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SUMMARY

Trypanosoma brucei is one of the earliest diverging eukaryotes with a bona fide
mitochondrion. In contrast to most other eukaryotes, it has a single mitochondrion only which
shows a large network-like morphology. This unique feature makes T. brucei an excellent

model to study some unique aspects of mitochondrial biology.

In the first part of this thesis, we used T. brucel as a model to study the mechanisms of
mammalian apoptosis. Additionally to the one unit characteristic of its mitochondrion, the
trypanosomes lack all components of the “classical” apoptotic machinery. Because of these
two unique features, we were able to temporally separate the three major mitochondrial events
that are induced by Bax expression during apoptosis. First, cytochrome cis released from the
mitochondrial intermembrane space. This event is followed by a loss of the membrane
potential and finally by mitochondrial fragmentation. Interestingly, all these events are

reversible when Bax is removed.

The next two sections of the thesis focus on the mechanism of division of the mitochondrion
in T. brucei. The proteins involved in this process are well conserved and two of them are
found in the genome of T. brucei. We show that the single dynamin-like protein (TbDLP),
normally specialized in mitochondrial fission, is not only involved in mitochondrial division,
but also required for endocytosis, a process normally mediated by classical dynamins which
are absent in T. brucel. The two specific intracellular localizations of ThDLP confirm the dual
function of this protein. Moreover, we showed that mitochondrial fission is required for the
completion of cytokinesis in T. brucei, suggesting that mitochondrial fission might be a
checkpoint for cell division. Finally, we have also identified the putative Fisl homologue of
T. brucel.

Generally in eukaryotes, the mitochondrial DNA is distributed all over the matrix. However in
T. brucel, it is restricted to a discrete structure termed the kinetoplast (or kDNA). In the last
part of this thesis we show that TbMiX, a protein of the outer mitochondrial membrane, is
essential for the correct positioning of the kDNA. Moreover, we present evidence that this
protein may link the mitochondrion to the subpellicular cytoskeleton of T. brucei, suggesting
that the microtubules present in this structure are required to determine the position of the
KDNA.



RESUME

Trypanosoma brucel est I'un des plus anciens organismes a posséder de véritables
mitochondries. Contrairement aux autres eucaryotes, il ne contient qu’'une seule de ces
organelles. Cette caractéristique unique fait de T. brucel un excellent systéme pour étudier

certains aspects spécifiques de la biologie mitochondriale.

Dans la premiére partie de cette thése, nous avons utilisé T. brucei comme modéle afin
d étudier les mécanismes de |’ apoptose des cellules mammiféres. En plus de la présence
d’ une mitochondrie unigque, aucun composant du processus conventionnel de I’ apoptose n’ est
présent chez les trypanosomes. Gréce a ces deux caractéristiques, nous avons pu séparer dans
le temps les trois événements majeurs liés a la mitochondrie qui sont induits par I’ expression
de la protéine pro-apoptotique Bax pendant |’ apoptose. Tout d abord, le cytochrome ¢ est
libéré de I’ espace intermembranaire mitochondrial. Suivent ensuite la perte du potentiel de
membrane et finalement la fragmentation de la mitochondrie. 1l est intéressant de voir que

tous ces événements sont réversibles si Bax est retiré du milieu.

Les deux sections suivantes de la thése se focalisent sur le mécanisme régulant la division des
mitochondries chez T. brucei. Les protéines impliquées dans ce processus ont été bien
conserveées durant |’ évolution et on trouve deux d’ entre elles dans le génome de T. brucei. Les
protéines similaires aux dynamines (DLP, pour dynamin-like protein) sont en généra
impliquées dans le mécanisme de division des mitochondries. Nous avons découvert que chez
T. brucei, I'unique DLP présente est auss requise pour |’endocytose, un processus qui est
normalement effectué par les dynamines « classiques », absentes dans cet organisme. La
localisation intracellulaire a révélé la présence de DLP a deux endroits spécifiques, ce qui
confirme cette double fonction. De plus, nous avons démontré que la division des
mitochondries est essentielle pour |’accomplissement de la cytokinése chez T. brucei. Ce
dernier point suggére que la division des mitochondries pourrait étre un point de contrdle pour
la progression du cycle cellulaire. Finalement, nous avons également identifié un homologue

potentiel de Fisl chez T. brucei.



Généralement chez les eucaryotes, I’ ADN mitochondrial est distribué dans toute la matrice de
I’organelle. Cependant chez T. brucel, celui-ci est limité & une structure discréte appelée le
kinétoplaste. Dans la derniere partie de cette thése, nous montrons que TbMiX, une protéine
de la membrane externe de la mitochondrie, est essentielle pour e positionnement correct du
kinétoplaste. De plus, nous présentons des indices selon lesquels cette protéine pourrait lier la
mitochondrie au cytosguelette de T. brucel, ce qui suggére que les microtubules présents dans
cette structure sont requis pour la détermination de la position de I’ ADN mitochondrial.



l. INTRODUCTION

1. Apoptosis

Apoptosis is an essential physiological process of programmed cell death (PCD) in
multicellular organisms. This well-organized mechanism promotes cellular suicide of specific
cells to confer advantages to the whole organism. For example, apoptosis has been shown to
be required for the separation of the fingers during human embryo development. The process
is also required for tissue homeostasis, meaning that the turnover of cells in different tissues
such as blood or skin must be counterbalanced with cell death to maintain a more or less
constant number of cells. This turnover amounts to about 50 to 70 billion cells per day in an
adult human. Moreover, the ability of cells to commit suicide is a very important mechanism
for the proper functioning of the immune system. It alows the elimination of defective cells
that have accumulated mutations and of cells that are infected by viruses. Thus, misregulation
of apoptosi s can contribute to various human diseases, such as cancers, autoimmune diseases
and neurodegenerative disorders (1).

PCD is not restricted to apoptosis, but also includes autophagy. In this process, contrary to
apoptosis where the organelles for the most part retain their integrity, the cell
compartmentalizes and forms large vacuoles that consume organelles in a predefined order,
the nucleus being the last (2). A third mechanism of cell death, generally considered as
unprogrammed, is termed necrosis. This process is often a consequence of cell injury. The
main difference with between necrosis on one side and apoptosis and autophagy on the other
side is that during necrosis, the organelles dissolve and the plasma membrane ruptures. This
releases intracellular components into the surrounding tissues, which leads to an immune
response. In PCD in contrast, the dying cell forms vesicles to avoid the release of cytoplasmic
material (in the case of apoptosis) or cell lysis is prevented (in the case of autophagy).
Furthermore the cell displays phosphatidylserine on its outer surface to promote its

phagocytosis (3).



In the following chapter, | will focus on the mechanism of apoptosis in mammalian cells, but
at the same time | will also consider the processin unicellular organisms, whereits function is
not obvious. Finaly, | will outline the advantages of studying apoptosis in such unicellular

organisms.

a) Apoptosisin mammalian cells

There are two main forms of how apoptosis can be induced in mammalian cells: the intrinsic
and the extrinsic pathways. The intrinsic pathway activates PCD in response to stress signals
from the inside of the cell, such as DNA damage or nutrient deprivation. The extrinsic
pathway on the other hand is activated through the binding of extracellular ligands to “death
receptors’ at the plasma membrane. This binding leads to the assembly of a death-inducing
signaling complex (DISC) that is able to activate death proteases, termed caspases (cystein
protease with aspartate substrate specificity). At the end, both pathways converge in caspase
cascades that ultimately result in DNA degradation, the final step of apoptosis (Fig.1) (1).

Figure1: Schematic representation of the apoptotic pathways in mammalian cells. The cyan
arrows indicate signal flow. Pro- and anti-apoptotic activities are colored magenta

and green respectively. Seetext for detail (1).



Mitochondria are major actors in the intrinsic pathway of apoptosis (3-6). Indeed this
organelle has been shown to release important factors for the activation of caspases during
PCD. This release is mediated by members of the Bcl-2 proteins family, including Bax, Bcl-
X, and Bid. In non-apoptotic cells, the pro-apoptotic Bax remains mainly in the cytosol in an
inactivated form, probably due to its binding to Bcl-x,_ (5, 6). But when apoptosis is initiated,
Bcl-x. is dissociated from Bax, which can then form homo-oligomeres. This alows its
tranglocation to the outer mitochondrial membrane (OMM). The mechanisms initiating the
activation of Bax are not clearly understood yet and severa different ones have been
proposed. For example, the transcription factor p53 has been shown to not only promote the
expression of genes involved in apoptosis in response to DNA damage, but also to directly
activate Bax, through its binding to Bcl-x, (5) . Bid, another member of the Bcl-2 family, on
the other hand is known to promote the activation of Bax through direct binding (5, 7).
Interestingly, Bid can also be activated through the extrinsic pathway and thus links the two
pathways of apoptosis induction (1).

Once Bax is present on the mitochondria, it causes the release of cytochrome ¢ from the
intermembrane space. However the mechanism of this Bax-induced permeabilization is still
unknown. Three hypotheses have been proposed. The first one suggests that Bax translocation
could initiate swelling of the mitochondrial matrix and distortion of the inner mitochondrial
membrane (IMM). This process activates the permeability transition pore (PTP) and
eventually leads to the rupture of the OMM and thus to cytochrome c release. The second
theory is based on the ability of Bax and Bcl-x. to form poresin liposomes and thus suggests
that Bax, alone or in association with VDAC or the PTP, promotes pores formation in the
OMM to release small proteins such as cytochrome c (3-5). Finaly, the third hypothesis
proposes that Bax recruits the mitochondrial fission apparatus to permeabilize the OMM.
Indeed it has been shown that Drpl, a maor component of this machinery, is essential for
apoptosis and cytochrome c release (8). Furthermore, Bax is colocalized with Drpl on the

OMM during apoptosis (9).

Finally, once in the cytosol, the cytochrome ¢ can bind Apaf-1 (apoptotic protease-activating
factor 1) to form, in presence of dATP or ATP, a multimeric complex termed the
“apoptosome”. This complex is then able to activate the caspase cascade, that ultimately leads
to DNA degradation (1, 3).



Mitochondria in apoptotic cells not only release cytochrome ¢ but also other factors such as
Smac/Diablo or HtrA2 that can neutralize inhibitors of proapoptotic proteins. Other proteins
of the intermembrane space are AlIF (apoptosis-inducible factor) and Endonuclease G. When
they are released, they translocate to the nucleus to promote direct DNA fragmentation in a
caspase-independent pathway (4). Finally, as a confirmation of the importance of
mitochondria in apoptosis, it has been shown that these organelles invariably change their
morphology during PCD from a reticular network to vesicular punctiform structures, in
process that is Drpl-dependent. Interestingly, caspase inhibitors do not affect this
mitochondrial fragmentation, whereas apoptosis on the other hand requires this change of
mitochondrial morphology (10).

b) Apoptosisin unicellular organisms

Whereas apoptosis makes a lot of sense in multicellular organisms, the advantages of this
process for unicellular organisms are much less evident. However, apoptosis or apoptosis-like
phenotypes have been found in many different single-cell eukaryotes such as yeast (11-16),
Kinetoplastidae (17-21), Tetrahymena (22-24) and other organisms such as Dictyostelium (25,
26). It has been also suggested that PCD also occursin bacteria (27-29). So what is the benefit
for a unicellular organism to commit suicide? It has been shown that populations of
unicellular organisms are often clonal and can be found in complex communities that in many
ways look like multicellular organisms. Bacteria for example have been shown to secrete
pheromones that induced simultaneous change gene expression. Furthermore, Dictyostelium is
known for its ability to regroup in a multicellular-like organism. Accordingly, considering the
community aspect, committing suicide could potentially limit the spread of viral infections or
pathogens, or reduce the amount of cells with damaged DNA to maintain alow mutation rate
in the population. Moreover, apoptosis is a potential response to nutrient deprivation and to
bacterial overpopulation of the medium. Cell suicide can also be required for the normal
course of development (13, 25, 30, 31). So death of some unicellular organisms is a dramatic

cost for the organism itself, but can lead to great benefit at the community level.



Yeast

Y east, whose genome does not encode any orthologues of the classical mammalian apoptotic
machinery, can undergo programmed cell death, showing the typical apoptotic changes.
Indeed, it has been showed that in presence of reactive oxygen species such as H,0,, yeast
shows DNA fragmentation, phosphatidyl serine externalization and chromatin condensation
(11-13). All these events are markers of mammalian apoptosis. Some yeast mutants show the
apoptotic phenotype even in absence of induction. In the first one that has been characterized
it was the CDC48 protein, an AAA ATPase involved in vesicular fusion , that was affected
(11, 12). One of the most interesting finding was the identification of a yeast metacaspase
(12). This caspase-related protease clearly related to mammalian caspases, termed YCAL, is
cleaved in a caspase-typical way and displays a caspase-like proteolytic activity. Moreover,
disruption of YCA1 prevents the apoptotic response to H20., whereas over-expression of the
protein strongly stimulates the caspase-like activity (13). In summary these observations
suggest that YCAL functions as a bona fide caspase. More recently other orthologues of the
mammalian apoptotic pathway, such as AIF (14) or HtrA2 (15), have been discovered in
yeast. Several mutants have also been shown to not suppress, but only delay apoptosis (11,
12). Findly, it was shown that, as in mammalian cells, the conserved proteins that are
required for mitochondrial fission (see point 2 of the introduction), are also involved in the

yeast apoptotic pathway (16).

Kinetoplastidae

No homologues of proteins involved in apoptosis have been found in Kinetoplastidae.
However apoptosis-like processes resulting in DNA fragmentation have been described in
Leishmania major (17), Leishmania donovani (18), Trypanosoma cruzi (19) and
Trypanosoma brucei (20, 21). Indeed, these organisms seem to use PCD to regulate their
population density (18, 19) or in response to different drugs (18, 20). Interestingly, it has been
shown that lectin ConA stimulates apoptosis in trypanosomatids. During this ConA -induced
death, the organism up-regulates the expression of certain MRNAS, indicating that
trypanosomes actively participate in their suicide (20). Furthermore in T. brucel, five proteins
related to mammalian caspases, known as metacaspases, have been identified, and one of
these proteins (TbMCA4) induces cell death when expressed in yeast (21). Thus we can
conclude that apoptotic processes also occur in kinetoplastidae, but that they are quite

different from the mammalian mechanisms.



Dictyostelium discoideum
The life cycle of the unicellular slime mold Dictyostelium discoideum consists of a solitary

growth phase followed by a socia stage. During this phase, the individual cells aggregates to
form a multicellular ug. Then, to construct the fruit body, the organism differentiates into
two cell types, the viable spores and a stalk of dead cells. Thus about 20-25% of the cells die
to form the stalk. This PCD shows severa features of the mammalian apoptosis, such as the
decrease of the mitochondrial transmembrane potential and the exposition of phosphatidyl
serine residues at the plasma membrane (25, 26). The other characteristics of PCD in
Dictyostelium are not clear yet. One study suggests that apoptosis in Dictyostelium results in
DNA degradation that is mediated by a homologue of AlF in a caspase independent manner
(25), whereas it is proposed in another study that caspase-3 activity increases in
differentiating stalk cells without any DNA fragmentation (26). However both studies

conclude that apoptosis has been well conserved during evolution.

