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We formulate a quantitative description of backscattered linearly polarized light with an extended photon dif-
fusion formalism taking explicitly into account the scattering anisotropy parameter g of the medium. From
diffusing wave spectroscopy measurements, the characteristic depolarization length for linearly polarized
light, lp , is deduced. We investigate the dependence of this length on the scattering anisotropy parameter g
spanning an extended range from 21 (backscattering) to 1 (forward scattering). Good agreement is found
with Monte Carlo simulations of multiply scattered light. © 2004 Optical Society of America
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1. INTRODUCTION
Polarized light scattered many times in a random me-
dium leaves the sample partially depolarized. Unfortu-
nately, despite its importance in areas such as biomedical
optical imaging, coherent backscattering, or dynamic
spectroscopy,1–4 the depolarization of light in a random
medium is still not completely understood because of the
complexity of vector wave multiple scattering (as com-
pared with the much simpler problem of scalar wave
propagation). Previous attempts have mainly focused on
isotropic (Rayleigh) scattering5 or on the depolarization of
circularly polarized light.4,6 Only a few studies have dis-
cussed specifically the mechanism of depolarization of lin-
early polarized light in the case where the anisotropy pa-
rameter g 5 ^cos u& is different from 0, and furthermore a
detailed comparison with experiment has been
lacking.7–13 An accurate description for arbitrary scat-
tering anisotropy is, however, crucial for analyzing the in-
formation contained in backscattered light if progress is
to be made in applications such as remote sensing, photon
correlation spectroscopy, or optical imaging of biological
tissues.1,14,15

In this paper we formulate a quantitative description of
backscattered linearly polarized light by using an ex-
tended photon diffusion formalism taking explicitly into
account the scattering anisotropy parameter g. The de-
tails of our model are adjusted by comparison with Monte
1084-7529/2004/091799-06$15.00 ©
Carlo simulations of multiply scattered light. We show
how the characteristic length of depolarization of incident
linearly polarized light, lp , can be deduced from measure-
ments of intensity fluctuations of light scattered from liq-
uid turbid media by means of diffusing wave spectroscopy
(DWS). We can distinguish the following limiting situa-
tions for the transport of light and its polarization: iso-
tropic scattering ( g . 0), forward-peaked scattering ( g
. 1), and backward-peaked scattering ( g . 21). The
situation of forward-peaked scattering ( g . 1) is typical
of Mie scattering16,17 with large particles and of biological
tissues, whereas the situation of g , 0 has been made
possible experimentally only recently by tuning the inter-
action of the light with the use of mesostructured colloidal
liquids.18 Here we show that with our additional correc-
tion the simple photon diffusion picture successfully de-
scribes the distribution of path lengths and the DWS au-
tocorrelation function in the backscattering geometry.

2. PATH-LENGTH DISTRIBUTION FOR
BACKSCATTERING
On length scales much larger than the transport mean
free path l* , the transport of light in a turbid medium can
be described by the diffusion approximation. This ap-
proximation is connected to the idea of treating the trans-
port of photons as a random walk, characterized by a dis-
2004 Optical Society of America
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tribution of path lengths.5,19–21 An exact solution of the
diffusion equation applied to light transport can be ob-
tained with the method of images. This method takes
into account the boundary conditions through two
lengths, which are both of the order of a transport mean
free path: the extrapolation length ze , where the flux of
photons vanishes outside the sample, and zp , which is
the location of the photon source (for a more detailed in-
terpretation of ze , zp based on a random-walk model, see
Ref. 4). The method leads to

P~s ! 5
A3

4Apl* s3/2 H zp expS 2
3

4

zp
2

l* s D
1 ~zp 1 2ze!expF2

3

4

~zp 1 2ze!
2

l* s G J , (1)

which obeys the normalization condition *0
`P(s)ds 5 1.

Note that the path length is simply related to the number
of scattering events n by s/l 5 n 2 1, so that the path
length is 0 for single scattering. Here l is the scattering
mean free path. Both quantities, l and l* , are related by
l* /l 5 1/(1 2 g). The scattering anisotropy parameter g
is defined as the average of the cosine of the scattering
angle: g 5 ^cos U&.

