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CHAPTER 1. ABSTRACT

Proper chromosome segregation is a crucial event for accurate cell division.

Defects in chromosome segregation lead to genetic instability and aneuploidy and are

correlated with cancer. The laboratory studies chromosome segregation in the

budding yeast Saccharomyces cerevisiae. Since this process is highly conserved

among eukaryotes, studies in yeast will provide fundamental understanding of this

mechanism. Ipl1p is the budding yeast member of the highly conserved family of

Ipl1/Aurora protein kinases, which play a role in chromosome segregation, the

spindle checkpoint and cytokinesis. In addition, a number of studies have

demonstrated that the human Aurora protein kinases are oncogenes. Defects in the

regulation of the Ipl1/Aurora kinases leads to aneuploidy resulting in genomic

instability. It is therefore important to better understand the regulation and functions

of this protein kinase in order to elucidate details about the mechanisms that lead to

genomic instability.

In an attempt to learn more about Ipl1p regulation and functions, I decided to

examine Ipl1p localization carefully. I found that Ipl1p localizes to kinetochores from

G1 to metaphase. Ipl1p then leaves the kinetochores and transfers onto the whole

spindle. It is probably transported away from the kinetochores on microtubules. Ipl1p

then accumulates at the spindle midzone where it regulates spindle disassembly. I

propose that Ipl1p is a general regulator of microtubules plus ends.

Finally, in a different study, I found that mutations in Ipl1p and the spindle

checkpoint allow sister chromatid separation and spindle elongation in the absence of

the APC (anaphase promoting complex) function. Data presented here suggest that

the spindle checkpoint may directly inhibit the Esp1p protease.
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1.2. RÉSUMÉ

La ségrégation exacte des chromosomes est un événement indispensable pour

une division cellulaire fidèle. Des anormalités dans la ségrégation des chromosomes

résultent en une instabilité génomique et une aneuploïdie et sont corrélées avec le

cancer. Le laboratoire étudie la ségrégation des chromosomes chez la levure de bière

Saccharomyces cerevisiae. Étant donné que ce processus est hautement conservé

parmi les eucaryotes, des études chez la levure vont fournir une compréhension

fondamentale de ce mécanisme. Ipl1p est, chez la levure, le membre de la famille

hautement conservée de protéine kinase : Ipl1/Aurora qui joue un rôle dans la

ségrégation des chromosomes, le point de contrôle du fuseau mitotique et la

cytocinèse. De plus, plusieurs études ont démontré que les homologues humains de la

protéine kinase Aurora sont des oncogènes. Des anormalités dans la régulation de la

protéine kinase Ipl1/Aurora mènent à l’aneuploïdie qui résultant en une instabilité

génomique. Il est, par conséquent, important de mieux comprendre la régulation et les

rôles de cette protéine kinase dans le but d’élucider des détails à propos des

mécanismes qui mènent à l’instabilité génomique.

Afin d’en apprendre plus sur la régulation et sur la fonction d’Ipl1p, j’ai

décidé d’examiner soigneusement la localisation d’Ipl1p. J’ai trouvé qu’Ipl1p se

trouve aux kinétochores de G1 à la métaphase. Ensuite, la protéine quitte les

kinétochores et se déplace sur le fuseau mitotique. Elle est probablement transportée

des kinétochores au fuseau sur les microtubules. Ipl1p s’accumule au milieu du

fuseau mitotique où la protéine régule la dépolymérisation du fuseau mitotique. Je

propose qu’Ipl1p est un régulateur général des extrémités positives des microtubules.

Finalement, dans une autre étude, j’ai trouvé que des mutations dans Ipl1p et

le point de contrôle du fuseau mitotique permettent la séparation des chromatides et
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l’élongation du fuseau mitotique en l’absence de la fonction du complexe promouvant

l’anaphase. Les données présentées ici suggèrent que le point de contrôle du fuseau

mitotique peut directement inhiber la protéase Esp1p.
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CHAPTER 2. GENERAL INTRODUCTION

2.1. The cell division cycle

A human organism consists of about 1014 cells which all originate from a

single fertilized egg. In order to grow and maintain the differentiated status of adult

tissues, more than 1015 cell divisions occur during the life of a human being. Thus, the

survival of an organism depends on the accuracy of each cell division. During every

cell division, the cell must duplicate its content and then divide in two. The cell

division cycle is called the cell cycle. It has been divided into four phases: G1, S, G2

and M (see Figure 2.1). During phase S (S = synthesis), the genome is duplicated.

This is tightly regulated to make sure that each chromosome gives rise to the perfect

copy of itself. The cell can then proceed into mitosis also called M-phase (M) during

Chromosome replication

Chromosome segregation

G0
M

G2 G1

S

+

Figure 2.1. The cell cycle from the chromosome point of view. Centromeres of
chromosomes are shown in red. See text for details.
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which chromosomes are segregated equally into daughter cells (see below). G1 (G =

gap) is the interval between the completion of mitosis and the beginning of S-phase

and G2 is the interval between S-phase and the beginning of mitosis. These two

phases provide time for the cell to grow and to prepare for the next phase. During G1

the cell monitors its environment and its size to decide whether it is going to enter the

cell cycle or enter a specialized resting stage (G0), which is the final differentiated

state of most cells in an adult organism.

2.2. The yeast cell cycle

Budding yeast divides by forming a bud that will grow to almost the size of

the mother cell before it gets cleaved off at cytokinesis. The size of the bud provides

an indication of the cell cycle stage. Figure 2.2. represents a cartoon of the budding

yeast cell cycle. Budding yeast undergo a closed mitosis, which means that they do

not break down their nuclear envelope during mitosis. The SPBs (spindle pole bodies,

represented by a yellow dot) are the microtubule organizing centers in budding yeast.

They are the organelles that nucleate microtubules and are embedded in the nuclear

envelope having faces in both the nucleus and the cytoplasm. Recent studies have

shown that the kinetochores (represented by a red dot in Figure 2.2) from the 16

chromosomes cluster together close to the SPBs during most of the cell cycle

(Goshima and Yanagida, 2000; He et al., 2000). In G1 phase of the cell cycle when

cells are unbudded, there is only one SPB and next to it one cluster of kinetochores

(see Figure 2.2). In S-phase, the cell has a small bud. The duplicated SPBs separate to

form the mitotic spindle (for review, see Winey and O'Toole, 2001). In prometaphase

(medium size bud), the kinetochores are under such tension that they undergo

precocious separation, while the sister arms remain held together (Biggins and
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Murray, 2001; Goshima and Yanagida, 2000; He et al., 2000; He et al., 2001; Pearson

et al., 2001; Tanaka et al., 2000). At this point, co-localization of a kinetochore

protein with a SPBs marker makes it possible to distinguish kinetochores from SPBs.

In anaphase, the cell has a large bud. The SPBs have segregated away from each other

and DNA segregation and spindle elongation have occurred. Again, the kinetochores

are held in close proximity to the SPBs. The midzone (shown in purple) is the middle

of the nucleus where the plus ends of non-kinetochore microtubules overlap (Winey

et al., 1995). The midzone is thought to play a critical role in anaphase B by providing

a structure that stabilizes the microtubules at the central region (Maddox et al., 2000;

Pellman et al., 1995; Winey et al., 1995).

G1

S-PHASE

PROMETAPHASE

ANAPHASE

Figure 2.2. Cartoon of the yeast cell cycle. DNA is shown in blue (   ), SPBs are
represented by a yellow dot (   ), kinetochores by a red dot (   ), the midzone by a
purple dot (   ) and the spindle by a green line (     ).
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2.3. Chromosome segregation

Faithful chromosome segregation is a crucial event for maintenance of genetic

information. Chromosome segregation defects can lead to the genetic instability that

is associated with birth defects and tumors and is thought to be a major factor in the

evolution of cancer (Lengauer et al., 1997; Lengauer et al., 1998). During S-phase,

the chromosomes replicate and linkage is established between the two sister

chromatids. The mitotic spindle then forms and microtubules attach to the

chromosomes via kinetochores, multiprotein complexes assembled onto centromeric

DNA (see below). Once the sister kinetochores attach to microtubules from opposite

poles, the linkage between the sister chromatids is dissolved and the chromosomes

segregate at anaphase, giving rise to two cells with the same genetic information. For

the metaphase to anaphase transition to occur, accurate chromosome segregation

depends on three parameters: the proper regulation of microtubule dynamics,

functional kinetochores and the correct establishment and destruction of the linkage

between sister chromatids. Defects in any of these steps can lead to genomic

instability.

2.4. Sister chromatid separation

Several proteins involved in sister chromatid linkage have been identified (for

review see Nasmyth, 2002). A conserved complex, the cohesins, is required to

establish and maintain the link between sisters. In budding yeast, the Mcd1/Scc1

protein is part of this complex (Guacci et al., 1997; Michaelis et al., 1997). Other

members of this complex are Smc1p, Smc3p and Scc3p (Losada et al., 1998;

Michaelis et al., 1997). Although the behavior of the cohesin complex varies between

organisms, the key events seem to be conserved. The regulation of sister chromatid
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separation in budding yeast will be explained here (see Figure 2.3), and differences

with higher eukaryotes will be discussed in chapter 2.7. Sister chromatid separation is

initiated by the proteolytic cleavage of the Scc1p protein by the Esp1p/separase

protease (Uhlmann et al., 1999; Uhlmann et al., 2000). The Esp1p/separase is

normally in a complex with the Pds1p/securin and is kept inactive (Uhlmann et al.,

1999). The APC (anaphase promoting complex; see below), is a multiprotein

ubiquitin ligase (for reviews, see Peters, 2002; Zachariae and Nasmyth, 1999) that

catalyses ubiquitin-mediated proteolysis. It is responsible for degradation of the

ANAPHASE

Spindle
Checkpoint

APC/cyclosome

Pds1p/
Securin

METAPHASE

proteolysis

Ub

Ub

Ub

Esp1p/Separase
Active

Esp1p/Separase
Inactive

Pds1p/
Securin

Figure 2.3. During metaphase, sister chromatids are held together by cohesin (blue
dots) and the Esp1p/separase protease is inactive because the inhibitor
Pds1p/securin is bound. Anaphase is initiated when the APC is activated, leading to
the ubiquitination and subsequent degradation of securin. The activated separase
cleaves cohesin, allowing the spindle to pull sister chromatids to opposite poles at
anaphase.
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Pds1p/securin at the metaphase-to-anaphase transition, leading to Esp1p activation

(Ciosk et al., 1998; Cohen-Fix et al., 1996; Funabiki et al., 1996b; Stratmann and

Lehner, 1996; Yamamoto et al., 1996). Chromosome segregation is monitored by the

spindle checkpoint, a surveillance mechanism that prevents cells from separating their

sister chromatids until chromosome alignment is complete (for review, see Millband

et al., 2002). The checkpoint acts by inhibiting the APC (Fang et al., 1998a; Hwang et

al., 1998; Li et al., 1997).

2.5. Regulation of the APC

Sister chromatid separation is closely regulated and most of the key players in

this process are themselves regulated by phosphorylation.

In mitotic cells, two forms of the APC exist, APCCDC20 and APCCDH1, which

differ in their association with the WD40-containing proteins, (Cdc20p and Cdh1p (or

Hct1p) respectively), time of activation and substrate specificity (Fang et al., 1998b;

Kotani et al., 1999; Kramer et al., 1998; Lim et al., 1998; Schwab et al., 1997;

Visintin et al., 1997; Zachariae et al., 1998a). Cdc20p and Cdh1p bind to the APC and

have been shown to determine its substrate specificity (Burton and Solomon, 2001;

Hilioti et al., 2001). APCCDC20 is active in early mitosis, where it is responsible for the

degradation of Pds1p/securin. The APCCDC20 is regulated by phosphorylation (for

review see Morgan, 1999). The cyclin-dependent kinase Cdc28p, Cdk1 in other

organisms, is a key regulator of cell cycle progression in budding yeast (for review

see Mendenhall and Hodge, 1998). It is responsible for the phosphorylation of APC

components leading to activation of the APCCDC20 (Rudner and Murray, 2000). On the

other hand, APCCDH1 is activated in late mitosis and is required for the mitotic exit,

where it promotes degradation of several proteins including the mitotic cyclins and
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the microtubule associated protein Ase1 (see below) (Juang et al., 1997; Kramer et

al., 1998; Murray, 1995; Schwab et al., 1997; Zachariae et al., 1998a).

2.6. Regulation of Pds1p, Esp1p and Scc1p

Because activation of Esp1p has to be regulated in a strict temporal order to

prevent missegregation, various modes of regulation exist. Key to its regulation is

Pds1p, which plays a dual role in regulating Esp1p activity. In addition, to inhibiting

Esp1p, it is also required to promote its efficient nuclear localization and activation

(Hornig et al., 2002; Jensen et al., 2001; Kumada et al., 1998). Pds1p is

phosphorylated by the cyclin-dependent kinase Cdc28p. The phosphorylation of

Pds1p by Cdc28p is important for efficient binding to Esp1p and for promoting the

nuclear localization of Esp1p (Agarwal and Cohen-Fix, 2002). However, the

Pds1p/Esp1p complex still forms with a low affinity in the absence of Cdc28p

phosphorylation, suggesting that other factors contribute to the Pds1p/Esp1p

interaction (Agarwal and Cohen-Fix, 2002). In addition to its function in an

unperturbed cell cycle, Pds1p is phosphorylated in the presence of DNA damage via

the DNA damage checkpoint pathway in a Mec1-and Chk1- dependent manner

(Cohen-Fix and Koshalnd, 1997; Sanchez et al., 1999).

There is also a securin-independent mechanism that regulates the cleavage of

the cohesin Scc1p by separase. Scc1p is phosphorylated by the Polo-like kinase

Cdc5p shortly before its cleavage. This phosphorylation is required for efficient

cleavage of Scc1p by Esp1p/separase (Alexandru et al., 2001). Therefore, even in the

absence of securin, the cleavage of Scc1p is tightly regulated.

Finally, separase has been shown to be regulated by a dual mechanism in

Xenopus egg extracts: binding of securin and phosphorylation. The cyclin dependent
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kinase CDK1 phosphorylates separase, leading to its inactivation (Stemmann et al.,

2001). In this organism, separase activation at the metaphase-anaphase transition

requires the removal of both securin and an inhibitory phosphate group. However, the

phosphorylation sites are not conserved in budding yeast Esp1p/separase (Stemmann

et al., 2001). In addition, no evidence for Cdk-dependent inhibition of separase exists

in yeast as sister separation can proceed in the presence of high kinase activity

(Surana et al., 1993). However, it is still possible that Esp1p is regulated by

phosphorylation due to another kinase. Lack of S-phase cyclins CLB5 and CLB6

bypasses the requirement of securin degradation for anaphase but not of cohesin

cleavage (Meyn and Holloway, 2000).

