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Abstract An artificial neural network (ANN) model was

developed to predict the phycoremediation efficiency of

Chlorella pyrenoidosa for the removal of both As(III) and

As(V) from synthetic wastewater based on 49 data-sets

obtained from experimental study and increased the data

using CSCF technique. The data were divided into training

(60%) validation (20%) and testing (20%) sets. The data

collected was used for training a three-layer feed-forward

back propagation (BP) learning algorithm having 4–5–1

architecture. The model used tangent sigmoid transfer

function at input to hidden layer (tansing) while a linear

transfer function (purelin) was used at output layer. Com-

parison between experimental results and model results

gave a high correlation coefficient (RallANN
2 equal to

0.99987 for both ions and exhibited that the model was

able to predict the phycoremediation of As(III) and

As(V) from wastewater. Experimental parameters influ-

encing phycoremediation process like pH, inoculum size,

contact time and initial arsenic concentration [either As(III)

or As(V)] were investigated. A contact time of 168 h was

mainly required for achieving equilibrium at pH 9.0 with

an inoculum size of 10% (v/v). At optimum conditions,

metal ion uptake enhanced with increasing initial metal ion

concentration.
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Abbreviations

C0 Initial concentration of arsenic in the solution

(mg/L)

Ce Equilibrium concentration of arsenic in the

solution (mg/L)

H Number of nodes in the hidden layer

I Number of nodes in the input layer

i An index of data

max(Xi) The maximum value of the ith observed

variable in the training data-set

min(Xi) The minimum value of the ith observed variable

in the training data-set

max(Yi) The maximum value of the ith observed

variable in the training data-set

min(Yi) The minimum value of the ith observed variable

in the training data-set

N The number of data points

n Number of observations

Re Removal efficiency (%)

t The target (experimental) data

Xim Observed value of the ith variable

Xi(net) Normalized value of the ith variable

Yi(p) The predicted value of the ith output variable

y The predicted value

Introduction

Bearing in mind the ubiquitous nature of arsenic in the

environment, human exposure to arsenic is unavoidable

(Mondal et al. 2006). Globally, the degree of non-
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occupational exposure to arsenic differs significantly;

depending on the local geochemistry and the level and

vicinity of anthropogenic activities such as smelting, pet-

roleum refining, mining, herbicide and pesticide applica-

tion and burning of fossil fuels (Mondal et al. 2006;

Pillewan et al. 2011). Copper smelting creates a huge

volume of wastewater containing large amounts of inor-

ganic compounds such as heavy metals like lead, copper,

zinc, iron, cadmium and bismuth and highly carcinogenic

metalloid like arsenic species, poses a serious threat

towards man, and the flora and fauna of our ecosystem

contaminating the natural water tables (ground water and

surface water) in the vicinity. In copper smelting wastew-

ater the concentration of arsenic is as high as 1979 mg/L

(Basha et al. 2008). With the aim of maintaining a good

quality of fresh water resources, this wastewater must be

treated so that the water can be reverted back to the

ecosystems. Long-term exposure to arsenic contaminated

water results in bladder, liver, kidney, skin and lung cancer

as well as loss of appetite, pigmentation changes, muscular

weakness, nausea and neurological disorders (Mandal and

Suzuki, 2002). Arsenic in drinking water mainly exists as

arsenite [As(III)] or arsenate [As(III)]. This is a matter of

huge concern since As(III) is 25–60 fold more toxic and

more mobile than As(V) (Morrison et al. 1989).

On the basis of investigation of the fatal effect of arsenic

on human body, the maximum contaminant level (MCL) of

arsenic in drinking water has been revised from 50 to

10 lg/L by the World Health Organization (WHO) in 1993

(WHO 1993) and the European Commission in 2003

(European commission Directive, 98/83/EC 1998). For

implementing such a stricter MCL needs the development

of simple, lucrative methods for the removal of arsenic

from water or wastewater.

The techniques applied in the treatment of wastewater or

contaminated water are generally categorized into three

categories—physical (membrane processes, ion exchange,

adsorption, electrocoagulation, electrochemical), chemical

(oxidation-precipitation, coagulation) and biological (US

EPA 2000; Mondal et al. 2006; Mohan and Pittman 2007).

These can be carried out separately or in combination,

depending on the level and category of contamination. With

the purpose of achieving the estimated levels of contaminant

removal, separate wastewater treatment techniques are

assembled into a variety of systems, categorized as primary,

secondary and tertiary wastewater treatments. Generally,

both physical and chemical approaches are expensive and are

not suitable for small-scale industries (Kundu and Gupta

2006; Singh and Pant 2006). Furthermore, most chemical

methods increase the conductivity, pH and overall load of

dissolvedmatter in thewastewater. In this respect, biological

or biotreatment of wastewater is an amended choice (Renuka

et al. 2015). Bioremediation as an alternative and green

technology becomes encouraging for remediating the envi-

ronmental contaminations (Kumari et al. 2006). It has

several advantages such as outstanding performance, envi-

ronmental friendly, possible recycling and low operational

and maintenance cost to remediate arsenic from contami-

nated water (Zhang et al. 2008). However, issues related to

disposal of sludge and dewatering have made researchers to

find out other alternatives. The most general biological

wastewater treatment practiced in the treatment ofmunicipal

and industrial wastewaters is the usage of activated sludge

only (Radjenovic et al. 2009) or in combination with algae

(Su et al. 2012). Over the last few years, it is tried to apply

intensive microalgal cultures for performing the biological

tertiary treatment of secondary wastewater (Oswald and

Gottas 1957; De la Noüe et al. 1992).

Phycoremediation, the use of plants (including algae or

lower plants for environmental clean-up) and associated

microflora for the removal or biotransformation of con-

taminants containing nutrients, heavy metals, etc. from

wastewater and CO2 from waste air. It seems to be an

encouraging choice as a cost effective, non-invasive

alternative to the currently available physicochemical

contaminant remediation methods (Olguı́n 2003; Franchino

et al. 2013; Richards and Mullins 2013). Wastewater

treatment with microalgae or macroalgae, stated to as

phycoremediation, is a term coined currently by John

(2000). Remediation by algae is taken as a feasible choice

for metal ion remediation leading to the improvement of

water quality and sustainable development of aquatic sys-

tems (Kumar et al. 2007). The accumulation of heavy

metals in algae includes two different methods, an initial

rapid (passive) uptake followed by a much slow (active)

uptake (Cho et al. 1994). During the passive uptake, metal

ions are adsorbed on the cell surface within a compara-

tively short span of time (Gupta et al. 2006). However,

active uptake of metals which is dependent on cell meta-

bolism, results into transport of metal ions across the cell

membrane (Raungsomboon et al. 2008; Chakraborty et al.

2011). Generally, various functional groups such as

hydroxyl, amino, carboxyl, sulfhydryl, phosphoryl, etc.

exist on the cell surface (Chojnacka et al. 2005).

Microalgae play an important role in controlling metal ion

concentration, since their functional ion that is located on

the cell wall are able to bound ionic metal (Volesky 2007);

sink or remove it by accumulation, adsorption or metabo-

lization into substantial level (Priyadarshani et al. 2011).

Microalgae are superior in remediation methods because

various toxic substances, as well as other wastes can be

treated with algae and most significantly they are non-

pathogenic. The menace of accidental discharge of con-

taminants into the atmosphere instigating human health and

environmental issues can be escaped while algae are used

to remediate. Algae use the wastes as nutritional sources
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and enzymatically degrade the contaminants. Metal ions

and xenobiotics are recognized for being transformed/

detoxified/or volatilized by algal metabolism (Muthuku-

maran et al. 2005). Algal growth can retain the water clean

and make natural water more appropriate for human

ingestion. As microalgae use CO2 as a carbon source, they

can grow photoautotrophically without the adding an

organic carbon source (Rao et al. 2011). Phycoremediation

is mostly eye-catching since it has the capability for

dealing with more than one problem on-site. The cultiva-

tion of algae in wastewater offers the combined advantages

of treatment of the wastewaters, mitigation of greenhouse

gases and at the same time creating algal biomass. This

biomass can be used for multiple applications such as

bioenergy resources (biogas and biofuels), food additives

and protein supplements (human and animal feed), bio-ore

for precious heavy metals, fertilizer, cosmetics, pharma-

ceuticals and other valued chemicals (Priyadarshani et al.

2011; Kumar et al. 2013; Sahu et al. 2013). The drawbacks

of using microalgae for metal ion remediation are the

requirement of energy for drying while using dead

microalgae, necessity for being immobilized and has

restricted use in the batch systems (Brinza et al. 2007), its

small size, low mass index are easily degraded by

microorganism (Soeprobowati and Hariyati 2013). It has

been recommended that a living species shows better

biosorption of metals than dead biomass, probably because

of effective membrane binding and metabolic energy-de-

pendent intracellular uptake (Terry and Stone 2002; Doshi

et al. 2007). The selection of microalgae for being used in

wastewater treatment is done by their robustness against

wastewater and by their competence for growing in and

taking up nutrients from wastewater (Olguı́n 2003).