Tetrahymena thermophila

In the ciliated protozoa Tetrahymena thermophila, PCD-like processes have aso been
observed in low density cell cultures, or after staurosporine induction (22). Furthermore,
Tetrahymena shows a unique apoptosis-like “nuclear death” during conjugation. Tetrahymena
contains one micronucleus that undergoes meiosis and is implicated in genetic exchange, and
a somatic macronucleus that degenerates. This programmed “nuclear death” (PND) consists
of chromatin condensation and DNA degradation. Interestingly caspase-like activities appear
to play arolein this process (23). Moreover, PND in Tetrahymena aso affects mitochondria.
Some mitochondria are taken up by the autophagosome, the organelle responsible for
macronucleus degradation and are disrupted in the process. This leads to release of
mitochondrial factors, including an endonuclease showing similarities with mammalian
Endonuclease G (24). So just as in Dictyostelium, PND in Tetrahymena shows similarities

with the mammalian apoptosis.



Bacteria

Apoptosis has been mainly studied in eukaryotic organisms. But it has been recently reported
that prokaryotes can also perform akind of PCD. Indeed, the potential existence of apoptosis-
like cell death has been suggested in several bacteria such as E. coli, Staphylococcus aureus
or Bacillus subtilis (27-29). In these bacteria, PCD appears to take the form of cell autolysis.
This process includes the self-digestion of the cell wall by peptidoglycan hydrolases that are
also termed autolysins. Traditionally, autolysis has been thought to be the result of a
misregulation of the normal peptidoglycan hydrolysis that is necessary for the cell wall
building. However, more recent data suggest that the process can be considered as PCD (27).
Interestingly, in some bacteria autolysis is also required for differentiation. B. subtilis for
example needs it for the destruction of the mother cell and the release of the mature spore in
order to complete sporulation. In some other cases, cells commit suicide to perform genetic
exchange, meaning that the surviving cell will pick up the DNA from the lysed bacteria (27).
Moreover, when a population of E. coli or S. aureus is exposed to antibiotics or other harmful
conditions, they often perform autolysis which can be considered as an apoptotic manner to
eliminate damaged cells (27, 28). Finally a recent study showed that in B. subtilis a high level
of reactive oxygen species consecutive to shear stress |eads to apoptosis-like cell death, which
includes activation of a caspase-3-like protein and DNA fragmentation, two events
characteristic of eukaryotic apoptosis (29). So PCD is not restricted to eukaryotic cells, but
may also be present in evolutionary much older organisms such as bacteria.

c) Unicellular organisms as model to study mammalian apoptosis

As explained in point 1a), apoptosis is a very complicated process whose complete
understanding could help alot in treatment of several human diseases. Unfortunately studying
PCD in mammalian cells is not trivial, because of the different pathways that exist and the
many proteins that are involved in the process. The fact that apoptotic-like mechanisms have
been revealed in unicellular organisms raises the question whether it is possible to use them

for the study of mammalian apoptosis.



Y easts have been aready extensively used in this way (11, 30, 31). Indeed, heterologous
expression of human Bax is sufficient to kill yeast cells. Most interestingly this death shows
clear features of mammalian apoptosis. Moreover, co-expression with Bcl-x. prevents Bax-
induced apoptosis in yeast. Thus it was possible to use a human gene library to identify
inhibitors of apoptosis (11, 30). Yeast can also be used to better understand the role of the
mitochondria in PCD including the function of Bax and other members of the Bcl-2 family
(31), and the role of mitochondrial fission proteins in the process (16). Human Bax is not the
only protein whose expression induces PCD in yeast. Other pro-apoptotic factors, such as
caspases or Apafl, also lead to cell death (11, 30).

The kinetoplastid Trypanosoma brucel can also be used as a model to study mammalian
apoptosis, as exemplified in chapter 1 of the result section. Indeed, asin yeast, T. brucei lacks
most of the proteins involved in the classical mammalian apoptotic pathway (32). Moreover,
inducible gene expression (or inducible RNAI) is well developed in this organism (33). And
last but not least, unlike most other eukaryotes, trypanosomatids have a single mitochondrion
only (34). This unique feature alows to obtain valid information about the temporal sides of
apoptotic events. So Trypanosoma brucel, as yeast, is a nice potential model for the

understanding of the mechanisms involved in mammalian apoptosis.

2. Mitochondrial Division

Mitochondria are complex double-membrane bound organelles found in nearly al eukaryotes,
with their own genome and proteins synthesis machinery. Mitochondria carry out several
important cellular functions, including ATP production through oxidative phosphorylation.
Moreover, as presented in the part 1 of the introduction, these organelles are known to play a
very important role in apoptosis. Depending on the organism and the cell type, mitochondria
can occur in very different numbers and shapes, which among others might be determined by
the energy needs of the corresponding cell. Interestingly, mitochondria cannot be synthesized
de novo, meaning that pre-existing organelles must grow and divide during the cell cycle to be
distributed to the daughter cells during cytokinesis. Furthermore, observations of living cells
showed that mitochondria are very dynamic. They move around, change their shape, divide

and fuse throughout the cell cycle (35). Thus these changes in morphology and distribution



can help to optimize mitochondrial function in response to changing intracellular needs and
extracellular cues (36). The mitochondrial morphology depends mainly on the equilibrium
between fission and fusion events. Loss of mitochondria fission leads to excessive fusion,
forming net-like mitochondria, whereas disturbed fusion results in fragmented organelles
(Fig. 2) (36, 37).

The pathways of fission and fusion are well conserved during evolution. In the following
chapter, | will mainly focus on mitochondrial division in yeast and mammals, and finaly |
will present some features of this pathway in other organisms such as nematodes, plants, agae

and trypanosomes.

Figure2: Mitochondrial morphology in the budding yeast Saccharomyces cerevisiae. In this
organism, a third pathway, known as tubulation pathway, is involved to maintain
the mitochondrial shape. Mitochondria are visualized by matrix-targeted GFP in
different strains, respectively wt, fzolA, dnmlA and mmmlA. Bar = 5um (36).

a) Inyeast

The budding yeast Saccharomyces cerevisiae is one of the favorite model systems to study
mitochondrial dynamics. Indeed, the first proteins involved in mitochondrial distribution and
morphology have been discovered in this organism through genetic screens (35, 36). In wild-
type yeast, mitochondria form a branched tubular network located near the cell periphery, but
mutations in several nuclear genes disturb this shape and result in specific morphology
phenotypes (35-37). In addition to fusion and fission events, mitochondrial shape in yeast is
also maintained by a pathway acting on tubulation (Fig.2) (36).



In budding yeast mitochondrial fission is regulated by Dnm1, a dynamin-like GTPase (36-39).
As expected, Dnm1-defective yeast shows extensively fused mitochondria due to ongoing
fusion. Interestingly however no other organelles are affected (38). Dnml contains an N-
terminal GTPase domain, a middle domain and a C-terminal GTPase effector domain (GED).
Mutational analyses show that GTPase activity of Dnm1 is required for mitochondrial fission
in vivo (36, 38). On the other hand, as in other dynamins, both middle and GED domains, are
involved in protein-protein interactions (40). Biochemical analyses reveaed that, whereas
Dnml remains largely soluble in the cytosol, it can assemble into punctuated structures on the
OMM. Interestingly, these clusters are mainly found at constricted sites on mitochondrial
tubules that look like they are in the process of division (36, 37, 39). Moreover, it has been
shown that Dnm1 interacts with itself to form rings in vitro, which could facilitate the fission
of the mitochondria in vivo. As to confirm it, these extended Dnm1l spirals have diameters
matching exactly the mitochondria constrictions observed in vivo (41).

Dnm1l is not the only protein of the mitochondrial fission machinery in yeast. Another
important component of this apparatus is Fisl. Contrary to Dnm1, Fisl is a transmembrane
protein equally distributed on the OMM (36, 37, 42), that has a TPR-fold (43). The protein is
essential to recruit Dnm1l to mitochondrial fission sites, because the GTPase lacks a
mitochondrial targeting sequence (37, 42). But direct binding of Fisl and Dnm1 has never
been shown. Instead, recent studies indicate that this interaction is mediated by Mdvl, a
WD40 protein which acts as an adaptator between Fisl and Dnml (44, 45). Mdvl interacts
directly with Fisl through its N-terminal extension of unknown structure (NTE), whereas the
C-terminal WD repeat mediates the binding to Dnm1l. Finally the central coiled-coil domain
of Mdv1 alows the formation of homo-oligomers (Fig. 3a) (45, 46). Mdv1 shows the same
localization than Dnm1 and thus is also targeted to mitochondria through Fisl. Indeed, in
absence of Fisl, neither Dnm1 nor Mdvl are localized to mitochondria (36, 37, 45). In a
recent model of mitochondrial fission, it is suggested that Fisl first targets Mdv1 to division
sites and that only then Mdvl recruits Dnml (Fig. 3b) (36, 45). Finaly, Caf4, another
component of the mitochondrial fission complex, has been identified recently. Caf4 is also a
WD40 protein showing similar structure and function than Mdv1 (Fig. 3a) (36, 46). Unlike in
the cases of Dnml, Fisl and Mdvl, ablation of Caf4 does not affect mitochondrial
morphology. However, in absence of both Mdvl and Caf4, the mitochondrial fusion
phenotype is stronger than the one observed in a Mdvl mutant alone. This means that Mdv1

and Caf4 are redundant proteins, Mdv1 being the more important one (46).



Figure3: @) Schemative representation of the
mitochondrial fission machinery
and b) Model of divison of this
organelle in the budding yeast

Saccharomyces cerevisiae (36).

b) In mammalian cells

The general mechanism of maintenance of the mitochondrial shape by opposing fission and
fusion events is well conserved from yeast to mammals. However, some significant
differences have been observed in the specific mechanisms. Some components are missing in
the mammalian mitochondrial fission machinery. Indeed, whereas homologues of Dnm1 and
Fisl are present in most eukaryotes, Mdv1 and Caf4 seem to be restricted to yeast (36). Thus

the two conserved components must somehow function differently than the yeast ones.

The Dnm1 homologue in mammalian cells is generally termed Drpl, but has been also called
DLP1, DVLP1 or Dymple. As in yeast, Drpl is mainly present in the cytosol and then
translocates into a punctuated pattern on dividing mitochondria (47-49). The mammalian
protein is also able to tubulate mitochondrial membrane and to form rings in vitro (50). The
human homologue of Fisl is highly similar to the yeast one in structure, localization and
function (51-53). But the mechanism of recruitment of Drpl to mitochondriais still unknown.
It must clearly be different to the one in yeast because of the lack of Mdv1 and Caf4. A recent
study has shown that Drpl can directly bind to the TPR-repeats of Fisl, by doing so it is



recruited to mitochondria. Thus direct interaction of Drpl with Fisl not only determines the
fission site, but is also required to achieve local Drpl concentrations high enough for self
assembly (54). However the interaction between Fisl and Drpl seems to be weak and
transient (52, 54), and in line with this another study showed that inhibition of Fisl does not
affect Drpl recruitment and localization. So Drpl is not necessarily targeted to mitochondria

in a Fisl-dependent manner (55).

Contrary to yeast, in mammalian cells Drpl and Fisl are both required for the division of
peroxisomes, a mammalian organelle involved in hydrogen peroxide metabolism, [3-oxidation
of fatty acids and biosynthesis of ether phospholipids (56, 57). Like mitochondria, new
peroxisomes form by division of preexisting ones (56). The functions of Drpl and Fisl look
similar on mitochondria and peroxisomes, suggesting that the fisson machinery of
mitochondria and peroxisomes share common components. However they are not identical,
since peroxisomal division requires peroxisome-specific proteins such as Pex11 that have no

implication in mitochondrial fission (56, 57).

Interestingly, some additional factors are known to influence mitochondrial fission in
mammals. Two studies showed a connection between the cytoskeleton and the recruitment of
Drpl to mitochondria (58, 59). The cytoskeleton is known to determine the subcellular
localization of mitochondria. However its involvement in mitochondrial function was not
expected (60). In the first study, the cytoplasmic dynein/dynactin complex mediating the
minus-end-directed transport along microtubules has been shown to interact with Drpl.
Moreover inhibition of dynein function resulted in fused mitochondria and translocation of
Drp1l to cytosol, suggesting that dynein may control the recruitment of Drpl to mitochondria
(58). The second study showed that F-actin may also be implicated in this recruitment.
However, unlike in the case of dynein, Drpl is not translocated to cytosol when F-actin is
disrupted, but it cannot be transferred anymore to mitochondria when fission is induced. This
indicates that F-actin might be also required to facilitate the recruitment of Drpl (59).
Recently an other intramitochondrial protein termed MTP18 has been proposed to be a new
essential component of the mitochondrial division apparatus. MTP18 bound to IMM is
probably required to facilitate the fission step and thus contributes to the maintenance of
mitochondrial morphology (61). Finally, human Drpl has also been shown to interact with
Sumol and Ubc9, two proteins involved in a posttrandational modification termed
sumoylation and at least Sumol was shown to regulate mitochondrial fission (62).



Thus, even through there has been great progresses in the understanding of mitochondrial

fission in mammals, many questions remain to be answered.

C) Inother organisms

Whereas mitochondrial fission has been mainly studied in yeast and mammals, the process
has also been investigated in other organisms such as nematodes (63-65), plants (66-72), algae
(73, 74) and trypanosomes (75). In the following chapter, | will discuss the distinct features of
mitochondrial fission that are observed in these organisms.

Caenorhabditis elegans
The genome of the nematode C. elegans encodes both Dnml and Fisl homologues

(www.wormbase.org). However, only the large GTPase, termed DRP-1, has been studied so

far. Studies of this protein in C. elegans confirmed its role in mitochondrial fission. DRP-1 is
essential for viability and mutants of the protein show a strong defect of mitochondrial
segregation. Moreover, over-expression of the C. elegans DRP-1 results in excessive
mitochondrial fragmentation. Interestingly, in C. elegans only the OMM seems to be affected
by DRP-1 depletion, since severing of the IMM is still possible in the DRP-1 mutant (63). As
in mammals, DRP-1 is also required for mitochondria fragmentation during apoptosis (64).
Furthermore a recent study showed that CED-9, the nematode Bcl-2 homologue, not only
functions in regulating apoptosis, but aso affects mitochondria fission/fusion dynamics.
Indeed, CED-9 expression in mammalian cells, just asit is the case for Bcl-2, induces fusion
by a direct interaction with Mitofusin, a well-conserved component of the mitochondrial
fusion machinery. On the other hand, the mechanisms of how PCD is controlled by CED-9
and Bcl-2 are distinct. Thus it is possible that the primordia function of the CED-9/Bcl-2
family may have been regulation of mitochondrial morphology (65).