2.7. Sister chromatid separation in higher eukaryotes

Since human chromosomes are much bigger compared to yeast, it is not

surprising that the regulation of sister chromatid separation is more complex. In

higher eukaryotes, the dissociation of cohesin at mitosis is a two step process that is

regulated by two different pathways (Waizenegger et al., 2000). The bulk of cohesin

is removed in prophase and prometaphase. This step is regulated by phosphorylation

of cohesin subunits by the polo-like kinase (Sumara et al., 2002). Cohesin is removed

without being cleaved. A small subpopulation of cohesin remains on chromosome

until the onset of anaphase, preferentially at centromeres (Hauf et al., 2001; Losada et

al., 2000; Waizenegger et al., 2000). It is removed from chromosomes by SCC1

cleavage, which is mediated by separase similarly to sister chromatid separation in

budding yeast (Hauf et al., 2001; Waizenegger et al., 2000). Vertebrate cells contain

two cohesin complexes, each containing the SMC1, SMC3 and SCC1 subunits and
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either one of the Scc3 orthologs, SA1 or SA2 (Losada et al., 2000; Sumara et al.,

2000). The two complexes might therefore be differently regulated.

2.8. Sister chromatid independent functions of Esp1p

In addition to its function in sister chromatid separation, Esp1p/separase has

been shown to play a role in mitotic exit, being part of the FEAR (Cdc Fourteen Early

Anaphase Release) network. The Cdc14p phosphatase plays a pivotal role in mitotic

kinase inactivation through its dual action in promoting proteolytic degradation of

mitotic cyclins and accumulation of the Cdk inhibitor Sic1 (Visintin et al., 1998).

During G1, S, G2 and early M phase, Cdc14p is held in the nucleolus by its inhibitor

Ctf1/Net1. Then, during anaphase it is released from the nucleolus (Shou et al., 1999;

Visintin et al., 1999). The MEN (mitotic exit network) is a complex signal

transduction pathway that, upon activation, leads to the release of Cdc14p from the

nucleolus (Jaspersen et al., 1998) (for review see Bardin and Amon, 2001). A recent

study has shown that, a second pathway, the FEAR network, is responsible for

Cdc14p release from the nucleolus during early anaphase, and that the MEN

maintains it in the released state during late anaphase (Jensen et al., 2002; Stegmeier

et al., 2002). The FEAR network is composed of Esp1p/separase, the polo-like kinase

Cdc5p, Spo12p and the kinetochore protein, Slk19p (Stegmeier et al., 2002). Slk19p

is cleaved by separase in anaphase, even though the function of this cleavage is not

known (Sullivan et al., 2001).

A third function for the separase Esp1p has been proposed in regulating

anaphase spindle dynamics even though the exact nature of this function is

controversial. In anaphase, Esp1p localizes to the spindle and spindle midzone, which

is the middle of the mitotic spindle where non-kinetochore microtubules overlap in
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both budding and fission yeast (Ciosk et al., 1998; Funabiki et al., 1996a; Jensen et

al., 2001; Kumada et al., 1998). Esp1p has been shown to play a role in stabilizing the

mitotic spindle during anaphase (Sullivan et al., 2001; Uhlmann et al., 2000). In

addition, the structure of the spindle midzone is altered in the absence of Esp1p

(Sullivan et al., 2001). However, it is not clear whether this is a direct function of

Esp1p or whether this is a secondary consequence of another defect. Jensen et al.

found that Esp1p plays a role in spindle elongation and proposed that problems in

spindle elongation in esp1 mutants lead to defective anaphase spindle (Jensen et al.,

2001). In contrast, Severin et al. found no function in spindle elongation for Esp1p

and therefore propose that Esp1’s role is to stabilize anaphase spindles (Severin et al.,

2001b). The difference between those two studies will be discussed in chapter 5.

Although not all Esp1p functions are clearly understood. Esp1p plays many

key roles during mitosis of the cell cycle.

2.9. The spindle checkpoint

As mentioned above, the spindle checkpoint is a surveillance mechanism that

arrests cells in metaphase when all the chromosomes are not correctly attached to

opposite poles. The conserved components of the checkpoint were originally

identified in budding yeast and include the Mad proteins (Mad1-3p), Bub1p and

Bub3p and the Mps1 protein kinase (Hoyt et al., 1991; Li and Murray, 1991; Weiss

and Winey, 1996). A second checkpoint, containing the Bub2 protein, monitors the

correct delivery of DNA into the daughter cell (Alexandru et al., 1999; Bardin et al.,

2000; Fesquet et al., 1999; Li, 1999).

The spindle checkpoint proteins are kinetochore components or are recruited

to kinetochores during a checkpoint arrest, suggesting that the checkpoint signal is
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generated at the kinetochore (Bernard et al., 1998; Chen et al., 1996; Taylor and

McKeon, 1997). The spindle checkpoint monitors the interaction between

kinetochores and microtubules. It has been shown that microtubule attachment to

kinetochores (Rieder et al., 1995; Waters et al., 1998) as well as tension generated at

the kinetochore by microtubule forces (Li and Nicklas, 1995; Severin et al., 2001b;

Shonn et al., 2000; Stern and Murray, 2001) are sensed by the spindle checkpoint.

Recently, the Ipl1/Aurora protein kinase has been shown to play a role in the spindle

checkpoint specifically when kinetochores are not under tension (Biggins and

Murray, 2001). However, many details about the spindle checkpoint pathway still

need to be elucidated to understand how the checkpoint regulates chromosome

segregation.

2.10. Microtubules

The spindle is composed of microtubules, polymers of α- and β- tubulin

heterodimers that self-assemble into tubulin heterodimers (Nogales et al., 1999).

Tubulin dimers are arranged longitudinally to form protofilaments, 12-15 of which

are joined through lateral association to form a 25 nm tube. Microtubules are dynamic

polymers that grow and shrink by addition or loss of tubulin dimers from the ends of

the microtubules (for review see Desai and Mitchison, 1997). They undergo dynamic

instability, a behavior where both polymerizing and depolymerizing microtubules

exist in the same population and interconvert (Mitchison and Kirschner, 1984). The

dynamics of microtubule polymerization increase in mitosis (Belmont et al., 1990).

Dynamic instability comes from the fact that β-tubulin has GTPase activity. When the

dimers are incorporated into a microtubule, the GTPase activity is stimulated (Stewart

et al., 1990), leading to a conformational change from straight (GTP-tubulin) to
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curved (GDP-tubulin) (Hyman et al., 1995). Microtubules in the growth state

maintain a cap of stabilizing GTP-tubulins (Drechsel and Kirschner, 1994). When the

cap is lost, GDP-tubulins are exposed at the microtubule plus end, leading to a curved

conformation of the microtubules, which promotes rapid shrinkage (Caplow et al.,

1994; Mandelkow et al., 1991) (for review see Desai and Mitchison, 1997).

2.11. The spindle from metaphase to anaphase

The spindle contains two types of microtubules: those that bind to

kinetochores (kinetochore microtubules) and those that interdigitate with each other

(non-kinetochore microtubules). The budding yeast metaphase mitotic spindle

consists of 32 kinetochores microtubules (16 from each SPBs) and 8 overlapping non-

kinetochore microtubules (4 from each SPBs) and is about 1.5 to 2 µm long (for

review see Desai and Mitchison, 1997) (Winey et al., 1995). The minus ends of the

microtubules are bound to the SPB and the plus ends are distal to the SPB. During

metaphase, the nucleus migrates to the bud neck (nuclear migration) and the spindle

aligns parallel to the mother-bud axis (spindle orientation) (Cottingham and Hoyt,

1997; Shaw et al., 1997) (for review see Segal and Bloom, 2001). Anaphase then

occurs and is composed of two phases: anaphase A, where the sister chromatids move

toward the SPBs, and anaphase B, where the SPBs move apart from each other.

Anaphase B is biphasic: it has a first rapid phase of elongation and a second slow one

(Straight et al., 1997; Yeh et al., 1995). When the spindle has reached its maximal

length of approximately 10 µm, the spindle disassembles starting at the midzone

(Maddox et al., 2000). In budding yeast, microtubules disassembly occurs only at the

plus end of the microtubule (Maddox et al., 2000).
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Proper regulation of microtubule dynamics is critical for a number of cellular

events. The kinetochores bind to the plus end of microtubules, and must therefore

maintain attachment to a microtubule end that is alternately growing and shrinking.

During anaphase, chromosome movement to the poles is largely dependent on the

ability of kinetochores to follow the shrinking plus end of microtubules (Rieder and

Alexander, 1990; Skibbens et al., 1993). The interpolar microtubules are carefully

controlled to promote spindle elongation during anaphase and then switch to a state of

depolymerization at the plus ends to disassemble the spindle (Maddox et al., 2000;

Straight et al., 1998). The regulation of cytoplasmic astral microtubules is required for

spindle positioning and nuclear fusion (Cottingham and Hoyt, 1997; Maddox et al.,

1999; Shaw et al., 1997).

2.12. Motor proteins

Regulation of microtubule polymerization during the cell cycle is regulated by

a balance between microtubule-destabilizing and –stabilizing factors. The

destabilizing factors include KIN I, a family of motor proteins, and the stabilizing

factors include a large group of microtubule-associated proteins (MAPs).

Motor proteins use the energy derived from ATP hydrolysis to generate work.

Among these are molecular motors belonging to the kinesin and the dynein

superfamilies. The common feature of kinesins is a conserved catalytic core, called

the motor domain, which contains microtubule-binding sites and ATP-binding sites

(for review see Vale and Fletterick, 1997). Three subfamilies exist based on the

position of the kinesin-related motor domain within the protein. The KIN N subfamily

has the motor domain at the N-terminus of the protein and moves predominately

towards microtubule plus ends. The KIN C subfamily has the motor domain at the C-



21

terminus of the protein and generally move towards the minus end. Finally, the KIN I

subfamily, which contains an internal motor domain, have a microtubule destabilizing

activity but do not actually have motor activity (Desai et al., 1999). Dyneins are

structurally unrelated to kinesins but they also use the hydrolysis of ATP to glide

along microtubules. They move only in a minus-end-directed manner (Wang et al.,

1995).

2.13. Motor proteins in Saccharomyces cerevisiae

The budding yeast genome encodes six kinesin-related proteins and a single

dynein (Dyn1p). Five of the six kinesin-related proteins have been implicated in

mitotic spindle function: Cin8p, Kip1p, Kip2p, Kip3p and Kar3p. All single deletions

are viable, due to extensive overlap in function between these motors. It is therefore

not easy to attribute distinct functions to each motor. Cin8p and Kip1p are members

of the BimC subclass and are required for formation and maintenance of the bipolar

spindle (Hoyt and Geiser, 1996; Kashina et al., 1997). They are thought to be plus end

directed motors based on homology with the BimC family even though no direct

evidence for this directionality exists. In addition, they make a major contribution to

anaphase B spindle elongation (Saunders et al., 1995; Straight et al., 1998). Cin8p

localizes to kinetochores throughout the cell cycle and is found at the midzone in late

anaphase (He et al., 2001; Hoyt et al., 1992). Kip2p plays a role in cytoplasmic

microtubule stabilization (Huyett et al., 1998). The directionality of this motor has not

been studied yet. Kar3p antagonizes the pole-separating activity of the BimC motors

during spindle assembly and elongation (Saunders et al., 1997; Saunders and Hoyt,

1992). It is also thought to participate in the positioning of the spindle (Cottingham

and Hoyt, 1997; DeZwaan et al., 1997). Kar3p has been shown to be a minus end
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directed motor, consistent with its motor domain being at the C-terminus of the

protein (Endow et al., 1994). Finally, Dyn1p, the only dynein, is believed to act on

cytoplasmic microtubules and to participate in nuclear migration (Eshel et al., 1993;

Li et al., 1993; Yeh et al., 1995). In addition, Dyn1p also plays a role in spindle

assembly and elongation together with Cin8p and Kip1p (Saunders et al., 1995; Yeh

et al., 1995).

Kip3p is a member of the KINI family (Severin et al., 2001a). This family of

motors has been shown to have microtubule destabilizing activity in several

organisms (Desai et al., 1999; Garcia et al., 2002; Kline-Smith and Walczak, 2002;

Moores et al., 2002; Walczak et al., 1996). In budding yeast, Kip3p is required for

spindle disassembly: Straight et al. showed that kip3∆ mutant cells have a spindle

breakdown delay (Straight et al., 1998), consistent with Kip3p localization to the

midzone in anaphase (DeZwaan et al., 1997). In addition, Kip3p also regulates

cytoplasmic microtubules and plays a role in the migration of the nucleus to the bud

neck and the proper alignment of the mitotic spindle before anaphase (Cottingham

and Hoyt, 1997; DeZwaan et al., 1997).

2.14. Non-motor microtubule associated proteins in Saccharomyces cerevisiae

In budding yeast, several non-motor microtubule associated proteins exist,

however for the purpose of this work, two are relevant: Stu2p and Ase1p. Stu2p is the

budding yeast member of the protein family that includes Schizosaccharomyces

pombe Dis1 (Nabeshima et al., 1998), human TOGp (Charrasse et al., 1998),

Caenorhabditis elegans ZYG-9 (Matthews et al., 1998) and Xenopus XMAP215

(Tournebize et al., 2000). Members of this protein family have been shown to

promote microtubule growth in other organisms (Charrasse et al., 1998; Cullen et al.,
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1999; Matthews et al., 1998; Tournebize et al., 2000). In Xenopus and budding yeast,

this family has been shown to oppose the action of the KIN1 subfamily of kinesins

(Severin et al., 2001a; Tournebize et al., 2000). Stu2p is an essential microtubule

protein in budding yeast (Wang and Huffaker, 1997). It localizes to kinetochores,

cytoplasmic microtubules and the spindle midzone in anaphase (He et al., 2001;

Kosco et al., 2001; Wang and Huffaker, 1997). It promotes microtubule dynamics

(Kosco et al., 2001) and plays a role in spindle orientation, metaphase chromosome

alignment and spindle elongation (Kosco et al., 2001; Severin et al., 2001a).

Ase1p is a non-essential microtubule-associated protein (Juang et al., 1997). It

contains the common features of MAPs from other organisms even though it does not

have homology to known MAPs (Pellman et al., 1995). It localizes to the midzone in

anaphase (Pellman et al., 1995). The protein is degraded by APC-mediated

proteolysis and a non-degradable version of the protein delays spindle disassembly

(Juang et al., 1997). In addition, it cooperates with Bik1p, the budding yeast homolog

of the human MAP protein CLIP-170 to promote spindle elongation (Pellman et al.,

1995; Pierre et al., 1992).

2.15. Kinetochores

The kinetochore is a multiprotein complex that assembles on the centromeric

DNA (for review Cheeseman et al., 2002b). The budding yeast Saccharomyces

cerevisiae centromere consists of approximately 125 basepairs of DNA that can be

divided into three major regions (Clarke and Carbon, 1980): CDEI, CDEII, and

CDEIII. More than 40 proteins are known kinetochore proteins so the following list is

not exhaustive. CEN DNA is thought to be wrapped around a specialized nucleosome

containing Cse4p, a histone H3 variant (Meluh et al., 1998). CDEIII, which is
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essential for kinetochore function, binds a complex called CBF3 (for review see

Pidoux and Allshire, 2000). The CBF3 complex is composed of four proteins

including Ndc10p (Lechner and Carbon, 1991). Additional complexes localizing to

the kinetochore are: the four subunit Ndc80 complex (Janke et al., 2001; Wigge and

Kilmartin, 2001) and the twelve subunit Cft19 complex (Cheeseman et al., 2002a;

Ghosh et al., 2001; Goshima and Yanagida, 2000; Measday et al., 2002; Ortiz et al.,

1999). The DASH complex is a nine subunit complex that contains the Dam1 protein

(Cheeseman et al., 2002a; Janke et al., 2002; Li et al., 2002). This complex is thought

to be more distal from the DNA and play a role in microtubule attachment, being

necessary to establish and maintain bi-orientation (Janke et al., 2002; Jones et al.,

2001; Li et al., 2002). In addition, components of the DASH complex localize along

the length of the mitotic spindle where they play a role in spindle integrity

(Cheeseman et al., 2001; Hofmann et al., 1998; Jones et al., 1999). The Slk19 protein

localizes to kinetochores. It also localizes at the spindle midzone in anaphase and

plays a role as a spindle microtubule-stabilizing protein both at the kinetochores and

at the midzone (Zeng et al., 1999). Finally, the Ipl1/Aurora protein kinase localizes to

kinetochores (see below).

