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Recommender systems represent an important tool for news distribution on the Internet.
In this work wemodify a recently proposed social recommendation model in order to deal
with no explicit ratings of users on news. The model consists of a network of users which
continually adapts in order to achieve an efficient news traffic. To optimize the network’s
topology we propose different stochastic algorithms that are scalable with respect to
the network’s size. Agent-based simulations reveal the features and the performance of
these algorithms. To overcome the resultant drawbacks of each method we introduce two
improved algorithms and show that they can optimize the network’s topology almost as
fast and effectively as other not-scalablemethods thatmake use ofmuchmore information.

1. Introduction

In a news distribution system with a tremendous number of users, such as and, thousands of news items are released
every hour.When a user logs on the systemwithout any support, he is drowned in the flood of information immediately [1].
Recommender systems emerged to help users deal with the information overload and find out content matching their
interests [2–4]. In traditional recommender systems relevant news is delivered to users according to their profiles and
historical activities,with the recommendationmechanismdesigned in a centralizedway: data analysis and recommendation
decisions are made by the system for the whole network. In contrast, in social recommender systems users submit and
forward news to others, as in a peer-to-peer network. The core idea of peer-to-peer is that all nodes in the system have the
same function: each node can both gain service from other nodes, as a client, and provide service to others, as a server.

In this work we present a modified version of a previously introduced news recommender system [5]. This system is
naturally implemented in a peer-to-peer environment1: each user, considered as a node of the network, does not get news
directly from some central servers, but he can post news and recommend them to other users (i.e. his followers) and at the
same time he receives news from other users (i.e. his leaders). Hence each node acts as a follower and at the same time can
become a leader in the network.When a user receives a news item fromhis leader and likes it, he forwards it to his followers;
then, if these followers like the news too, they forward it further to their followers, and so on. Hence news diffusion over
the network resembles an epidemic spreading [6,7]. As in peer-to-peer systems, the leader–follower network is varying in
topology: links between leaders and followers may be changed as the network evolves. The system continually refines the
neighborhood of each user until connections between taste mates are established, so that news can spread quickly from the
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server), or in a real peer-to-peer system, where information about a node is actually stored in the peer node itself and each node both provides and gains
services from other nodes.
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original source to the users who are most interested in it. Network evolution is therefore driven from an interplay between
topology and dynamics [8]. The leader updating procedure is a crucial part of the whole recommender mechanism. An
effective updating method should choose for each user a leader with very similar tastes at very low cost. In this work we
compare several heuristic methods in detail. We discuss their efficiency, performance and scalability (which are important
aspects for real systems), and we analyze the properties of the evolving network structure with agent-based simulations. A
comparison with other widely-adopted popularity-based recommendation methods has already been discussed in Ref. [5].

This work is organized as follows. In Section 2 we present related work. In Section 3 we describe the news recommenda-
tion method and an agent-based model to test it. In Section 4 we report simulation results for the network’s evolution with
different updating methods. In Section 5 we introduce two refined updating methods. Lastly, we conclude with discussion.

2. Related works

So far, plenty of recommendation techniques have been proposed by researchers. These techniques can be classified in
three main categories: content-based, collaborative filtering and social filtering methods.

Content-based methods [9,10] try to classify items according to their content (e.g. by keywords) and to extract users’
preferences from their pick history. These two elements are used to obtain recommendation: items recommend to a user
are the ones whose characteristics match user’s preferences.

Collaborative filtering methods make predictions about the interests of a user by collecting taste information from the
community the user belongs to, with the underlying assumption that those users who agreed in the past tend to agree again
in the future. In memory-based collaborative filtering, such as in [11], the recommendation score for an item is computed
as a weighted average of ratings given by other users with weights proportional to the similarity between users [4]. In
model-based collaborative filtering methods (e.g. Bayesian clustering [12] and PLSI [13]) users are classified according to
their preferences. Diffusion-based methods, where heat conduction [14], random walk [15] or hybrid processes [16] are
employed to efficiently extract the taste similarity between users or items, can be considered as extensions of collaborative
filtering.