Fig. 1. Normalized path-length distribution P(s) 3 l for back-
scattered light from a semi-infinite medium. The symbols refer
to Monte Carlo simulations, and the curves are calculations
based on relation (2) with f( g) 5 3g/2 (solid) and f( g) [ 0
(dashed). Inset: f( g) obtained from Eq. (1) adjusted to fit the
simulation results. The wavelength is l0 5 532 nm, and the re-
fractive indices are np 5 1.59 of the particle and ns 5 1.332 of
the solvent. Nonreflecting boundary conditions were used.
To check the validity of Eq. (1), we have performed
Monte Carlo simulations of linearly polarized light re-
flected from a semi-infinite turbid medium (details about
the simulation method can be found in Refs. 4, 22, and 23.
These simulations use the Mie scattering cross section in
the range 0 < g < 1 and are able to evaluate numerically
an exact path-length distribution as a function of the
number of scattering events n and of the polarization.
The simulations were done for uncorrelated spherical
scatterers [structure function S(q) [ 1] and for a nonre-
flecting interface. Values of l0 5 532 nm for the inci-
dent wavelength, np 5 1.59 for the refractive index of the
particle and ns 5 1.332 for the solvent refractive index,
were used. In Fig. 1 we compare the results of the simu-
lations with the prediction of the method of images ac-
cording to Eq. (1). We see clearly in this figure that the
method of images provides an excellent description of the
path-length distribution for the case of isotropic scatter-
ing ( g [ 0) but that the method fails to give an equally
good description for the case of anisotropic scattering cor-
responding to g . 0.806.

The disagreement in the latter case is not surprising,
as the diffusion approximation is known to overestimate
the contribution from the short paths of the distribution,
the error becoming more and more severe as the anisot-
ropy of scattering increases. One way to improve the dis-
tribution of path lengths of Eq. (1) is by introducing a cut-
off into the distribution as suggested by MacKintosh and
John.8 Here we extend their approach by taking into ac-
count explicitly the scattering anisotropy factor g [with
*0

`Pcorr(s)ds 5 1]:

Pcorr~s ! } P~s !@1 2 f~ g !exp~2s/l* !#. (2)

According to MacKintosh and John,8 f(1) is of order
unity and for isotropic scattering ( g → 0) there is no cor-
rection @ f(0) 5 0#. Using the corrected distribution of
path lengths to fit the simulation results, we have found
that the function f is well approximated by a linear depen-
dence f( g) 5 3g/2, which we assume to be valid also for
g , 0. As can be seen in Fig. 1, the use of the correction
factor significantly improves the prediction of Eq. (1).
We note that, alternatively, for the case of forward-peaked
scattering ( g . 1), other schemes of approximations
have been suggested. For example, the recent Ref. 13 re-
ports that the Fokker–Plank equation provides a better
description than does the (uncorrected) diffusion approxi-
mation for forward-peaked scattering.

3. DEPOLARIZATION LENGTH FOR
LINEAR POLARIZATION
Incident polarized light loses its polarization in random
multiple scattering.5,7–9,12 For linearly polarized light,
only two configurations (i and ') need to be considered
(for isotropic samples). Physically, in the i geometry
more photons are detected for short paths as compared
with the unpolarized case. In a seminal paper Akker-
manns et al.5 found that the path-length distribution for
the two configurations can be written as

P i,'~s ! 5 d i,'~s !P~s !, (3)

with the depolarization ratio given by



Rojas-Ochoa et al. Vol. 21, No. 9 /September 2004 /J. Opt. Soc. Am. A 1801
d i~s ! 5
1 1 2 exp~2s/lp!

2 1 exp~2s/lp!
, (4)

d'~s ! 5
1 2 exp~2s/lp!