2.16. The Aurora protein kinase family

The yeast Ipl1 and the Drosophila Aurora proteins are the founding members

of a conserved serine/threonine protein kinase family (Ipl1/Aurora) that are key

regulators of chromosome segregation and cytokinesis (Chan and Botstein, 1993;

Glover et al., 1995) (for reviews see Shannon and Salmon, 2002; Stern, 2002). In

mammals, the Aurora family is further subdivided into 3 families: Aurora A, B and C

(for review, see Nigg, 2001). Aurora A is required to maintain the separation of
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centrosomes and to make a bipolar spindle; it localizes at the centrosome (Glover et

al., 1995). Aurora C is mainly expressed in the testis and has not been well

characterized yet (Kimura et al., 1999). Aurora B is the most extensively studied. It

exhibits a "chromosomal passenger" localization pattern, where it localizes to the

chromosomes and kinetochores, transfers to the spindle, and eventually accumulates

at the spindle midzone and midbody (Bischoff et al., 1998; Murata-Hori et al., 2002;

Petersen et al., 2001; Schumacher et al., 1998; Terada et al., 1998).

Aurora A and B in humans have been shown to be oncogenes and to be

amplified in many colorectal and breast cancer cell lines (Bischoff et al., 1998; Zhou

et al., 1998). In addition, expression of an activated Aurora B kinase can transform

Rat1 fibroblasts and NIH3T3 cells in vitro as well as cause tumors in nude mice

(Bischoff et al., 1998). These data suggest that defects in the regulation of the

Ipl1/Aurora kinases can lead to genomic instability.

2.17. Ipl1/Aurora binding partners

Aurora B has been shown to interact with the INCENP protein (inner

centromere protein) and with the Survivin/Bir1 protein in several organisms,

including budding yeast (Adams et al., 2000; Bolton et al., 2002; Cheeseman et al.,

2002a; Kaitna et al., 2000; Kim et al., 1999; Leverson et al., 2002; Morishita et al.,

2001; Rajagopalan and Balasubramanian, 2002; Speliotes et al., 2000). Defects in

INCENP localization, which was the first chromosomal passenger proteins described

(Cooke et al., 1987), disrupt Aurora B localization, suggesting that at least one

function of the interaction may be to localize Aurora B to mitotic structures (Adams

et al., 2000). In addition, in budding yeast the INCENP homolog, called Sli15p, plays

a role in stimulating Ipl1p’s kinase activity (Kang et al., 2001; Kim et al., 1999).
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Survivin/Bir1 is a conserved protein of unknown function that contains

baculoviral inhibitor-of-apoptosis repeats (BIR) (Ambrosini et al., 1997). The BIR

motifs were first identified in proteins acting in the apoptotic pathway of cell death

(Deveraux and Reed, 1999). Recent studies have shown that some of the BIR-

containing proteins are also important for other fundamental cellular processes.

Survivin/bir1 are also chromosome passenger proteins and they also play a role in

localizing Ipl1/Aurora and stimulating its kinase activity (Bolton et al., 2002;

Morishita et al., 2001; Rajagopalan and Balasubramanian, 2002; Skoufias et al., 2000;

Speliotes et al., 2000; Uren et al., 2000; Yoon and Carbon, 1999). The budding yeast

member of this family is called Bir1p (Yoon and Carbon, 1999). Aurora, INCENP

and Survivin work together as a complex to accomplish their essential functions in

chromosome segregation and cytokinesis (Adams et al., 2000; Bolton et al., 2002;

Kaitna et al., 2000; Kim et al., 1999; Leverson et al., 2002; Morishita et al., 2001;

Rajagopalan and Balasubramanian, 2002; Speliotes et al., 2000).

2.18. Ipl1p In Saccharomyces cerevisiae

In budding yeast, there is a single Aurora protein kinase, Ipl1p (Chan and

Botstein, 1993; Francisco et al., 1994). Ipl1p, which stands for increase in ploidy, has

been isolated in screens for chromosome segregation defects (Biggins et al., 2001;

Chan and Botstein, 1993). The protein contains a highly conserved C-terminal

catalytic domain and a divergent N-terminal domain. All the members of the

Ipl1/Aurora family have a potential destruction box at the C-terminus of the protein,

which is known to direct APC-dependent degradation (Giet and Prigent, 1999;

Glotzer et al., 1991). In addition, they all contain a conserved phosphorylation motif

RRXT in the activation loop that confers positive regulation in a number of kinases
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(Boulton et al., 1990; Giet and Prigent, 1999; Hanks and Quinn, 1991). However, it is

unclear whether those two domains play any function in the regulation of Ipl1p.

In budding yeast, as in higher eukaryotes, Ipl1p is required for chromosome

segregation. In ipl1 mutant cells, sister chromatids are pulled to the same spindle pole

instead of segregating to opposite poles even though sister chromatid separation

occurs normally (Biggins et al., 1999; Kim et al., 1999) (Figure 2.4). Wild type and

temperature sensitive ipl1 mutant cells expressing GFP (green fluorescent protein)-

tagged chromosome IV were shifted to the non-permissive temperature for 3 hours.

After fixation, the cells were analyzed by microscopy. Whereas, in wild type

anaphase cells, sister chromatids segregated to opposite poles, in ipl1 mutant cells, the

sister chromatids travel to the same pole, even though they have separated.

Experiments in vitro and in vivo suggested that the segregation defect might be due to

an inability of an ipl1 mutant to release mono-oriented kinetochore-microtubules

attachment in order to make the correct bi-oriented attachments (Biggins et al., 1999;

Tanaka et al., 2002). In addition to chromosome segregation, Ipl1p is also required for

the spindle checkpoint when kinetochores are not under tension (Biggins and Murray,

2001). Therefore, despite a major chromosome segregation defect, ipl1 mutant cells

do not activate the checkpoint. Figure 2.5 represents a model for Ipl1p function in

chromosome segregation. When kinetochores attach to microtubules from the same

WT

ipl1-321

GFP-chrIVPhase

Figure 2.4. ipl1-321 mutant cells missegregate
their chromosome. Wild type and ipl1-321 cells
were shifted to the restrictive temperature
(37oC) for 3 h. and harvested for microscopy.
Sister chromatids were visualized by GFP-lacI
binding to lactose operators integrated 12 kb
from the centromere of chromosome IV. In wild
type cells, sister chromatids always segregate to
opposite poles (top panel) while in ipl1-321
cells sister chromatids travel to a single pole in
the majority of cells (bottom panels).
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pole, mono-oriented attachments are generated. Although kinetochore attachment is

fulfilled, no tension is generated at the kinetochore and the spindle checkpoint is

activated. Ipl1p releases the incorrect microtubule-kinetochore attachment, allowing

the cell to make a bi-oriented attachment. Accordingly, as in higher eukaryotes, Ipl1p

has been shown to localize to kinetochores and to the spindle (Biggins and Murray,

2001; Biggins et al., 1999; He et al., 2001; Kang et al., 2001; Tanaka et al., 2002).

Finally, it has been suggested that Ipl1p is opposed by the protein phosphatase

I activity of Glc7p in budding yeast (Francisco and Chan, 1994; Francisco et al.,

1994). Not surprisingly, protein phosphatase I is required for proper chromosome

segregation (Hisamoto et al., 1994; Sassoon et al., 1999).

2.19. The Ipl1/Aurora substrates

A number of Ipl1/Aurora substrates have been identified in various organisms,

however the relevance of most of them is undetermined. A putative Ipl1p consensus

site has recently been determined ({RK}x{TS}{ILV}) (Cheeseman et al., 2002a).

However, since this is such a recent discovery, most of Ipl1p potential substrates have

Figure 2.5. Model for Ipl1p’s functions. Kinetochores are represented by red dots
and cohesins by blue dots. When kinetochores attach to microtubules from the
same poles (mono-oriented attachment, shown on the left) a tension defect is
sensed. Ipl1p then releases kinetochore-microtubule attachment allowing the cell to
generate bi-oriented attachment.

Mono-oriented
attachment

Bi-oriented
attachment

Ipl1p
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not yet been confirmed by mutation of the phosphorylation site. In Saccharomyces

cerevisiae, Caenorhabditis elegans and Drosophila melanogaster histone H3 is

phosphorylated by Ipl1p or its respective homologs (Giet and Glover, 2001; Hsu et

al., 2000). However, the function of this phosphorylation is unclear, as

unphosphorylatable form of H3 does not have a detectable phenotype. In fission

yeast, Bir1, the Survivin homolog, has been shown to be an in vitro substrate for the

Ipl1/Aurora kinase (Leverson et al., 2002). In budding yeast, Ndc10p, a kinetochore

protein, has been reported to be a substrate for Ipl1p in vitro (Biggins et al., 1999). In

human cells, CENP-A, the histone H3- like homolog, has been shown to be a

substrate of the Aurora B kinase. This phosphorylation seems to be implicated in

cytokinesis, as non-phosphorylable CENP-A have defects in cytokinesis (Zeitlin et

al., 2001). Finally, a recent study in budding yeast identified six different kinetochore

proteins as Ipl1p targets: Dam1p, Spc34p, Ask1p, Ndc80p, Sli15p, the INCENP

homolog and Ipl1p itself (Cheeseman et al., 2002a; Li et al., 2002) (Kang et al.,

2001). Dam1p, Spc34p and Ask1p are all members of the DASH complex (see above)

(Janke et al., 2002; Li et al., 2002). Phosphorylation of this complex and especially of

Dam1p by Ipl1p plays an essential role in the transition from mono-oriented to bi-

oriented attachment (Cheeseman et al., 2002a). Taken together, as the list of Ipl1p

potential substrates is growing, future experiments will have to address which of the

targets are essential for the different functions of Ipl1p.

2.20. Aim of my thesis

As described above, vertebrate homologues of the Ipl1/Aurora protein kinase

show a distinct subcellular localization during the cell cycle. In an attempt to learn

more about the regulation of this protein kinase and to study potentially new
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functions, I focused on the regulation of Ipl1p localization throughout the cell cycle.

This is described here in addition to a new function for Ipl1p that came from the

localization studies. The last chapter investigates a new function of the spindle

checkpoint in regulating sister chromatid separation and spindle elongation in the

absence of APC function.
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CHAPTER 3. REGULATION OF Ipl1p LOCALIZATION

3.1 SUMMARY

Ipl1p localizes to kinetochores in metaphase but is absent from the

kinetochores in anaphase and instead localizes to the spindle. I decided to study Ipl1p

localization throughout the cell cycle in more detail. I found that Ipl1p localizes to

kinetochores from G1 to metaphase, it then transfers to the spindle and accumulates at

the midzone and travels back to the poles. Its localization is therefore similar to

chromosomal passenger proteins and therefore Ipl1p seems more closely related to

the Aurora B family members. Ipl1p anaphase localization is going to be discussed in

more details in chapter 4. In this chapter I am going to investigate the requirements

for Ipl1p leaving the kinetochores at metaphase. Ipl1p plays an essential role in

setting up bi-orientation. It has been proposed that Ipl1p acts by releasing mono-

oriented attachments in order to generate bi-orientation, the state when sister

chromatid are attached to microtubules from opposite poles. The protein therefore has

to be tightly regulated in order to stop its action once bi-orientation is established. It is

possible that part of the regulation is obtained by regulating its localization, as it is so

dynamic. I therefore reasoned that elucidating the regulation of its relocalization from

kinetochores to the spindle might be important for understanding this protein. I found

that relocalization is independent of tension establishment, cohesin unloading, APC

function and checkpoint inactivation. From the experiments presented here, I propose

that Ipl1p is probably transported away from the kinetochores; however, the precise

mechanism is still unclear (see discussion). In addition, complex formation with

Bir1p is necessary for optimal transport.
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3.2. RESULTS

3.2.1. Ipl1 is a chromosomal passenger protein

The Ipl1 protein kinase is required for chromosome segregation and the

spindle checkpoint when kinetochores are not under tension (Biggins and Murray,

2001; Biggins et al., 1999). To learn more about Ipl1p functions, I examined the

localization of endogenous Ipl1p fused to GFP at its C-terminus in living cells, using

bud size as a marker for cell cycle stage (Figure 3.2.1.A). In unbudded G1 cells, Ipl1-

GFP localizes as a dot. In some G1 cells, Ipl1p also localizes as a small line (data not

shown). In small budded S-phase cells, Ipl1p localizes as a distinct dot that separates

into two discrete dots in medium budded metaphase cells and corresponds to

precociously separated kinetochores (Biggins and Murray, 2001; Goshima and

Yanagida, 2000; He et al., 2000; He et al., 2001; Pearson et al., 2001; Tanaka et al.,

2000). In large budded cells, Ipl1-GFP exhibits dynamic localization patterns: in

some cells, Ipl1-GFP is on the whole spindle but absent from the kinetochores that are

clustered at the poles as previously reported (Tanaka et al., 2002). I also found two

sites of Ipl1p localization that had not been seen before: Ipl1-GFP is found at the

spindle midzone, the region of the spindle where interpolar microtubules interdigitate,

as well as in small tufts that vary in shape near the spindle poles at telophase. This

likely represents Ipl1p bound to the remnants of depolymerized microtubules (Winey

et al., 1995).

Since the Ipl1-GFP fusion created a temperature sensitive protein, I also

localized endogenous Ipl1p using anti-Ipl1p antibodies (see Figure 4.2.2 for antibody

specificity) by performing immunofluorescence on chromosome spreads, the

detergent-insoluble residue of yeast spheroplasts (Loidl et al., 1998) (Figure 3.2.1.B).

Ipl1p co-localizes with the epitope tagged kinetochore protein Cse4-myc12 in G1 and
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S phase (data not shown) and in metaphase when Cse4p-myc12 separates into two

discrete dots (Figure 3.2.1.B). In anaphase, Ipl1p exhibited localization patterns

similar to Ipl1-GFP and co-localized with tubulin to the spindle (Figure 3.2.1.B) and

spindle midzone (data not shown). Therefore, GFP-tagged Ipl1p shows an identical

localization pattern as the endogenous protein and is similar to Aurora B and other

"chromosomal passenger" proteins: it localizes to kinetochores from G1 to metaphase

and then to the spindle and the spindle midzone but is absent from the kinetochores.