Social filtering methods make use of users’ relationships in a social network to obtain recommendations. These methods
are based on the assumption that users prefer recommendations made by a friend rather than those by a centralized
system [17]. In other words, social influence is more determinant for users to decide what to read than similarity of past
activities [18,19]. Generally, a social recommender system can be devised in two different ways: pull and push. In the first
case, each user selects other users as his information sources and he can pull information from these sources (as in, e.g.,).
In the latter, each user can push what he likes to other users who have accepted him as an information source (as in, e.g.,).
In many of these systems users have also the possibility to assign information with user-defined words, so-called tags, that
allow a more effective management of resources by users [20–22].

Different from all methods mentioned above, the news recommendation mechanism we study in this work combines
memory-based and social recommendation together with the network’s topology optimization. Recommendation scores
are computed using users’ past ratings, though recommendations come only from the information sources a user selects;
in parallel, the leader–follower network is continually refined according to similarity of user tastes, in order for news to
be efficiently delivered to their most eager readers. This combination of social and similarity recommendation turns out to
be particularly effective: the presence of directed links among users makes the recommendation process naturally fast and
scalable, while the use of rating patterns’ similarity in the information diffusion process enhance users’ social contacts and
experience.

3. Model description

In this section we describe the news recommendation mechanism [5] that provides a personalized set of news for each
user. As stated in the introduction, the system consists of a set of userswith distinct tasteswho continually post and evaluate
various news items.

3.1. Similarity estimation

The taste similarity between users is predicted using statistical correlation of users’ rating histories.We adopt the Pearson
correlation coefficient: for a pair of users i and j

si,j =
∑
c

(ri,c − r i)(rj,c − r j)

√∑
c

(ri,c − r i)2
√∑

c

(rj,c − r j)2
, (1)

where ri,c and rj,c are the ratings given by these users to news c and r i and r j are the average ratings of i and j. si,j ∈ [−1, 1],
with si,j > 0 indicating that user i and j tend to agree in evaluations of news while with si,j < 0 that they tend to disagree.
Despite the fact that the network is directed, si,j = sj,i.
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The similarity score (1) is different from the one used in Ref. [5]. This is because we assume that users evaluate news in a
binary scale: ri,c = 1 if user i likes news c and otherwise ri,c = 0. In other words, we do not distinguish between disliked and
not-rated news since in many real news distributing systems the only available information about users’ ratings is users’
click history. Therefore the simplest possible assumption is to treat a user’s click on a news as a positive vote for the news
itself, while any information about users’ negative interests remain undiscovered.

The choice of Pearson correlation (1) as a similarity metric is motivated by the fact that it can also be used in systems
where users give explicit ratings to news. However the choice of other metrics, such as the Jaccard coefficient or the Cosine
similarity, does not alter the behavior and the features of the system. This statement also holds for asymmetric similarity
metrics (as for example the asymmetric Jaccard coefficient), because the difference of rating patterns between similar users
becomes smaller and smaller as they evaluate more news. This causes the asymmetric si,j and sj,i to converge to the same
value, i.e. to a symmetric coefficient.

We use some heuristic methods to avoid problems related to data sparsity. If two users have no evaluations si,j is
undefined. Therefore at the beginning of system’s evolution we set si,j = s0, with s0 a small fixed value, for each pair of
users. si,j is undefined also when a user gives all positive or negative evaluations. In this case we set si,j = −1 to prevent this
kind of malicious behavior (i.e. giving ratings that do not bring any information about the user’s interests) from affecting
recommender system’s performance.

Note that for the sake of system scalability we do not store the similarity scores between all user pairs but only the
reading history of users, from which the similarity scores are computed. In other words, the information is distributed over
the network: the click history of each node, which is stored in the peer node itself, is available to other nodes and can
be retrieved by them in order to perform local tasks like assigning recommendation scores to incoming news or updating
connections to other nodes.