Arabidopsis thaliana

The mechanism of mitochondrial division in higher plants has only recently been studied. But
already the initial results that have been obtained show that there are major differences to the
yeast and human systems. Thus, 16 dynamin-related proteins grouped in 6 subfamilies have
been reported in Arabidopsis thaliana (66). The DRP3 gene family, consisting of DRP3A and
DRP3B, aso known as ADL2A and ADLZ2B, is most closely related to the standard
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Dnm1/Drpl. Interestingly both DRP3A and DRP3B are colocalized and form a punctuated
pattern on constricted mitochondria. Furthermore a mutation in any of the two proteins, leads
to elongated mitochondria (67, 68). DRP3A has in addition been shown to control
peroxisomal division, just as the mammalian Drpl (69). But interestingly a recent study
showed that DRP3B is not required for the apoptotic mitochondrial fragmentation in plants,
suggesting that the mechanisms of programmed cell death is not the same in plants and
animals (70). On the other hand, two additional dynamin-related proteins of another sub-
family, DRP1C and DRPLE, actively function in mitochondrial fission. The two proteins
show an identical speckled pattern, which is partially colocalized with mitochondria and
DRP3B. Moreover, mutants for DRP1C and DRPI1E show abnorma mitochondrial
elongation, which can be counterbalanced by over-expression of the wild-type proteins. In
summary these results suggest that these proteins are involved in mitochondrial fission (71).
Finally, a homologue of Fisl has recently been discovered in Arabidopsis thaliana. This
protein termed BIGYIN, shows the same structure than its yeast and human homologues and

isrequired for mitochondria fission (72).

Cyanidioschyzon merolae

The red aga Cyanidioschyzon merolae is a primitive eukaryote containing a single
chloroplast and a single rounded mitochondrion. The division of these two organelles is
highly coordinated. Interestingly the genome of C. merolae encodes a homologue of
Dnm1/Drpl, the mitochondrial fission factor in higher eukaryotes, as well as a homologue of
bacterial FtsZ, that was shown to be required for mitochondrial division is some lower
eukaryotes (73). In C. merolae mitochondrial division appearsto be organized in three distinct
phases. First FtsZ forms a ring in the matrix and determines the division site. Then the
mitochondrion-dividing ring, an electron-dense structure, constricts the mitochondrion and
finally Dnm1 severs the membranes (73). Interestingly mitochondrial division in C. merolae
is cell-cycle dependent, showing changes in the expression or localization of fission factors at
specific stages of the cycle. Moreover, microtubules were shown to be involved in
mitochondria segregation, but have no influence on the division itself (74), contrary to what is
observed in mammalian cells (58, 59). It is generally assumed that in higher eukaryotes
Dnm/Drpl has replaced FtsZ. The observation that Drpl severs only the OMM in C. elegans
(63) seems to confirm this hypothesis. However the fact that no FtsZ homologue is found in
C. elegans raised the question of how the IMM is divided.



Trypanosoma brucel

The parasitic protozoon Trypanosoma brucel is a nice model to study mitochondrial division
since, as C. merolae it contains a single mitochondrion only that has a network-like structure
(34). Interestingly, the genome of T. brucel encodes only a single dynamin. Functional
analysis of this dynamin constitutes part 2 of the result section of this thesis. Furthermore, a
preliminary analysis of the T. brucei Fisl homologue is presented in part 3 of the result
section.

3. Cdl Cyclein Trypanosoma brucei

A dividing cell undergoes a succession of well-organized and defined events known as the
cell cycle. This cycle consists of four different phases each playing a specific role. During the
first phase, termed G4, the cell grows until it reaches a specific size and prepares its DNA to
be replicated. Then the cell enters the S-phase, where its DNA is duplicated. The next phase,
termed G, consists of further cell growth and preparations for the cell division. These three
first phases form the interphase, which time-wise accounts for the main part of the cell cycle.
Then the cell enters in the nuclear division step, known as mitosis. According to the
condensation stage and position of the chromosomes, mitosis can be subdivided into four
stages. prophase (chromosomes condensation), metaphase (chromosomes binding to mitotic
spindle and alignment of them on the metaphase plate), anaphase (separation of the two sets
of chromosomes) and telophase (reformation of the nuclear envelope and DNA
decondensation). Finally, the cleavage furrow appears and the cell proceeds to cytokinesis, the
separation of the cytoplasmic compartments that ends in the formation of two daughter cells.

After division, the two cells are back in G1 phase and the cell cycleis completed (Fig 4) (76).

Fig. 4: Schematic representation of the
cell cyclein an animal cell. The
duration of mitosis in relation
to the other phases is
exaggerated in this diagram.
(http://www.biologycorner.com

/resources/cell cycle.jpq)
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The cell cycle must be finely regulated. Two major families of proteins are implicated in the
control of cell cycle progression: the cyclins and the cyclin-dependant kinases (CDKs). The
concentration of cyclins cyclicaly fluctuates during the cell cycle, whereas CDKs are present
in similar amounts throughout the cycle, but in different activation stages. Indeed, only the
binding of a specific cyclin to its corresponding kinase allows its activation and the
subsequent phosphorylations. These phosphorylations will then activate or inactivate target
proteinsin order to orchestrate coordinated entry into the next phase of the cell cycle (76).

Because misregulation of the cell cycle can have dramatic consequences, the cell developed a
molecular system of checkpoints. Thus cell cycle progression isinterrupted if anumber of key
events have not properly occurred or if the DNA has been damaged during replication. This
ensures that the cell only divides when it has completed all required steps to guarantee the
production of two healthy daughter cells. In the case the checkpoints do not function properly,

the division of the cellsis uncontrolled and this often results in cancer.

The cell cycle of Trypanosoma brucei shows some unique features that are discussed in the
following chapter. | will first describe the mechanisms of duplication of the different single
organelles in this unicellular organism. Then | will review the main factors that have been
implicated in the regulation of the cell cycle. Finally | will present non-cyclic proteins that are
known to influence the cell cycle progression in T. brucei.

a) Duplication of single-copy organellesin the procyclic T. brucei

The African parasitic protozoon Trypanosoma brucel possesses several organelles in single
copy, all of which have to be duplicated during the cell cycle. The mechanisms of division of
these organelles are not completely understood yet. In the next few paragraphs | will review

the main advances that have been made in recent years regarding these duplication processes.

Kinetoplast DNA

A very specific characteristic of Kinetoplastidae is their mitochondrial DNA. Whereas the
mitochondrial DNA is generally distributed all over the matrix, the mitochondrial genome of
Kinetoplastidae is contained in a discrete structure termed the kinetoplast, which is always
located in the region of the mitochondrion that is near the base of the flagellum. The



kinetoplast DNA, or kDNA, contains two types of circular DNA molecules termed
minicircles and maxicircles that form a highly concatenated network. Minicircles occur as a
heterogeneous population of about 10'000 molecules of 1kb in length and encode guide
RNAs that act in RNA editing. The maxicircle population consists of 50 homogenous copies.

They are approx. 22kb in size and encode mitochondrial proteins (77).

Because of the structural unity of the kinetoplast, the mitochondrial DNA does not divide
continuously asin other organisms, but shows a cycle of division that is similar to the nuclear
one. Thus, replication of mitochondrial DNA occurs only once at a precise time of the cell
cycle. Subsequently similar to the nuclei during mitosis the KDNASs segregate. Interestingly,
the duplication and segregation of nuclei and KDNA are coordinated, but do not
simultaneously. Replication of the mitochondrial DNA is always initiated before the nuclear S
phase, and separation of the kKDNA invariably occurs before mitosis (Fig. 5a) (78). Thus,
counting the numbers of kDNAs and nuclel on a Dapi-stained slide allows to define three cell
cycle stagesin T. brucei: one kinetoplast and one nucleus (1K1N) corresponds to the nuclear
G1-S phases; two kDNAs and one nucleus (2K1N) corresponds to the G, stage and two
kinetoplasts and two nuclei (2K2N) represents the mitotic and post-mitotic phases of the cell
cycle (Fig. 5b) (78).

SN AR L N A
2= S = D K

Fig. 5. Schematic representations of the cell cycle of Trypanosoma brucei. a) Durations of
nuclear (n) and kinetoplast DNA (k) replication cycles represented in a linear map,
bb = initiation of basal body duplication, pfr = initiation of paraflagellar rod
synthesis (78). b) Schematic draw of the three visual cell cycle stages.



A structure known as the tripartite attachment complex (TAC) links the kDNA and the basal
body (BB), which represents the base of the flagellum (77, 79). The TAC is composed of
three different elements: the exclusion zone filaments, which link the proximal end of the BB
to the adjacent OMM, the unilateral filaments, which are present only on the side of the
kDNA facing the basal body and that link the kinetoplast to the IMM, and the differentiated
mitochondrial membranes, showing linear profiles without cristae. The TAC duplicates
together with the basal bodies during the S phase of the kDNA (Fig. 6) (80). Thus the
segregation of the KDNA depends on the duplication of the BB and the flagellum.

Basal body, Flagellum and Flagellar Pocket

Wild-type G; cells have two basal bodies: a mature one at the base of the flagellum, and an
immature one, which has not yet formed its own flagellum. Progressing through the cell
cycle, the immature BB becomes mature and initiates the growth of a new flagellum. This
process is accompanied by the formation of two new immature basal bodies (Fig. 6) (81, 82).
Inhibition of BB segregation has been shown to block cytokinesis, confirming the essential
role of these structures for the cell cycle progression (83). Recent studies showed that
duplication of basal body is highly regulated. The conserved coiled-coil protein TOLRTP and
the NIMA-related kinase TONRKC, both components of the basal bodies, were shown to be

implicated in the separation of the basal bodies in antagonistic ways: TOLRTP suppresses BB
replication, whereas TONRK C promotesit (81, 84).

Basal bodies

Exclusion zone filaments

Differentiated
mitochondrial membranes
Unilateral filaments

Kinetoplast

Fig. 6: Schematic representation of the TAC complex and its replication in trypanosomes (80).

Once the basal bodies are duplicated, the new flagellum can start growing. As the new
flagellum elongates, its distal tip remains in constant contact with the old flagellum. This
tethering is mediated by the flagella connector, a discrete transmembrane junction that is
formed early during flagellar extension and removed at the end of cytokinesis (85, 86). The



flagellum is aso attached along the length of the cell body. A cytoskeletal structure, termed
the flagellar attachment zone (FAZ), is found in the cytoplasm adjacent to flagellum. Two
structures form the FAZ, a set of four microtubules and an electron-dense filament.
Interestingly the FAZ has been shown to determine the direction of cleavage and thus is
essential for cytokinesis (85). Thisis supported by the observation that ablation of the protein

FLAL, which is responsible for the attachment of the flagellum to the cell body, leads to a
cytokinesis defect, but has no influence on kDNA segregation (87).

The flagellum emerges from the flagellar pocket (FP) of the cell body. This portion of the
plasma membrane lacks the subpellicular microtubules, and therefore alows vesicular traffic.
Thus, endocytosis and exocytosis are restricted to this small fraction of the plasma membrane
(77, 82). Only when the flagellum exits the FP, the formation of the paraflagellar rod (PFR),
an extra-axonemal structure, is initiated.

Visualizing al these structural components, the cell cycle of T. brucei can be split in up to ten
different stages. Each of these stages is defined by a specific development stage of the basal
bodies, the KDNA, the flagellum, and the nucleus (88).

Golgi apparatus

The Golgi apparatus is an essential organelle of the eukaryotic secretory system, required for
the modification and sorting of newly synthesized proteins. Mammalian cells contain several
hundreds of Golgi structures, consisting of stacks of flattened cisternae. The multicopy nature
of the mammalian Golgi makes the study of its division difficult. Interestingly, Trypanosoma
brucei contains only a single Golgi stack. Recent studies showed that during cell division its
new Golgi isin principle formed de novo, but uses membrane components of the old one. The
trypanosome Golgi is closely linked to basal body and appearance of the new Golgi closely
follows BB duplication. Furthermore when basal bodies replication is disrupted, the Golgi
duplication also is also affected (89). A recently discovered bilobed structure was shown to
determine the site for the assembly of the new Golgi apparatus. The old Golgi is adjacent to
the anterior lobe, whereas the new one appears to be associated with the posterior lobe.
Finaly when the new Golgi grows and separates from the old one, this bilobed structure
duplicates too. Interestingly, one component of the bilobed structure is Centrin2. Centrins are
highly conserved Ca**-binding proteins present in centrosomes. In T. brucei the structure

homol ogous to the centrosomes are the basal bodies (90).



Mitochondrion

The second and third sections of the results reveal some aspects of the mechanism of division
of the single mitochondrion of Trypanosoma brucei. In part two of the results, we show that
mitochondrial division is essential for completion of cytokinesis, confirming the importance

of the division of the single-copy organelles for the cell cycle progression.

b) Regulation of cell cycle progression

The cell cycle is highly regulated to guarantee the formation of normal daughter cells. In
yeast, at least three checkpoints have been determined, that for the most part are conserved
through evolution. Thus DNA synthesisis only initiated if the DNA is not damaged. Another
checkpoint verifies that the mitotic spindle is correctly assembled before the initiation of
mitosis. Finally mitosis must correctly be completed before the initiation of cytokinesis.
Interestingly Trypanosoma brucei lacks some of these checkpoints. Treatment of T. brucei
with different antimicrotubule drugs leads to the formation of unviable cells with one
kinetoplast DNA but lacking nucleus (1KON). These cells, termed zoids, are the result of
continuing cytokinesis in the absence of mitosis (83). Conversely, defective cytokinesis leads
to accumulation of multinucleated cells, showing that mitosis can go on even if the cell is no
more able to divide. A very similar phenotype is observed when T. brucel is treated with

okadaic acid, a protein phosphatase inhibitor (91).

Cyclinsand CDKs

As described above, cell cycle progression is regulated through cyclins and CDKs. Eight
cyclins homologues (CY C2-9) have been identified in T. brucel (92). The PHO80-like cyclin
CYC2 isrequired for entry in S-phase (93, 94), whereas the B-type cyclin CYC6 is essential
for the G2/M transition (93, 95). Thus, inhibition of CYC2 leads to accumulation of 1K1N
cells (93, 94) and disruption of CYC6 results in zoid formation (95). Two other cyclins,
CYC4 and CYCS8, apparently involved in the initiation of S-phase and mitosis respectively,
are not essential but influence the growth rate. Their depletion slows down cell division and
shows partial G, arrest and an accumulation of zoids. Finally, disruption of CYC3, CY C5 and
CY C7 has no effect on growth or cell cycle progression (93). CY C9 has not been studied yet.



The genome of T. brucei furthermore encodes five CDKs homologues (CRK1-4 and CRK6).
CRK1 has been shown to control the G,/S phase transition, whereas CRK3 is involved in
G2/M transition. As expected CRK3 has been shown to bind CYC6 (96), but also interacts
with CYC2 (97). The other CRKSs play only minor roles in cell cycle regulation (96). Thus,
even when they are down-regulated in combination with CRK1 or CRK 3, they do not enhance
the phenotypes that ablation of CRK1 or CRK3 causes by themselves (98, 99). However the
double knock-down of CRK1 and CRK2 shows an additional phenotype. Some of the G,
arrested cells show multiple branched posterior ends that are not seen in the CRK1 knock
down aone. This suggests a potential role of CRK2 in the control of the growth of the

posterior microtubules (98).