Ipl1p localization at the midzone is discussed in more detail in Chapter 4. In the

current chapter, I am going to investigate the requirement(s) for Ipl1p leaving the

kinetochores. As it seems that Ipl1p leaving the kinetochores happens between

metaphase and anaphase, several events could be responsible for its delocalization:

the establishment of tension (3.2.2.), the unloading of the cohesin complex (3.2.3.),

the inactivation of the checkpoint (3.2.4.) etc… In addition, it is possible that the

protein is being transported away from the kinetochores by an active mechanism or

that it is being degraded at the kinetochores and that another pool is loaded onto the

spindle. I set out to test these possibilities.

3.2.2. Ipl1p localizes to kinetochores under tension

The laboratory previously found that Ipl1p localizes to kinetochores that are

not under tension and that it is required for the spindle checkpoint at this time

(Biggins and Murray, 2001). Once tension is established, Ipl1p needs to be

inactivated to allow cell cycle progression. Although it was reported that Ipl1p no

longer co-localizes with the kinetochore protein Ndc10p at metaphase (Tanaka et al.,

2002), I always found Ipl1p localized in discrete dots. I therefore repeated the Ipl1-

YFP and Ndc10-CFP co-localization experiment published by Tanaka et al. In
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asynchronously growing cells, Ipl1-YFP and Ndc10-CFP always co-localized as

characteristic kinetochore dots in S-phase and metaphase cells (Figure 3.2.2.A). In

addition, they also co-localized as a line that looks like a short spindle in some cells

(Figure 3.2.2.A, early anaphase). Since the pole-to-pole distance is longer than a

metaphase spindle, it likely represents cells that are initiating anaphase. However, as

previously reported (Tanaka et al., 2002), in late anaphase Ipl1-YFP and Ndc10-CFP

show a different localization pattern. Ipl1-YFP localizes onto the whole spindle in a

punctate manner. Ndc10-CFP localizes to the whole spindle as well, but it also

localizes with the kinetochores that are clustered at the poles, as seen by strong

staining at the poles. In the merged image, it is clear that both proteins co-localize to

the spindle but that only Ndc10p is found at the kinetochores near the poles. This

confirms that in late anaphase Ipl1p has left the kinetochores. It is to note that

sometimes a partial co-staining between Ipl1-YFP and Ndc10-CFP can be observed

near one of the two poles. This could represent Ipl1p having incompletely left the

kinetochores in one of the two clusters or co-localization between Ipl1p and Ndc10p

on the spindle very close to the kinetochores. I do favor the later hypothesis as in

most cases co-staining of the two proteins near one pole is not observed. Co-

localization studies between Ipl1p a kinetochore protein that does not localize to the

spindle such as Cse4p will be necessary to elucidate this point.

I also analyzed Ipl1p localization in a population of metaphase-arrested cells

by depleting the Cdc20 protein that activates the APC and found that Ipl1-YFP and

Ndc10-CFP always co-localize (Figure 3.2.2.B). Although the majority of cells show

two distinct dots that represent the kinetochores, approximately one-third of the cells

exhibit co-localization in a line similar to certain cells in the asynchronous population

(data not shown). This may mean that Ipl1p can transfer to the spindle in this arrest,
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or that these cells do not have clustered kinetochores. Ipl1p also discretely localizes to

kinetochores when cells are arrested in metaphase by overexpression of the Mps1

protein kinase that causes cells to constitutively activate the spindle checkpoint

(Hardwick et al., 1996) (data not shown). Therefore, although Ipl1p leaves

kinetochores after metaphase, it is still bound to kinetochores that are under tension,

indicating that the establishment of tension is not responsible for Ipl1p relocalization.

I use relocalization as a general term and it does not imply any mechanism.

3.2.3. Ipl1p localization is not dependent on cohesion

Since Ipl1p left kinetochores after the establishment of tension, I tested

whether the unloading of the cohesin complex was required for Ipl1p leaving the

kinetochores. In Schizosaccharomyces pombe, the cohesin complex is required for

Ark1 (the Ipl1p homolog in this organism) localization to kinetochores (Morishita et

al., 2001). I therefore analyzed Ipl1p localization in cells in the absence of cohesion.

To do this, I used a strain that expressed one of the proteins of the cohesin complex:

Scc1p under the control of a conditional promoter, the galactose inducible promoter:

pGAL. pGAL-SCC1 cells expressing Ipl1-GFP, grown in galactose were arrested in

G1 using α-factor for 2.5 hours. The cells were then shifted to glucose for 1 hour to

repress the expression of Scc1p. They were then released into the cell cycle in glucose

to repress Scc1p. Time points were taken and cells were analyzed by microscopy.

Cell cycle position was determined by bud size. Figure 3.2.3. shows that Ipl1-GFP is

able to load onto kinetochores in the absence Scc1p (S-phase and metaphase

pictures). The kinetochores cluster less well under these conditions and therefore the

signal is more diffuse than normally seen (see Figure 3.2.3). In addition, chromosome

segregation is abnormal so the intensity of the two clusters is not always equal (data
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not shown) (Guacci et al., 1997; Michaelis et al., 1997). I analyzed cell viability

during the experiment and found that the cells were dying, indicating that Scc1p is

truly depleted. Under these conditions, Ipl1-GFP is still able to transfer onto the

spindle at anaphase. No pole signal is observed, demonstrating that Ipl1p has left the

kinetochore at that point. Finally, Ipl1-GFP is found near the poles in telophase. I also

analyzed Ipl1p localization in an scc1 mutant (mcd1-1) background by chromosome

spreads using anti-Ipl1p antibodies (Guacci et al., 1997). Under those conditions, I

also found normal Ipl1p loading onto the kinetochores (data not shown). However,

the relocalization to the spindle was impossible to assess due to the fragility of the

spindle in this background. The spindle is intrinsically fragile and breaks down soon

after elongating (Severin et al., 2001b). In addition, the chromosome spread technique

does not always fully preserve the spindle. Therefore, I could not detect intact

spindles in the spreads that would allow us to determine whether Ipl1p had transferred

onto the spindle. In conclusion, Ipl1p is able to load onto the kinetochores in the

absence of the cohesin complex. In addition, the relocalization from kinetochores to

the spindle occurs normally in the absence of cohesion, as judged by the pGAL-SCC1

experiment, indicating that Ipl1p relocalization from kinetochores does not require the

cohesin complex. The apparent difference between budding and fission yeast is

discussed below.

3.2.4. Checkpoint inactivation does not regulate Ipl1p relocalization to the

spindle

Because tension establishment and cohesin unloading did not regulate Ipl1p

relocalization to the spindle, I next tested whether the inactivation of the spindle

checkpoint was required for Ipl1p relocalization. I therefore analyzed the effect of
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checkpoint inactivation on Ipl1p localization in a condition where Ipl1p would

normally stay on the kinetochores. Nocodazole is a microtubule depolymerizing drug.

In the presence of nocodazole, the spindle is depolymerized leading to the activation

of the spindle checkpoint, and therefore a metaphase arrest. It was previously

published that Ipl1p localizes to the kinetochores under these conditions (Biggins and

Murray, 2001). Wild type and mad1∆ mutant cells expressing Cse4-myc to mark the

kinetochores were arrested in G1 using α-factor and then released into the cell cycle

in the presence of nocodazole. After 2.5 hours, the cells were fixed and processed for

chromosome spreads (see Figure 3.2.4.). In parallel, cells were analyzed by

microscopy to ensure that wild type cells were arrested as large budded cells whereas

a majority of mad1∆ mutant cells had rebudded, indicating that the cells are

checkpoint deficient. As I harvested the cells 2.5 hours after G1 arrest and as I

observed a large amount of rebudded the cells, the mad1∆ mutant cells where no

longer in metaphase. The cells were at a cell cycle stage that was after metaphase and

so, at least in a portion of cells, Ipl1p should no longer localize to kinetochores. The

chromosome spreads were stained with DAPI to recognize DNA (far right), with anti-

Ipl1p antibodies to recognize Ipl1p (shown in green) and with anti-myc to recognize

Cse4-myc (shown in red). The merge (shown in yellow, far right) shows that Ipl1p

localizes to kinetochores in wild type cells in the presence of nocodazole as

previously reported. In addition, Ipl1p also localizes to the kinetochores in mad1∆

mutant cells. Therefore, the checkpoint is not required for Ipl1p localization to

kinetochores. In addition, the presence of microtubules seems to be important for

Ip1lp leaving the kinetochores as Ipl1p is unable to leave the kinetochores in a mad1∆

mutant in the absence of microtubules even though other cell cycle events occur

normally.
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3.2.5. Ipl1p does not leave the kinetochores in a strain with a mutant Bir1p.

In budding yeast, Ipl1p forms a complex at the kinetochores with the INCENP

homolog, Sli15p and the Survivin homolog, Bir1p (Cheeseman et al., 2002a; Kim et

al., 1999). I decided to analyze whether complex formation was required for Ipl1p

localization to the kinetochores and/or transfer onto the spindle. Only the effect of a

mutation in Bir1p was studied. BIR1 is an essential gene. I tried to delete the gene by

disrupting the N-terminus of the protein. However, cells containing the bir1∆N-

terminus mutation do not show a major growth defect suggesting that deleting the N-

terminus of the protein does not inactivate the whole protein and that I created a

mutant allele of Bir1p. Alternatively it is possible that the strain contains a

suppressor. Even though the exact reason for survival of this strain is unclear, I

studied the localization of Ipl1p in this background. Cells with a mutant version of

Bir1p (bir1∆N-terminus) expressing Ipl1-GFP were analyzed by microscopy in an

asynchronously growing population. Ipl1p localizes normally to kinetochores in G1,

S-phase and metaphase (Figure 3.2.5. and data not shown). In anaphase, Ipl1p

localizes to the spindle as seen in a wild type background. However, in all anaphase

cells observed, there is strong staining at the poles of the spindle most likely

corresponding to kinetochores. Therefore, even though Ipl1p localizes to the spindle it

has not left the kinetochores. In telophase cells, Ipl1p still localizes to kinetochores as

well as the depolymerized spindle. It is noteworthy that chromatin

immunoprecipitation studies will be required to confirm that the strong pole staining

observed in the bir1 mutant cell corresponds to kinetochores and not SPBs. However,

with the current knowledge it most likely corresponds to kinetochores. In conclusion,

in a background mutant for Ipl1p’s partner Bir1p, Ipl1p does not leave the

kinetochore properly but is still able to localize to the spindle.
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3.2.6. Ipl1p’s kinase activity is not required for its localization.

I next wanted to investigate whether Ipl1p’s kinase activity was required for

its localization. To do this, I used an allele of Ipl1p (ipl1-as5) where the ATP binding

site of the protein kinase of interest is mutated (a gift from the Shokat laboratory).

ipl1-as5 is mutated at the methionine at position 18, which is changed to a glycine.

The Shokat and Morgan labs have shown that these mutants are selectively sensitive

to inhibitors that inactivate the mutant kinase but do not affect the wild type kinase

activity (Bishop et al., 2000; Shah et al., 1997). We have determined that the ipl1-as5

mutant is sensitive to the kinase inhibitors 1-naphthyl-PP1 (1-NA, Figure 3.2.7) and

1-naphthylmethyl-PP1 (1-NM) (data not shown). S. Tatsutani has also shown that the

kinase activity is abolished in the presence of the inhibitor 1-NA (S. Tatsutani

personal communication).

Figure 3.2.7. Structure of the inhibitor that was used to inhibit
the ipl1-as5 allele.

I therefore tagged this mutant with GFP to determine whether Ipl1p’s kinase

activity was required for its localization. ipl1-as5-GFP mutant cells were arrested in

G1 using α-factor and then released into the cell cycle in the presence of inhibitor (1-

NA) to inactivate Ipl1-as5p. In a parallel experiment, S. Biggins has shown that the

concentration of inhibitor used resulted in cell death. Time points were taken and the

cells were analyzed by microscopy. Bud size was used to determine the cell cycle

stage. Ipl1-as5p was able to load onto kinetochores (data not shown), implying that

the kinase activity of Ipl1p was not necessary for its loading onto kinetochores. In
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metaphase, Ipl1-as5 localized as either one dot (see Figure 3.2.6.A top), two dots of

unequal intensity (Figure 3.2.6.A bottom) or more rarely as two dots of equal

intensity as normally seen (data not shown). This is due to the fact that Ipl1p is

required for setting up bi-orientation. In the absence of Ipl1p activity, most

kinetochore attachments are mono-oriented and therefore unable to show precocious

separation. This shows that Ipl1p-as5p has been inactivated in this experiment. In

anaphase, Ipl1-as5p localizes to the whole spindle but is absent from the kinetochores

as seen for Ipl1p, indicating that Ipl1p is able to relocalize to the spindle

independently of its kinase activity. In telophase, Ipl1p localizes to the poles.

Therefore, Ipl1p’s kinase activity is not required for Ipl1p loading onto the

kinetochore or for its relocalization from the kinetochores to the spindle.

Ipl1p has a characteristic N-terminal domain and a catalytic C-terminal kinase

domain. I was interested in determining what region(s) of the protein mediates its

different localization patterns. To do this, I first split the protein into two regions: the

N-terminus and the catalytic domain and tested which region could localize. Wild

type cells (Figure 3.2.6.B, top row), cells containing an extra copy of full-length Ipl1-

myc under the control of the galactose promoter (pGAL-myc12-IPL1, second row),

cells containing an extra copy of the N-terminus of Ipl1p under the control of the

galactose promoter (pGAL-myc12-IPL1-N-terminus, third row) and cells containing

an extra copy of the catalytic domain of Ipl1p under the control of the galactose

promoter (pGAL-myc12-IPL1-catalytic domain, fourth row) were processed for

immunofluorescence after one hour of induction. They were stained with anti-Tub1p

to recognize the spindle (far left), with anti-myc to recognize Ipl1-myc (shown in red)

and with DAPI to recognize DNA (shown in blue). The merge between Ipl1-myc and

the DNA is shown in purple on the far right. The staining is specific to Ipl1-myc, as
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an untagged strain does not show any signal (top row). When overexpressed, Ipl1p

localizes to the entire nucleus. Because the protein is overexpressed to high levels, it

is not possible to see distinct kinetochore localization. Full-length Ipl1p also localizes

to the spindle (second row). The N-terminus localizes similarly to full-length (third

row) and is found in the entire nucleus. In addition, the N-terminus localizes to the

spindle. In contrast, the catalytic domain is not able to localize properly (fourth row),

and is found all over the cell. In conclusion, the N-terminus of the protein contains the

information for localization. However, due to the strong overexpression, kinetochore

localization cannot be determined with this assay.
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Figure 3.2.1. Ipl1p is a chromosomal passenger protein. (A) Live microscopy was
performed on cells containing Ipl1-GFP (SBY556). DIC pictures are shown to the left
of each corresponding fluorescence picture. In G1, S-phase and metaphase cells, Ipl1p
localizes in a discrete dot corresponding to kinetochores. In anaphase and telophase
cells, Ipl1p localizes along the whole spindle (top right), at the spindle midzone
(middle right) or near the spindle poles (bottom right). (B) Chromosome spreads
(SBY617) were stained with DAPI to recognize DNA (left panels), with or without
(control) anti-Ipl1p antibodies, and with anti-myc antibodies to recognize the
kinetochore protein Cse4-myc12. In the bottom row, spreads were stained with anti-
Tub1p antibodies to recognize the spindle. The merged images (right panels) show
that endogenous Ipl1p exhibits the same localization pattern as Ipl1-GFP and
localizes to the kinetochores in metaphase and to the spindle and spindle midzone
during anaphase. Bar: 10 µm.
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Figure 3.2.2. Ipl1p localizes to kinetochores until after metaphase. (A) Microscopy
was performed on cells containing Ipl1-YFP (shown in green) and Ndc10-CFP
(shown in red) (SBY1246). DIC pictures are shown on the far left.  The merged
image (yellow, far right) shows that Ipl1p and Ndc10p co-localize in S-phase (first
row), in metaphase cells where kinetochores are precociously separated (second row)
and in early anaphase cells (third row). However, in late anaphase (fourth row), Ipl1-
YFP does not localize to kinetochores. (B) pGAL-CDC20 cells containing Ipl1-YFP
and Ndc10-CFP (SBY1246) were arrested in metaphase by shifting the cells to
glucose media. The merged microscopy images show that Ipl1p and Ndc10p also co-
localize in metaphase-arrested cells. Bar: 10 µm.
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Figure 3.2.3. Ipl1p localization is normal in pGAL-SCC1 cells. pGAL-SCC1 cells
expressing Ipl1-GFP (SBY1475) were grown in galactose, arrested in G1 using α-
factor for 2.5 h, were shifted to glucose for 1 h. The cells were then released into the
cell cycle in glucose. Time points were taken and cells were analyzed by microscopy.
Cell cycle position was determined by bud size. Ipl1p is able to load onto
kinetochores without Scc1p (S-phase, metaphase) and to transfer onto the spindle
normally (Anaphase). Bar: 10 µm.