ANN is one of the non-conventional tools based on data

to model the adsorption phenomenon. Few investigators

tried to develop an assessment of ANN as one valuable

approach for predicting and simulating the removal pro-

cess. Examples for application of AANs in water treatment

are removal of arsenic by the modification of solid waste

vegetable oil industry with Fenton reagent (FMSWVOI)

(Jaafarzadeh et al. 2012), removal of Zn(II) ions from

leachate by hazelnut shell (Turan et al. 2011a), adsorption

of Cu(II) from industrial leachate by pumice (Turan et al.

2011b) and removal of lead ions by Nigella sativa seeds

(black cumin) (Bingöl et al. 2012). ANN methods were

compared because of their generalization and predictive

abilities, sensitivity analysis as well as optimization effi-

ciency in metal ion removal from wastewater (Turan et al.

2011a, b; Bingöl et al. 2012).

This paper explores the possibility of using living

microalgae Chlorella pyrenoidosa for phycoremediation of

arsenic-enriched water. Although a number of pioneering

works have been reported on treatment of arsenic

containing wastewater by various techniques, only a few

studies on a microbial route for detoxification of arsenic

has been reported so far. Algae can influence copper

smelting wastewater in different ways such as: (1) Metal

biosorption into the cell wall; (2) metal complex formation

by EPS; (3) natural alkalinity generation and metal

hydroxide precipitation; (4) biomass and EPS as nutrient

source for SRB (Das et al. 2009).

The effects of various operational parameters such as initial

pH, inoculum size, contact time and initial arsenic concen-

tration (either As(III) or As(V)) on the removal of arsenic

(either As(III) or As(V)) were also examined. The species can

be used for the treatment of arsenic-enrichedwater reject with

sewage in an algal pond. Based on phycoremediation exper-

iments, ANN model for predicting the removal efficiency of

both As(III) and As(V) of C. pyrenoidosa used as a phy-

coremediator, was applied in this investigation. Phycoreme-

diation of arsenic (either As(III) or As(V)) ions from

wastewater is optimized for determining the optimal network

structure. Finally outputs acquired from the ANN models

were comparedwith the experimental results. Advantages and

then additional expansions were too deliberated.

Materials and methods

Microalgae and culture medium

C. pyrenoidosa was collected from Department of

Biotechnology, IIT Roorkee and grown in BG11 culture

medium (without adding carbon source) (Park et al. 2011;

Yadavalli and Heggers 2013).The composition of BG11

media are given in Tables 1 and 2 as follows:

Preparation of living cells of C. pyrenoidosa

The culture was initially grown in BG11 growth media in a

250 mL round bottom flask closed with cotton plug as

follows:

Table 1 Major elements

Composition Quantity (per L)

NaNO3 1.5 g

K2HPO4 0.04 g

MgSO4�7H2O 0.075

CaCl2�2H2O 0.036

Citric acid 0.006 g

Na2EDTA 0.001 g

Na2CO3 0.02 g

Ferric ammonium citrate 0.006 g

Trace metal mix A5 1.0 mL
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The algal strain was first grown in the round bottom

flask. To do so, the algal inoculum was prepared by

transferring a loop full of algal culture aseptically from the

nutrient agar plates supplied by Department of Biotech-

nology of Indian Institute of Technology, Roorkee, to the

round bottom flask consisting of growth medium (sterilized

at 121 �C temperature, 15 psi pressure for at least 15 min),

incubated at 28 �C for 7 days in a thermostatically con-

trolled environmental chamber (PGC–292, plant growth

chamber, Ambala, India). The pH of the growth medium

was adjusted to 9.0 with 1 N HCl and 1 N NaOH before

inoculation. Then, the microalgal strain was grown on a

petri plates consisting of agar medium containing the

nutrient components (Tables 1 and 2) and agar (12.0 g/L).

The microalgae were inoculated from the plates on another

fresh agar plate after the incubation of cultures at 28 �C for

7 days in agar plates and stored at 4 �C till required for

further studies.

Preparation of arsenic-enriched water

All chemicals used were of analytical reagent grade, pro-

cured from Himedia Laboratories Pvt. Ltd. Mumbai India.

Arsenic stock solution was prepared using salts of NaAsO2

and Na2HAsO4, 7H2O in double distilled water (APHA

1998). BG11 growth media composition as mentioned in

Appendix A-8 was also added into the synthetic solution.

Then, the prepared phycoremediation media without or

with arsenic [either As(III) or As(V)] ions was subjected to

autoclave sterilization at 15 psi pressure and at 120 �C for

15 min. The pH of the phycoremediation media was

adjusted to the requisite value by dropwise addition of

sterile 1 N HCl and 1 N NaOH solution.

Experimental set–up

Experiments were arranged for investigating the scaveng-

ing of either As(III) or As(V) by growing microalgae C.

pyrenoidosa in different concentrations of arsenic-enriched

water. BG11 medium was served as control. An optimum

aliquot (10%, volume of inoculum/volume of growth

medium) of preculture was harvested aseptically during the

exponential growth phase (OD value *0.473 at 680 nm)

and it was transferred to the fresh media (100 mL) sup-

plemented with arsenic [either As(III) or As(V)] of nec-

essary amount for different studies in 250 mL Erlenmeyer

flasks. Thermostatically controlled environmental chamber

was sustained at 28 �C temperature. Illumination was

supplied by continuous cool white fluorescent lamps at

2000 L9 (Philips 40 W, cool daylight, 6500 K) with a

dark/light period of 12:12 h. The experiments were carried

out for 360 h and all tests were done in duplicate (Fluid

Particle Research Lab).

The amount of adsorbate molecules removed in terms of

percentage was calculated as follows:

%removal ¼ Co � Ceð Þ
Co

� 100 ð1Þ

Arsenic analysis

The cultures were incubated for 360 h and 5 mL culture

was withdrawn from each flask (control and treated) under

sterilized conditions after fixed time intervals. The cultures

were centrifuged at 5000 rpm for 5 min (REMI, India) and

then supernatants were diluted with HNO3 solution (10%,

v/v). Finally the prepared sample was preserved in a frozen

state, till quantification of arsenic was done. The super-

natant was analysed for determination of arsenic concen-

tration using ThermoFisher Scientific iCE 3000 Series AA

graphite furnace atomic absorption (GFAA) spectrometer

(detection limit 20 lg/L).

Modelling technique

Artificial neural network modelling

ANNs were previously established from the primary con-

ception of artificial intelligence that work for simulating

the process of nervous system and human brain (Chairez

et al. 2009; Rene et al. 2009; Ekici and Aksoy 2010).

Actually an artificial neural network (ANN) is an enor-

mously interconnected network structure comprising of

several simple processing elements proficient of executing

parallel computation for data processing. This technique is

valuable where the complication of the mechanisms indi-

cating performance of process is very high (Turan et al.

2011a, 2011b).They comprise a chain of mathematical

correlation which are utilized for simulating the learning

and memorizing operation. ANNs learn by example in

which an actual measured input variables set and analogous

outputs are offered for determining the guidelines that

manage the relationship between the variables (Chairez

et al. 2009). ANNs are taken into account to be com-

manding for apprehending the non–linear effect and are

Table 2 Trace metal mix A5

Composition Quantity (per 100 mL)

H3BO3 2.86 mg

MnCl2�4H2O 1.81 mg

ZnSO4�7H2O 0.22 mg

Na2MoO4�2H2O 0.39 mg

CuSO4�5H2O 0.08 g

Co(NO3)2�6H2O 0.05 g
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practically valid to each and every single situation in which

a relationship although extremely non-linear existing

between the dependent and independent variables (Elias

et al. 2006). In current years artificial neural networks

(ANNs) have been broadly considered for solving the

environmental problems owing to their dependable and

noticeable features to capture the non–linear relationships

present between variables (Turan et al. 2011a, b). It can be

used for solving problems that are not suitable for con-

ventional statistical methods. ANNs have been deliberated

owing to extensive range of use and their competence and

capacity for solving complex problems. Process modelling

and simulation particularly when no analytical model are

present, are the applications of ANNs at chemical engi-

neering (Turan et al. 2011a, b; Jaafarzadeh et al. 2012).

The ANN architecture contains input layer, one or more

hidden layers and output layer (Movagharnejad and Nikzad

2007). Each layer of the network contains a number of an

interconnected processing element termed neurons. These

neurons interact with each other with the aid of the weight.