Another interesting point is that disruption of CYC6 or CRK3 function revealed differences
between the cell cycle regulation of procyclic and bloodstream forms of T. brucei. In both life
cycle stages, the cyclin and the CDK regulate the G,/M phase transition, however unlike
procyclic cells the bloodstream forms are not able to enter cytokinesis if mitosis is blocked,
and thus do not form zoids (99). Analysis of a double knock-down of CRK1 and CRK2 shows
further differences between the cell cycle regulation of procyclic and bloodstream forms. In
both life cycle stages there is an accumulation of G; cells and about 50% of these cells are
incapable of DNA synthesis in the procyclic form. In bloodstream form DNA synthesis is not
affected (100). Thus the mechanisms of cell cycle regulation are not identical in the different
life cycle stages of T. brucel.

c) Other proteins implicated in cell cycle regulation

Additional proteins that are not related to cyclins or CDK's have been shown to play rolesin
controlling the cell cycle progression. These are often proteins implicated in posttranslational
modifications and gene silencing. Thus, these proteins generally act indirectly on the cell
cycle progression by controlling the activation or deactivation of cyclinsand CDKSs.

The ubiquitin-proteasome pathway is an example of cyclin-independent way of regulating cell
cycle progression. Ubiquitination of short-lived and misfolded proteins by different enzymes
targets them to proteasome for degradation. Indeed in Trypanosoma brucei, either depletion

of the anaphase-promoting complex also known as cyclosome (referred as APC/C), which is



involved in the ubiquitination pathway (101), and the inhibition of the proteasome subunits
(102, 103) leads to a G,/M arrest. This means that the ubiquitin{proteasome pathway is
required for entry in mitosis. Interestingly the consequences of disruption of the APC/C
subunits are different in procyclic and bloodstream forms. It results in an arrest in the
metaphase in procyclic forms, but in a block in late anaphase in the bloodstream stage (101).
A difference was also observed when the proteasome itself is disrupted, since unlike in
procyclic cells, in bloodstream forms this affects not only the G,/M transition, but also the
initiation of the S-phase, confirming that cell cycle regulation is different in the two to life

cycle stages (103).

In addition to CDKs, there are many other kinases that are involved in cell cycle regulation,
such as polo-like kinases (Plks). These enzymes are known in many different organisms to
control both mitosis and cytokinesis. In T. brucei, knock-down of the single Plk gene leads to
multinucleated cells, whereas its over-expression results in the formation of zoids. These
results suggest that in T. brucei Pk is required for the initiation of cytokinesis but not for the
control of mitosis (104). On the other hand, a T. brucel homologue of an aurora kinase
(TbAUKY1) isimplicated in both mitotic spindle formation and cytokinesis, since its depletion
leads to the accumulation of 2K1N cells (105). Furthermore, TbPK50, a functional
homologue of Orb6, a yeast kinase involved in cell morphology and cell cycle progression, is
present in T. brucei (106). Whereasiits direct implication in regulation of the cell cycle has not
been demonstrated yet, inhibition of MOBL1, a protein known to interact with TbPK50, leads
to a cytokinesis defect. In this case too, differences between procyclic and bloodstream forms
have been demonstrated (107). Finally, inhibition of a number of different kinases results in
unspecific aberrant kinetoplasts and nuclei configurations without clear accumulations at any
one cell cycle stages. Examples for these include a mitogen-activated protein kinase
(MAPK?2) (108) and a kinase related to MAPKs (TbECK1) (109). Possible explanations for
these phenotypes are that the signaling cascades activated by these proteins are required for
more than one checkpoint (108, 109).

Another way of regulating cell cycle progression is by gene silencing at the chromatin level.
Thus, inhibition of a trypanosomal histone deacetylase (DAC4), a protein family known to be
involved in heterochromatin formation, results in a delayed entry into mitosis, and a
subsequent partial accumulation of 2K1N cells (110). An even stronger effect is observed
when TbAGO1, an Argonaute protein required for RNA interference (RNAI), is ablated



(111). As for histone deacetylases, RNAI is implicated in heterochromatin formation. Thus,
an explanation for the observed phenotypes would be that since chromosomes are condensed
into heterochromatin at the centromere during prophase, deficiencies in this condensation, due
to either the lack of DAC activity or deficiencies in the RNAI pathway, leads to defective
chromosome segregation (110).

Finally, other proteins that are not kinases were shown to influence cell cycle progression. A
14-3-3 protein for example is required for cytokinesis, probably because its potential binding
partner, protein phosphatase 1 (PPl), might regulate the phosphorylation level of
microtubules. This in turn could influence interactions between microtubules and
microtubules binding proteins, resulting in an aberrant cytokinesis (112). The nuclear scaffold
protein TRACK1, the trypanosome homologue of the receptor for activated C-kinase 1
(RACK1), is aso required for cytokinesis. Interestingly, it is required for cytokinesis
initiation in bloodstream forms, whereas in procyclic form it is only required for completion
of cytokinesis (113). Finally, synthesis of the bloodstream-specific variant surface
glycoprotein (VSG) acts as a checkpoint for initiation of cytokinesis. Thus inhibition of VSG
synthesisleads to 2K2N accumulation and blocks any subsequent mitosis. These results show
that V SG-synthesis has to be coordinated with cell division (114).

Fig.7. Summary of the proteins implicated in the

regulation of the cell cycle progression in the Pdo-likekinase
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The protozoan Trypanosoma brucei has a single mitochondrion
and lacks an apoptotic machinery. Here we show that expression
of the proapoptotic protein Bax in T. brucei causes the release of
cytochrome ¢, the depolarization of the mitochondrial membrane
potential and mitochondrial fission. However, in contrast to
mammalian cells, the three events are temporally well separated.
The release of cytochrome ¢ from the intermembrane space
precedes mitochondrial fission, showing that it does not depend
on mitochondrial fragmentation. Furthermore, halting Bax
expression allows some cells to recover even after mitochondrial
fission, the last recorded event, went to completion, indicating
that all three Bax-induced events are, in principle, reversible.
Keywords: apoptosis; cytochrome ¢; membrane potential

EMBO reports (2004) 5, 268-273. doi1 0.1038/s].embor. 7400095

INTRODUCTION

The main compaonents of the apopotic death machinery include
the pro- and anti-apoptotic members of the Bcl-2 protein family
as well as caspases. Mitochondria are central players in apoptosis,
as activation of the caspase cascade is often initiated by the
release of cytochrome ¢ and other intermembrane space
components (Desagher & Martinou, 2000; Ferri & Kroemer,
2001; Newmeyer & Ferguson-Miller, 2003). In addition to
permeabilization of the outer membrane, a loss of the mem-
brane potential and, in some cases, changes in mitochondrial
morphology such as fission are observed (Desagher & Martinou,
2000; Frank et al, 2001; Karbowski et al, 2002). All effects are
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initiated by pro-apoptotic proteins such as Bax, which directly
interact with mitochondria. However, by which molecular
mechanisms they exert their effects and in which order is still
unclear.

Some forms of programmed cell death have been described in
the parasitic protozoan Trypanosoma brucei; however, they are
clearly different from the classical apoptosis observed in
mammalian cells (Welbum & Mumhy, 1998; Ameisen, 2002;
Debrabant et al, 2003). In agreement with this, a survey of the
available T. brucei genome did not reveal any homologues for
caspases or for members of the Bcl-2 protein family. Genes
encoding metacaspases, on the other hand, which show only a
limited similarity to bona fide caspases, were found. However, itis
unclear at present whether trypanosomal metacaspases have
protease activity and whether they have a role in programmed cell
death (Szallies et al, 2002). Interestingly, T. brucei, unlike any
other eukaryote, has a single continuous mitochondrion through-
out its life and cell cycle (Simpson & Kretzer, 1997; Tyler et al,
2001). Its genome is exclusively localized at a precise position
in the posterior region of the organelle. Thus, T. brucei provides an
excellent system to study the effects of pro-apoptotic proteins on
the single mitochondrion level in the absence of apoptotic death
effectors.

RESULTS AND DISCUSSION

Bax-induced effects on mitochondrial energy metabolism
To take advantage of its unique mitochondrial biology, we have
established a transgenic T. brucei cell line allowing tetracycline-
inducible expression of human Bax. Similar to yeast (Greenhalf
et al, 1996; Harris et al, 2000), expression of Bax inhibits growth
and will eventually kill the cells. Is the ohserved death of
physiological significance in that it mirrors the events in apoptotic
mammalian cells? To address this question, we have established a
trypanosomal cell line that, upon addition of tetracycline,
expresses not only Bax but also the Bax antagonist Bel-x,. Fig 1
shows that, similar to mammalian cells, Bclex expression
inactivates Bax. The growth rate of the Bax/Bcl-x -expressing cell
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complete release of cytachrome ¢ were able to recover fully in the
presence of caspase inhibitors (Martinou et al, 1999). Prolonged
expression of Bax (more than 24h; Figs 1 and 4A) will kill
trypanosomes even in the absence of death effectors. However,
the observed Bax-induced killing of T. brucei is most likely not of
apoptotic nature, but can be explained by the lack of oxidative
phosphorylation, a process essential for the survival of procyclic
T. brucei.

In summary, our work shows that expression of Bax in T. brucei
causes (i) the release of cytochrome ¢ and the loss of oxidative
phospharylation, (ii) the depolarization of the membrane potential
and a decline of the intracellular ATP concentration, and
{iii) mitochondrial fission. All three events are induced by
Bax alone and do not require other apoptotic factors. Further-
more, in contrast to mammalian systems in which the three
effects essentially occur simultaneously {Frank et al, 2001), they
can be temporally separated in T. brucei and are, in principle,
reversible.

METHODS

Bax-expressing and Bax/Bcl-x,-coexpressing cell lines. Bax-
expressing T. brucei cells were prepared as follows: a DNA
fragment derived from the cDMNA of the wild-type human Bax
mRNA was inserted into the trypanosomal expression plasmid
plew100, which carries a tetracycline-inducible procycline
promoter (Wirtz & Clayton, 1995; Wirtz et al, 1999). The
construct was transfected into the insectstage T. brucei strain
29-13, which expresses the tetracycline repressor. Transfection,
selection with phleomycine and cloning were performed as
described (Beverley & Clayton, 1993). Bax expression was
induced by the addition of tetracycline to 1 pg/ml. The Bax/Bcl-x-
coexpressing cells are based on the Bax-expressing cell line,
which was transfected with the Bcl-x -expressing plasmid. This
plasmid is identical to the Bax-expressing plasmid, except that it
contains the human Bel-x, cDNA as an insert and a puromycine
resistance gene for selection. To remove tetracycline, the cells
were reisolated and washed once in media without tetracycline
and then resuspended in the same volume of media.

Release of cytochrome c. Purification of mitochondria having an
intact outer membrane was carried out as described (Hauser et af,
1996). Mitochondrial and cytosolic protein extracts from unin-
duced cells and cells induced for Bax expression for 3 and 5h,
respectively, were resolved on 16% SD5-PAGE, blotted to nitro-
cellulose and probed with polyclonal rabbit antisera directed
against trypanosomal cytochrome c. The rabbit antiserum was
produced by Eurogentec using the peptides PPKERAALPPGDAVR
and QERADL IAYLETLKD as antigens.

ATP production assays. ATP production assays were carried out
as described {Allemann & Schneider, 2000; Bochud-Allemann &
Schneider, 2002), and a detailed analysis of the different ATP
production pathways in T. brucei and how they can be
distinguished has been published (Bochud-Allemann & Schneider,
2002). Oxidative phosphorylation was measured using either
succinate or glycerol-3-phosphate as substrate. Trypanosome-
specific  mitochondrial substrate level phosphorylation  was
measured in the presence of antimycine using a combination of
pyruvate and succinate as substrates. For all substrates, the
reactions were also performed in the presence of atractyloside, a
specific inhibitor of the ADP/ATP translocator. Atractyloside
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hlocks the import of ADP and is used to prove that the detected
ATP productions are mitochondrial.

To measure the total cellular ATP content, aliquots taken at the
indicated times and containing equal cell numbers were treated
with 0.01 U/pl of apyrase at 4°C for 5min and processed in the
same way as described above.

Immunoiluorescence. Immunfluorescence was performed  as
described (Sherwin et al, 1987). Fixation was carried out using
4% (wiv) of paraformaldehyde in 1 x phosphate-buffered saline
(PBS) for 10 min, and cells were permeabilized for 2 min using PBS
containing 2% (w/v) of Triton X-100. Expression and localization
of Bax were determined using 2 pg/ml of the monoclonal anti-
human Bax antibody 2D2 (MeoMarkers, Fremont, CA). To
visualize the mitochondrion, a 1:100 dilution of a polyclonal
anti-Hsp60 antiserum raised against the isolated yeast protein was
used.

Immunoblots. To detect Bax expression on immunoblots, we
used a 1:1,000 dilution of the polyclonal rabbit anti-human Bax
antiserum (BD Pharmingen) and the SuperSignal West Femto Max
Sensitivity Substrate from Pierce for detection.
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Summary

Mitochondrial fission is mediated by dynamin-like proteins
(DLPs). Trypanosoma brucei contains a single DLP, which
is the only member of the dynamin superfamily. We
have previously shown that expression of the human
proapoptotic Bax in T brucei  induces extensive
mitochondrial fragmentation. Here we report that Bax-
induced mitochondrial fission is abolished in cell lines
lacking functional DLP suggesting that the protein is
also required for mitochondrial division during the cell
cycle. Furthermore, DLP-ablated cells are deficient for
endocytosis and as a consequence accumulate enlarged
flagellar pockets. Thus, besides its expected role in
mitochondrial fission the trypanosomal DLP is required for
endocytosis, a function thought to be restricted to classical
dynamins. In agreement with its dual function, the DLP

localizes to both the mitochondrion and the flagellar
pocket, the site where endocytosis occurs. Unexpectedly,
ablation of DLF also causes an arrest of cytokinesis. The
fact that no multinucleation is observed in the arrested cells
argues for a precise cell-eyvele block. Furthermore, analysis
of a cdathrin-knockdown cell line suggests that the
eytokinesis arrest is not due to the endocytosis defect.
Thus, our results support a working model in which
mitochondrial fission triggers a checkpoint for cytokinesis.