47

Figure 3.2.4. Checkpoint inactivation does not regulate Ipl1p relocalization to the
spindle. Wild type (SBY1323, top row) and mad1∆ mutant (SBY1326, bottom row)
cells expressing Cse4-myc were arrested in G1 using α-factor and then were released
into the cell cycle in the presence of nocodazole. After 2.5 hours, the cells were fixed
and processed for chromosome spreads. The chromosome spreads were stained with
DAPI to recognize DNA (far left), with anti-Ipl1p to recognize Ipl1p (shown in green)
and with anti-myc to recognize Cse4-myc (shown in red). The merge (shown in
yellow, far right) shows that Ipl1p localizes to kinetochores in the presence of
nocodazole even when the checkpoint is inactive. Bar: 10 µm.
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Figure 3.2.5. Ipl1p does not leave the kinetochores in a Bir1p mutant strain. Cells
with a mutant version of Bir1p (bir1∆N-terminus, SBY896) expressing Ipl1-GFP
were analyzed by microscopy. Ipl1p localizes normally to kinetochores in G1 and in
metaphase. In anaphase, Ipl1p transfers onto the spindle but it does not leave the
kinetochore properly. In telophase cells, Ipl1p is still localized to kinetochores as well
as the depolymerized spindle. Arrowheads point kinetochore localization in anaphase
and telophase cells. Bar: 10 µm.
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Figure 3.2.6. Ipl1p’s kinase activity is not required for its localization. (A) ipl1-as5-
GFP mutant cells (SBY1356) were arrested in G1 using α-factor and then released in
the cell cycle in the presence of 50 µM inhibitor (1-NA). Time point were taken and
the cells were analyzed by microscopy. ipl1-as5 is able to load onto kinetochores and
to transfer onto the spindle without kinase activity. (B) Wild type cells (SBY3, top
row), cells containing an extra copy of Ipl1-myc full length under the control of the
galctose promoter (pGAL-myc12-IPL1, SBY736, second row), cells containing an
extra copy of the N-terminus of Ipl1p under the control of the galactose promoter
(pGAL-myc12-IPL1-N-terminus, SBY735, third row) and cells containing an extra
copy of the catalytic domain of Ipl1p under the control of the galactose promoter
(pGAL-myc12-IPL1-catalytic domain, SBY676, fourth row) grown in raffinose, were
induced with 4% galactose for 1 hour. After fixation, the cells were processed for
indirect immunofluorescence. They were stained with anti-Tub1p to recognize the
spindle (far left), with anti-myc to recognize Ipl1-myc (shown in red) and with DAPI
to recognize DNA (shown in blue). The merge is shown in purple on the far right. The
staining is specific to Ipl1-myc as an untagged strain does not show any signal (top
row). When overexpressed, full-length Ipl1p localizes to the whole nucleus and co-
localize with the spindle (second row). The N-terminus alone localizes similarly to
full-length (third row), whereas the catalytic domain does not localize properly
(fourth row). Bar: 10 µm.
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3.3. DISCUSSION

3.3.1. Ipl1p leaves the kinetochores after tension is established

I show that Ipl1p exhibits a localization pattern similar to “chromosomal

passenger proteins”. During prometaphase, Ipl1p monitors kinetochore tension and

promotes microtubule release of mono-oriented kinetochore attachments, thus

ensuring that sister kinetochores establish bi-orientation prior to chromosome

segregation (Biggins and Murray, 2001; Tanaka et al., 2002). It had been proposed

that Ipl1p delocalized from kinetochores at metaphase, providing an attractive

mechanism for inactivating the kinase when tension and bi-orientation are established

(Tanaka et al., 2002). However, I found that both Ipl1-GFP and endogenous Ipl1p

localize to kinetochores in metaphase, when tension is established, both in an

asynchronous population and in a population of cells arrested in metaphase. My data

agrees with the observation that a mammalian Aurora B-GFP fusion protein left

kinetochores 0.5 min after the initiation of anaphase, well after tension was

established (Murata-Hori et al., 2002). K. Tanaka and T. U. Tanaka recently found

that Ipl1p is on metaphase kinetochores by chromatin immunoprecipitation, thus

reconciling our data (personal communication). In addition, I found that tension is not

necessary for Ipl1p relocalization since Ipl1p leaves the kinetochore in the absence of

tension: in cells lacking cohesins. In conclusion, the establishment of tension is

neither sufficient nor necessary for Ipl1p to leave kinetochore. However, it is possible

that the establishment of tension regulates Ipl1p by other mechanism such as

regulating its kinase activity for example.
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3.3.2. The cohesin complex is not required for Ipl1p localization

I found that Ipl1p does not require the presence of cohesin to localize to

kinetochores from G1 to metaphase. This is not surprising since Ipl1p activates the

spindle checkpoint in cells lacking cohesion (Biggins and Murray, 2001). So it would

be expected that the active protein would be properly localized. However, this is in

contrast to Schizosaccharomyces pombe where the Ipl1p homolog (Ark1) does not

localize onto kinetochores in the absence of cohesins (Morishita et al., 2001). The

reason for this difference is not clear. It is possible that the bigger centromeres of

fission yeast that make several microtubule attachments, have a more complex 3-D

structure. More proteins may therefore be involved in setting up this structure,

including cohesins. In contrast, the point centromeres of budding yeast that attach to

only one microtubule may have a less complex 3-D structure such that cohesins are

not involved.

In addition, Ipl1p localization throughout the cell cycle is normal in the

absence of cohesin: in the pGAL-SCC1 experiment Ipl1p leaves the kinetochores after

metaphase and relocalizes to the spindle. This suggests that the cohesin complex is

not required for Ipl1p relocalization. This idea is strengthened by the fact that Ipl1p

relocalization does not occur in the mad mutant cells in nocodazole even the cohesin

complex has been correctly loaded and unloaded in this case. Taken together this

suggests that Ipl1p relocalization is independent of cohesins. This is in contradiction

with conclusions of a paper from Vagnarelli et al (Vagnarelli and Earnshaw, 2001)

where they say that cohesin unloading is necessary for INCENP and Aurora B

relocalization. However, the authors only found a correlation between the degree of

sister separation and the delocalization of INCENP or Aurora B. By no mean does

this show a direct link between cohesin unloading and INCENP relocalization. It is
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however possible that cohesin regulates the INCENP/Aurora complex differently in

different organisms.

3.3.3. The spindle checkpoint does not regulate Ipl1p relocalization

Two experiments suggest that the spindle checkpoint does not affect the

localization of Ip1lp as well. First, as mentioned above, the spindle checkpoint is

activated in pGAL-SCC1 cells. However, no significant delay in Ipl1p relocalization

was observed, suggesting that the checkpoint does not affect it. It must be noted

however that only live microscopy could assess whether Ipl1p relocalization occurs

with wild type kinetics in these cells. From my experiment I can say that the

relocalization of Ipl1p occurs while the checkpoint is active. Second, I found that

Ipl1p stays on kinetochores in a mad mutant in nocodazole where the spindle

checkpoint is inactive. As no relocalization was observed in the absence of the

checkpoint, this would suggest that checkpoint probably does not regulate Ipl1p

relocalization.

In addition, in mad mutant cells in the presence of nocodazole, cell cycle

progression occurs normally even though chromosome segregation cannot happen.

Cell cycle events such as APC activation, Pds1p destruction, cohesin loading and

unloading, Clb2p destruction etc. occur normally in those cells (Li and Murray,

1991). As Ipl1p does not relocalize, this suggests that these events are not required for

Ipl1p to leave the kinetochores. However I cannot exclude that they are necessary in

combination with other factors.
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3.3.4. Ipl1p is probably transported away from kinetochores

One important conclusion that comes from the mad mutant experiment is that

microtubules play an essential role in Ipl1p relocalization, as it does not occur in their

absence. My favorite model based on these results is that Ipl1p is transported away

from the kinetochores using the microtubules. Indeed, it is not likely that the pool of

Ipl1p at the kinetochores is being destroyed and that another pool localizes onto the

spindle because you would expect the signal to disappear in mad mutants in

nocodazole. However, I cannot formally exclude this possibility, as it is conceivable

that the potential destruction machinery for Ipl1p needs the presence of microtubules

in order to get to Ipl1p at the kinetochores. I favor the transport model, where Ipl1p is

transported away from the kinetochores after metaphase, as it is the simplest

explanation of those results. This correlates well with a recent report from cultured

cells showing that centromeric Aurora B was transported to the midzone (Murata-

Hori and Wang, 2002).

How is Ipl1p transported away from kinetochores? It is worth noting that

Ipl1p can directly bind microtubules in vitro (Kang et al., 2001). However no non-

motor domain proteins have been shown to move along microtubules on their own. In

addition, Ipl1p’s kinase activity is not required for its relocalization since ipl1 mutants

are able to leave the kinetochore. It is therefore unlikely that Ipl1p moves along

microtubules on its own, suggesting active transport away from the kinetochore by a

motor protein. In Drosophila melanogaster, Rough deal, a protein of the metaphase

checkpoint, was found to be transported away from kinetochore by the motor protein

dynein (Wojcik et al., 2001). No homolog of Rough deal exists in budding yeast. In

cultured cells the Mad2 and BubR1 checkpoint proteins have been shown to be

transported away from the kinetochores by the dynein/dynactin complex (Howell et
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al., 2001). In budding yeast no evidence exist that Dyn1p, the only dynein, acts in the

nucleus. However, it is possible that the nuclear localization of Dyn1p has been

missed in previous studies. Several motor proteins have been localized to the

kinetochores including Cin8p (Hoyt et al., 1992). However, Cin8p is thought to be a

plus end directed motor and a motor transporting Ipl1p away from the kinetochores

would need to be minus end directed. Kar3p is the only motor in budding yeast that

has been shown to be minus end directed and will therefore be a likely candidate for

transporting Ipl1p away from the kinetochores (Endow et al., 1994).

Alternatively, it is possible that other proteins are responsible for Ipl1p

relocalization. Here I found that complex formation with Bir1p plays an important

role in Ipl1p relocalization, as Ipl1p does not leave kinetochores normally in a bir1

mutant. However, as the exact nature of this mutation is unknown, I cannot determine

whether complex formation is essential. It is noteworthy that quantification would be

necessary to determine whether Ipl1p relocalization from the kinetochore is impaired

or totally abolished in the bir1 mutant strain, id est whether a portion of Ipl1p is

relocalized or not. If no Ipl1p relocalization of Ipl1p occurs in the bir1 mutant

background that would suggest that relocalization is not an essential function as the

cells are viable. Further characterization of the mutant strain will be required to

determine the function of the relocalization and the role played by complex formation

in Ipl1p relocalization. The two models are not necessarily mutually exclusive, as

complex formation might be needed in order for the whole complex to be transported

away from the kinetochores by a motor protein.
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3.4. FUTURE PLANS

3.4.1. Does Ipl1p directly relocalize from kinetochores to the spindle?

The data presented here suggested that Ipl1p is transported away from the

kinetochores by an active mechanism. However, it is not clear whether the same pool

of protein localizes at the kinetochores and at the midzone. One way to address that

will be to localize Ipl1p-RFP (red fluorescent protein) during one cell cycle. RFP has

very slow folding properties (Baird et al., 2000), slower than a yeast cell cycle. So,

newly synthesized RFP does not fold and fluoresce in the first cell cycle (Pereira et

al., 2001). Cells expressing Ipl1-RFP will be arrested in G0 by letting the cells spend

4 days in stationary phase. The stationary cells will then be diluted into fresh medium

and followed by time-lapse microscopy. The cells will show kinetochore localization

of Ipl1-RFP. If the Ipl1-RFP signal is lost at anaphase, I will conclude that a new pool

of Ipl1p localizes to the spindle. However, if the spindle is marked with Ipl1-RFP

signal in anaphase, no strong conclusion can be made. Indeed, it is possible that the

Ipl1p already present on the kinetochores is transported to the spindle. However, it is

equally possible that Ip1l protein from the previous cell cycle is still present in the

cytoplasm and localize to the spindle in anaphase.

As a complementary approach, FRAP (florescence redistribution after

photobleaching (Maddox et al., 2000)) will be used. Ipl1-GFP at the kinetochores will

be bleached right before anaphase initiation and the recovery of the signal will be

followed. If no recovery is observed, this would show that the same protein that

localized to the kinetochore transfers onto the spindle. One problem with this

approach is that it is not known how dynamic Ipl1p is at the kinetochore in

metaphase. If it is very dynamic, it will be hard to bleach the kinetochore signal right

prior anaphase initiation to test the transport hypothesis. In a recent study on Aurora
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B in cultured cells the authors used FRAP to demonstrate that Aurora B is very

dynamic at the centromeres in metaphase and that it then transfers along midzone

microtubules (Murata-Hori and Wang, 2002), suggesting that this will be a viable

approach.

Another interesting experiment would be to see whether Ipl1p can localize to

the spindle without prior localization to the kinetochores. To abolish kinetochore

function I will use an ndc10 mutant strain. Ndc10p is a core component of the

kinetochore and in its absence no kinetochore protein tested is able to localize to

kinetochores, including Ipl1p (Goh and Kilmartin, 1993; He et al., 2001). ndc10

mutant cells will be arrested in G1 using α-factor at the permissive temperature and

then released into the cell cycle at the restrictive temperature thus inactivating

kinetochore function. Ipl1p will then be localized by chromosome spreads to

determine whether it is found on the spindle or not without prior kinetochore

localization. If Ipl1p is able to localize to the spindle this would argue against a direct

transport from the kinetochore to the spindle. One caveat is that as Ndc10p shows a

localization pattern very similar to Ipl1p and is a potential substrate for Ip1lp. Thus, it

might be implicated in regulating its localization. Therefore, if Ip1lp is not found on

the spindle, it would not necessary imply that it needs to localize to the kinetochore

prior to localizing to the spindle or possibly that Ndc10p plays a direct role in

relocalizing Ipl1p from the kinetochore to the spindle.