Each neuron is linked to all the neurons in the next layer.

The architecture of network is exhibited as l, m, n where l

neurons are exhibited at input layer (equal to the number of

inputs in the network), m neurons are exhibited at the

hidden layer (optimized through experimentation) and n

neurons are exhibited at the output layer dependent onto

number of outputs preferred from model (Rene et al. 2009;

Giri et al. 2011). The hidden layers allow these networks

for computing intricate relations between inputs and out-

puts. In this set of networks data moves in only one

direction forward from the input layer to the hidden layer

and then to the output. Running of neural network per-

formed in three steps: (1) learning or training, (2) valida-

tion and (3) testing.

Input layer accepts data from the external sources and

passes this data to the network for processing. Hidden layer

accepts data from the input layer, performs all the data pro-

cessing, output layer accepts processed data from the net-

work and sends the consequences out to an external receptor.

A layer of neurons is estimated by its weight matrix, a

transfer function and a bias vector. The input signals are

modified by interconnection weight recognized as weight

factor (Wji), which signifies the interconnection of ith node of

the first layer to jth node of the second layer. The sum of

modified signals (total activation) is thereafter modified by a

sigmoid transfer function (f). Likewise outputs signal of

hidden layer are modified by interconnection weight (Wji) of

kth node of output layer to jth node of hidden layer. The sum

of the modified signal is thereafter modified by sigmoid

transfer (f) function and output is collected at output layer

(Giri et al. 2011; Mandal et al. 2015).

The number of hidden layers is to be chosen dependent

onto the complication of the problem. Usually one hidden

layer is adequate to explore maximum problems. The

number of neurons in the hidden layer is chosen by trial

and error method beginning from minimum and thereafter

augmented reliant on the nature of problem (Gorashi and

Abdullah 2012). The training of neural network is done by

giving a run of input data and target output values. The

parameters influencing target output should be chosen as

input parameters. The back propagation training algorithm

has been extensively utilized for modelling several prob-

lems in environmental engineering. In back-propagation

training algorithm, neurons in the hidden layer and output

layer processes its inputs by multiplying each input by its

weight, adding the product and thereafter processing the

addition using a non-linear transfer function, too termed

activation function. The maximum common transfer

function utilized is sigmoid function. The learning in

neural network occurs by modifying weights of the neurons

consistent with the error between the values of actual

output and target output. The alterations in weights are

proportional to the negative of the derivative of the error

(Aghav 2011).

The training of ANN model is done by giving the whole

input data-set to the network and sustained till the average

MSE is minimized. After the training is finished, the

trained neural network is estimated for reproducing the

target output values for the training data. Weights of the

trained neurons are thereafter stored in the neural network

memory. The validation of the trained network is per-

formed by giving the validation data-set and thereafter

comparing the network output with the actual output val-

ues. The testing of the trained network is done by giving

the test data-set and thereafter comparing the network

output with the actual output values. The formulated ANN

model performance can be estimated by numerous statis-

tical parameters, for example, coefficient of determination

(R2). A well–trained model should have R2 value near to 1

and values of error terms should be negligible (Aghav

2011).

ANN software

The numbers of input and output neurons are fixed as said

by the nature of the problem. In the current investigation,

the training, validation and testing of ANN modelling was

performed utilizing software MATLAB 7.6 (Version–

R2008b) (MathWorks, Inc., USA) mathematical software

by ANN toolbox. A neural network training tool (nntool)

used for training of the network. In the current research a

three–layer feed–forward Back propagation (BP) neural

network have been used with a tangent sigmoid transfer

function (tansig) at hidden layer and a linear transfer

function (purelin) at output layer to predict and simulate

phycoremediation capacity for removal of either As(III) or

Appl Water Sci (2017) 7:3949–3971 3953
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As(V) (Aghav 2011; Mandal et al. 2015). The Levenberg–

Marquardt back propagation algorithm which was inde-

pendently developed by Levenberg (1944) and Marquardt

(1963), (LMA) was applied for training of the network as

the best algorithm. Total iteration number was set at 3000

for all learning algorithms and the performance goal is set

at 10-5 (Turan et al. 2011b). The number of nodes in the

hidden layer (H) is described by the relation as follows

(Giri et al. 2011; Mandal et al. 2015):

H ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI þ 1Þ
p

ð2Þ

Data division

The input layer relates to the four experimental parameters

comprising the initial pH, inoculum size (% v/v), contact

time (h), initial arsenic concentration [either As(III) or

As(V)] (mg/L). The output layer was the % removal of

arsenic [either As(III) or As(V)]. The experiments were

repeated two times for enhancing the reliability and the

average values were taken. The experimental design uti-

lized in the present study was on the basis of one factor

experiment at a time. The data and their related statistics

are presented in Table 3.

Data points of % removal were thereafter interpolated

by utilizing a cubic spline curve fitting (CSCF) technique

(Turan et al. 2011a, b).The major reason of utilizing the

CSCF technique is for increasing data points between

minimum Re % and maximum Re %. The motivation of

employing the CSCF technique is that it is simple for

implementing and for producing a curve that looks to be

seamless. The least square curve fitting approach inclines

for building in distortions near the first and the last sam-

ples. But CSCF dodges this phenomenon. Data points were

set to 227 and then the data points were divided into

training, validation and test sets with a ratio of 60, 20 and

20%, respectively. Fig. S1 of supplementary materials

exhibits the overall flowchart for arsenic [either As(III) and

As(V)] removal system.

Data preprocessing

The input and output variables in the current investigation

had various features and importance-level ensuing into

varied response to the neural network. The ANN model

training would be more effective if preprocessing steps are

carried out onto the input and target data, and therefore, the

preprocessing implementation is utilized in real applica-

tion. All the data (input and output) were normalized

between 0.1 and 0.9 for avoiding numerical overflows

because of very large or small weights. The preprocessing

of the data could be carried out by the algorithm as given in

Eq. (3) (Giri et al. 2011; Mandal et al. 2015):

Xi netð Þ ¼ 0:1þ 0:8
ðXim �minðXiÞÞ

max Xið Þ �minðXiÞ
ð3Þ

New inputs are fed into the trained networks after

preprocessing of the training set–data and thereafter are

processed with the maximum and minimum vectors that

are computed for the training data-set. With the purpose of

comparing the consequences of neural network with the

observed values, the rescaled output necessities to be

transformed back within the similar range for the original

target output values. The algorithm as presented in Eq. (4)

was utilized for this reason:

YiðpÞ ¼ minYi þ
ðmaxðYiÞ � minðYiÞÞ

0:8
� ðXiðnetÞ � 0:1Þ

ð4Þ

Optimization of the ANN structure

There are no universal strategies to choose the architecture

and algorithm of ANN for solving a practical problem. For

finding the optimum number of neurons (N) in the hidden

layer trial and error method was utilized. For simulation of

individual parameter, the number of the neurons in hidden

layer was varied from 1 to 12. Too many neurons can

lengthen the time required for training the network, whereas

too fewmay not be adequate to train it at all. The selection of

the number of neurons in the hidden layer is frequently the

consequence of empirical tests coupled with trial and error.

In the current study mean square error (MSE) was

selected for measuring the network performance of Models

‘A’ (C. pyrenoidosa and As(III) system) and ‘B’(C.

pyrenoidosa and As(V) system). The condition for choice

of the optimum ANN structure is the mean square error

(MSE) the test data, as well as the correlation coefficient

(R2) which can be demarcated as follows (Turan et al.

2011a, b; Bingöl et al. 2012):

Table 3 Range of variables

Sl. no. Input variables Number of runs Ranges Average, Re % Standard deviation, Re %

1 Initial pH 11 2–12 47.27 26.16

2 Inoculum size (% v/v) 10 2–20 74.43 6.99

3 Contact time (h) 18 4–360 74.69 15.47

4 Initial arsenic concentration (mg/L) 10 50–2000 71.93 8.68
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MSE ¼ 1

N

X

N

i¼1

ðti � yiÞ2 ð5Þ

R2 ¼ 1�
PN

i¼1ðti � yiÞ2
PN

i¼1ðyiÞ
2

ð6Þ

The assessed results presented here are those of

minimum errors. Moreover, with the purpose of

examining the network response in more details, a linear

regression analysis too was performed with respect to

network forecasted values and actual experimental values

of contaminant removal efficiencies for all the two

developed models.

