not exist in the v2–f or in the c–Reh

model. This correction function is replaced by the wall-normal
stress component, as discussed in Section 2.3 for the v2–f model.
However, in the c–Reh model the production of turbulent kinetic
energy is controlled via intermittency factor derived from its trans-
port equation. Fig. 14 shows the temporal evolution of the inter-
mittency at selected yþ0 for the three flow cases. It can be seen
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that the intermittency is reduced significantly at the early stages
followed by a period of delay before increasing again. The turbu-
lent viscosity trend shows similar behaviour. Such a reduction in
the intermittency leads to further reduction in turbulent kinetic
energy and shear stress in the wall region.

5. Conclusions

The performance of ten eddy viscosity turbulence models in
predicting unsteady, ramp-up-type turbulent channel flows has
been examined by comparing predictions with DNS results for
the same flows. Three ramp-up flows with different acceleration
rates have been considered. The key features of the unsteady flow
as seen in the DNS data are the distinct delays in the response of
the turbulent shear stress and turbulent viscosity to the imposed
change in the flow rate. These delays are in turn responsible for
the response of the wall shear stress. It is shown that the wall shear
stress goes through a three-stage development. The first stage is
influenced by the frozen turbulence and then inertia forces. In
the early part of the first stage inertial forces dominate, causing
the wall shear stress to overshoot the corresponding quasi-steady
values. Then the effect of frozen (or delayed) turbulence takes over,
causing the wall shear stress to undershoot the quasi-steady val-
ues. The second stage corresponds to rapid response of turbulence,
causing rapid increase in wall shear stress. In the final stage the
wall shear stress approaches the quasi-steady value.
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Diffusion of turbulence from the wall to the core region is an-
other feature of unsteady flows, leading to relatively long delays
in the response of turbulent kinetic energy and turbulent shear
stress in the core region. However, the duration of the delay period
of turbulence response in the wall region is different for kinetic en-
ergy and for turbulent shear stress because of the stretching of tur-
bulence structures.

The following are the main conclusions regarding the perfor-
mance of the various turbulence models examined in this study:

� The most important feature that needs to be modelled in order
to capture the overall behaviour of the flow is the delayed
response of turbulent shear stress (and turbulent viscosity).
Among the models examined, only the LS, CHC and c–Reh mod-
els can capture this accurately, making them the only suitable
models for such unsteady flows. LS and CHC achieve this
through an appropriately designed damping function (fl), while
c–Reh employs an intermittency parameter that responds suit-
ably to the variation in flow rate. However, it should be pointed
out that the performance of the CHC model in high acceleration
flow case was not satisfactory because of its instability. The AB
and v2–f model can also reproduce the basic trends but with
much shorter time scales than expected.
� All models reproduce the overshoot in wall shear stress over the

corresponding quasi-steady shear stress that occurs in the early
stage of the flow rate excursion, with only minor differences
between the predictions of each model. In fact, the overshoot
is an inertia-dominated effect that is not related to turbulence.
For this reason we expect the predictions of the various turbu-
lence models to be similar at this early stage.
� The delay in the response of turbulence in the core region is

governed by diffusion, represented explicitly in the transport
equations of the k–e/x models. As a result, such delays are rea-
sonably well predicted by all models.
� For accelerating flows, it is desirable that the early response of

turbulent kinetic energy is not reflected in the model
predictions unless turbulent kinetic energy and shear stress
formulations are decoupled. It is also noted that due to the sim-
ilarities between channel and pipe flows, performance of turbu-
lence models are expected to be similar for both geometries.
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