3.4.2. Are motor proteins responsible for Ipl1p transport?

If I can formally show that Ipl1p is transported away from the kinetochores, I

will attempt to determine the mechanism used. Some obvious candidates for

transporting Ipl1p away from kinetochores are motor proteins. As discussed in the
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introduction, six motor proteins in budding yeast play a role in mitosis: Cin8p, Kip1p,

Kip2p, Kip3p, Dyn1p and Kar3p. Kip2p and Dyn1p are thought to be cytoplasmic

proteins and are therefore not likely candidates. However, in the literature several

precedents exist for dynein transporting checkpoint proteins away from the

kinetochores making of Dyn1p a good candidate (Howell et al., 2001; Wojcik et al.,

2001). Cin8p and Kip1p are thought to be plus end directed motors and would

therefore not likely contribute to transport of Ipl1p away from the kinetochores,

which is a minus end directed movement. However, the evidence for the plus

directionality of these motors this is based on structure homology and so their

directionality will still have to be tested. Kip3p is thought to have microtubule

depolymerizing activity and no motor activity pre se (Severin et al., 2001a). Kar3p is

the only motor to have been shown to be minus end directed and will therefore be

tested first (Endow et al., 1994). I will therefore localize Ipl1-GFP in the absence of

the different motor proteins by live microscopy to determine whether they affect Ipl1p

relocalization from kinetochore to the spindle. I will test all the different motors, as no

formal prove exist that they are not implicated in Ipl1p relocalization. Although cin8∆

and kar3∆ mutants activate the spindle checkpoint, the arrest is eventually bypassed

and it is possible to analyze anaphase movement in those strains (Straight et al., 1998)

(P. Maddox personal communication). These studies will give interesting information

even if no motors affect Ipl1p relocalization. Indeed, Ipl1p localization to the spindle

is punctate and, as shown in chapter 4, shows a dynamic pattern on the spindle, (see

chapter 4.4.). If no single deletion of a motor protein shows any defect I will test

double deletions.
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3.4.3. Role of Ipl1p complex formation in its relocalization

I show here that formation of a complex between Ipl1p and Bir1p is important

for Ipl1p relocalization. However the nature of the BIR1 allele used here is unclear. I

will therefore repeat the experiment using a strain conditionally expressing Bir1p.

Such cells expressing Ipl1-GFP will be arrested in G1 using α-factor, depleted of

Bir1p and then released into the cell cycle. The localization of Ipl1-GFP will be

monitored by microscopy. This will determine whether Bir1p is necessary for Ipl1p

relocalization from the kinetochore to the spindle. In addition, it will be interesting to

determine whether the other member of the complex, Sli15p, plays a role in Ip1lp

relocalization. Similar experiments will be conducted using a strain that conditionally

expresses Sli15p.

3.4.4. Dissection of Ipl1p localization domains

I found here that the localization information was contained in the N-terminus

of the protein. This is somewhat surprising because this is the most divergent part of

the protein but Ipl1p’s homologues in other organisms show a similar localization

pattern. However, it is possible that a small domain or a phosphorylation site that

might be well conserved is required for correct localization. One caveat of the

strategy used is that because the protein was overexpressed to very high levels it was

not possible to assess kinetochore localization. In addition, the endogenous full-length

protein being present, it is possible that the N-terminus localizes normally due to

dimerization. I will therefore repeat the experiment using the endogenous promoter of

Ipl1p. Cells will express the endogenous Ipl1p in addition to each different domain of

Ipl1p tagged to GFP under the control of the endogenous promoter. This new assay

will allow us to test both kinetochore and spindle localization. I will further truncate
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the domains to determine which domain(s) is responsible for the kinetochore and/or

spindle localization. If such a domain is found, I will delete it in Ip1lp and determine

the phenotype associated with its mislocalization. It should be noted that I might not

find the exact domain as small domains on their own might not fold properly and

therefore not localize properly. One caveat that remains is the fact that the

endogenous protein always being present, the domain might localize properly through

dimerization. We have not been able to find any condition allowing to eliminate the

endogenous protein: with all the conditional promoters tested, Ipl1 protein is still

present. I will therefore perform co-immunoprecipitation experiments to determine

whether the potential localization domain is able to dimerize with the endogenous

protein. The potential localization domain will be tagged with the myc epitope and

immunoprecipitated. I will then determine whether the endogenous protein was co-

immunoprecipitated by immunoblotting with anti-Ipl1p antibodies. If the endogenous

protein does not co-immunoprecipitate that would suggest that a localization domain

has been found. If it does, more work will need to be done to determine whether the

domain found is implicated in localization or not.
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CHAPTER 4. Ipl1p REGULATES SPINDLE DISASSEMBLY

4.1. SUMMARY

In the preceding chapter I found that Ipl1p displays several localization

patterns in anaphase, being found on the spindle and at the spindle midzone. In this

chapter I am going to discuss a new function for Ipl1p in anaphase. Using time-lapse

microscopy, I found that Ipl1p has a specific function in mitotic spindle disassembly

that is separable from its previously identified roles in chromosome segregation and

the spindle checkpoint. Ipl1-GFP transfers from kinetochores to the spindle after

metaphase and accumulates at the spindle midzone late in anaphase. The Ipl1 protein

levels and kinase activity are high in anaphase, and two independent tests determined

that ipl1 mutants have hyperstable microtubules. As the spindle disassembles, Ipl1p

follows the plus ends of the depolymerizing spindle microtubules. Many Ipl1p

substrates co-localize with Ipl1p to the spindle midzone, identifying additional

proteins that may regulate spindle disassembly. I propose that Ipl1p regulates both the

kinetochore and interpolar microtubule plus ends to regulate its various mitotic

functions.

4.2. RESULTS

4.2.1. Ipl1p accumulates at the spindle midzone and then follows the plus ends of

the depolymerizing spindle microtubules

As discussed in chapter 3, I found that Ipl1p can be found both on the whole

spindle and accumulated at the midzone in anaphase. Therefore, I was interested in

determining the precise order of these localization patterns during anaphase. In order

to do this, I performed live microscopy on cells expressing Ipl1-GFP.

Asynchronously grown cells were observed by time-lapse microscopy and pictures
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were taken every 15 seconds (Figure 4.2.1.A). I found that, at anaphase, Ipl1-GFP is

distributed along the entire spindle length in a punctate pattern (0’). Ipl1p then

accumulates at the spindle midzone (8.5’), splits into two distinct dots (11.75’) and

then travels back to the poles (13.25’).

Since Ipl1p localizes to the spindle midzone very late in anaphase and then

travels back to the poles, I considered the possibility that it might be following the

plus ends of the depolymerizing spindle microtubules. To test this idea, I performed

live microscopy on cells co-expressing Tub1-CFP (tubulin) and Ipl1-GFP. Although

CFP and GFP have overlapping spectrums, the Ipl1-GFP and Tub1-CFP signals were

easily discernable (see Figure 4.2.1.B). It was not possible to use the non-overlapping

spectrum of YFP because the Ipl1-YFP signal was not strong enough to perform time-

lapse imaging of cells. I started imaging a cell when Ip1lp (shown in green) localized

to the midzone of a long spindle (shown in red) (0’). After 1 minute, the Ipl1p signal

splits and there was no longer any tubulin signal in the center of the spindle implying

that the spindle is starting to dissemble. As the spindle depolymerized toward the

poles, the Ipl1p signal always localized near the plus end of the spindle microtubules

(2’). At the end of spindle breakdown, the remaining tubulin at the pole co-localized

with Ipl1p (3.5’). Therefore, Ipl1p accumulates at the spindle midzone in late

anaphase and then follows the plus ends of the depolymerizing microtubules back to

the poles.

4.2.2. Ipl1p protein levels and kinase activity are high at anaphase

To determine how the Ipl1 protein levels correlated with the dynamic

localization patterns I observed, I generated antibodies against a recombinant

glutathione-S-transferase-Ipl1 fusion protein. The affinity-purified antibodies
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recognized a single major band in yeast lysates that migrates just above the 45 kD

marker that increases in intensity when Ipl1p is overexpressed from the inducible

galactose promoter (Figure 4.2.2.A). The antibodies also recognize additional bands

that correspond to epitope-tagged Ipl1-myc12 (Figure 4.2.2.A, lane 3), indicating the

antibodies specifically recognize Ipl1p. Depending on the gel conditions, there is also

a minor upper band that represents a cross-reacting band.

We analyzed Ipl1 protein levels at anaphase. To do this, cells arrested in

metaphase by Cdc20p depletion were released into the cell cycle and time points were

taken every 10 min. An immunoblot was performed using anti-Ipl1p antibodies as

well as anti-Tub1p antibodies to assess equal loading. We found that Ipl1p levels are

low in the metaphase arrest and start peaking 10 minutes after the release

corresponding to anaphase (Figure 4.2.2.B).

Sean Tatsutani developed an Ipl1p kinase assay to analyze Ipl1p’s kinase

activity during the cell cycle. Wild type Ip1lp and the Ipl1-321 protein that has

reduced kinase activity at high temperatures (Biggins et al., 1999) were

immunoprecipitated with anti-Ipl1p antibodies and then incubated with the histone-

fold domain of the kinetochore protein Cse4 in a kinase reaction in vitro. The

majority of Ipl1p present in the yeast lysates (Figure 4.2.2.C, pre) was depleted by the

antibody (Figure 4.2.2.C, post). When the immunoprecipitations (Figure 4.2.2.C, IP)

were used for kinase assays, Cse4p was radiolabeled in the presence of wild type

Ipl1p, but not the kinase inactive Ipl1-321 protein (Figure 4.2.2.C), showing that the

assay specifically reflects an Ipl1p-associated kinase activity.

We analyzed Ipl1p kinase activity as cells exited mitosis by releasing cells

arrested in metaphase by Cdc20p depletion and taking time points every 10 min. Ipl1p

was immunoprecipitated and the kinase activity was monitored against the substrate
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Cse4p. The amount of Ipl1 protein present in the kinase assays was determined by

quantitative immunoblotting. To calculate the Ipl1p specific activity, the relative

amount of radioactive phosphate incorporated into Cse4p was normalized to the

relative amount of Ipl1 protein immunoprecipitated at each time point (Figure

4.2.2.D). To determine the corresponding cell cycle position, we monitored the

budding index and spindle disassembly (Figure 4.2.2.D). We found that the Ipl1p

kinase activity increases as cells leave metaphase, peaking just prior to spindle

disassembly.

4.2.3. ipl1-321 mutant cells are defective in spindle disassembly

The dynamic localization of Ipl1p on spindles, tracking back to the plus ends,

and the peak in Ip1l protein levels and kinase activity at anaphase suggested that Ipl1p

might regulate spindle function. To test this, I performed live cell imaging of wild

type and ipl1-321 mutants containing Tub1-GFP. Cells were synchronized in G1 with

α-factor and then released to 35°C to inactivate Ipl1-321p and time-lapse images

were captured every minute. The start of spindle elongation was used as a reference

for anaphase initiation and examples of the time-lapse data for a wild type and an

ipl1-321 mutant cell are shown in Figure 4.2.3.A. Spindle elongation was quantified

by measuring the length of the spindle every minute after the initiation of anaphase B

(Figure 4.2.3.B). In wild type cells, I observed biphasic spindle elongation (Straight et

al., 1997; Yeh et al., 1995). Wild type spindles reach about 8.4 µm in length

approximately 14 minutes after the initiation of anaphase B and then disassemble. In

ipl1-321 mutant cells, spindle elongation occurs with kinetics similar to wild type

cells. However, the spindle continues to grow to a length of approximately 10.4 µm,

delaying spindle disassembly for about 6 minutes, a 42% increase in the duration of



65

anaphase B. In two of the 10 cells analyzed, this results in a spindle that is forced to

bend when reaching the cell membrane (see Figure 4.2.3.A, panel A*).

The structure of the spindle did not appear grossly altered. If the intensity of

the spindle staining along its length is analyzed in a wild type cell, an increase in

staining is observed at the central spindle due to overlapping microtubules (Severin et

al., 2001b). It had been reported that mutants that cause spindle fragility showed a

decrease in the central staining (Severin et al., 2001b). Therefore, I reasoned that an

ipl1-321 mutant cell that showed hyperelongated spindle might have an increase in

central staining. However, this was not observed (data not shown). It is however

possible that a more careful analysis of the spindle structure, such as electron-

microscopy, will reveal a defect in spindle structure that is not detectable by

fluorescence microscopy.

4.2.4. ipl1-321 mutant cells are defective in spindle orientation

The ipl1-321 mutant cells also exhibit a spindle orientation defect that I

quantified by measuring the angle between the spindle axis and the mother-bud axis

every minute starting at metaphase. In wild type cells, it takes less than 6 min for the

spindle to orient itself on the mother-bud axis, whereas it takes more than 11 min in

ipl1-321 mutant cells (data not shown). In addition, the spindle moves in a single

direction towards the mother-bud axis in 80% of wild type cells. In contrast, 80% of

the spindles in ipl1-321 mutant cells “flipped” at least once (Figure 4.2.3.C). The

spindle started orienting towards the mother-bud axis but continued past it instead of

stopping and then moved in the other direction to finally orient along the mother-bud

axis. The angles by which the spindle axis deviated from the mother-bud axis were
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also much greater in the ipl1-321 mutants than in wild type cells. For example, one

spindle turned 180° before orienting correctly in one of the ipl1-321 mutant cells.

Spindle positioning is regulated by cytoplasmic microtubules (for review see

Segal and Bloom, 2001). I therefore analyzed cytoplasmic microtubule length and

number in the ipl1-321 mutant cells in the movies described above. The number of

cytoplasmic microtubules was not altered in ipl1-321 mutant cells in anaphase. One

microtubule per SPB was observed in both wild type and in ipl1-321 mutant cells as

reported (Gupta et al., 2002). The number of microtubules per SPB was not assessed

at other phases of the cell cycle. The cytoplasmic microtubules are slightly longer in

ipl1-321 mutant cells as compared to wild type cells (data not shown). However, only

a few cytoplasmic microtubules were measured and a more extensive analysis will be

needed to determine whether this difference is significant or not.

4.2.5. The role of Ipl1p in spindle disassembly is an independent function

Since Ipl1p is required for chromosome segregation and the spindle

checkpoint, I tested whether the defect in spindle disassembly was a consequence of

defects in these functions. We previously showed that if bipolar spindle assembly

occurs prior to Ipl1p inactivation, chromosome segregation is normal (Biggins and

Murray, 2001). I therefore arrested cells containing Tub1-GFP in metaphase by

depleting the Cdc20 protein, shifted the cells to the restrictive temperature to

inactivate Ip1lp, and then released them into the cell cycle. Aliquots were taken every

5 min and cells with a spindle pole-to-pole distance corresponding to a late anaphase

cell (equal or greater than 9 µm) were analyzed for the presence or absence of a

spindle. Since tubulin is always at the SPB, the pole-to-pole distance can be measured

regardless of whether a spindle is present. Spindle disassembly occurred in 68% of
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Cdc20 depleted cells, while only 36% of the Cdc20 depleted ipl1-321 double mutant

cells underwent spindle breakdown (Figure 4.2.4.A). In addition, I never saw any

defect in spindle elongation in either strain. This result suggests that the spindle

breakdown defect in ipl1-321 mutants is independent from Ipl1p’s role in

chromosome segregation. I also analyzed DNA segregation to ensure chromosome

segregation occurred normally in both strains (data not shown). In addition, I found

that the ipl1-321 mutant cells remained viable when released from metaphase (data

not shown), indicating that the spindle disassembly defect does not uncover an

essential function.