3.2. News recommendations and network updating

When a user logs into the recommender system, the system checks all the candidates unread news forwarded by his
leaders in his waiting list and then selects the top k [23] of them to recommend him according to their recommendation
scores. The recommendation score of each news is equal to the similarity between the user and the leader who forwarded it,
so that a high recommendation score is assigned to the news sent by leaders with a high similarity. When the same news is
recommended to a user frommultiple sources, recommendation scores are not summed up, as in Ref. [5], to prevent Eclipse
attacks on the system2 [24]. Instead, each news item can be recommended only once to each user. When the user likes a
recommended news item, he will forward it to the waiting list of his followers. Also, he can introduce a new news item in
the system and forward it to his followers. We employ a book-keeping mechanism to make sure that each user does not
receive news he has already read. Besides, users’ waiting lists are of limited length, and when they are completely filled
with candidate news the later arrivals (i.e. the fresh news) have few chances of jumping on top of the recommender list and
be consequently read. To allow fresh contents to be more visible, the waiting list of a user is cleaned up after the user gets
offline. Other mechanisms to promote the diffusion of novel news items are discussed in Ref. [5].

As news spreads over the network and gets evaluated, taste differences between users and their leaders can be gradually
identified. We use this information to refine the local neighborhood network and improve news propagation: from time to
time we find the least similar leaders of all users and replace themwith new ones. In what follows we will compare several
updating methods in detail.

We remark that the presentmodel differs from the onedescribed in Ref. [5] under several aspects, aswemakeuse ofmuch
less information, for instance: ratings are binary, the different recommendation scores for a news item are not aggregated,
the recommendation lists of users are cleaned every time they get offline. By keeping only the necessary information and
using fewer computational resources, we want our system to be efficient and fast as well as effective and robust.

3.3. Agent-based modeling

We make use of an agent-based approach to test the model. In order to depict the tastes of users and the attributes of
news, we use D-dimensional vectors containing only 0 or 1. User i’s taste vector (�ti) describes what topics he likes (1) or
dislikes (0). The maximum number of distinct taste vectors is 2D. In Ref. [5] an alternative setting with a fixed number of
1s in each vector was used. However the present scenario better depicts users who are heterogeneous in their scope of
interests.

At the beginning of the simulation, L = D randomly selected leaders are assigned to each user. The similarity between
each user and his newly selected leaders is set to the uniform default value s0. At every running step each user gets online
with probability po and, if active, submits a new news item with probability ps. The attribute vector of the submitted news
is identical to the taste vector of the user who submitted it. When a user is online, he reads and evaluates the top k news
recommended by his leaders. The overlap between a user’s tastes and news attributes, computed by counting the number

2 In an Eclipse attack a modest number of malicious nodes conspire to fool correct nodes into adopting the malicious nodes as their peers, with the goal
of dominating the neighbor sets of all correct nodes.
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Table 1
Simulation parameters and their default values.

Parameter Notation Value

Network size N = 2D 8192
Length of users’ taste / news’ attribute vector D 13
Number of leaders for each user L 13
Online probability at each step po 0.02
Submitting probability when online ps 0.01
Period of leader updating u 10
Length of waiting lists l 100
News read by users when online k 10
Acceptance threshold θ 6.5
Initial similarity value s0 0.1

of identical bits in the corresponding vectors, is used to obtain the user’s evaluation on the news item. Agent i likes news c
with attribute vector �ac if:

‖�ti − �ac‖ ≤ θ (2)

here, ‖·‖ is the norm of the vector and θ is the approval threshold. If agent i likes news c, then ric = 1; if i dislikes c or if i has
not evaluated c yet, ric = 0. If a user likes a news item, he forwards it to the waiting lists of his followers. Users’ assessments
on news are used to compute the similarity scores between users and their leaders. The leader updating procedure takes
place for each user after this user gets online u times.

3.4. Performance metrics

For any recommender system, the approval fraction, i.e. how often users are satisfied with the news they get recom-
mended, is the most important performance measure. Besides, we focus mainly on the properties of the leader–follower
network. Since in a computer simulation we have the luxury of knowing the taste vectors of users, we can compute the
average value of the taste vector differences between a user and his leaders. Since there are no identical users in the system,
the baseline value of these differences is 1 and we define the excess differences as the average number of differences minus
1. This measure shows the intrinsic quality of the leadership in the network: the lower the average differences, the higher
the taste likeness between leaders and their followers.

4. Simulation analysis

In our simulations we assume 13-dimensional taste vectors and hence the system consists of 8192 users. For other
simulation parameters, see Table 1.