Supplementary material available online at
httpedfjcs.biologists.orgfcgifcontent/full/ 1 197 14/2968/DC1

Key words: Trypanosomes, Mitochoendria, Endocytosis, Cell cycle

Introduction

Dynamin-like proteins (DLPs) are large modular GTPases
consisting of the GTPase, the middle and the GTPase effector
domains (Praefcke and McMahon, 2004). Together with the
classical dynamins they define the eukaryotic superfamily of
the dynamins. Classical dynamins in addition to the three
modules found in DLPs also contain a pleckstrin-homology
and a proline-rich domain. Whereas DLPs generally function
in the division of organelles, such as mitochondria (Otsuga et
al., 1998 Smirnova et al., 1998), chloroplasts (Gao et al., 2003
Mivagishima et al., 2003) and peroxisomes (Koch et al., 2003),
classical dynamins are required for the scission of a wide range
of wvesicles including clathrin-coated pits in the secretory
pathway (Hinshaw, 2000).

The genome of the parasitic protozoon Tryvpanosoma brucei,
unlike most other eukarvotes, encodes only two tandemly
linked, 97% identical DLPs (termed ThDLP), which are the
sole members of the dynamin superfamily in this organism
(Field and Carmrington, 2004. Morgan et al., 2004). The two
slightly different gene products are probably functionally
equivalent, because the few amino acids that differ between
them are spread over the entire length of the molecule and
represent for the most part conservative substitutions.

T brucei is ideally suited to study the mitochondrial-linked
function of dynamins because it has a single mitochondrion

{Tyler et al., 2001). Unlike the very dynamic mitochondria of
mammalian cells (Scott et al., 2003), the T. brucei
mitochondrion does not undergo any fission events throughout
the cell cycle. Only before or during cytokinesis does the
mitechondrion divide in two in order to allow its transmission
to the daughter cells (McKean, 2003). Thus, in T bruces
mitochondrial fission must be coordinated with the cell cycle.
Furthermore, T, brucei is also a good model to study the
putative roles ThbDLP might play in the secretory pathway.
Endocytosis and exocytosis in T brucei are known to be
restricted to a small flask-shaped mvagination of the plasma
membrane containing the base of the flagellum, termed the
flagellar pocket (FP) (Field and Carrington, 2004, Overath and
Engstler, 2004). Furthermore, all intracellular endosomal
compartments are found in a small region in the posterior part
of the cell between the FP and the nucleus.

Endocytosis and mitochondrial activity are conversely
regulated during the T brucei life cycle. Bloodstream forms in
the mammalian host show a ~tenfold higher endocytosis rate
than the insect procyclic form (Engstler et al., 2005). Oxidative
phosphorylation, on the other hand, is only essential in
procyclic forms, which are characterized by having a large
network-like single mitochondrion. The mitochendrion of
bloodstream forms is much smaller, tube-like and not involved
in ATP preduction (Schneider, 2001). In our work we were
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Lack of clathrin impairs endocytosis but not cytokinesis

The two key compoenents of the clathrin-mediated endocytosis
pathway are dynamin and clathrin. Thus, ablation of clathrin
is expected to mimic the endocytosis phenotype observed in
the ThDLP-ablated cell lines. In agreement with this, it has
been reported that RNAil-mediated depletion of clathrin heavy
chain (CLH) in procyclic T. brucei causes a growth arrest and
a block of endocytosis {Allen et al., 2003; Hung et al., 2004).
Exacytosis however was, except for the export of the FP-
localized receptor CRAM (Hung et al., 2004), not affected.
Thus, in order to test whether endocytosis deficiency can lead
to a cytokinesis arrest, we prepared a ThCLH-RNAI cell line.
As expected, these cells showed a growth arrest (Fig. 5A) and
a reduction of endocytosis (Fig. 3B) after induction of RNAI
However, unlike results described before, concomitant with the
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Fig. 5. Lack of TBCLH impairs endocytosis but not cytokinesis.
{A) Growth curve of the uninduced and induced ThCLH-RNAI cell
line. (B) Kinetics of appearance of enlarged FPs and loss of
endocytic activity during induction of TRCLH-RNAIL Analysis was
performed as in Fig. 2C. (C) Analysis of nuclei and kDNA
configurations of DAPI-stained cells during induction of ThCLH-
RMAI carried out as in Fig. 4A.

growth arrest and in line with the endocytosis defect, we
observed that up to 25% of the cells had an enlarged FP (Fig.
5B). Most importantly, even though the enlarged FP and the
deficient endocytosis are features also observed in the ThDLP-
RNA1 cell line, ablation of CLH at no time caused the
accumulation of 2K2N cells (Fig. 5C). Thus, the lack of
endocytosis or an enlarged FP cannot explain the cytokinesis
phenotype caused by the nactivation of ThDLP (Fig. 4A).

Discussion
Our results show that TbDLP is required for both
mitochondrial fission and — contrary to an earlier report
{(Morgan et al., 2004) — for endocytosis. At present we cannot
explain this discrepancy, but it is interesting to note that the
RNAI strategy that was used in our study was based on the
expression of a stem-loop RNA whereas in the previous study
{(Morgan et al., 2004) the two RNA strands were expressed
from a single DNA fragment using two opposing T7
promoters. With the stem-loop construct maximal depletion is
reached after 1-2 days (Fig. 1A), whereas in the RNAI cell lines
produced by Morgan et al. minimal ThbDLP levels are reached
after 3-4 days. Thus, some of the differences between the
results of two studies might be due to the different kinetics and
extent of ThDLP depletion. However, it is important to
emphasize that whereas the previous study was based on RNAi
only, we inactivated ThDLP by either RNAI or expression of
the dominant-negative ThDLP-K39A and obtained the same
phenotypes. Thus, our results show that clathrin-mediated
endocytosis, which generally requires a classical dynamin
{Hinshaw, 2000), can be mediated by a DLP suggesting that to
some extent classical dynamins and DLPs are functionally
interchangeable. Classical dynamins are essentially restricted
to metazoans whereas DLPs occur in all eukaryotes. This
suggests that DLPs are the most ancestral members of the
dynamin superfamily (Elde et al., 2005). T. brucei is one of the
earliest diverging eukaryotes with a bona fide mitochondrion
and its single DLP is required for mitochondrial fission and
endocytosis. The wunrelated parasitic protozoon Giardia
branches off the eukarvotic evolutionary tree even earlier, it
does not have mitochondria but contains mitochondrial
remnant organelles lacking DNA (Tovar et al., 2003), termed
mitosomes. Similar to trypanosomes Giardia contains a single
DLP. Recent experiments have shown that this protein is
required for endocytosis, but not for the division of mitosomes
{A.H., unpublished results). Thus, these results suggest that the
ancestral function of DLPs might have been in endocytosis.
TbDLP-ablated cells are also deficient in cytokinesis. Could
it be that ThDLP, besides its role in mitochondrial fission and
in endocytosis, has a third function and is directly involved in
cell division? We find this unlikely because high-resolution
confocal microscopy in dividing 2K2N cells failed to reveal
any colocalization of ThDLP with the cleavage furrow (e.g.
Fig. 3D and data not shown). Furthermore, it is known that the
controls of mitosis and cytokinesis are dissociated in procyclic
T. brucei and that the mitosis-to-cytokinesis checkpoint, which
is operational in mammalian cells, is absent (Das et al., 1994,
Kumar and Wang, 2006; LaCount et al., 2002; McKean, 2003;
Robinson et al., 1995). Inhibition of cytokinesis therefore
invariably causes the appearance of cells having multiple
nuclei {Das et al., 1994 LaCount et al., 2002). Inactivation of
TbDLE, however, leads to a precise cell-cycle arrest without
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appearance of multinucleated cells (Fig. 4A, supplementary
material Fig. S3A) providing a further argument against a
direct role of ThDLP in cytokinesis.

Analysis of CLH-ablated cells reproduced the same
endocytosis defect observed in cells devoid of functional
TBDLP but did not cause a cell-cycle phenotype (Fig. 5). This
indicates that the cytokinesis phenotype is linked to the defect
in mitochondrial fission. A trivial explanation for this would
be that the undivided mitochondrion blocks cytokinesis
mechanically. We find this unlikely because, in contrast to what
would be expected in this case, no central constriction caused
by the blocked cleavage furrow is observed in the NKKN cells
(Fig. 4C and supplementary material Fig. S3C, upper panel).
Moreover, as discussed above, mechanical blockage of
cytokinesis would almost certainly cause accumulation of
multinucleated cells (Das et al., 1994; LaCount et al., 2002).
This is not seen (Fig. 4A and supplementary material Fig
S53A). In fact our results are reminiscent of the block of
cytokinesis observed in a bloodstream T. brucei cell line
ablated for the variable surface glycoprotein (VS5G) (Sheader
et al., 2005), becanse multinucleated cells did not accumulate
in this case either. It has been suggested, that the observed pre-
cytokinesis arrest in this cell line is due to a cell-cycle
checkpoint, the function of which would be to coordinate V5G
synthesis with cell division (Sheader et al., 2005). Thus,
analogous to this interpretation, we propose a model in which
inhibition of mitochondrial fission by inactivation of ThDLP
prevents completion of cytokinesis by triggering a cell-cycle
checkpoint. We think that such a model makes biological sense
because the mitochondrial genome of T, brucei is of a one-unit
nature and because cytokinesis is uncoupled from mitosis
{Kumar and Wang, 2006, McKean, 2003; Ploubidou et al.,
1999; Robinson et al., 1995). This strongly suggests that novel
cell-cycle checkpoints are indeed required. Recent work
provides evidence that one of these might be linked to the
segregation of the replicated kDNAs (McKean, 2003;
Ploubidou et al., 1999). In our medel we propose that
mitochondrial fission may serve as a checkpoint acting further
downstream whose function would be to prevent the
production of daughter cells lacking a kDNA or a
mitochondrion altogether.

A cell line ablated for Fisl, a protein uniquely involved in
mitochondrial fission which acts in concert with DLP (Scott et
al., 2003), would in principle be an excellent tool to confirm
our results. We did indeed find a putative Fisl orthologue in
the T. brucei genomic database. However unfortunately, owing
to inefficient RNAI, ablation of the trypanosomal Fisl was not
possible.

Our work shows that in T, brucei, TbDLP function links
mitochondrial fission, endocytosis and cytokinesis. We believe
that the most parsimonious explanation for these results is the
existence of a checkpoint for the completion of eytokinesis that
monitors mitochondrial fission. However, since alternative
explanations cannot entirely be excluded, this must remain a
working model at present. Interestingly, some connections of
DLPs with cell-cyele progression have been described in other
systems. In Dictyostelium discoidewm a null mutant of an
unconventional DLP (DymA) shows pleiotropic defects, one
of which concerns the completion of cytokinesis (Wienke et
al., 1999), However, unlike in T. brucer, the observed
cytokinesis arrest was accompanied by the appearance of

multinucleated cells and therefore i1s mconsistent with a
specific cell-cycle arrest. RNAi-mediated ablation of the DLP
homologue of Caenorhabditis elegans, on the other hand,
causes embryonic lethality (Labrousse et al., 1999), a result
that would be consistent with a mitochondrial segregation
defect.

Materials and Methods

Production of transgenic cell lines

TEDLP-ENAI was performed using a stem-loop construct containing the
puromycin-resisitant gene as described (Bochud- Allemann and Schneider, 2002),
A 502 bp fragment of the ThDLP gene corresponding to micleotides 1251-1753
was used as an insert. To produce the Bax/ThDLP-ENAI cell line the previously
described Bax-expressing cells (Crausaz-Esseiva et al, 2004) selected using
phleomycin were transfected with the ThbDLP-ENAI plasmid and transfectants
were then selected using puromycin and phlecmycin. Inducible overaxpression of
wild-type ThDLF and ThDLP-E39A (where Lys39 was replaced with Ala) was
based on the same plasmids used for RMNAQ. The inducible ThCLH-ENAI cell line
was produced by using the construct described by Engstler et al. (Engstler et al.,
2005). To produce epitope-tagped variants of ThbDLP the recently described
one-step PCR-based strategy was used (Shen et al., 2001). Cells were grown
in SDM-79 supplemented with 5% (for the 427 strain, vsed for epitope
tagging) or 153% FCS (for 29-13 strain, used for RNAI and overexpression of
proteins) and the required antibiotic(s). Transfection, selection with antibiotics,
cloning and induction with tetracycline were done as described (MeCulloch et al.,
2004).

Endocytosis assays

The FPs were analyzed by fluorescence microscopy by labeling with 10 mg'ml
Fluoresczin-conjugated tomato lectin (Vector Laboratories) (Fig. 2A. Fig. 3B, Fig.
4C and supplementary material Fig. S2A, Fig. S3C). Altermatively, FPs were also
visualized by labeling of surface proteins nsing 1 mM AMCA-sulfo-NHS (Pierce)
(Fig. 2C, Fig. 5B and supplementary material Fig. S2B) and incubation for 10
minutes at 0°C followed by 30 minutes at 27°C, Subsequently, after a washing step
and fixation of the cells in 4% paraformaldehyide, the FPs were visualized by AMCA
fAuorescence. It was previously shown that fuorescence of the internalized AMCA-
labeled proteins is quantitatively quenched, thus AMCA fluorescence salectively
detects labeled proteins on the cell surface and in the FP (Engstler et al., 2004),
Enlarged FPs were automatically scored using a series of scripted digital image
segmentation steps. This allowed us o determine the fraction of cells at the indicated
time points having at least one enlarged FP (Fig. 2C. black curves and
supplementary material Fig. S2B, black curves).

To measure endocytosis, surface proteins were labelad with AMCA-sulfo-NHS
and incubated as decribed above. Subsequently, AMCA-labeled surface proteins
and AMCA-labeled internalized proteins were detected in fixed and permeabilized
cells using a rabbit anti-AMCA antibody and an Alexa Fluor 594-conjugated
secondary antibody. Cells having internalized AMCA were scored and for each
time point the fraction of the total cellular population showing internalized AMCA
fAuorescence was determined (Fig. 2C. grev curve and supple mentary material Fig.
S1B, grey curve). Alternatively, endocyiosis was measured in living cells by
assaying the uptake of the fluorescent membrane dye FMI-43FX (Molecular
Probes). AMCA-labeled cells were incubated in the presence of the Auorescent
probe for 30 minutes at 27°C, washed with ice-cold PBS and fixed with 4%
paraformaldehyde and 0.5% glutaraldehyde. The washing step removes the dye
from the plasma membrane and the FP, whereas endocytosed FMI-43FX is
retained in endosomal membranes and can be fixed. Two-channel fluorescence
microscopy allows the simultaneous scoring for normal or enlarged FPs and
internalized FM1-43FX in single cells.