The difference in spindle disassembly between wild type and ipl1-321 mutant

cell populations released from a metaphase arrest is similar to that observed when

cells are released from G1 and chromosome segregation is defective. I analyzed this

by synchronizing wild type and ipl1-321 mutant cells containing Tub1-GFP in α-

factor, releasing them to 37°C and analyzing spindle disassembly as described above.

While 78% of the wild type cells underwent spindle breakdown, only 40% of ipl1-321

mutant cells had disassembled their spindles at this time (Figure 4.2.4.B). Therefore,

the spindle disassembly defect occurs in ipl1-321 mutants when chromosome

segregation is normal or defective, indicating that the role for Ipl1p in spindle

disassembly is independent from its function in chromosome segregation.

Since mutants defective in the mitotic exit network exhibit a spindle

breakdown delay (Stegmeier et al., 2002), I tested whether ipl1-321 mutant cells

delayed mitotic exit by monitoring the destruction of Clb2p, the major mitotic B-type

cyclin. Cells from the experiment described in Figure 4.2.4.A. were collected every

five min and then immunoblotted with anti-Clb2p antibodies (Figure 4.2.4.C). Clb2p

degradation occurred with similar kinetics in wild type and ipl1-321 mutant cells,
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indicating Ipl1p is not required for mitotic exit.

Ipl1p also has a function in the spindle checkpoint when kinetochore tension is

not generated (Biggins and Murray, 2001), so I tested whether other spindle

checkpoint genes are also required for spindle disassembly. I analyzed the dynamics

of spindle elongation and breakdown in mad1∆ and mad2∆ strains containing Tub1-

GFP by live microscopy. The average spindle length at each minute after anaphase B

initiation in 10 cells for each strain is shown in the graph in Figure 4.2.4.D. I found

that the dynamics of spindle elongation and breakdown in wild type, mad1∆ and

mad2∆ strains were similar (Figure 4.2.4.D). In addition, I did not detect the presence

of hyperelongated spindles or spindle positioning defects in mad1∆ or mad2∆ mutant

cells (data not shown). Therefore, a function in spindle disassembly is not a general

property of all checkpoint proteins, although it is possible that other spindle

checkpoint proteins I did not examine have a role in spindle disassembly. Taken

together, these data suggest that Ipl1p’s role in spindle disassembly is independent

from its roles in chromosome segregation and the spindle checkpoint and identifies a

previously unknown function for this protein kinase.

4.2.6. ipl1-321 mutant cells have hyperstable microtubules

Since ipl1-321 mutants are defective in spindle breakdown, I tested whether

their microtubules are hyperstable by analyzing growth on the microtubule-

depolymerizing drug benomyl. 5-fold serial dilutions of wild type and ipl1-321

mutant cells were spotted on media with or without benomyl at the permissive

temperature (Figure 4.2.5.A). I was not able to assay the defect at higher

temperatures, where the ipl1-321 allele might be more defective, due to growth

defects. Whereas both strains grow equally well on rich media, ipl1-321 cells grow
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better than wild type cells on media containing benomyl, indicating they have

hyperstable microtubules.

I confirmed that ipl1-321 mutants affect microtubule stability by a second test.

Mutants defective in APC function arrest in metaphase with short spindles and sister

chromatids held together (Zachariae et al., 1996). When sister chromatid cohesion is

released in the absence of APC function by a mutation in the Mcd1/Scc1 cohesion

protein, spindle elongation occurs in the presence of high levels of the Pds1 and Clb2

proteins (Michaelis et al., 1997). This leads to fragile spindles where the spindle

elongates but breaks down abnormally fast, creating an “anaphase-like prometaphase”

(Severin et al., 2001b). I therefore tested whether the addition of an ipl1-321 mutation

could stabilize the fragile spindles. I used a cdc26∆ strain, which leads to temperature

sensitive inactivation of the APC, in combination with the cohesin mutation mcd1-1

to create fragile spindles. cdc26∆ mcd1-1 and cdc26∆ mcd1-1 ipl1-321 mutant cells

containing Tub1-GFP were shifted to the restrictive temperature for 4 hours to arrest

the cells in anaphase-like prometaphase and then analyzed for the presence or absence

of a spindle. As previously reported, I found that nearly all cdc26∆ mcd1-1 mutants

(99%) underwent spindle breakdown (Figure 4.2.5.B) (Severin et al., 2001b).

However, only 35% of the cdc26∆ mcd1-1 ipl1-321 mutant cells underwent spindle

breakdown, showing that the addition of an ipl1-321 mutation stabilizes the spindle.

4.2.7. Ipl1p and Kip3p act in the same pathway

To determine how Ipl1p promotes spindle disassembly, I tested whether it

acted in the same pathway as a known regulator of spindle breakdown, the motor

protein Kip3 (Straight et al., 1998). Spindle elongation and breakdown kinetics were

analyzed in kip3∆ and kip3∆ ipl1-321 mutants by time-lapse microscopy as described
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in Figure 4.2.3.A. I measured spindles at each time point and found that ipl1-321,

kip3∆ and kip3∆ ipl1-321 mutant cells exhibit similar delays in spindle breakdown

(Figure 4.2.6.A). This suggests that Ipl1p and Kip3p act in the same pathway to

promote spindle disassembly at the end of anaphase. Since Kip3p localizes to the

spindle midzone, I tested whether Ipl1p kinase activity was required for Kip3p

localization (DeZwaan et al., 1997). Kip3p was C-terminally tagged with GFP and

analyzed by microscopy in wild type and ipl1-321 mutant cells (Figure 4.2.6.B). The

cells were shifted to the restrictive temperature (37°C) for one hour to inactivate Ipl1-

321p. I found that Kip3p localization to the spindle midzone is not altered in ipl1-321

mutant cells at the non-permissive temperature. I next tested whether Kip3p was

required for Ipl1p localization to the midzone by analyzing Ipl1-GFP localization in a

kip3∆ background and found that Ipl1p localization is not altered by the absence of

Kip3p. Therefore, Ipl1p localize to the spindle midzone independently of Kip3p and

Kip3p localization to the midzone does not require Ipl1p’s kinase activity. In addition,

I have not found any evidence that Kip3p is phosphorylated by Ipl1p (data not

shown). So even though the two proteins act in the same pathway, Ipl1p does not

appear to directly act on Kip3p.

4.2.8. The midzone is not grossly altered in an ipl1-321 mutant cell

The fact that Kip3p localized normally to the midzone in an ipl1-321 mutant

cell suggested that the midzone structure was still partially functional in an ipl1-321

mutant cell. I therefore decided to extend the analysis to other midzone proteins to

determine whether the structure was truly unaffected. I tested two other midzone

proteins for their presence at the midzone in an ipl1-321 mutant cell: the microtubule

associated proteins Ase1 and Stu2. Both proteins have been implicated in anaphase
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spindle stability and they are therefore potential candidates for Ipl1p’s substrate for

spindle disassembly. Wild type and ipl1-321 mutant cells containing Ase1 or Stu2

fused with GFP at the C-terminus were analyzed by microscopy. The cells were

shifted to the restrictive temperature for 1 hour to inactivate Ipl1-321p. In anaphase,

Ase1p localizes at the midzone, in a broader region than Ipl1p, as previously reported

(see Figure 4.2.7.A). The localization of Ase1p was not affected in an ipl1-321

mutant cell. In both backgrounds, Ase1-GFP was absent in G1 cells. Stu2p localizes

to the midzone in late anaphase cells, as previously described (Kosco et al., 2001).

This localization pattern was unaltered in an ipl1-321 mutant cell. In conclusion, both

proteins localize to the midzone in ipl1-321 mutant cells, suggesting that the structure

of the midzone is intact in these cells. In addition, if Ipl1p regulates one of these

proteins, it does not act on their localization.

I then wanted to determine whether Ipl1p itself was able to localize to the

midzone when mutated. To test that, I localized ipl1-as5-GFP in anaphase as

described in Figure 3.2.6.A. Cells expressing ipl1-as5 tagged at the C-terminus with

GFP were arrested in G1 using α-factor. The cells were released into the cell cycle in

the presence of inhibitor to inactivate Ipl1-as5p. Time points were taken and ipl1-as5-

GFP localization was determined. In late anaphase cells, Ipl1-as5p localized to the

midzone (Figure 4.2.7.B), indicating that the kinase activity is not required for Ipl1p

localization to the midzone. In addition, when the same cell was observed after

spindle depolymerization had started, Ipl1-as5-GFP localized to the end of the

depolymerizing spindle. DNA segregation was analyzed to ensure that Ipl1-as5p had

been inactivated. DNA segregation was unequal in ipl1-as5-GFP mutant cells. The

unequal segregation was similar to unequal DNA segregation observed in an ipl1-321

mutant cells, indicating that the Ipl1-as5p had been inactivated in this experiment.
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Localization of Ipl1-321p by chromosome spreads using anti-Ipl1p antibodies

confirmed that an inactive version of Ipl1p is able to localize at the midzone (data not

shown).

4.2.9. A number of Ipl1p potential substrates are at the midzone

Because I identified a novel localization pattern for Ipl1p to the midzone, I

tested whether proteins that Ipl1p regulates also localize to the spindle midzone. First,

I tested Cse4p which we have shown here is an Ipl1p substrate in vitro. Localization

of a Cse4-GFP fusion by live microscopy showed that the protein localizes to the

kinetochores at all cell cycle stages and does not transfer to the spindle (data not

shown). I next analyzed the localization of C-terminal GFP fusions to the Ndc10,

Sli15 and Dam1 proteins (Figure 4.2.7.C). Ndc10-GFP localized to the midzone in

late anaphase cells in addition to the previously reported spindle and kinetochore

localization (Goh and Kilmartin, 1993; Lechner and Carbon, 1991). I found that

Sli15-GFP also accumulates at the spindle midzone and exhibits the same localization

pattern as Ipl1p throughout the entire cell cycle (Figure 4.2.7.C and data not shown).

Various laboratories have reported that Dam1p localizes to kinetochores throughout

the cell cycle and to the mitotic spindle (He et al., 2001; Hofmann et al., 1998; Jones

et al., 2001). Here I show that Dam1-GFP also localizes to the spindle midzone in

anaphase cells. Therefore, the majority of known Ipl1p substrates localize to the

spindle midzone, providing a number of potential candidates for Ipl1p regulation of

spindle disassembly at the end of anaphase.