The SD used in the present study was determined using

the following formula [99]:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ðx� y=xÞ2

ðn� 1Þ

s

ð7Þ

Results

Effect of initial pH on phycoremediation properties

of C. pyrenoidosa

The pH is one of the significant factors that considerably

influences the adsorbate ion speciation, the chemistry of

solution, interaction between adsorbate and adsorbent and

surface charge of adsorbent surface (Basha et al. 2009;

Dash et al. 2009). Hence, the effect of pH on phycoreme-

diation of As(III) and As(V) by microalgae was monitored

by changing the initial pH of the solution in the range of

2.0–12.0. In the present study, the term phycoremediation

is used to describe any of these possible modes of inter-

actions (passive uptake and active uptake) between the

metal ion and the surface of the cells without distinction.

From Fig. 1a, b, it was evident that the phycoremediation

% of both As(III) and As(V) were higher in basic media

than in acidic media and the highest removal was found at

pH 9.0. This may be attributed to the favourable growth of

C. pyrenoidosa biomass in alkaline media pH (i.e. pH 9.0).

The phycoremediation of both As(III) and As(V) varied

significantly depending upon the arsenic species also. The

difference in the phycoremediation % of As(III) and

As(V) could be elucidated on the basis of the charge on the

species of arsenic and the surface charges of the microalgal

biomass.

It was agreed from Fig. 1a, b that the phycoremediation

of both As(III) and As(V) ions (13.913 and 15.846%,

respectively) were very poor in the pH range\3.0. With

the increase in pH from 3.0 to 9.0, there was a significant

increase in the phycoremediation of both As(III) and

As(V) ions. The highest phycoremediation % of As(III)

and As(V) ions were achieved as 80 and 83.538, respec-

tively, at pH 9.0. Then, a sharp decrease in the phycore-

mediation was found and As(V) exhibited more

phycoremediation than As(III). These results can be

understood from the following explanations.

In the pH range of 2.0–9.0 and 10.0–12.0, As(III) exists

generally in neutral (H3AsO3) and anionic (H2AsO3
-)

forms, respectively. Reports also approve that As(V) exists

mostly in the monovalent form of H2AsO4
- in the pH

range 3.0–6.0, yet at pH near 2.0, a small extent of H3AsO4

also remains. However, a divalent anion HAsO4
2- prevails

at higher pH values ([8.0); both species co-exist in the

intermediate region of pH 6.0–8.0 (Ranjan et al. 2009).

Also at low pH 1.0–6.0, the density of hydrogen ion was

quite high against As(III) and As(V) ions, which resulted in
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Fig. 1 Experimental data and ANN outputs as a function of pH

versus (%) removal of a As(III) and b As(V) by Chlorella

pyrenoidosa (experimental conditions: inoculum size (% v/v): 10;

contact time: 144 h; initial arsenic concentration: 50 mg/L; temper-

ature: 28 �C)
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protonation of the components of the cell wall, i.e. the

surface of microalgae C. pyrenoidosa biomass. Thus, the

amine and hydroxyl group in the surfaces of microalgal

biomass were vastly protonated in acidic conditions. The

protonation of microalgal cell wall moieties reduced the

phycoremediation efficiency because there was a strong

electrostatic interaction remains between positively

charged surface of the biomass and oxyanions (Boddu et al.

2008; Velásquez and Dussan 2009). Comte et al. (2008)

described that the deprotonated form of the reactive sites in

cell wall, generally amino, phosphoric and carboxylic

groups, is mainly responsible for the metal ions binding to

EPS. Chojnacka et al. (2005) also stated that various

functional groups of cell wall of microalgal biomass are

responsible for binding of metal ions. The solution pH

influences the ionization state of these functional groups.

Anions could be anticipated to interact more strongly with

cells as the concentration of positive charges increases.

The surfaces of microalgal biomass are vastly proto-

nated in extreme acidic conditions and such a condition is

not so encouraging for removal of As(III) and As(V) due to

the presence of neutral As(III) and As(V) species in this

range, resulting in virtually less change in the phycore-

mediation within the pH range 2.0–4.0. The degree of

protonation of the surface decreases progressively, with the

increase in pH of the system. The highest phycoremedia-

tion of As(V) was found at pH 9.0 where the prevailing

species of As(III) was only non-ionic species H3AsO3

(Smedley and Kinniburgh 2002), might be attributed to

several products of undetermined reaction during the pro-

cess of phycoremediation. The neutral (H3AsO3) and

monoanionic (H2AsO3
-) species are thus considered to be

responsible for the phycoremediation of As(III), also due to

the substitution of hydroxyl ions or water molecules. The

neutral species (H3AsO3) cannot undergo electrostatic

interaction with the microalgal biomass. However, such

species can interact with the unprotonated amino groups

(Aryal et al. 2010; Prasad et al. 2013). At pH 5.0–9.0,

anionic species of As(V) (H2AsO4
- and HAsO4

2-) exists

and the surface of microalgal biomass is also protonated

and so a strong electrostatic interaction remains between

positively charged microalgal biomass surface and oxyan-

ions and as a result the removal improved in this pH range

because of the increase in HAsO4
2- species with the

increase in pH of the solution. The dominant species of

As(V) in the above-mentioned pH range are H2AsO4
- ions,

which can be phycoremediated on the microalgal biomass

by substituting hydroxyl ions or coordination of hydroxyl

groups with the microalgal biomass (Boddu et al. 2008;

Prasad et al. 2013). So, the highest removal of As(V) was

found to be at pH 9.0.

With the increase in pH of the system, the degree of

protonation of the surface decreased gradually. As the pH

of the solution increased more than 9.0 (alkaline medium),

the negatively charged species H2AsO3
- and H2AsO4

2-

started to govern in the medium and cell surface also

inclines to gain negative charges (OH-) (Volesky and

Holan 1995; Sadowski 2001) resulting in the reduction of

phycoremediation of both As(III) and As(V) (Ranjan et al.

2009). This process can be defined in three stages: (1) the

decline may be because of the negatively charged adsor-

bate by accumulating hydroxyl ions (OH-) on the surface

of microalgal biomass, (2) may be because of the ioniza-

tion of very weak acidic functional groups of the

microalgal biomass, or both at higher pH values, and/or (3)

a repulsive force may exist between the anionic species and

the negatively charged surface of the microalgal biomass

(Ranjan et al. 2009; Giri et al. 2011, 2013). This results in

reduced As(III) and As(V) removal at higher pH values

(Ranjan et al. 2009).

More attraction among the As(V) ions and H? ions on

the surface of microalgal biomass may be the motive for

the maximum As(V) phycoremediation at pH 9.0 compared

to As(III).

Arsenic occurs in various oxidation states and the

stability of these ionic species are influenced by the pH of

the aqueous system. The mechanism of any phycoreme-

diation process is very significant section to understand

the characteristics of the microalgae and also to under-

stand the process, which supports to design unique

microalgae for future uses. A mechanism for the phy-

coremediation of As(III) and As(V) ions by ion exchange

using C. pyrenoidosa biomass was suggested by taking

the results acquired from the experimental studies

(Fig. 1a, b).

The agreement between the experimental results and the

ANN model predictions as a function of initial pH is shown

in Fig. 1a, b. From this plot it can be understood that

acquired outcomes from the recommended ANN model are

in good agreement with the experimental results.

There are various mechanisms of interaction between

the microalgae cells and metal ions: adsorption by physical

forces, ion exchange, chelation, reduction, complexation,

and microprecipitation, the plasma membrane and heavy

metal flux, metallothioneins, phytochelatins (PCs),

sequestration and compartmentalization in the vacuole,

polyphosphate bodies in microalgae, sequestration to the

chloroplast and mitochondria, and ion entrapment in inter-

and intrafibrillar capillaries and spaces of the structural

polysaccharidic network of external cell layers (Razmovzki

and Sciban 2008; De Philippis and Micheletti 2009; Kumar

et al. 2015). Chojnacka et al. (2005) and Monteiro et al.

(2012) stated that the microalgal cell wall consisted mainly

of peptidoglycan, polysaccharides, proteins, teichoic acid,

and teichuronic acid, and lipids which offer various func-

tional groups, like hydroxyl, carboxyl, sulfydryl, amine, or
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phosphate. Microalgae play an important role in controlling

heavy metals concentration, since their functional groups

that located on the cell wall, are capable to bound ionic

metal (Volesky 2007; Kumar et al. 2015); sink or remove it

by accumulation, biosorption or metabolization into sub-

stantial level (Priyadarshani et al. 2011).

Regarding the metal uptake into the cells, it can be

nonspecific or with high substrate specificity; the first one

being faster and driven by the chemiosmotic gradient

across the cytoplasmic membrane, and the second one is

driven by ATP as the energy source (Baptista and Vas-

concelos 2008). Regarding the detoxification mechanisms,

once the metals have been absorbed into the cells, they

could be related to a tolerance response or to a real resis-

tance mechanism (Arunakumara and Zhang 2008). One of

the best considered responses to exposure of toxic heavy

metal in microalgae is the phytochelatin synthesis induc-

tion. Various microalgal species respond to stress of heavy

metal by phytochelatins synthesis (Hu et al. 2001; Pinto

et al. 2003). Phytochelatins are mainly glutathione poly-

mers which are 2–9 units in length, have great selectivity

for only a few heavy metals comprising arsenic, lead,

copper, gold, cadmium, zinc, mercury and silver (Stillman

1995).