Immunoflucrescence and confocal microscopy

Immunoflucrescence was performed as described (Sherwin et al., 1987). Fixation
was done using 4% (wiv) paraformaldehyde in PBS for 10 minutes and cells wara
permeabilized for 2 minutes using PBS containing 2% (wiv) Triton X-100.
Mitochondrial morphology was assessed by a 1:200 dilution of a polyclonal rabbit
anti-F1-ATPase  antiserom  (gift from D. Speijer, AMC, Amsterdam, The
Metherlands) raised against the isolated mitochondrial ATPase of Crithidia
Jasciculara (Fig. 1 and supplementary material Fig. 51) or with 1:1000 dilution of
a mouse polyclonal anti-Hsp6i antiserum, raised against recombinantly expressed
T brucei Hspal fused to glothathione S-transferase (Fig. 3A. Fig. 4B and
supplementary material Fig. 53). Cells were washed with PBS betwesn incubations,
and embedded with Vectashield (Vector Labs, Emeryville, CA) supplemented with
the DNA-imtercalating agent DAFI for detection of nuclear DNA. Fluorescence
analysis (Fig. 3, Fig. 4B and supplementary material Fig. 52B) was performed on
a Leica SP2 AOBS confocal laser-scanning microscope (Leica Microsystems,
Wetzlar, Germany) using a HCX PL APO (63 F1.2 Glye Corr) objective and the
appropriate laser and photo multiplier settings. Image stacks of 512x512 pixels
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were collected using twofold oversampling and further processed using the Leica
software, the Huygens Essential deconvolution package (Scientific Volume
Imaging, Hilversum, The Metherlands) or Imaris (Bitplane, Zurich, Switzerland).
Thresholds for iscsurface analysis were calculated automatically and adapted to
specific structures manually based on the volome image.
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SUPPLEMENTAL MATERIAL

FIGURE LEGENDS

Supplemental Fig. 1. Expression of the dominant negative TbDLP (TbDLP-K39A) inhibits
Bax-induced mitochondrial fission. (A) Growth curve of a T. brucei cell line alowing
inducible overexpression of TbDLP. Right panel: Immunofluorescence asin Fig. 1. (B), Same
as (A), but data are for aT. brucel cell line alowing inducible expression of ThDLP-K39A.
(C), Same as (A) and (B), but data are for a cell line allowing inducible expression of Bax and
TbDLP-K39A at the same time. Expression of Bax was verified by immunoblot. The growth
curve for the Bax expressing cell line, same asin Fig. 1(B), is shown in grey for comparison.

Standard errors (n= 3-7) are indicated. Bar = 25 um.

Supplemental Fig. 2. Expression of the dominant TbDLP-K39A inhibits endocytosis. (A)
Overexpression of ThDLP-K39A resultsin enlarged FPs. FP in living cells were visualized by
fluorescein-conjugated tomato lectin (TLect). Nomarski (Nom) images and the merged
pictures of the tomato lectin and the DAPI-staining of uninduced (0 h) and induced cells (14
h) are shown. Bars =5 um. (B) Kinetic of appearance of enlarged FPs and loss of endocytic
activity after induction of TODLP-K39A expression. Visualization of the FP in uninduced and
induced cells was done by AMCA sulfo-NHS labeling of surface proteins as described
(Engstler et al., 2004). Enlarged flagellar pockets in uninduced (-Tet, white diamonds) and
induced (+Tet, black diamonds) TbDLP-K39A expressing cells were automatically detected
using a series of scripted digital image segmentation steps. Total endocytic activity was
measured in the same culture by quantifying the internalized AMCA -labeled surface proteins
(+Tet, grey symbols). All values were normalized to the corresponding total cell numbers (n >
300 cells) and expressed relative to the one of the corresponding uninduced cultures. Single
cell analysis showed that 89.8+6.2% of cells having an enlarged FP were defective in

endocytosis, while 87.4+7.6%o0f cells with anormal FP showed normal endocytic activity.

Supplemental Fig. 3. Expression of the dominant TbDLP-K39A leads to a specific arrest of
cytokinesis. (A) Anaysis of nuclei and kDNA configurations of DAPI-stained cells during
induction of TbDLP-K39A expression. The graph indicates the percentages of cells
containing the indicated numbers of nuclel and kDNAs (1K1N, 2K1N, 2K2N and others; n
>1000 cells). Percentages of NKKN-cells, a subgroup of 2K2N cells where the two kKDNAs



are localized between the two nuclei, are also indicated. (B) NKKN-cells have a single
mitochondrion. 3D-reconstruction from optical sections obtained by confocal microscopy of
an anti-Hsp60 (green) and DAPI co-stained (blue) NKKN-cell from the TbDLP-K39A
expressing cell line. (C) NKKN-cells have enlarged FPs. Visualization of the FPs was done as

inFig. 2A. Bars= 2.5 um.

Engstler, M., Thilo, L., Weise, F., Grunfelder, C. G., Schwarz, H., Boshart, M. and
Overath, P. (2004). Kinetics of endocytosis and recycling of the GPl-anchored variant
surface glycoprotein in Trypanosoma brucei. J. Cell Sci. 117, 1105-1115.
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Abstract

Two proteins of the mitochondrial fisson machinery have been conserved throughout
evolution: the dynamin-related protein (termed Drpl, Dnml or DLP depending on the
species) and Fisl, an integral membrane protein of the outer mitochondrial membrane. We
have previously characterized the DLP of the parasitic protozoon Trypanosoma brucel (11).
In this study we identified the Fisl homologue, termed TbFisl, of T. brucei. However, we
were not able to determine the intracellular localization of the protein. Furthermore over-
expression of TbFisl as well as disruption of both alleles of the TbFisl gene did not give an
obvious phenotype, neither on growth nor on mitochondrial morphology. These results
suggest that the function of Fisl, and more generally the mechanism of regulation of the

mitochondrial fission, may differ in Trypanosoma brucei when compared to other eukaryotes.



I ntroduction

Mitochondria play important roles in the cellular metabolism, ATP production and apoptosis
(). They are dynamic organelles, undergoing frequent fission and fusion events. The number
and shape of mitochondria are maintained by an equilibrium between fission and fusion
reactions. Thus, changes in the balance of these two processes lead either to excessive fusion,
which forms net-like mitochondria, or to excessive fission resulting in a large number of
small mitochondria (1, 2). Such morphological variations are important to adapt
mitochondrial functions to the needs of the cell. Moreover, since mitochondria cannot be
formed de novo, fission is essential to form new organelles that can be distributed to the two
daughter cells (1).

In yeast, the mitochondrial fission machinery consists of at least three different proteins. The
main factor is Dnml (known as Drpl in mammals), a large GTPase belonging to the
subfamily of the dynamin-like proteins (2-4). The dynamin superfamily includes both
classical dynamins, that are for example required for membrane scission of clathrin-coated
vesicles during endocytosis, and the dynamin-like proteins, involved in division of organelles
such as mitochondria and chloroplasts (5). Dnml, responsible for mitochondrial fission, is
mainly cytosolic but can translocate to fission sites of the outer mitochondrial membrane (2,
4). The other known components of the mitochondrial fission machinery mediate the targeting
of Dnml to the precise sites where fission has to occur (1, 2). The most important of these
appears to be Fisl (2, 6). Fisl forms a complex with Mdvl, a WD40 protein that acts as an
adaptator which binds both Fisl and Dnml (7). Interestingly, only Dnml and Fisl have

homologues in other organisms, whereas Mdv1 seems to be restricted to yeast (1).

The parasitic protozoon Trypanosoma brucei has a single mitochondrion only (9), and thus is
ideally suited to study the mechanisms of mitochondrial fission. Moreover, contrary to other
organisms, the mitochondrion of T. brucel does not undergo any fission or fusion events
throughout the cell cycle. The only fission event occurs prior to or during cytokinesis to allow
transmission of one complete mitochondrion to each daughter cell (10). The homologue of
Dnml, termed TbDLP, has been aready studied in T. brucei (11, 12). Interestingly, this
protein was not only shown to be required for mitochondrial fission, but is also involved in
endocytosis, a function generally attributed to classical dynamins, that are absent in T. brucei.

Furthermore, it was shown that TbhDLP-dependent mitochondrial fission is required for



completion of cytokinesis, suggesting that mitochondrial fission might be a checkpoint for
cell division (11).

In the present work, we identified the putative Fisl homologue in Trypanosoma brucel.
Interestingly gene knock-out studies showed that TbFisl may act in mitochondrial fissionin a
quite different way than its homologues in other organisms.



Material and Methods

Cells

Procyclic T. brucei cells were cultured at 27°C in SDM-79 supplemented with 5% or 15% of
FCS, for the wild-type 427 and the inducible 29-13 strains respectively (13), and the required
antibiotics. The medium lacking glucose (SDM-80) was prepared as described (14), and
supplemented with 15% dialyzed FCS and the required antibiotics.

Production of transgenic cell lines

To localize ThFisl, we replaced one TbFisl allele in the wild-type 427 strain using the
recently described one-step PCR (15). A PCR fragment containing the genes for resistance to
blasticidin, the intergenic region, a promoter and one copy of the hemagglutinin tag was
integrated at the 5 -end of the TbFisl using 70bp-long primers. Epitope tagging was also
performed using a 10 amino acids (EVHTNQDPLD) epitope of the structural yeast protein
Ty1, which is recognized by the monoclonal antibody BB2 (16). Sequences of the full-length
TbFisl only (for over-expression) or including this Ty1 tag at the N-terminus of the gene (for
localization) were cloned in a derivative of pLew100 containing the puromycin resistance
genein order to allow tetracycline inducible expression (13).

RNAI of TbFisl was done in a stem-loop plasmid containing the puromycin resistance gene
(17). A 473bp fragment corresponding to nucleotides 169 to 641 was used as insert. For gene
knock-out, 500bp of the 5 UTR and 280bp of the 3 UTR TbFisl gene were inserted each at
one end of aresistance gene (phleomycin or puromycin) in aderivative of pBluescript |1 KS+.
Linearization was done using Xhol and BamHI endogenous restrictions sites.

To produce the Bax/TbFisl-KO strain, we transfected TbFis1l-KO cells with the previously
described plasmid for expression of the human Bax protein (18), where phleomycin resistance
was changed in blasticidin resistance.

Transfection, selection with antibiotics, cloning and induction with tetracycline were done as
described (19).

I mmunofluorescence

Immunofluorescence was done as described (20). Cells were fixed for 10 minutes with 4%
(w/v) paraformaldehyde in PBS 1x and permeabilized for 2 minutes with 2% (w/v) NP-40 in
PBS 1x. Mitochondria were stained using anti-F1-ATPase antiserum (gift from D. Speijer,
AMC, Amsterdam, The Netherlands) raised against the isolated mitochondrial ATPase of



Crithidia fasciculate (dilution 1:200). Cells were washed with PBS 1x between incubations
and embedded with Vectashield (Vector Labs, Emeryville, CA) supplemented with the DNA-
intercalating agent DAPI for detection of DNA.

Southern blot

Genomic DNA was extracted as described previously (21). Five micrograms of DNA were
digested with Hincll and separated on 0.8% agarose gel. Southern Blot analysis was
performed using standard procedure (22). Detection was done using radiolabeled fragment of
the 5’ UTR of TbFisl (500bp).



Results and Discussion

I dentification of Fisl homologuein Trypanosoma brucei

To identify the Fisl homologue of T. brucei, we performed a BLAST anaysis against the
trypanosome genomic database of the Wellcome Trust Sanger Institute using the human hFisl as
template. This search identified the ORF Tb10.6k15.1880 as putative Fisl homologue. This ORF of
726bp encodes a 241 amino acids polypeptide with a predicted molecular mass of 26.8kDa. The
protein shows an overall identity of ~14% and a homology of ~41% with the human hFisl. The
highest similarity was found in the C-terminal part of the protein (~24% identity and ~73%
homology). This part of the protein shows structural features common to all Fisl homologues such as
tetratrico-peptide repeat (TPR) motif fold (23, 24) and a single transmembrane domain at the extreme
C-+terminal end of the protein. Whereas the human and yeast Fisl proteins contain two TPR domains
each, the trypanosoma protein encodes only a single one. The TPR domains of the yeast and the
human Fisl form a concave hydrophobic surface which alows binding to other proteins including
Dnm1 homologue (23). Furthermore, the transmembrane domain was shown to be essential for the
mitochondrial localization of Fisl (25).

In comparison to the other Fisl homologues, the trypanosomal protein contains two insertions. A
small N-terminal one and an about 70 amino acids long in the central part of the protein. These
insertions explain the low degree of similarity with Fisl homologues of other specise (Fig.1). However
screening different genomes with the trypanosomal protein generally results in best matches to Fisl
homologues. Based on this we concluded that the gene Tb10.6k15.1880 indeed encodes the

trypanosomal Fisl protein.

Attemptsto localize TbFisl

The localization of the yeast and human proteins revealed that Fisl is evenly distributed on
the outer mitochondrial membrane (6, 25), with the N-terminus exposed to cytoplasm (25).
Thus we wanted to determine whether TbFisl shows the same intracellular localization.
However neither N-terminal addition of a hemagglutinin tag in the correct genome context of
TbFisl nor ectopic over-expression of the full-length protein containing a N-terminal Tyl tag
resulted in a detectable signal by immunofluorescence or western blots (not shown).

A possible explanation for the absence of a detectable signal when the tagged TbFisl is
expressed under the control of the endogenous promoter could be that only very little protein

is present in the cell or that the protein might only be expressed at a specific point during the



cell cycle (10). This idea is consistent with the fact that only a weak signal is detected for
TbDLP even though this protein is known to form homo-oligomers to promote fission (4, 11,
26), whereas Fisl does not interact with itself (1, 2), and thus is less concentrated than
TbDLP. Furthermore, adso in human cells, the endogenous hFisl was not detectable by
antibody it was suggested that it is a consequence of the low level of protein in the cell (27).
However, this cannot explain the absence of signal when the epitope tagged TbFisl is over-
expressed. But it could be in this case that the over-expression affects the function, the
localization or the stability of the protein (15).

Over-expression of TbFisl does not affect mitochondrial morphology

Dnm1/Drpl-targeting on mitochondria depends on Fisl (6, 27). Thus an important function of
Fisl consists in limiting mitochondrial fission. Indeed over-expression of hFisl in mammalian
cells results in excessive mitochondrial fission leading ultimately to apoptosis (25). In yeast
on the other hand, Fisl over-expression promotes mitochondrial fusion. An explanation for
these contradictory results could be that in yeast Fisl has a secondary function and limits
fission by blocking an irreversible step mediated by Dnml (28). Thus, even if the exact
mechanisms to control fission are not identical, the mammalian and yeast Fisl homologues
both appear to play important roles in limiting the Dnm1/Drpl-dependent mitochondrial

fission.

Thus, we expected to see a mitochondrial phenotype when TbFisl is over-expressed in T.
brucei. However we did not observed any significant change in growth, mitochondrial
morphology or cell cycle progression (Fig. 2). Thus, the role if any TbFisl plays in

mitochondrial fission in T. brucei remains to be investigated.

TbFisl is not essential for growth

Fisl disruption in both yeast and mammalian cells results in extensive mitochondria fusion
leading to decrease in the number of mitochondria and a concomitant increase in the size of
the organelles (6, 25, 27). InT. brucei, we expected that the absence of Fisl would mimic the
mitochondrial phenotypes observed when TbDLP is depleted, meaning growth arrest,
inhibition of mitochondrial fission and accumulation of cellsin the last cell cycle stage before
completion of cytokinesis (11). Inhibition of gene function by RNA interference (RNAI) has
been well developed in T. brucei (29). However in the case of TbFisl this method was not
successful (data not shown).