4.1. Leader updating methods

Updating the leader–follower network consists in finding for a specific user i the least similar leader (e.g. user j) and
replace this leader with a new one (e.g. user k). Some straightforward methods to select the new leader are:

• Pure Random: The new leader is simply a randomly selected user;
• Selective Random: The new leader is selected as in the Pure Randommethod, but he replaces the old leader only if he has
a higher similarity score with user i, i.e. if sik > sij;• Best’s Random Leader (BRL): The new leader k is a user chosen at random among the leaders of user i’s best leader;

• Global Memory Based (GMB)3: The new leader k is the user in the network with the highest similarity with user i.

Fig. 1 shows the performance of these methods. As expected, the GMB strategy performs best (by achieving the highest
approval fraction and the best assignment of leaders—see the insets of Fig. 1) because it makes use of all available
information. However, this method is very expensive in terms of computing cycles: it involves the computation of N − 1
similarity scores to update the leaders of a single user, and O(N2) to update the whole network once. Therefore it is not
scalable with respect to the system’s size. We use it only as a benchmark for the other methods. The pure and selective
random methods perform worse, but have a much smaller computational cost – O(N) to update the whole network – and
can still converge to a network state with a good assignment of leaders. As compared to pure random, the selective method
may be slower in network exploration but is more careful in selections, therefore it eventually reaches a network state as
good as that with the GMB method. On the other hand, the BRL method, while exploiting the local neighborhood network
with computational cost O(N ∗ D) (it involves the computation of D similarity values to identify the best leader of a user),
reaches a strongly sub-optimal network state and has the worst performance in approval fraction. This is because with this

3 The GMB updating method is similar to a top L [23] Collaborative Filtering algorithm (although in this case there is no spreading of news on a social
network).
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Fig. 1. Approval fraction and excess differences in the network for different leader updating methods. The horizontal dotted line represents the optimal
assignment of leaders. Insets: comparison of these methods with the GMB for a smaller system (D = 10).

procedure a user can only exchange his leader for a two-step away user, hence he gets a very limited range of possibilities
for selection and may not ever get in contact with his taste mates if they are too distant from him.

The lower panel of Fig. 1 also shows that the system’s evolution – driven by any leader updating method – eventually
stops when an equilibrium state is found. In such a state, users have no advantage in changing their choices (i.e. leaders)
simply because they cannot find better ones. Thus an equilibrium state corresponds to an optimum for each agent. However,
since users make decisions independently from what others have chosen, the particular equilibrium state reached by the
system does depend strongly on the updating method employed (i.e. how users make their decisions) and only weakly on
the interaction between agents (as user i’s selection of leaders little influences news arriving to user j). Hence, if the updating
method allows users to make the best choices for themselves, the equilibrium state will not only be an optimum for each
agent but also a global minimum, i.e. a ground state for the whole system. In the ground state each user is linked to his
best taste mates: there is no better possible configuration in terms of leader assignment to users. The excess differences in
the ground state (represented in Fig. 1 by a horizontal dotted line) are determined by Eq. (2) in our artificial environment:
as shown in Fig. 2, for each user first-order and second-order taste mates (i.e. users who differ from him in one and two
elements of taste vectors, respectively) are indistinguishable in terms of the similarity (1). Since each user has D first-order
and D(D − 1)/2 second-order taste mates in the network and he has to choose D of them as leaders, the maximization of
similarity is equally likely to select a first or second order taste mate and hence the expected value of excess differences is

1 · D

D(D + 1)/2
+ 2 · D(D − 1)/2

D(D + 1)/2
− 1 = D − 1

D + 1
. (3)

Finally we remark that the frequency of the leader updating strongly influences the convergence rate of the system. If
the updating interval is too short, there are not enough evaluations to assess the real similarity between a leader and his
followers, hence the leadership structure of the network deteriorates. On the other hand, if the updating interval is too
long there is redundant information for similarity evaluations and leader updating, therefore the evolution of the system is

ht
tp

://
do

c.
re

ro
.c

h



Fig. 2. Average similarity score (1) versus vector differences averaged over all pairs of users. Similarities were computed over 1000 randomly selected
news evaluated in common by all users.

Fig. 3. Computational time (in arbitrary units) required to reach excess differences equal to 3 for different values of the updating interval u. Simulations
with the selective random updating method.

unnecessarily slowed down. Fig. 3 shows that it is possible to find an optimal value of the leader updating frequency which
yields the best convergence rate.