Surface sites are positively charged at lower pH of the

medium and therefore attract negatively charged As(III)

and As(V) by an electrostatic interaction or columbic force

(Mashitah et al. 1999; Hansen et al. 2006). The surface of

C. pyrenoidosa biomass fulfils the coordination shells with

the prevailing OH group with the materials under hydra-

tion. On the variation of pH, these surface active OH

groups may further bind or release H? where the surface

remains positive because of the reaction:

1) The surface of C. pyrenoidosa would obtain a posi-

tive charge when pH was\7.0 because of the following

reaction (Mondal et al. 2007; Mandal et al. 2011; Ren et al.

2012; Giri et al. 2013):

MOH (surf) ? H3O(aq)
? ? MOH2

? ? H2O (6.135)

MNH2 (surf) ? H3O(aq)
? ? MNH2

? ? H2O (6.136)

When pH[ 7.0, a negative charge had been developed

on the surface of C. pyrenoidosa:

MOH(surf) ? OH-
(aq) ? M–O- ? H2O (6.137)

MNH2(surf) ? OH-
(aq) ? M–O- ? H2O (6.138)

a) Thus, when pH\ 7.0, the overall mechanism of

As(III) or As(V) phycoremediation can be characterized in

three different forms (Mandal et al. 2011; Giri et al. 2013):

(i) electrostatic interaction or coulombic interaction

between positively charged centre (nitrogen, OH) and

negatively charged As(III) or As(V) in solution (Mandal

et al. 2015):

MNH2
? ? H2AsO3

- ? MNH2
?…H2AsO3

- (6.139)

MNH2
? ? H2AsO4

- ? MNH2
?…H2AsO4

- (6.140)

MNH2
? ? HAsO3

2- ? MNH2
?…H2AsO3

2- (6.141)

MNH2
? ? H2AsO4

2- ? MNH2
?…H2AsO4

2- (6.142)

(ii) electrostatic attraction between positively charged

surface, hydroxyl group and H2AsO3
- and H2AsO4

- (Hu

et al. 2005):

MOH2
? ? H2AsO3

- ? MOH2
?….-O3AsH2 (electro-

static attraction) (6.143)

MOH2
? ? H2AsO4

- ? MOH2
?..….-O4AsH2 (electro-

static attraction) (6.144)

and (iii) ion exchange reaction between positively

charged metal centre and H2AsO3
- and H2AsO4

-:

MOH2
? ? H2AsO3

- ? M….OAsO3H2 ? 2H2O (ion

exchange) (6.145)

MOH2
? ? H2AsO4

- ? M….OAsO3H2 ? 2H2O (ion

exchange) (6.146)

b) Again while the pH of the solution remains moder-

ately in a neutral range (pH 7.0), phycoremediation of

As(III) or As(V) on the neutral microalgal biomass surface

can be defined by a ligand or ion exchange reaction

mechanism, which is characterized as follows (Mandal

et al. 2011; Giri et al. 2013):

MOH ? AsO3
3- ? M?…AsO3

3- ? OH- (ligand or

ion exchange) (6.147)

MOH ? H2AsO3
- ? M–OAsO3H2 ? OH- (ligand or

ion exchange) (6.148)

MOH ? AsO4
3- ? M?…AsO4

3- ? OH- (ligand or

ion exchange) (6.149)

MOH ? H2AsO4
- ? M–OAsO4H2 ? OH- (ligand or

ion exchange) (6.150)

c) At pH above[ 7.0, the surface is hydroxylated and

expressed as MO- and the negatively charged surface can

exchange AsO3
3- or H2AsO3

- and AsO4
3- or H2AsO4

-

anions as follows (Hu et al. 2005):

MO- ? AsO3
- ? H2O ? MOH–AsO3

3- ? OH-

(6.151)

MO- ? H2AsO3
- ? H2O ? MOH–AsO3

3- ? OH-

(6.152)

MO- ? AsO4
- ? H2O ? MOH–AsO4

3- ? OH-

(6.153)

MO- ? H2AsO4
- ? H2O ? MOH–AsO4

3- ? OH-

(6.154)

The modelling of the exact phycoremediation of AsO3
3-

or H2AsO3
- and AsO4

3- or H2AsO4
- on any material

surface is dependent on a number of peripheral parameters

such as pH, temperature, initial concentration of arsenic

(either As(III) or As(V)) and the density of surface func-

tional groups existing for coordination.

Effect of inoculum size on phycoremediation

properties of C. pyrenoidosa

The impact of inoculum size on phycoremediation of C.

pyrenoidosa was carried out by varying inoculum volume

in the range of 2–20% (v/v) in the growth media containing
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50 mg/L of arsenic (either As(III) or As(V)), at an initial

optimized pH value of 9.0, contact time 144 h and tem-

perature 28 �C.
For the two arsenic species (As(III) and As(V)), virtu-

ally no change was observed in the phycoremediation %

for the inoculum size in the range of 2–8% (v/v) and then

scavenging enhanced sharply and reached the highest at

inoculum size of 10% (v/v). Then a sharp drop in the

phycoremediation % was found (Fig. 2a, b).

With the increase in inoculum size the biomass con-

centration increases, reaches a maximum and then it

declines with the increase of inoculum size. In the present

study, biomass concentration increased when the inoculum

size was increased from 1 to 10% (v/v) and then it started

to decrease. For 1% (v/v) inoculum, the As(III) and

As(V) phycoremediation % was 62.609 and 68.154, which

increased to 80 and 83.538, respectively, at 10% (v/v)

inoculum of C. pyrenoidosa algae and then decreased to

60.87 and 77.38, respectively, at an inoculum size of 20%

(v/v). It was supported by the change in biomass

concentration.

At inoculum volume \10% (v/v), an improved distri-

bution CO2 as well as more efficient nutrient uptake also

leads to a higher growth of algae when inoculum size was

low, although optical density of cell suspension was found

to be low. This may be due to the overpopulated culture

and fixed amount of nutrient with which the microorgan-

isms begin to liberate proteolytic enzyme enhancing self-

consumption (Srinath et al. 2002; Jayanthi et al. 2013). So

fixed amount of inoculums were optimized and 10% (v/v)

of inoculum volume gave the best result than other size of

inoculum. On the other hand, higher inoculum sizes [[10%

(v/v)] could result in the lack of carbon dioxide and

depletion of nutrient in the culture media. So the maximum

phycoremediation of arsenic [either As(III) or As(V)] was

found using 10% inoculum size.

The results acquired from experimental studies are

presented into the ANN model and predicted with sensible

exactness, which supports the drift of experimental out-

comes (Fig. 2a, b).

Effect of contact time on phycoremediation

properties of C. pyrenoidosa

The effect of contact time on the removal of both As(III)

and As(V) was examined by culturing C. pyrenoidosa in

100 mL of synthetic wastewater containing 50 mg/L of

arsenic (either As(III) or As(V)) and keeping inoculum size

and pH constant at 10% and 9.0, respectively. The study

reveals the high potential of C. pyrenoidosa in the removal

of both As(III) and As(V) from synthetic wastewater.

Figure 3a, b represent the variation of % removal of both

As(III) and As(V) with time. An S-shaped growth curve

was found with both As(III) and As(V). This characterizes

the effective growth of C. pyrenoidosa biomass in synthetic

wastewater. From Fig. 3a, b, it is clear that the % removal

of As(V) is higher than that of As(III). After 168 h of

growth, the % removal of both As(III) and As(V) was

found to increase from 38.261 to 81.739 and 40.462 to

85.077, respectively, when contact time varies from 4 to

168 h. Time to achieve equilibrium was 168 h for both

As(III) and As(V).

From the consequences it is clear that in all the systems,

the saturation time does not be ruled by the adsorbate

concentration in the solution. The change in the rate of

removal might be due to the fact that originally all sites of

algal biomass surfaces are easily available and furthermore

the concentration gradient of adsorbate is very high. At

optimum pH, the fast kinetics of interaction of adsorbate–
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Fig. 2 Experimental data and ANN outputs as a function of inoculum

size versus (%) removal of a As(III) and b As(V) by Chlorella

pyrenoidosa (experimental conditions: initial pH: 9.0; contact time:

144 h; initial arsenic concentration: 50 mg/L; temperature: 28 �C)
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algal biomass might be clear to increase availability of the

active sites of the algal biomass surface. So the removal of

adsorbate was fast in the early stages and gradually

decreases with the interval of time until equilibrium in each

case. The decrease in removal of metal ions at the later

stage of the process was owing to the falling of concen-

tration of metal ions (Mishra et al. 2010).