As an alternative to RNAI we decided to knock-out the gene coding for TbFisl. In order to do
so, we consecutively replaced the two alleles of endogenous TbFisl by the two resistance
genes phleomycin and puromycin respectively. The insertions of the resistance genes into
both alleles were monitored by Southern blots (Fig. 3A). Since we were able to obtain a strain
that lacks both ThFisl aleles (TbFisl-KO), we concluded that TbFisl is not essential for T.
brucei norma growth. Moreover, depletion of TbFisl seems also not to affect the
morphology of the mitochondrion (not shown). Thisis surprising, since in all other organisms

depletion of Fisl strongly affects mitochondrial morphology (6, 27, 30).

ATP production in the procyclic T. brucei depends mainly of two mitochondrial pathways:
oxidative phosphorylation and substrate level phosphorylation. This last one occurs in the
ASCT cycle, and depends on glucose (17). Thus when glucose is missing, ATP can only be
produced through oxidative phosphorylation, which requires components that are mainly
encoded on the mitochondrial genome. Therefore, if T. brucei cells grow in a medium without
glucose, their survival depends to 100% on efficient oxidative phosphorylation (14).
However, when cells lacking TbFisl were tested on this medium, they grew as well as wild
type cells, suggesting that Fisl is not required to maintain oxidative phosphorylation (Fig.
3B).

TbFisl isnot involved in Bax-induced mitochondrial fragmentation

Mitochondrial fission proteins are known to play important roles in the mammalian cell death
pathway (31, 32). During apoptosis, mitochondria are invariably fragmented in a Dnm1/Drpl-
dependent manner (31). Fisl has been shown to play an essential role in the regulation of
apoptosis, acting upstream of Drpl/Dnml. Thus, hFisl unlike Drpl is required for Bax
tranglocation to mitochondria (32). However, its function seems to be different in mammals
and yeast: Fisl depletion strongly inhibits apoptosis in mammalian cells (32), whereas
disruption of its homologue in yeast enhances programmed cell death and promotes

mitochondrial fusion (28).

In T. brucel, we have shown that ectopic expression of the human Bax protein induces
mitochondrial fragmentation and consecutive cell death (18), and that TbDLP is required for
this process (11). Thus to know whether TbFisl is also implicated in these Bax-induced
events, we expressed the human Bax protein in TbFisl-KO cells and monitored growth and

mitochondrial fragmentation after induction of Bax expression. Surprisingly we observed that



Bax-induced cell death is maintained even when no TbFisl is present in the cells (Fig. 3C,
3D).

Function of TbFisl in Trypanosoma brucei

The results presented here are not consistent with the function of Fisl described in other
organisms. Indeed, neither over-expression nor removal of TbFisl affects mitochondrial
morphology in T. brucel. Thisis different to all other organisms where Fisl homologues were
studied (6, 25, 27, 30). Moreover, disruption of the TbFisl gene did not result in the same
phenotypes that are observed in cells lacking TbDLP (11), even though two proteins are

known to interact (either directly or indirectly) and act in the same pathway (7, 27).

The protozoon T. brucel is one of the earliest diverging eukaryotes with a bona fide
mitochondrion. Thus the mechanism of regulation of mitochondria fission could be different
from the one in higher organisms. Interestingly, none of the conserved components of the
mitochondrial fusion machinery has been found in the genome of T. brucei (not shown).
Therefore, the assumption that mitochondrial morphology is the result of balanced fission and
fusion events might not be valid in T. brucei and the regulation of mitochondrial morphology

in trypanosomes might be determined in adifferent way.

In higher organisms, Dnm1/Drpl acts strictly in mitochondrial fission. The protein is mainly
localized in the cytosol and is targeted to mitochondria in a Fisl-dependent manner (1, 2).
However, the Dnm1 homologue in T. brucel, TbDLP, is also involved in endocytosis (11).
Thus, due to its two specific functions and consequently two different intracellular
localizations, the mechanism of targeting of TbDLP must be more complex than in other
organisms. One possibility would be that TbDLP itself contains a mitochondrial targeting
sequence, and thus that Fisl plays only a minor role in the recruitment of TbDLP to

mitochondria.

Furthermore also the structure of the trypanosomal TbFisl shows some differences to its
counterparts in other organisms. Fisl proteins normally contain two TPR motifs forming a
concave hydrophobic surface required for interactions with other proteins (23, 24). However
TbFisl has only asingle TPR domain and has along additional insert in the middle part of the
protein (Fig. 1). Thusit is possible that these two features could alter the function of ThFisl.



On the other hand, it could also be that TbFisl is not the true homologue of Fisl. In this case

the function of Fisl may have been taken over by a completely different unknown protein.

Thus we can conclude that Trypanosoma brucei is an excellent model to study the regulation
of mitochondrial division, showing some interesting variations when compared with other

eukaryotes.



Figurelegends

Fig. 1. Identification of the Fisl homologue in T. brucei. A) Amino acids alignment of Fisl
homologues of T. brucel, H. sapiens, S cerevisiae and C. elegans The sequences were
aligned using the CLUSTALW program with default parameters. Strictly conserved residues
and conservative replacements are shown in black and grey boxes, respectively. TPR-like and
transmembrane domains of TbFisl are underlined in black and grey, respectively. B)
Phylogenic tree based on a multiple alignment of Fisl homologues of T. brucel, A. thaliana,
S cerevisiae, C. elegans, M. musculus, H. sapiens and B. taurus. The tree was constructed by
using the program TREEVIEW, which is available on:

http://taxonomy.zoology.gla.ac.uk/rod/treeview.html .

Fig. 2: Over-expression of ThFisl shows no effect on growth, mitochondrial morphology and
cell cycle progression. A) Growth curve in the presence and the absence of tetracycline of a
strain over-expressing TbFisl. B) Immunofluorescence of cells over-expressing TbFisl
before (Oh) and after 20h of induction, using an inner mitochondrial membrane-specific F1
ATPase antiserum (green), merged with DAPI staining (blue). Upper panel: Nomarski picture
of the stained cells. C) Analysis of KDNA and Nuclei configurations of DAPI-stained cells
before and after 20h of induction of TbFisl over-expression. The graph indicates percentages
of cells containing the indicated numbers of kKDNAs and nuclei (1K1N, 2K1N and 2K2N). n >
150 cdlls.

Fig. 3: TbFisl is not essential for norma growth or maintenance of mitochondrial
morphology. A) Depletion of the two alleles of TbFisl in ThFisl Knock-out (ThbFis1l-KO) cell
line was confirmed by Southern Blot. Isolated DNAs of 29-13, TbFisl-KO 1% alele and
TbFisl-KO 2™ allele strains were digested with Hincll and recognized by the 5 UTR of
TbFisl. Digestion of wild-type alele results in 4000bp fragment, whereas replacement of
TbFisl by phleomycin/puromycin resistance genes results respectively in 3200/3300bp
fragments. The upper band in 2" alele KO corresponds probably to undigested DNA. 2-Log
was used as DNA marker. B) Growth curve of TbFisl-KO strain in presence or in absence of
glucose (red curve). Growth of 29-13 cell line was used as control (black curve). C) Growth
curves in presence and in absence of tetracycline of the strains allowing inducible expression
of human Bax in 29-13 (black curve) (18), and in TbFisl-KO background (red curve). D)
Mitochondrial fragmentation in cells expressing Bax in 29-13 and in TbFis1-KO background.


http://taxonomy.zoology.gla.ac.uk/rod/treeview.html

The graph indicates the percentage of cells with fragmented mitochondria in uninduced cells
and after 8h of induction. n = 150-250.
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Abstract

The mitochondrial genome of the parasitic protozoon Trypanosoma brucei is found in a
discrete structure termed the kinetoplast (or kDNA). Because of its one unit characteristic,
KDNA duplication and segregation is highly regulated. During the cell cycle of T. brucei, the
position of the kDNA is dynamic. Furthermore the KDNA also occupies distinct positions in
the cell depending on the life cycle stage of T. brucei. All these changes of the KDNA position
are known to be microtubule-mediated. In this study we show that TbMiX, a trypanosomatid-
specific protein that is evenly distributed on the outer mitochondrial membrane, is required
for the correct positioning of the KDNA in procyclic T. brucei. Moreover, we show that
misplacement of the kDNA does not affect cytokinesis. Finally, we present evidence that
TbMiX links the mitochondrion to the subpellicular microtubul e cytoskel eton, suggesting that
the cytoskeleton plays an important role in determining the position of the KDNA.



I ntroduction

The parasitic protozoon Trypanosoma brucei is responsible for transmission of the Nagana
disease in cattle and human sleeping sickness in Africa. This devastating disease affects >0.5
million people of which 70°000 die each year (1). T. bruce is transmitted between
mammalian hosts by Glossina, known as the tsetse fly. During its life cycle, the parasite
shows different morphological forms. In the bloodstream of the mammalian hosts, they are
elongated and actively proliferate. This stage is referred to as the long slender form. Then cell
density increases and the long slender form differentiates into the non-dividing stumpy form.
When transmitted to the fly, trypanosomes initially establish a midgut infection and
differentiate to the proliferative procyclic form. Finaly they migrate to the salivary glands
where they transform to the epimastigote and finally to the metacyclic form, in preparation for

thelr transmission to mammalian host (1, 2).

T. brucel is one of the earliest diverging eukaryotes, which has bona fide mitochondria (3). In
contrast to most other eukaryotes it has a single mitochondrion only, which undergoes
extensive morphological and biochemical changes during the trypanosomal life cycle (1). A
unique feature of the trypanosomal mitochondrion is the organization of its genome.
Generally mitochondrial genomes are distributed al over the matrix. In trypanosomes
however it is restricted to a discrete structure termed the kinetoplast (or kDNA) (1, 3). The
KDNA is linked to the basal body of the flagellum across the mitochondrial membranes by a
tripartite attachment complex (4). Thus its replication is closely linked to basal body
duplication and segregation (4-6). The position of the KDNA aso depends on the life cycle
stage. Thus, the mitochondrial genome is found at the very posterior end of the cell in
bloodstream forms, whereas in procyclic cells it lies between the nucleus and the posterior
end. Finaly, in epimastigote forms, the KkDNA is anterior to the centrally localized nucleus (1,
2). All the changes of kDNA positions that occur during differentiations are microtubule-
mediated (2). Thus the cytoskeleton of T. brucei composed of a microtubule corset that
underlies the cell membrane is not only required for the maintenance of the cell shape but is
also implicated in organelle positioning and segregation (1).



In this study we have characterized the T. brucel homologue of MiX (for Mitochondrial
protein X), a protein restricted to kinetoplastidae that was initially studied in L. major.
Heterozygous deletion of the MiX gene in L. major showed pleiotropic effects including
alterations in cell morphology, mitochondrial disorganization and a reduction of virulence
(Uboldi et al, submitted). Analysis of MiX function in procyclic T. brucei showed that the
protein is localized on the outer mitochondrial membrane and is required for the positioning
of the kDNA. Furthermore, we provide evidence that the protein links the mitochondrion to

the cytoskeleton of T. brucel.



Material and M ethods

Cells

Procyclic T. brucel cells were cultured at 27°C in SDM-79 supplemented with 5% or 15% of
FCS, respectively for the wild-type 427 and the inducible 29-13 strains (7) and the required
antibiotics.

Production of transgenic lines

A 10 amino acids (EVHTNQDPLD) epitope of the major structural protein of yeast Tyl,
which is recognized by the monoclonal antibody BB2 was used as a tag to determine the
localization of TbMiX (8). The sequence of the full-length TbMiX including the C-terminal
Tyl tag was cloned into a derivative of pLew100 containing the puromycin resistance gene.
This plasmid alows tetracycline inducible expression of the tagged protein (7).

RNAI of TbMiX was done using a stem-loop plasmid containing the puromycin resistance
gene (9). Thefirst 349bp of the ToMiX ORF were used as insert.

Transfection, selection with antibiotics, cloning and induction with tetracycline were done as
described (10).

I mmunofluorescence

Immunofluorescence was done as described (11). Cells were fixed for 10 minutes with 4%
(w/v) paraformaldehyde in PBS 1x and permeabilized for 2 minutes with 2% (w/v) NP-40 in
PBS 1x. For the axoneme staining with antibody Ubdx2 (gift from D. Robinson, CNRS,
Bordeaux, France) in Fig. 5, cells were fixed for 10 minutes in methanol 100% at —20°C. No
permeabilization was needed after methanol fixation. Mitochondria were stained using anti-
F1-ATPase antiserum (gift from D. Speijer, AMC, Amsterdam, The Netherlands) raised
against the isolated mitochondrial ATPase of Crithidia fasciculate (dilution 1:200) (Fig. 2,
5B), or with an anti-Hsp60 antiserum raised against recombinantly expressed T. brucel Hsp60
fused to glutathione S-transferase (dilution 1:200) (Fig. 5A). Cells were washed with 1x PBS
between incubations and embedded with Vectashield (Vector Labs, Emeryville, CA)
supplemented with the DNA -intercal ating agent DAPI for detection of DNA.

Flagellar pocket were detected by labeling of living cells with 10 mg/ml Fluorescein-
conjugated tomato lectin (Vector Laboratories), as described (12).



I solation of cytoskeleton

Cells were washed twice in lysis buffer (MOPS 100mM, pH 7.6) containing 1% Triton-X for
2 minutes. The resulting cytoskeletons were washed for 2 minutes in lysis buffer containing
0.1% Triton-X and finaly in the same buffer without Triton-X. Then the cytoskeleton were
fixed for 10 minutes with 4% (w/v) paraformadehyde in PBS 1x and stained for
immunofluorescence as for whole cells. No permeabilization was needed. All steps were done
with cells dried on slides.

I mmunoblot

To detect the Tyl tagged TbMiX on immunoblot, we used a 1:20 dilution of the BB2
antibody. The others antibodies (EF1a, KDH and Cytochrome c) were diluted 1:10’ 000, 1:500
and 1:100, respectively. Detection was done with the SuperSignal West Femto Max
Sensitivity Substrate from Pierce.



Results

I dentification of TbMiX

To identify the MiX homologue of T. brucei, we did a BLAST analysis of the T. brucei
genomic database using the MiX protein from L. major (LmMiX) as atemplate (Uboldi et al,
submitted). By this way we identified the ORF Th927.5.3040 encoding a 198 amino acids
long polypeptide with a predicted molecular mass of 23kD. This protein was termed TbMiX.
Orthologues of the protein are restricted to the Kinetoplastidae. TbMiX shows a high level of
identity with its counterpartsin L. major (72%) and T. cruz (82%) (Fig. 1).

TbMiX shows no obvious known conserved domains. It has a single transmembrane helix in
the N-terminal part (residues 26-48) of the protein. Interestingly the first nine amino acids are
conserved in al MiX proteins and according to Uboldi et al may represent an unconventional

mitochondrial targeting sequence.