2 1 exp~2s/lp!
, (5)

in terms of the characteristic length of depolarization for
linearly polarized light, lp . For pointlike scatterers ( g
5 0) Akkermans et al. obtained lp 5 l/ln(10/7)
> 2.804l5. We find good agreement between Eq. (3) and
our numerical simulations with lp as an adjustable pa-
rameter (Fig. 2). For large particles (and therefore large
g), the agreement is somewhat less good. However, po-
larization effects in DWS are usually found weak for g
' 1, and therefore we did not attempt to improve the ac-
curacy of Eqs. (4) and (5). (It is worthwhile to note that
for diffuse backscattering, interesting polarization effects
persist for g'1 if the speckle pattern is analyzed in the
image plane rather than in the far field.11,24,25

In the limit s/l @ 1 Eqs. (4) and (5) reduce to

P i,'~s ! > @
1
2 6

3
4 exp~2s/lp!#P~s !. (6)

We consider this expression the simplest generaliza-
tion, since it captures well intermediate path lengths
(s/l . 3), where polarization effects are important, but at
the same time the number of scattering events is already
sufficiently large to apply the diffusion approximation.

4. POLARIZATION DEPENDENCE OF
DIFFUSING WAVE SPECTROSCOPY
AUTOCORRELATION FUNCTION
In transmission geometry the path-length distribution
can be measured experimentally with pulsed laser
beams.26 In reflection, however, paths are short, and
therefore the time resolution is usually not sufficient for
such measurements. An alternative way to probe diffuse
light propagation is the analysis of temporal fluctuations
of the scattered light by means of photon correlation spec-
troscopy. This approach, called diffusing wave spectros-

Fig. 2. Depolarization of multiply scattered light: 2d i(s) 2 1
from theory [Eq. (4), curves] and simulation (symbols). Excel-
lent agreement is found for Rayleigh scatterers, while for larger
particles the agreement becomes somewhat less good.
copy (DWS), is a sensitive probe to the path-length distri-
bution, in particular in reflection geometry.2,3 The
temporal intensity correlation function g2(t) that is mea-
sured is related to the field autocorrelation function by
the Siegert relation g1(t) 5 @1 2 g2(t)#1/2. The latter is
directly related to the path-length distribution:

g1~t ! 5 E
0

`

P~s !exp@22~t/t0!s/l* #ds. (7)

In our case the characteristic relaxation time for diffusive
particle motion (short-time diffusion constant D for
Brownian motion), t0 5 (k0

2D)21, is a known quantity.
The path-length distribution P(s), as given by Eq. (1), has
been derived for the case of a semi-infinite nonabsorbing
medium. For real systems both absorption and limited
container size lead to a loss of photons along a given path.
For such cases the path-length distribution becomes
P8(s) 5 exp(2s/la)P(s), where la is the characteristic ab-
sorption length of the medium. In this framework, ab-
sorption can be taken into account by the modification

6t/t0 → 6t/t0 1 3l* /la (8)

in Eq. (7).1 All our experiments correspond to the case
where la is much larger than l* .

The solution for the scalar (polarization-independent)
path-length distribution is well-known1 (neglecting ab-
sorption): g1(t) 5 $exp@2gpx(t)# 1 exp@2(gp 1 2ge)x(t)#%/
2, where x(t) 5 (6t/t0)1/2, gp 5 zp /l* , and ge 5 ze /l* .
In the limit x ! 1 it reduces to

g1~t ! 5 exp~2gx !, (9)

with g 5 2](ln g1)/]xux50 5 gp 1 ge . Note that this ex-
pression is independent of l* and that, for the nonreflect-
ing interface that we have considered;

g 5 1 1 ze /l* 5 5/3. (10)

All different paths of length s contribute to g1(t).
Short paths predominantly contribute to the long-time de-
cay, and long paths contribute to the short-time decay.
Clearly, polarization effects modify the path-length distri-
bution and therefore strongly influence the decay of g1(t).
Interestingly, the shape of g1(t) remains more or less un-
changed. In most previous studies Eq. (9), though de-
rived for the scalar case, has also been applied with po-
larized light. Although g is in principle a well-defined
constant, it has been treated in the literature as an ad-
justable parameter to explain the polarization depen-
dence of the correlation function. Values of g',i in the
range 1–3 have been reported, the actual value depending
on detected polarization state, particle size, and
concentration.1,7,27
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Rather than adjusting the parameter g, we take into
account the polarization by means of relation (6) and find
that

g1'~t ! 5

E
0

`

P'~s !exp@22~t/t0!~s/l* !ds#

E P'~s !ds

,

g1i~t ! 5

E
0

`

P i~s !exp@22~t/t0!~s/l* !ds#

E
0

`

P i~s !ds

. (11)

When we introduce the function 2h(x) 5 exp(2gpx)
1 exp@2(gp 1 2ge)x#, the correlation functions take the
form (neglecting absorption)

g1,'~t !