The results of the effect of contact time on % removal

specifies that the respective algae had an optimum resi-

dence time for As(III) and As(V) and when this time

passed, phycoremediation continued either constant or

diminished slightly. The constant nature of the % removal

curve after 168 h for both As(III) and As(V) may also be

because of initiation of the stationary phase of the C.

pyrenoidosa.

The experimental results and ANN estimated results as a

function of contact time for removal of As(III) and

As(V) are shown in Fig. 3a, b. It can be observed that the

ANN model exhibited a good performance on prediction of

the experimental output.

Maximum tolerance of microalgae

Experiments were carried out in batch reactor to investigate

the maximum tolerable concentration of arsenic (either

As(III) or As(V)). Various initial arsenic (either As(III) or

As(V)) concentration considered in the present study are

50, 100, 500, 1000, 1500, 2000, 2200, 2500, 2700 mg/L,

3000, 4000, 5000, 6000, 7000, 8000, 9000, and 10000 mg/
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Fig. 3 Experimental data and ANN outputs as a function of contact

time versus (%) removal of a As(III) and b As(V) by Chlorella

pyrenoidosa (experimental conditions: initial pH: 9.0; inoculum size

(% v/v): 10; initial arsenic concentration: 50 mg/L; temperature:

28 �C)
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Fig. 4 Maximum tolerance of As(III) resistant and As(V) resistant C.

glutamicum MTCC 2745 at different levels of initial concentration of

a As(III) and b As(V) (pH: 7.0; Inoculum size: 5% (v/v); T: 30 �C;
Agitation speed: 120 rpm; Incubation time: 24 h) (Error bars

represent means ± standard errors from the mean of duplicate

experiments)
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L. From Fig. 4a, b the observations are made that the

growth of microalgae decreased with the increase in

arsenic (either As(III) or As(V)) concentration from 50 to

10000 mg/L, respectively. It can be explained by the fact

that metal ion concentration plays a major role for the

growth properties of microalgae C. pyrenoidosa. The

Maximum Tolerable Concentration (MTC) of metal ion

was selected as the highest concentration of metal ion that

allows growth after 7 days. The increasing concentration of

arsenic (either As(III) or As(V)) (50, 100, 500, 1000, 1500,

2000, 2200, 2500, 2700, 3000, 4000, 5000, 6000, 7000,

8000, 9000, and 10000 mg/L) in the growth media were

used for testing the MTCs. Growth of microalgae is highly

sensitive to arsenic concentration. The absorbance (OD at

680 nm) and biomass concentration of microalgae C.

pyrenoidosa decreased from 0.484 and 2.34 g/L to 0.114

and 0.388 g/L, respectively, with the increase of As(III)

concentration from 50 to 10000 mg/L. Similarly, the

absorbance (OD at 680 nm) and biomass concentration of

microalgae C. pyrenoidosa decreased from 0.491 and 2.377

to 0.131 and 0.478 g/L, respectively, with the increase of

As(V) concentration from 50 to 10000 mg/L.

Effect of initial As(III) and As(V) concentration

on phycoremediation of C. pyrenoidosa

The influence of initial metal ion concentration on phy-

coremediation using C. pyrenoidosa was performed by

changing arsenic (either As(III) or As(V)) concentrations

(50, 100, 200, 500, 800, 1000, 1200, 1500, 1800 and

2000 mg/L) in the growth media, at an initial optimized pH

value of 9.0. The phycoremediation % and phycoremedi-

ation level of the As(III) and As(V) by the algal species at

different initial arsenic (either As(III) or As(V)) concen-

trations were determined as presented in Table 4. For all

the two arsenic species (As(III) and As(V)), phycoreme-

diation % in C. pyrenoidosa biomass reduced as the arsenic

species concentration increased from 50 to 2000 mg/L are

exposed in Fig. 5a, b.

Table 4 Comparison of As(III) and As(V) phycoremdiation, at dif-

ferent levels of As(III) and As(V) concentration

Arsenic

species

C0

(mg/L)

Phycoremediation

(%)

Arsenic conc.

(mg/L)

As(III) 0 – –

50 62.609 31.304

100 66.087 66.087

200 71.304 142.609

500 76.522 382.609

800 80 640

1000 76.522 765.217

1200 71.304 855.652

1500 67.827 1017.391

1800 62.609 1126.957

2000 57.391 1147.826

As(V) 0 – –

50 85.077 42.538

100 83.038 83.038

200 81 162

500 77.362 386.808

800 76.519 612.154

1000 72.7 727

1200 69.385 832.615

1500 66.044 990.654

1800 62.442 1123.962

2000 59.883 1197.654
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Fig. 5 Experimental data and ANN outputs as a function of initial

arsenic concentration versus (%) removal of a As(III) and b As(V) by

Chlorella pyrenoidosa (experimental conditions: initial pH: 9.0;

inoculum size (% v/v): 10; contact time: 168 h; temperature: 28 �C)
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With the increase of concentration of contaminants

toxicity level increases, as a result biomass concentra-

tion decreases. In the present study, the biomass con-

centration reduced when the amount of phycoremediated

arsenic [either As(III) or As(V)] species was increased

from 50 to 2000 mg/L. In the presence of 50 mg/L of

As(III) and As(V), the phycoremediation % was 81.739

and 85.077, respectively, which was reduced to 55.25

and 59.883 at 2000 mg/L of As(III) and As(V), respec-

tively. The reduction in phycoremediation % was also

due to the toxicity of arsenic at higher concentrations

which reduced the biomass concentration. Varying the

concentration from 50 to 2000 mg/L resulted in

increased phycoremediation levels from 31.304 to

1147.826 and 42.538 to 1197.654 mg/L for As(III) and

As(V), respectively.

In response to As(III) and As(V) the alga created phy-

tochelatins (PC2–3), but at As(V) exposure, their levels in

cells were more than with As(III), suggesting greater

As(V) than As(III) accessibility and uptake. So the removal

of As(V) is higher than As(III) for all concentrations

(Pawlik-Skowrónska et al. 2004).

Figure 5a, b shows the comparison between experi-

mental data as a function of initial arsenic concentration

(As(III) and As(V)) and ANN model prediction. It can be

noted that ANN model predicts suitably the drift of

experimental data.

Optimization of the ANN structure

The optimization of network is very significant stage in

network training. The relationship between the input and

output data was attained by ANN to approximate any

function with finite number of discontinuities by learning

their relationships (Hagan et al. 1996). The network is

tested with various numbers of neurons from 1 to 12 for

finding the optimum number of neurons at hidden layer by

finding the mean squared error (MSE).
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Fig. 6 Dependence between MSE and number of neurons at hidden

layer Chlorella pyrenoidosa for a As(III) and b As(V)

Table 5 Comparison of 12 neurons in the hidden layer for phy-

coremediation efficiency by ANN model development with the

Levenberg–Marquardt algorithm using Chlorella pyrenoidosa

As(III) species As(V) species

Number of neurons MSE Number of neurons MSE

1 1.295E-04 1 1.322E-04

2 4.924E-05 2 6.018E-05

3 2.191E-05 3 1.196E-05

4 2.371E-05 4 2.466E-05

5 8.268E-06 5 8.815E-06

6 3.064E-05 6 8.932E-05

7 3.55E-05 7 8.247E-05

8 1.088E-05 8 2.494E-05

9 1.249E-05 9 1.299 E-04

10 2.63E-05 10 1.792E-05

11 4.91E-05 11 3.713E-05

12 1.43E-05 12 1.684E-05

Fig. 7 The artificial neural network optimized structure
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During training phase, the output vector is calculated by

a forward pass in which the input is propagated forward

through the network for computing the output value of each

unit. Then the output vector is compared with the desired

vector which resulted into error signal for each output unit.

So as for minimizing the error, appropriate adjustments

were made. After numerous such iterations, the network

was trained for giving the desired output for a given input

vector. The network was trained till minimum mean square

error was acquired.

As it can be observed (Fig. 6a, b), the smallest MSE was

taken into account for train function, when the consequence

of Table 5 exhibits the relation between the number of

neurons and MSE for existing ANN. According to Fig. 6a,

b, the optimum number of neurons at hidden layer is equal

to 5 as the best case with the minimum value of MSE

(8.268E-06 and 8.815E-06) for both As(III) and As(V).

The hidden layers act like feature detectors. Consequently

in this investigation three–layer feed–forward back propa-

gation neural network (4:5:1) was used to model the phy-

coremediation of both As(III) and As(V).