TbMiX isan outer mitochondrial protein

MiX is colocalized with the mitochondrion in L. major (Uboldi et al, submitted). To
determine its localization in T. brucei, we prepared a transgenic cell line which allows the
expresson of TbMiX carrying a Tyl-epitope tag a its C-termina end (8).
Immunofluorescence of the induced strain using an anti-epitope antibody shows a net-like
staining that exactly colocalizes with the mitochondrion (Fig. 2A). Moreover, the
mitochondrial localization of TbMiX was also confirmed by biochemical analysis. The tagged
TbMiX is present in the same fraction than the mitochondrial marker, but cannot be detected
in the cytosol (Fig. 2B). Thus these experiments show that ToMiX, identical to its leishmanial

homologue, islocalized in mitochondria.

To elucidate the intramitochondrial localization of TbMiX, we isolated mitochondria from
cells expressing the tagged TbMiX and treated them with proteinase K. The following results
were obtained: The signal of the tagged TbMiX was lost during proteinase K incubation,
whereas cytochrome c, a protein of the mitochondrial intermembrane space, was protected
from digestion. However when Triton-X is added to mitochondria and thus the outer
membrane is disrupted, cytochrome c is completely digested (Fig. 2C). Because the Tyl tag
was added at the carboxyl terminus of TbMiX, these results show that the C-terminal part of



the protein is exposed to the cytosol. Thus these experiments prove that TbMiX is an integral

protein of the outer mitochondrial membrane.

TbMiX isessential for normal growth

In L. major, heterogenous disruption of the LmMiX protein gene had strong effects on
cellular morphology and weaker ones on mitochondrial organization and kinetoplasts
segregation (Uboldi et al, submitted). Thus to analyze the function of TbMiX in T. brucei, we
decided to make use of RNA interference (RNAI) (13). It should be mentioned here that the
same analysis is not possible in L. major since it is lacking the RNAiI machinery (14). Thus
we established a cell line allowing tetracycline-inducible ablation of TbMiX. Interestingly,
induction of RNAI causes a slow growth phenotype but did not completely stop growth (Fig.
3). This might be due to fact that RNAi does only remove 90-95% of the protein and that the
small amount that remains is sufficient to support growth albeit at alower rate.

TbMiX ablation leads to accumulation of cellswith misplaced KDNA

The mitochondrial DNA of T. brucei is of one unit nature. It shows a distinct S-phase, that is
coordinated with the nuclear S-phase (15). More precisely the KDNA replication is initiated
just before the onset of the nuclear S-phase, and the segregation of mitochondrial DNAS
occurs before mitosis. Because of the delay between kDNA and nuclear segregations, three
defined cell cycle stages can be determined by analyzing Dapi-stained cells. These stages are
defined by the numbers of kinetoplasts and nuclei and are termed 1K 1N, 2K1N and 2K2N (K
stands for kDNA and N for Nucleus) (Fig. 4B) (15, 16).

Because in L. major, LmMiX was shown to influence kinetoplast divison (Uboldi et dl,
submitted), we decided to analyze the kDNA/nucleus configurations in cells ablated for
TbMiX. Interestingly we observed a strong accumulation of abnormal configurations in these
cells. In other words cells showing a pattern different from 1K1N, 2K1N and 2K2N
accumulated and after 6 days of induction, reached approx. 50% of the total population (Fig.
4A).

The two most frequent aberrant kDNA/Nucleus configurations that have been described in T.
brucel arise because the mitosis to cytokinesis checkpoint is missing in this organism (4, 17).
This results in the appearance of cells containing one kKDNA but lacking the nucleus (1KON),

also termed zoids, if mitosisis blocked (17), or in accumulation of cells with multiple kDNASs



and nuclei (XKxN) when cytokinesis is defective (4). However these two aberrant
configurations represent only a small fraction of the ones observed in cells ablated for
TbMiX. The additional aberrant configurations that are observed in these cells can generally
be characterized by a misplacement of the kDNA (Fig. 4D). Thus cells with a 1K1N
configuration, but where the kDNA is anterior to the nucleus, as in epimastigote cells (16),
accumulate to alevel of 13% after 4 days of induction. Furthermore we see the appearance of
cells showing a KNK configuration, meaning that the single nucleus is surrounded by two
kDNASs. These cells amount to 12% of the total population 5 days after induction. In a small
fraction of the KNK cells, the nucleus is apparently able to divide, resulting in a KNNK
configuration. Moreover, in addition to the cells with misplaced kDNAS, zoids accumulate
continuously, reaching 16% of the total population after 10 days of induction. This is
probably the result of ongoing cytokinesis in the cells with misplaced KDNAs. The same is
probably also true for a specia type of zoids that contain two kinetoplasts (2KON). Thus
cytokinesis does not appear to be affected when the KDNA is not correctly positioned. Finally,
some cells showing 1K2N and multinucleated configurations are visible (approx. 5% each
after 6 days of induction) (Fig. 4C, 4D). In summary these observations suggest that TbMiX
isrequired to correctly position the kDNA in procyclic T. brucei.

To elucidate the consequences of the misplacement of the KDNA in cells lacking TbMiX
might have, we analyzed other structures and organelles that are closely associated with the
KDNA. These results showed that ToMiX depletion does not affect the association of the
kDNA with the basal bodies, the flagellar pockets, the flagellar attachment zones nor the
flagella itself (Fig. 5). Thus the tripartite attachment complex linking the kinetoplast to the
basal body is not affected by TbMiX depletion.

TbMiX links the mitochondrion to cytoskeleton

The changes in position of the KDNA during the life cycle and the cell cycle are microtubule-
mediated (2, 5). However the structural link between the subpellicular cytoskeleton and the
kinetoplast region of the mitochondrion has not been found. Since TbMiX is present on the
outer mitochondrial membrane, and since its depletion results in KDNA misplacement, we
decided to check whether this protein could be involved in linking the mitochondrion to the
cytoskeleton of T. brucei.



In order to do so, we isolated cytoskeleton of induced and uninduced cells expressing TbMiX
containing a Tyl epitope tag (8), and we co-stained the cells with BB2, the antibody
recognizing the tag, and with an antiserum against the inner mitochondrial membrane-specific
F1-ATPase. This experiment showed that some mitochondrial residues are still present after
the cytoskeleton isolation, and that they are mainly co-localized with the tagged TbMiX (Fig.
6A). Moreover, isolation of cytoskeletons from the induced TbMiX RNAI strain revealed a
strong reduction of the mitochondrial residues in comparison with the uninduced cells
consistent with a weakening of the link between mitochondrion and cytoskeleton (Fig.6B).
Thus, these results support the hypothesis that TbMiX might be required for establishing and
maintai ning the interaction between the mitochondrion and the cytoskeleton.



Discussion

Our results show that, in T. brucel, TbMiX, a protein specific to the Kinetoplastidae, is
present on the outer mitochondrial membrane. Furthermore we show that the protein is
essential for normal growth and for the correct positioning of the KDNA, but not required for
cytokinesis. Finally we provide evidence suggesting that TbMiX may link the mitochondrion
to the cytoskel eton.

The microtubular cytoskeleton of eukaryotic cells has several different functions. It is not
only responsible of the cell shape, but also builds the flagella required for cell movement.
Furthermore it plays an important role in intracellular transport and cell division. In T. brucei,
the cytoskeleton is mainly involved in maintenance of the cell shape. It forms a subpellicull ar
corset of parallel microtubules underlying the plasma membrane (18). Only a small flask-
shaped invagination of the plasma membrane, termed the flagellar pocket, lacks this
microtubule mantle. Thus endocytosis and exocytosis are restricted to this pocket, from which
the flagellum exits the cell body (18). During cytokinesis, the cell shape has to be maintained.
The newly formed microtubules are therefore |l aterally added between the old ones (1).

The highly polarized cytoskeleton of T. bruce is important for the positioning of most
organelles (5). Moreover, the changes in the position of the kDNA during the life cycle are
also microtubule-mediated (2). Based on this we would expect a link between the
cytoskeleton and the kinetoplast or the mitochondrion to exist. Since TbMiX is evenly
distributed on the outer mitochondrial membrane, with the main part of the protein exposed to
the cytosol (Fig. 2), it is a candidate protein to be involved in this linkage. Furthermore the
effect ToMiX depletion has on KDNA positioning (Fig. 4) and on the attachment of the
mitochondrion to the detergent-extracted cytoskeletons (Fig. 6) supports its role in
mitochondrion-cytoskeleton interactions. Thus, if the mitochondrion is no more firmly
attached to the cytoskeleton, this is expected to influence the position of the KDNAs and may
result in the displacements observed in the TbMiX ablated cells.



Interestingly, TbMiX depletion does not cause any globa changes in the mitochondrial
morphology (Fig. 5). An explanation could be that the mitochondrion in procyclic cells is
quite big and takes up alarge space in the cell. Thus, even if the binding with the cytoskeleton
is disrupted, this may not immediately result in morphologica changes.

Inhibition of microtubule dynamics by addition of anti-microtubule drug rhizoxin leads to
zoid formation, similar to what is observed in the TbMiX RNAI cell line. However in this
case, a disturbed axis of the cleavage furrow appears to be responsible for zoid formation (5),
whereas in TbMiX ablated cells, zoid accumulation is probably directly due to the
misplacement of the KDNA.

An interesting aspect of the phenotype observed in TbMiX RNAI, is that the positioning of
the KDNA anterior to the nucleus is characteristic of the epimastigote forms found in the
salivary glands of the tsetse fly. Thus it could be that ToMiX depletion triggers the
differentiation into epimastigote forms. Further studies such as staining of TbMiX-depleted
cells with epimastigote specific marker are required to clarify this point.

In T. brucei some cell cycle checkpoints are missing (4). Thus mitosis is completely
dissociated from cytokinesis (19). Cytokinesis depends on the flagellar attachment zone (20),
a structure closely associated with the flagellum. The basal body, the base of the flagellum, is
itself linked to the kinetoplast DNA by the tripartite attachment complex (5, 6). Thus kDNA
segregation is tightly linked to cytokinesis. It has been proposed that, since the mitosis is not
coupled to cytokinesis, KDNA segregation may act as a checkpoint (4). In ToMiX RNAI cells
the KDNA is segregated albeit not to the correct positions. Thus the putative checkpoints

would not be triggered and the cytokinesis will continue.

In conclusion the mispositioning of the KDNA in the absence of TbMiX and the putative
involvement of TbMiX in cytoskeleton/mitochondrion interactions is highly interesting and
may help in the understanding of cell cycle regulationin T. brucei.



Figurelegends

Fig. 1: Identification of the MiX homologue in T. brucei. Amino acids alignment of MiX
homologues of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. The
sequences were aligned using the CLUSTALW program with default parameters. Strictly
conserved residues and conservative replacements are shown in black and grey boxes,
respectively. Putative mitochondrial targeting sequences (MTS) and the putative
transmembrane (TM) domains of TbMiX are underlined in black and grey, respectively.

Fig. 2: TbMiX is localized on the outer mitochondrial membrane. A) Normarski picture and
double-immunofluorescence of cells expressing TbMiX carrying a Tyl-tag at its carboxyl
terminus under the control of the tetracycline-inducible procyclin promoter (- tetra, + tetra).
The cells were stained with Dapi for DNA (blue), with an antiserum against a subunit of the
ATPase as a mitochondrial marker (green) and with the BB2 monoclona antibody
recognizing the Tyl-tag (red). A merged staining of the mitochondrial marker with the tagged
TbMiX is shown for induced cells. B) Immunoblot of total cells and cellular extracts of
induced and uninduced cells (+ tetra, - tetra) expressing Tyl-tagged TbMiX. Crude cytosolic
(cyto.) and crude mitochondrial (mito.) extracts of induced cells were isolated by treatment
with 0.03% digitonin. Elongation factor 1a (EF1a) and o.-ketoglutarate dehydrogenase (KDH)
serve as cytosolic and mitochondrial markers, respectively. The Efla staining in the
mitochondrial fraction indicates that some cells were not lysed during the digitonin treatment.
C) Immunablot of a protease protection assay of crude mitochondrial extracts obtained by
digitonin treatment of cells expressing Ty-1 tagged TbMiX. Cytochrome ¢ was used as
marker for the intermembrane space of mitochondria. Triton-X-100 was added to destroy all

membranesin order to show that cytochorme c is sensitive to protease.

Fig. 3: TbMiX is essential for normal growth of procyclic T. brucei. A) Growth curve of a
TbMiX RNAI cell line in the presence and in absence of tetracycline (+ tetra, - tetra). B)
Northern blot of TbMiX mRNA during induction of RNAi. The times of sampling are
indicated. The rRNAs visualized by ethidium bromide staining (EtBr) in the lower panel serve

as aloading control.



Fig. 4: Inhibition of TbMiX leads to accumulation of abnormal cells with misplaced kDNA.
A) Kinetic of appearance of the different kDNA/Nuclei configurations of Dapi-stained cells
during TbMiX RNAI induction. The graph represents the percentages of cells containing the
indicated number of nuclel and kDNASs (1K1N, 2K1N, 2K2N, Abnormal and Dead cells). n >
1000 cells. B) Examples of Dapi-stained cells with normal KDNA/Nuclei configurations seen
in wild-type cells (1IK1N, 2K1N, 2K2N). Nomarski (left panel) and Dapi staining (right
panel) are shown. C) Kinetic of appearance of the abnormal KDNA/Nuclei configurations
indicated in A). The graph represents the percentages of cells of the total population
containing the indicated number of nuclei and KDNASs (Inverted 1IK1N, KNK, KNNK, 1KON,
2KON, 1K2N and xKxN). D) Examples for the abnormal kDNA/Nuclei configurations
described in C).

Fig. 5: Depletion of TbMiX shows results in mispositioning of the kDNA and its associated
structures. Immunofluorescence of uninduced and induced TbMiX cells. For uninduced cells
a 2K1N cell and for induced cells a KNK configuration is shown. Cells were stained with
different antibodies and dyes to visualize the mitochondrion (Hsp60), the newly tyrosinated
a-tubulin including the basal bodies (YL1/2), the flagellar pocket (Tomato lectin), the
flagellar attachment zone (FAZ) and the flagellum (Axoneme). All cells were co-stained with

Dapi. Nomarski pictures are shown on the left of each panel.

Fig. 6. A) Double-immunofluorescence on Triton-X-100 extracted cytoskeletons of
uninduced and induced cells expressing the TbMiX carrying a Tyl-tag at its carboxyl
terminus under the control of the tetracycline-inducible promoter. The cells were stained with
an antiserum against a mitochondrial membrane-specific F1-ATPase as mitochondrial marker
(green), and with the monoclona antibody BB2 recognizing the Tyl-tag (red). A merged
staining of the mitochondrial marker and of TbMiX is shown for induced cells. Nomarski
pictures of the stained cytoskeleton are also shown. B) Immunofluorescence on isolated
cytoskeleton of uninduced and induced TbMiX RNAI cells, using the F1-ATPase antiserum.
Nomarski pictures of the stained cytoskeleton are also shown.
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