5
h@x1~t !# 2

3
2 h@ y1~t !# 2

3g
2 h@x2~t !# 1

9g
4 h@ y2~t !#

h@x1~0 !# 2
3
2 h@ y1~0 !# 2

3g
2 h@x2~0 !# 1

9g
4 h@ y2~0 !#

,

(12)

g1,i~t !

5
h@x1~t !# 1

3
2 h@ y1~t !# 2

3g
2 h@x2~t !# 2

9g
4 h@ y2~t !#

h@x1~0 !# 1
3
2 h@ y1~0 !# 2

3g
2 h@x2~0 !# 2

9g
4 h@ y2~0 !#

,

(13)

where x1(t) 5 (6t/t0)1/2, x2(t) 5 (6t/t0 1 3)1/2, y1(t)
5 (6t/t0 1 3l* /lp)1/2, and y2(t) 5 (6t/t0 1 3
1 3l* /lp)1/2. This set of equations provides a direct re-
lation between measurements detecting '- or i-polarized
light, thereby eliminating the need to introduce two ad-
justable parameters g',i . We carried out a series of dy-
namic multiple-scattering experiments to follow the po-
larization memory of the reflected light intensity.
Experiments were realized as described in Ref. 27 but
with l0 5 532 nm. The sample cells were suspended in
a water bath to suppress reflections and to maintain a
constant temperature of T 5 22 °C. All samples used
were made from monodisperse polystyrene particles (n
5 1.595) suspended in water (ns 5 1.332), except for
one case (diameter 5 114 nm), where we used a mixture
of water and ethanol18 (ns 5 1.365). A detailed descrip-
tion of all samples is given in Table 1.

In Fig. 3 we show a comparison between experiments
and our theoretical expressions. For clarity the data are
normalized and plotted as a function of x 5 (6t/t0
1 3l* /la)1/2 2 (3l* /la)1/2, thus removing contributions
from absorption at x , 0.1 [relation (8)]. [The absorp-
tion length la has been chosen such that ln g1(x) scales lin-
early at small x values.] We find that the theory de-
scribes our data very well, with the polarization length lp
being the only adjustable parameter. In particular, the
availability of suspensions with negative g values allows
a rigorous test of the model over the whole interval 21
< g < 1. Note that we use the theoretically predicted
values gp , ge and do not adjust them to fit the data (as
done in all previous work). Depolarization lengths ob-
tained from fits [Eqs. (12) and (13)] to the DWS data and
from numerical simulations (Fig. 2) are presented in Fig.
4. We note again that both DWS experiments ( g1' , g1i)
are well characterized by a single lp , even for the most
extreme case of g → 21.

In the limit g . 0 we find good agreement with the pre-
dicted theoretical value of Akkermans et al., lp /l
> 2.804.5 As the anisotropy parameter g is increased,
lp /l slowly increases as well. In the case of forward-
peaked scattering ( g . 1), we find that lp . l* (see also
Refs. 9 and 11). This means that as g approaches 1, an
increasing number of scattering events is necessary to de-
polarize backscattered light. Since lp /l* remains con-
stant for g → 1, the ratio lp /l has to increase sharply, as
shown in Fig. 4(b). In the case of backward-peaked scat-
tering ( g . 21), however, the number of scattering
events needed for depolarization remains virtually un-
changed. The characteristic length scale of depolariza-
tion is still the scattering mean free path l (and not l* !),
as in the case of pointlike scatterers. Therefore it is not

Fig. 3. DWS autocorrelation function for different g values de-
tecting polarized and depolarized light. The lines are calcula-
tions based on Eq. (12) with lp adjusted to fit the data best @( g
5 20.78: l* /la 5 0.004, lp /l* 5 4.83), ( g 5 0.32: l* /la
5 0.0064, lp /l* 5 2.21), ( g 5 0.924: l* /la 5 0.016, lp /l*
5 0.713)].