Fig. S2 of supplementary materials shows the proposed

optimum ANN type for both As(III) and As(V). Hence, one

of the optimum topology of ANN in the current investi-

gation, as presented in Fig. 7, is parallel interconnected

structure including: (1) input layer of neurons correspond

to four independent experimental parameters (2) 5 neurons

in the hidden layer, (3) and output layer corresponds %

removal for both As(III) and As(V). The hidden layer

having 5 neurons used a tangent sigmoid activation func-

tion (tansig) and lastly the output layer having 1 neuron

used a linear activation function (purelin).

If the number of neurons in the hidden layer is more, the

network becomes complicated. Results possibly specify
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Fig. 8 Distribution of % Removal a As(III) and b As(V) (training

data)
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data)
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that the present problem (predicting the % removal of

arsenic (either As(III) or As(V)) using the algae C.

pyrenoidosa) is not so complex as to require a complicated

network routing. Therefore, the outcomes were suitably

attained by keeping the number of neurons in the hidden

layer at one of the optimum number of five.

The performance of the network is governed by the

weight (traingdm), net input and transfer (tansig) functions.

A mean square error of 8.268E-06 and 8.815E-06 were

observed at epoch number 72 and 53, respectively, for

As(III) and As(V), respectively. Training was stopped at

this point and weights have been frozen for network for

undergoing testing phase. Fig. S3a, b of supplementary

materials shows the MSE versus the number of epochs for

optimal ANN models exhibit that the training was stopped

after 73 and 53 for As(III) and As(V), respectively.

Fig. S3a, b of supplementary materials also shows the

reduction of the MSE throughout the training process.

Training stops while any of these following situations are

happening: (1) The highest number of epochs is achieved;

(2) The highest amount of training time is beaten; (3)

Performance is minimized to the target and (4) Validation

time beats higher than maximum fails.

The good simulation and correlation of experimental

and predicted outcomes (train, validation, test and all data)

of the % removal of arsenic (either As(III) or As(V)) for

the optimum number of hidden layer neurons are shown in

Fig. S4a, b and Fig. S5a, b of supplementary materials,

respectively, which approve the exactness of the neural

network to model and predict the outlet composition of

removal parameters. This ANN model specified an accu-

rate and efficient prediction of the experimental data of

As(III) with a correlation coefficient (R2) of 0.99984,

0.99991, 0.99991 and 0.99987 for training, validation,

testing and all data, respectively, and that of As(V) with a

correlation coefficient (R2) of 0.99984, 0.99991, 0.99992

and 0.99987 for training, validation, testing and all data,

respectively. The R2 value acquired in this case is[0.99

which displays best fitting of model to data. Outcomes of
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prediction by neural network (R2) for training, validation

and testing are given in Table 3.

Prediction of phycoremediation efficiency using

ANN

The distribution of output of training data is presented in

Fig. 8a, b for As(III) and As(V), respectively. A high

degree of correlation between actual and predicted removal

efficiency (%) were found as presented in Fig. S6a, b of

supplementary materials for As(III) and As(V), respec-

tively. Coefficient of determination (R2) of 0.99985 and

0.99505 are acquired for training data set of As(III) and

As(V), respectively. While the network was well trained,

validation and testing of the network with the corre-

sponding validation and testing data set were performed.

The prediction capability of the developed network model

for responses of experimental data is not forming part of

the training data-set.

The distribution of output of validation data are exhib-

ited in Fig. 9a, b for As(III) and As(V), respectively. The

degree of correlation (R2 equal to 0.04165 and 0.00159)

between actual and predicted % removal were found as

shown in Fig. S7a, b of supplementary materials for vali-

dation data-set of As(III) and As(V), respectively.

The distribution of output of testing data is exposed in

Fig. 10a, b for As(III) and As(V), respectively. A high

degree of correlation (R2 equal to 0.99712 and 0.99899)

between actual and predicted % removal were found as

presented in Fig. S8a, b of supplementary materials for

testing data-set of As(III) and As(V), respectively.

The residuals for training, validation and testing data of

As(III) and As(V) were plotted in Figs. 11a, b, 12a, b and

13a, b, respectively. It can be found that the residuals were

uniformly distributed above and below zero line. So it can

be expected that the errors were distributed normally and
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Table 6 Comparison of experimental and predicted As(III) removal efficiency on all data (Training, validation and testing)

Run
No.

pH Inoculum
size

Contact
time (h)

Initial arsenic
conc. (mg/L)

Actual
Removal (%)

Predicted
Removal (%)

Residual
(%)

Error
(%)

Absolute
error

Standard
deviation (SD)

1 2 10 144 50 5.217 5.176 0.042 0.807 0.807 0.021

2 3 10 144 50 13.913 14.038 -0.125 -0.890 0.890 0.062

3 4 10 144 50 27.826 27.741 0.085 0.305 0.305 0.042

4 5 10 144 50 38.261 38.133 0.128 0.336 0.336 0.064

5 6 10 144 50 53.913 53.821 0.092 0.171 0.171 0.046

6 7 10 144 50 64.348 64.264 0.084 0.131 0.131 0.042

7 8 10 144 50 74.783 75.010 -0.227 -0.303 0.303 0.113

8 9 10 144 50 80.000 79.752 0.248 0.311 0.311 0.124

9 10 10 144 50 66.087 65.490 0.597 0.911 0.911 0.298

10 11 10 144 50 33.043 33.080 -0.037 -0.111 0.111 0.018

11 12 10 144 50 13.913 13.078 0.835 6.382 6.382 0.417

12 9 2 144 50 62.609 63.169 -0.560 -0.887 0.887 0.280

13 9 4 144 50 66.087 66.055 0.032 0.049 0.049 0.016

14 9 6 144 50 71.304 71.270 0.034 0.048 0.048 0.017

15 9 8 144 50 76.522 76.615 -0.093 -0.121 0.121 0.047

16 9 10 144 50 80.000 79.752 0.248 0.311 0.311 0.124

17 9 12 144 50 76.522 76.484 0.038 0.049 0.049 0.019

18 9 14 144 50 71.304 71.776 -0.471 -0.657 0.657 0.236

19 9 16 144 50 67.826 67.358 0.468 0.695 0.695 0.234

20 9 18 144 50 62.609 62.674 -0.065 -0.104 0.104 0.033

21 9 20 144 50 57.391 56.958 0.433 0.760 0.760 0.217

22 9 10 4 50 38.261 38.589 -0.328 -0.850 0.850 0.164

23 9 10 8 50 43.478 43.056 0.423 0.982 0.982 0.211

24 9 10 12 50 46.957 46.723 0.234 0.500 0.500 0.117

25 9 10 24 50 53.913 53.966 -0.053 -0.098 0.098 0.026

26 9 10 48 50 60.870 60.936 -0.067 -0.109 0.109 0.033

27 9 10 72 50 66.087 66.041 0.046 0.069 0.069 0.023

28 9 10 96 50 71.304 71.395 -0.090 -0.127 0.127 0.045

29 9 10 120 50 76.522 76.370 0.151 0.198 0.198 0.076

30 9 10 144 50 80.000 79.752 0.248 0.311 0.311 0.124

31 9 10 168 50 81.739 81.359 0.380 0.467 0.467 0.190

32 9 10 192 50 81.739 81.823 -0.084 -0.102 0.102 0.042

33 9 10 216 50 81.739 81.789 -0.050 -0.061 0.061 0.025

34 9 10 240 50 81.739 81.642 0.098 0.120 0.120 0.049

35 9 10 264 50 81.739 81.547 0.192 0.236 0.236 0.096

36 9 10 288 50 81.739 81.552 0.187 0.229 0.229 0.093

37 9 10 312 50 81.739 81.652 0.087 0.107 0.107 0.044

38 9 10 336 50 81.739 81.823 -0.084 -0.102 0.102 0.042

39 9 10 360 50 81.739 82.041 -0.302 -0.369 0.369 0.151

40 9 10 144 50 81.739 81.359 0.380 0.467 0.467 0.190

41 9 10 144 100 78.478 80.183 -1.704 -2.126 2.126 0.852

42 9 10 144 200 76.957 77.737 -0.781 -1.004 1.004 0.390

43 9 10 144 500 73.783 73.903 -0.120 -0.162 0.162 0.060

44 9 10 144 800 70.978 70.862 0.116 0.164 0.164 0.058

45 9 10 144 1000 67.435 67.201 0.233 0.347 0.347 0.117

46 9 10 144 1200 64.348 64.395 -0.048 -0.074 0.074 0.024

47 9 10 144 1500 61.174 61.195 -0.021 -0.034 0.034 0.010

48 9 10 144 1800 58.152 57.900 0.252 0.436 0.436 0.126

49 9 10 144 2000 55.250 55.696 -0.446 -0.801 0.801 0.223
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Table 7 Comparison of experimental and predicted As(V) removal efficiency on all data (Training, validation and testing)