4.2. Network’s properties

We now compare the leader updating methods from the viewpoint of network topology. We use two quantities to
describe the network:

• Link reciprocity, the tendency of node pairs to form connections between each other [25]. This quantity is defined as the
ratio between the number of bidirected links and the total number of links in a network:

ρ =
∑
i�=j

aijaji

∑
i�=j

aij
(4)

where aij = 1 if user j is one of user i’s leaders (aij = 0 otherwise).

• Clustering coefficient, the tendency of a network to form tightly connected neighborhoods [26]. This quantity is calculated
as the ratio between the number of triangles a user forms with his neighbors and the total number of possible triangles
this user can form, averaged over all users.When edges are directed, each user can generate up to eight different triangles
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Fig. 4. Link reciprocity and clustering coefficient of the network for different leader updating methods (a is represented by � and ρgs, cgs by ∗ in the
respective panels).

with any pair of neighbors, hence:

c = 1

N

∑
i

∑
j�=k

(aij + aji)(aik + aki)(ajk + akj)

2[dtoti (dtoti − 1) − 2d↔
i ] (5)

where dtoti = ∑
j(aij + aji) denotes the number of i’s neighbors (i’s total degree) and d↔

i = ∑
j aijaji is the number of

bidirected links i forms with his neighbors.

Fig. 4 shows the evolution of the link reciprocity in networkswith different leader updatingmethods. In the initial random
networks the average probability of finding a reciprocal link between two connected vertices is simply equal to the average
probability of finding a link between any two vertices, which is given by a = ∑

i�=j aij/[N(N − 1)] = D/(N − 1). Hence the

starting value of ρ is equal to a. As the network evolves, the reciprocity coefficient grows from awith all updating methods:
the network’s structure becomes more and more reciprocal. This growth eventually stops when a stationary state of the
network is found. If the network is driven to the ground state (e.g. by the selective method) the value of the reciprocity
becomes ρgs = L/[D(D + 1)/2] = 2/(D + 1), because in this state each user choses his L leaders among D(D + 1)/2 best
taste mates who are indistinguishable in term of the similarity score (see Fig. 2): each user chooses randomly among them
and ρ → ρgs.

The evolution of the clustering coefficient is also shown in Fig. 4.With any updatingmethod c grows from its initial value,
again equal to a (the probability to find a link between two vertices in the initial random network). The selective method,
driving the system to the optimal state, makes c converge to cgs = ρgsP(‖�tj −�tk‖ ≤ 2 | aij = aik = 1) = 8/[(D+ 1)(D+ 2)]
(i.e. the probability to find a link between two users j and k who are linked to user i and who are taste mates of user i).
cgs, like ρgs, corresponds to users randomly choosing leaders among their best taste mates. Instead with the BRL method,
where links can only form locally, the clustering coefficient becomes immediately very large (even bigger than cgs): the
network’s evolution is hindered because a high clustering coefficient means that news does not spread effectively (they get
few directions to propagate and their traffic is limited to a subset of the network). Users who happen to be far apart are
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Fig. 5. Performance of the Hybrid algorithm (p = 0.75) compared to other leader updating methods. Inset: comparison with GMB for a smaller system
(D = 10).

unlikely to read the same news: their similarity remains undiscovered and they cannot be connected even if they are taste
mates. Note also that with this method once a node has no followers, it will never get any follower in the future because
it cannot be selected as a leader, hence some users may get isolated from the system. These two factors cause the network
evolution to end in a sub-optimal equilibrium state.

5. Refined algorithms

In this section we propose new updating methods that strongly enhance the system’s performance.

5.1. Hybrid algorithm

The BRL method has the ability to exploit the local neighborhood network, that is the most significant feature of a peer-
to-peer system. Unfortunately, as we have mentioned, it has some major drawbacks caused by the limited range of the
network that this method is able to explore. We attempt to overcome these problems by broadening the exploration range.
The first possible solution is to explore the whole second-order neighborhood (i.e., not only the subset related to the best
leader), or even to go further by including the third-order neighborhood, fourth-order neighborhood, and so on. However,
the computational cost of such exploration grows very fast – it isO(N∗Dk) for a kth-order neighborhood – and soon becomes
comparable with the cost of the GMB method.