Table 1. Diameter as Obtained from Dynamic
Light Scattering, Volume Fraction F, and

Scattering Anisotropy Parameter g

Polystyrene Spheres Used in the Experiments

Diameter (nm) F (%) ga

80 6 5 3.9 0.04
92 6 15 4.1 0.05

168 6 5 2.0 → 30.0 0.29 → 20.13
350 6 12 1.9 0.74
400 6 8 1.9 0.80
720 6 14 1.9 0.90

1000 6 51 2.0 0.92
1500 6 53 2.0 0.92
114 6 5 2.5 → 7.4 20.25 → 20.78

a Obtained either from Mie calculations (for hard-sphere interactions as
described in Refs. 18 and 27) or from direct measurements (for the
diameter 5 114 nm charged spheres as described in Ref. 18).
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surprising to see that in Fig. 4 lp scales as in the Rayleigh
limit, i.e., lp . 3l, even for a transport mean free path
l* . l/2. When lp /l* is plotted as a function of g, we find
an almost linear behavior over the full accessible range.
At this point our understanding of lp is limited to the par-
ticular cases ( g 5 0, g 5 1, and g 5 21); a more de-
tailed, microscopic approach would be required to explain
the complete dependence of lp on g or the dependence on
other single-particle optical properties.

5. DEPOLARIZATION RATIO OF
BACKSCATTERED INTENSITIES
An alternative way to study polarization of multiple back-
scattered waves is through the (full-intensity) depolariza-
tion ratio:

d 5
I i 2 I'

I i 1 I'

. (14)

This can be written as

Fig. 4. (a), (b) Depolarization length lp from DWS measure-
ments and Monte Carlo simulations: (squares) measurements
for different particle sizes (random particle configuration S(q)
[ 1), (circles) strongly interacting charged particles,18 (tri-

angles) hard-sphere data from Ref. 27, (Diamonds) Monte Carlo
simulations. (c) Depolarization ratio directly obtained from the
measured intensities. The curves are calculated from the linear
fit to lp /l* shown in (a).4,22
d 5

E
0

`

@P i~s ! 2 P'~s !#ds

E
0

`

@P i~s ! 1 P'~s !#ds

> E
0

` 3

2
exp~2s/lp!P~s !ds,

(15)

from where we identify an s-dependent depolarization ra-
tio d(s):

d~s ! > 3
2 exp~2s/lp!. (16)

Since P i(s) 1 P'(s) 5 P(s) and *0
`P(s)ds 5 1, we there-

fore have

d 5 E
0

`

P~s !d~s !ds

> 3
4 $exp@2gp~3l* /lp!1/2# 1 exp@2~gp 1 2ge!

3~3l* /lp!1/2#%. (17)

Thus from the measured intensities I i and I' it is possible
to estimate lp. In Fig. 4(c) we show the experimental val-
ues of d. Again the agreement is excellent over the full
accessible range. The data come very close to the pre-
dicted values in the three particular cases: d 5 0.33 for
Rayleigh scattering ( g 5 0), d 5 0.14 for forward-
peaked scattering ( g 5 1), and d 5 0.49 for backward-
peaked scattering ( g 5 21).

6. CONCLUSION
In this paper we have shown how to describe the effect of
the scattering anisotropy on the depolarization of linearly
polarized light and how to use diffusing wave spectros-
copy to determine the characteristic depolarization prop-
erties. By means of numerical simulations, we checked
the limit of validity of the diffusion approximation when
the scattering anisotropy g is increased, and we have
shown how to correct the predictions by means of an
anisotropy-dependent cutoff for the path-length distribu-
tion P(s). We discuss for the first time the dependence of
the characteristic depolarization length over the full
range of possible values of g, including the unusual case
of negative g values. In our description the extrapolation
length g is a well-defined constant, as required by diffu-
sion theory. Our work thus clarifies the meaning of g, a
subject of intense discussion in the past.28–30 Since our
description uses only a single adjustable parameter, it is
now possible to fully characterize backscattered light with
polarization-resolved measurements. We think that this
approach can strongly benefit applications in the field of
soft-materials and biomaterials analysis, as well as
diffuse light imaging techniques.1,13,31
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