Run
No.

pH Inoculum
size

Contact
time (h)

Initial arsenic
conc. (mg/L)

Actual
Removal (%)

Predicted
Removal (%)

Residual
(%)

Error
(%)

Absolute
error

Standard
deviation (SD)

1 2 10 144 50 8.154 8.092 0.062 0.768 0.768 0.031

2 3 10 144 50 17.385 16.093 1.292 8.026 8.026 0.646

3 4 10 144 50 29.692 29.643 0.050 0.168 0.168 0.025

4 5 10 144 50 40.462 40.405 0.057 0.141 0.141 0.028

5 6 10 144 50 58.923 55.644 3.279 5.893 5.893 1.640

6 7 10 144 50 68.154 66.615 1.539 2.310 2.310 0.769

7 8 10 144 50 78.923 77.453 1.470 1.898 1.898 0.735

8 9 10 144 50 83.538 83.284 0.255 0.306 0.306 0.127

9 10 10 144 50 69.692 69.918 -0.225 -0.322 0.322 0.113

10 11 10 144 50 37.385 38.826 -1.441 -3.711 3.711 0.720

11 12 10 144 50 17.385 15.227 2.157 14.166 14.166 1.079

12 9 2 144 50 66.615 68.093 -1.478 -2.170 2.170 0.739

13 9 4 144 50 71.231 71.284 -0.053 -0.075 0.075 0.027

14 9 6 144 50 75.846 75.825 0.021 0.027 0.027 0.010

15 9 8 144 50 80.462 80.446 0.016 0.020 0.020 0.008

16 9 10 144 50 83.538 83.284 0.255 0.306 0.306 0.127

17 9 12 144 50 80.462 80.666 -0.205 -0.254 0.254 0.102

18 9 14 144 50 75.846 75.764 0.082 0.109 0.109 0.041

19 9 16 144 50 71.231 71.058 0.173 0.243 0.243 0.086

20 9 18 144 50 68.154 66.965 1.189 1.775 1.775 0.594

21 9 20 144 50 65.077 63.177 1.900 3.007 3.007 0.950

22 9 10 4 50 40.462 41.745 -1.284 -3.075 3.075 0.642

23 9 10 8 50 46.615 44.578 2.037 4.570 4.570 1.019

24 9 10 12 50 51.231 47.238 3.992 8.451 8.451 1.996

25 9 10 24 50 57.385 54.229 3.155 5.818 5.818 1.578

26 9 10 48 50 68.154 64.334 3.819 5.937 5.937 1.910

27 9 10 72 50 74.308 70.883 3.425 4.832 4.832 1.713

28 9 10 96 50 78.923 76.095 2.828 3.716 3.716 1.414

29 9 10 120 50 82.000 80.525 1.475 1.832 1.832 0.737

30 9 10 144 50 83.538 83.284 0.255 0.306 0.306 0.127

31 9 10 168 50 85.077 84.567 0.510 0.603 0.603 0.255

32 9 10 192 50 85.077 85.076 0.001 0.001 0.001 0.001

33 9 10 216 50 85.077 85.241 -0.164 -0.192 0.192 0.082

34 9 10 240 50 85.077 85.256 -0.179 -0.210 0.210 0.090

35 9 10 264 50 85.077 85.207 -0.130 -0.153 0.153 0.065

36 9 10 288 50 85.077 85.135 -0.058 -0.068 0.068 0.029

37 9 10 312 50 85.077 85.062 0.015 0.017 0.017 0.007

38 9 10 336 50 85.077 85.009 0.068 0.080 0.080 0.034

39 9 10 360 50 85.077 84.993 0.084 0.098 0.098 0.042

40 9 10 144 50 85.077 84.567 0.510 0.603 0.603 0.255

41 9 10 144 100 83.038 84.179 -1.141 -1.355 1.355 0.570

42 9 10 144 200 81.000 81.860 -0.860 -1.051 1.051 0.430

43 9 10 144 500 77.362 77.685 -0.323 -0.416 0.416 0.162

44 9 10 144 800 76.519 76.330 0.190 0.248 0.248 0.095

45 9 10 144 1000 72.700 72.917 -0.217 -0.297 0.297 0.108

46 9 10 144 1200 69.385 69.357 0.027 0.039 0.039 0.014

47 9 10 144 1500 66.044 66.053 -0.009 -0.014 0.014 0.004

48 9 10 144 1800 62.442 62.378 0.064 0.103 0.103 0.032

49 9 10 144 2000 59.883 60.015 -0.132 -0.221 0.221 0.066
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Fig. 14 Scanning electron micrographs (SEM) (1500 9) and EDX of native Chlorella pyrenoidosa, As(III) loaded biomass and As(V) loaded

biomass
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the model can be utilized for purpose of prediction with

sensible exactness. The progress of the suggested ANN

model is an effort in the direction of an increasing concern

to apply ANN modelling method to the field of biosorption

of contaminants from water bodies (Texier et al. 2002;

Aber et al. 2009). Conversely the current investigation is

focused on modelling of phycoremediation of arsenic [ei-

ther As(III) or As(V)] using a new algae C. pyrenoidosa.

These studies determine that ANN approach is reasonably

effective in modelling complex biological phenomenon.

Comparison of experimental and predicted removal effi-

ciency on all data (Training, validation and testing) is pre-

sented in Tables 6 and 7 for As(III) and As(V),

respectively. Consistent with normal probability density

function of error % values, it can be expected that the errors

are distributed normally and the ANN model can be utilized

for the purpose of prediction with realistic accurateness.

The statistical analysis of simulated output of 4:5:1

three–layer network topology with the experimental output

values are listed in 7 and 8 for As(III) and As(V),

respectively. The SD less than 1.0 shows good agreement

between experimental and predicted results. Then the

higher value ([1) of SD may be because of the insufficient

data to train the network.

Characterization of microalgae

Figure 14 shows the scanning electron microscopy (SEM)

images of native microalgal biomass and As(III) and

As(V) loaded microalgal biomass, respectively. In both

images, two types of structure have been seen. The

spherical shape represents C. pyrenoidosa. From Fig. 14, it

is found that in native microalgal biomass the surface is

smooth while after arsenic (either As(III) or As(V)) treat-

ment the surface becomes rough in both the microalgal

structures. Such roughness of the surface may be because

of the phycoremediation of arsenic [either As(III) or

As(V)] over the surface that makes the surface coarser than

its original form. The nodules are not clearly visible in the

SEM. The cells seem to be glued to each other. It was

because of more EPS production, which is one of the well-

known responses against stress. It has also been seen that

there has been very little or no change in the fraction of

spherical shape of C. pyrenoidosa before and after arsenic

(either As(III) or As(V)) removal. It recommends that the

presence of arsenic [either As(III) or As(V)] does not make

the medium selective toward any of the strains and the

biological nature of the consortium remains fairly constant.

Densities of the nodules also seem to be unaffected by the

presence of arsenic [either As(III) or As(V)] signifying that

the growth kinetics of the consortium remains unaffected in

the presence of arsenic [either As(III) or As(V)] in simu-

lated wastewater.

The corresponding EDX spectra of the unloaded and

loaded microalgae was collected and given in Fig. 14. The

presence of arsenic on the loaded microalgae surface was

exposed evidently. This outcome again established the

occurrence of phycoremediation of arsenic by the

microalgae.

Conclusion

The present work reveals effective removal of As (III) and

As(V) ions from the 50 mg/L synthetic wastewater utiliz-

ing C. pyrenoidosa biomass with maximum removal effi-

ciency of 81.73913 and 85.07692%, respectively. A three-

layer feed-forward back propagation of neural network

with Levenberg–Marquardt training algorithm is success-

fully accepted for predicting the response of the phycore-

mediation process for both As(III) and As(V). The model

with architecture of 4:5:1 presents good agreements with

the actual experimental and predicted values of both

As(III) and As(V). A comparison between the experimental

data and ANN model results gave a high correlation

coefficient (Rall_ANN
2 equal to 0.99987 for both As(III) and

As(V)), showed that the model is capable for predicting the

phycoremediation of both As(III) and As(V) from

wastewater. The model can be again extended comprising

more number of variables and experimental data for

exploiting basic principle of As(III) and As(V) removal

from wastewater utilizing algal biomass. Neural models

with rapid convergence ability may be tested with experi-

mental results for reducing the computational efforts. For

concluding, a simulation on the basis of the ANN model

can deliver a further contribution for developing a better

understanding of the dynamic behaviour of process where

still some phenomena cannot be clarified in all detail.
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