A more effective solution is to employ some randomness in the updating method in order to have the possibility to
connect users regardless of their distance and prevent the system from getting trapped in a sub-optimal state. Hence we
propose a hybrid updating method that combines selective and BRL methods: at each updating step we employ the first
with probability p, otherwise we employ the second. This mechanismmimics the evolution of self-organizing communities
where users search for friends among friends of friends but casual encounters also occur. Fig. 5 shows that the hybridmethod
improves the system’s performance as compared to both selective and BRL methods, still keeping an affordable O(N ∗ D)
computational cost. Hence it represents a cheap and effective updating algorithm suitable for large systems.

5.2. Las Vegas algorithm

We now concentrate on the drawbacks of the above mentioned random updating methods. The pure random method
may replace an old leaderwith a less similar one, hence it cannot reach the best assignment of leaders. Therefore the selective
method outperforms the pure random. However the selectivemethodmay leave the network unchanged if it does not find a
better leader (which may occur quite often), hence slowing down the system’s evolution. A simple solution to this problem
is to employ a selective approach with more trials. We name this new method the Las Vegas algorithm [27]. Its basic idea
is that if the newly randomly selected candidate leader is less similar than the old leader, we drop it and retry the random
updating until a better candidate is found. Since there may not be a better candidate, we set the maximum number of trials
to a predefined value v. The bigger this value, the longer the execution time, but also the higher chances to find a better
leader.

Fig. 6 shows the performance of the Las Vegas algorithm for different values of v. Note that the selective method is
nothing but a Las Vegas method with v = 1. As v increases from 1, the convergence rate of the Las Vegas method becomes
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Fig. 6. Performance of the Las Vegas algorithm for different values of v compared to other updating methods. Inset: comparison with GMB for a smaller
system (D = 10).

Fig. 7. Average number of actual trials 〈v〉 of the Las Vegas algorithm with v = 50 at different stages of the system’s evolution (represented by the value
of the excess differences). At the beginning, 〈v〉 � v (the fictitious starting point at 〈v〉 = 0 only represent the initial network’s state). As the system
approaches the ground state, 〈v〉 → v (� represents the point of convergence).

faster and faster, and it becomes even comparable with the GMB method, yet keeping the affordable computational cost
O(N ∗ v) � O(N2) of GMB. Moreover, the average number of actual trials 〈v〉 of the Las Vegas algorithm (Fig. 7) is very
small at the beginning of system’s evolution, when it is very easy to find better candidate leaders for users: 〈v〉 � v again
reduces computational cost. Then the network approaches the ground state and 〈v〉 → v as each user is already linked to
his taste mates; however at this stage the evolution has already ended. The Las Vegas algorithm therefore improves both
effectiveness and efficiency of the leader updating schedule, standing as a candidate mechanism to be employed in real
recommender systems.

6. Conclusion

Online news websites are nowadays overloaded with a variety of fresh information. The hard task for readers is how to
find the news they are really interested in. Recommender systems are a possible answer to this problem. A significant yet
less noticed aspect is that social relationship is extremely useful in delivering news to potentially interested users.

In this work we generalized a recently proposed news recommendation method [5] to make it more efficient and
effective. This method combines memory-based and social recommendation: recommendation scores of news items are
computed using users’ past ratings, though recommendations come only from the information sources a user selects.
Another important feature of this model is that the network’s topology can be continually refined according to similarity
of user tastes, in order for news to be efficiently delivered to the users that are most interested in them. We proposed new
stochastic algorithmswhich are computationally cheap (and hence scalablewith system’s size) and provide an effectiveway
to speed up the leader updating process. The next step will be to develop the described system on a real platform.
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There are still some open questions to be answered. For instance, users do not differ only in their particular tastes but
in many other aspects, like activity, reputation, generosity, and so on. News items are also different in many aspects, like
quality and freshness. Taking into account user and news heterogeneity may bring about a more realistic scenario. Another
important point is that any real recommender system must face potential attacks from malicious users or communities,
that may systematically introduce spam news or try to intentionally mislead the system. Measures of trustworthiness and
reputation of users can be introduced to cope with these threats.
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