73

Figure 4.2.1. Ipl1p follows the plus ends of the depolymerizing spindle. (A) Time-
lapse live microscopy was performed on anaphase cells expressing Ipl1-GFP
(SBY556). 5 Z sections at 0.5 µm intervals were acquired every 15 s. Selected frames
show that Ipl1p first localizes to the whole spindle (0’), accumulates at the spindle
midzone (8.5’), splits (11.75’) and then tracks back to the spindle poles (13.25’). The
same pattern was observed in 10 independent cells. (B) Live image analysis was
performed on cells expressing Ipl1-GFP and Tub1-CFP (SBY1036). Every 30 s, 5 Z
sections at 0.5 µm intervals were acquired while alternating between the two channels
(FITC and CFP). The deconvolved movie shows Tubulin in red, Ipl1p in green, and
the overlapping signal in yellow. Before spindle disassembly, Ipl1p localizes to the
spindle midzone (0’). When the spindle starts breaking down (1’), the Ipl1p signal
splits and Ipl1p follows the plus ends of the depolymerizing spindle (2’) until it
reaches the spindle poles (3.5'). The same pattern was observed in 10 independent
cells. Bar: 10 µm.
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Figure 4.2.2. Ipl1p protein levels and kinase activity are high when spindles
disassemble. (A) Antibody specificity. Anti-Ipl1p antibodies were used for
immunoblotting on lysates containing endogenous Ipl1p (lane 1, SBY3),
overexpressed Ipl1p (lane 2, SBY554) and endogenous Ipl1p plus an Ipl1-myc12
fusion protein (lane 3, SBY736). * indicates a background band. (B) Ipl1p protein
levels increase at anaphase. pGAL-CDC20 cells expressing Tub1-GFP (SBY952)
were synchronized in metaphase by growth in glucose for 3 h. They were then
released into galactose media and aliquots were taken every 10 min and immunoblots
were performed using anti-Ipl1p antibodies. Tub1p antibodies were used to assess
equal loading. (C) Ipl1p kinase assay. Ip1lp was immunoprecipitated from a wild type
(SBY3) and ipl1-321 mutant strain (SBY322) and then incubated with the histone-
fold domain of the Cse4 kinetochore protein in a kinase reaction in vitro. The
majority of Ipl1p present in the lysates before the immunoprecipitation (pre), was
removed (post) and similar amounts of protein were used in the kinase assay (IP). The
autoradiogram (lower panel) shows that Cse4p is radiolabeled in the presence of wild
type Ipl1p but not Ipl1-321 mutant protein. (D) Ipl1p kinase activity peaks prior to
spindle disassembly.  pGAL-CDC20 cells expressing Tub1-GFP (SBY952) were
synchronized in metaphase by growth in glucose for 3 h. They were then released into
galactose media and aliquots were taken every 10 min and kinase assays were
performed with the substrate Cse4p in vitro. The specific activity was calculated by
normalizing the relative amount of radioactive phosphate incorporated into Cse4p to
the relative amount of Ipl1p immunoprecipitated at each time point. The amount of
Ipl1p immunoprecipitated in each kinase reaction was determined by quantitative
immunoblotting using the LI-COR Biosciences Odyssesy infrared imaging system.
Microscopy was performed to determine the percent budding (�) and the percent
spindle disassembly (�) and the specific kinase activity (blue bars, arbitrary units).
Ipl1p kinase activity increases prior to spindle breakdown.
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Figure 4.2.3. ipl1-321 mutants are defective in spindle disassembly. (A) Live
microscopy was performed on wild type (SBY130, left) and ipl1-321 mutant cells
(SBY97, right) containing Tub1-GFP that were released from α–factor at 35°C. 8 Z
sections at 0.5 µm intervals were acquired every minute. Images of the spindle in a
single cell are shown every 2 min after the initiation of anaphase (time 0’). An outline
of the cell is shown at time 0’. Spindle disassembly is delayed in ipl1-321 cells and
the spindle orientation changes during the initial phases of anaphase. A
hyperelongated spindle in an ipl1-321 mutant cell is shown in A*. (B) The spindle
length at each time point was measured and the averages of 10 cells for each strain are
graphed. Spindles disassemble in wild type cells (�) 14 min after anaphase B
initiation while ipl1-321 mutant cells (�) take 20 min. (C) The angle between the
spindle axis and the mother-bud axis was measured on the cells in (B). 80% of wild
type spindles move in a single direction while 80% of ipl1-321 mutant cells flip past
the mother-bud axis at least once. Bar: 10 µm.
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Figure 4.2.4. Ipl1p’s role in spindle disassembly is independent from its roles in sister
chromatid segregation and the spindle checkpoint. (A) pGAL-CDC20 (SBY952) and
pGAL-CDC20 ipl1-321 (SBY943) cells containing Tub1-GFP were shifted to glucose
to arrest cells in metaphase and then shifted to 37°C inactivate Ipl1-321p. Cells were
then released into galactose media at 37°C to restore Cdc20 protein synthesis in the
presence of α-factor to arrest cells in the following G1. The percentage of cells with a
pole-to-pole distance greater than 9 µm were monitored for the presence or absence of
a spindle. Spindle disassembly occurred in 68% of pGAL-CDC20 cells compared to
36% of pGAL-CDC20 ipl1-321 mutant cells released from metaphase. (B) Wild type
(SBY130) and ipl1-321 (SBY97) cells containing Tub1-GFP were released from α
factor (T=0) into the restrictive temperature (37°C). Time points were taken at 60, 70,
and 80 minutes after release and monitored for the presence or absence of a spindle as
in (A). In wild type cells, 78% of the spindles have depolymerized compared to only
40% of ip1l-321 mutant spindles. The bars represent the 95% confidence interval. (C)
Cells from (A) were taken every 5 min and Clb2p and Tub1p (loading control) protein
levels were monitored by immunoblotting. Clb2p levels decline with similar kinetics
in both strains indicating that ipl1-321 mutant cells exit mitosis normally. (D) Wild
type  (�, SBY130), mad1∆ (� , SBY1423) and mad2∆  (� , SBY1422) strains
containing Tub1-GFP were analyzed for spindle elongation and disassembly as
described in Figure 4.2.3.B. mad1∆ and mad2∆ mutants disassemble spindles with the
same kinetics as wild type cells, indicating that a spindle disassembly defect is not a
general property of all checkpoint mutants.
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Figure 4.2.5. ipl1-321 mutants have hyperstable microtubules. (A) 5 fold serial
dilutions of wild type (SBY214) and ipl1-321 (SBY322) cells were spotted on rich
media (YPD, top panel) or YPD containing 12.5 mg/ml of benomyl (bottom panel)
and grown at 23°C. ipl1-321 cells grow better than wild type cells on media
containing the microtubule-depolymerizing drug benomyl, indicating that they have
hyperstable microtubules. (B) cdc26∆ mcd1-1 (SBY965) and cdc26∆ mcd1-1 ipl1-
321 (SBY964) cells were shifted to 37°C to arrest cells in “anaphase-like
prometaphase” and the percentage of spindle disassembly was quantified. The
majority of spindles in the cdc26∆ mcd1-1 strain (99%) have disassembled compared
to the cdc26∆ mcd1-1 ipl1-321 cells (35%). The bars represent the 95% confidence
interval.
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Figure 4.2.6. Ipl1p and Kip3 act in the same pathway. (A) ipl1-321 (�, SBY97),
kip3∆ (�, SBY1538) and kip3∆ ipl1-321 (�, SBY1539) strains containing Tub1-GFP
were analyzed for spindle elongation and breakdown as described in Figure 4.2.3. The
average spindle length for 10 cells (6 for kip3∆ ipl1-321) of each strain was measured
and graphed. All 3 mutants have a similar delay in spindle disassembly suggesting
that they act in the same pathway. (B) Ipl1p and Kip3p do not require each other to
localize to the spindle midzone. Live microscopy was performed on cells containing
endogenous Kip3p fused to GFP at the C-terminus in a wild type (SBY1355) or ipl1-
321 strain (SBY1276) that had been shifted to 37°C for 30 min to inactivate Ipl1p-
321. Live microscopy was also performed on Ipl1-GFP in a kip3∆ background
(SBY1543). DIC pictures are shown to the top of each corresponding fluorescence
picture. Both proteins are able to localize to the spindle midzone in the absence of the
other protein. Bar: 10 µm.
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Figure 4.2.7. The midzone is not grossly altered in an ipl1-321 mutant and a number
of Ipl1p potential substrates are at the midzone. (A) The midzone is not grossly
altered in an ipl1-321 mutant. Live microscopy was performed on cells containing
endogenous Ase1p (top row) or Stu2p (bottom row) fused to GFP at the C-terminus in
a wild type background (SBY1162: Ase1-GFP, SBY1447: Stu2-GFP, left) and in an
ipl1-321 background (SBY1802: Ase1-GFP, SBY1448: Stu2-GFP, right). The DIC
image is shown on the left of each corresponding fluorescent image. Cells were
shifted to 37°C for 1 hour to inactivate Ipl1-321p. Both proteins localize at the
midzone in the absence of Ipl1p. (B). ipl1 mutant localize at the midzone in anaphase.
ipl1-as5-GFP mutant cells (SBY1356), arrested in G1 using α-factor, were released
in the cell cycle in the presence of 50 µM inhibitor (NA-1), as in Figure 3.2.6.A. Time
point were taken and the cells were analyzed by microscopy. The DIC picture (top
row) shows that the cell is in late anaphase. At this time, ipl1-as5-GFP localizes at
the midzone (florescent picture 1). After a little while, ipl1-as5-GFP was seen on the
depolymerzing spindle. An ipl1 mutant protein is therefore able to localize at the
midzone normally. (C) Some Ipl1p substrates localize to the spindle midzone. Live
microscopy was performed on strains containing endogenous Ndc10p (SBY539),
Sli15p (SBY875) or Dam1p (SBY1115) fused to GFP at the C-terminus. The
fluorescence images (left panels) show that all three Ipl1p substrates localize to the
spindle midzone. The corresponding DIC pictures are shown on the right. Bar: 10 µm.
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4.3. DISCUSSION

I have shown that the Ipl1/Aurora protein kinase plays a role in spindle

microtubule disassembly and spindle orientation. Ipl1p’s role in spindle disassembly

is not a consequence of a delay in mitotic exit or a prior defect in chromosome

segregation. In addition, it is unlikely due to a defect in the spindle checkpoint since

the mad1 and mad2 checkpoint mutants exhibited normal spindle disassembly. This is

the first study examining the effects of spindle checkpoint mutants on anaphase

spindle dynamics and it suggests that the spindle checkpoint does not directly regulate

microtubules in metaphase and anaphase. Ipl1p localizes to the spindle midzone in

anaphase and tracks the plus ends of the depolymerizing spindle microtubules,

suggesting it may directly regulate microtubule plus ends. I found that a number of

kinetochore proteins localize to the midzone, suggesting the plus ends of the

interpolar microtubules may be regulated in a manner similar to kinetochores. I

propose that Ipl1p is a general microtubule plus end regulator and that its function in

spindle disassembly in anaphase is similar to its function in promoting bi-orientation

in prometaphase.

4.3.1 Ipl1p’s role in spindle orientation

In addition to a role in spindle breakdown, live microscopy also revealed that

ipl1 mutants misorient their spindles in metaphase. The angles by which the spindle

deviates from the mother-bud axis are greater in ipl1 mutant cells and their spindles

take longer to orient than in wild type cells. A β-tubulin mutant that has hyperstable

microtubules has orientation defects similar to ipl1 mutants (Gupta et al., 2002). So it

is possible that Ipl1p acts on cytoplasmic microtubules in a similar manner to nuclear

microtubules to promote spindle orientation. However, the defects observed in the β-
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tubulin mutants and in ipl1 mutants are not exactly the same. β-tubulin mutants show

a decrease in microtubules dynamics, indicated by a decrease in recovery after

photobleaching (FRAP) (Gupta et al., 2002). ipl1 mutation does not affect the total

turnover of microtubules as recovery after photobleaching is normal in an ipl1 mutant

cell (data not shown). It is possible that Ipl1p’s role it to promote microtubule

depolymerization and not to regulate the turnover of tubulin dimers. Alternatively it is

possible that only a fraction of microtubules are affected in an ipl1 mutant cell, only

the kinetochore microtubules for example, and that does not constitute a defect that

can be seen by FRAP. In addition, I never observed endogenous Ipl1p in the

cytoplasm, although I cannot exclude that there may be a small pool of cytoplasmic

staining that I could not detect. When overexpressed, Ipl1-GFP is found in the

cytoplasm (Kim et al., 1999). It is therefore possible that the orientation problems I

observed may be indirect. For instance, the hyperstable nuclear microtubules may

lead to changes in the cytoplasmic microtubule dynamics that result in orientation

defects. It is also possible that Ipl1p regulates a protein in the nucleus affecting its

function in the nucleus as well as in the cytoplasm. It will take further work to

understand whether the spindle orientation problem is a direct function for the Ipl1p

kinase.

kip3∆ mutants have also been reported to have a spindle positioning defect.

The defects in both kip3∆ and ipl1 mutants were similar in that the “flipping” of the

spindle was also observed in kip3∆ mutant cells. However the defects in both mutants

were not equivalent as kip3∆ mutant cells have defect in nuclear migration in addition

to a defect in spindle orientation. The addition of the ipl1 mutation did not increase

the defect in spindle orientation of the kip3∆ mutant cells. Therefore, if Ipl1p plays a

specific role in spindle positioning it is likely to act in the same pathway as Kip3p.
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4.3.2. Functions of the Ipl1/Aurora protein kinase family

I show that the localization of Ipl1p to the mitotic spindle is correlated with

spindle disassembly in budding yeast. Since Aurora B localizes to the spindle

midzone in all organisms, this may be another conserved function of the Ipl1/Aurora

protein kinase family. In other organisms, Aurora B is required for cytokinesis and

this may be coupled to defects in spindle microtubule depolymerization that have not

been previously noticed. In human cells, cytokinesis is regulated by the

phosphorylation of CENP-A by Aurora B (Zeitlin et al., 2001). We report here that

the budding yeast histone variant Cse4p is also a good substrate for Ipl1p in vitro.

Further analysis of the effects of Cse4p phosphorylation by Ipl1p may reveal more

details about spindle disassembly and/or cytokinesis in budding yeast.

I show that the dynamics of spindle elongation are not altered in ipl1 mutant

cells, unlike mutants in the Aurora-INCENP-Survivin complex in

Schizosaccharomyces pombe (Morishita et al., 2001; Rajagopalan and

Balasubramanian, 2002). This difference may be due to the number of kinetochore

microtubule binding sites in each organism. In Schizosaccharomyces pombe, there are

multiple binding sites, which results in lagging chromosomes if bi-orientation is not

achieved. In budding yeast where there is a single microtubule binding site, defects in

bi-orientation cannot generate lagging chromosomes. However, when a conditional

dicentric chromosome is activated in budding yeast thus creating a lagging

chromosome, spindle elongation is delayed (Yang et al., 1997). My study in budding

yeast had the advantage that defects in bi-orientation do not interfere with spindle

dynamics. To determine whether the spindle disassembly function of Ip1lp is

conserved, spindle dynamics will need to be analyzed in situations where

chromosome segregation is normal.



87

Consistent with a role in spindle disassembly, we found that Ipl1p kinase

activity increases just prior to spindle breakdown. Few studies have looked at the

regulation of Ipl1p homologs. In Drosophila and rat tissues, Aurora B protein levels

and kinase activity peak during mitosis (Bischoff et al., 1998; Terada et al., 1998).

However, the time points were not close enough in those studies to determine whether

the peak of kinase activity corresponds to spindle breakdown. In fission yeast, Aurora

B is not cell cycle regulated (Petersen et al., 2001; Leverson et al., 2002), making it

unclear whether there are conserved mechanisms that regulate Ipl1/Aurora B protein

levels and kinase activity. Our study also revealed that Ipl1p kinase activity is low

when cells are arrested in metaphase with kinetochores under tension. This may

reflect an active mechanism that regulates Ipl1p stability and/or activity once tension

is established. Future work will be needed to elucidate the mechanisms that lead to

changes in Ipl1p kinase activity during mitosis.

4.3.3. How does Ipl1p regulate spindle disassembly?

In support of a role for Ipl1p in direct regulation of microtubules, I found that

ipl1 mutants have hyperstable microtubules. The ipl1 mutant cells are more resistant

to the microtubule depolymerizing drug benomyl than wild type cells and are able to

alleviate the spindle fragility of apc mcd1 mutant cells. However, since Ipl1p is the

first example of a protein that stabilizes apc mcd1 spindles when mutated, it is not

clear how it acts. Although mutations in Ipl1p affect spindle breakdown, they do not

do this by grossly altering the structure of the spindle midzone since all the spindle

midzone proteins I tested still localized to the midzone in an ipl1 mutant.

 My studies using live microscopy revealed a previously unidentified

localization pattern for Ipl1p. At anaphase, Ipl1p is transported along the spindle to
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the midzone and then tracks the plus ends of the depolymerizing spindle microtubules

back to the poles. To my knowledge, the only other protein in budding yeast that

exhibits this localization pattern is the Ipl1p substrate Ndc10p and suggests regulated

transport of these proteins on microtubules in anaphase, possibly by motor proteins

(D. Bouck and K. Bloom, personal communication). The localization to the plus ends

may indicate that Ipl1p directly destabilizes microtubules like catastrophe factors,

such as the KINI family of motor proteins (Desai et al., 1999). Accordingly, Ipl1p

binds microtubules in vitro (Kang et al., 2001). However, Ipl1p does not

phosphorylate microtubules or tubulin monomers in an in vitro kinase assay (data not

shown). Ipl1p may therefore directly promote microtubule depolymerization by a

phosphorylation independent mechanism, or it may instead control a microtubule-

binding protein.

There are two non-essential proteins known to be involved in spindle

microtubule disassembly in budding yeast: the motor protein Kip3 and the

microtubule associated protein Ase1 (Juang et al., 1997; Straight et al., 1998). Ipl1p

and Kip3p may act in the same spindle disassembly pathway because the double

mutant exhibits the same spindle breakdown defect as each single mutant. So far I

have yet to obtain evidence that Ipl1p regulates Kip3p or Ase1p (data not shown).

There are other potential candidates for Ipl1p regulation that will need to be

investigated, such as the midzone protein Stu2 that opposes the Kip3 protein and the

Esp1p/Pds1p cell cycle regulation complex that is also found at the midzone and has a

function stabilizing spindles during anaphase (Jensen et al., 2001; Severin et al.,

2001a; Uhlmann et al., 2000). I also found that three known Ipl1p substrates are at the

spindle midzone: Ndc10p, Sli15p and Dam1p. It is interesting to note that Dam1p was

originally identified for its role in regulating spindle dynamics (Hofmann et al., 1998;
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Jones et al., 1999). Therefore, a number of potential Ipl1p substrates localize to the

spindle midzone and it will need to be determined whether any of these candidates

also promote spindle disassembly.

4.3.4. The spindle midzone: a kinetochore-like structure?

Several kinetochore proteins are now known to localize to the spindle

midzone in anaphase, including Stu2p, Slk19p and the motor protein Cin8 (Hoyt et

al., 1992; Kosco et al., 2001; Zeng et al., 1999). Here I show four additional

kinetochore proteins localizing to the midzone: the Ipl1/Aurora protein kinase, the

INCENP homolog Sli15p, Dam1p and Ndc10p. Since midzone staining is difficult to

detect, it may have been overlooked in a number of other localization studies and

many more kinetochore proteins may be present at the midzone. Most of the spindle

midzone proteins have been implicated in the regulation of spindle dynamics in

anaphase by either promoting spindle elongation or spindle disassembly. An

intriguing possibility is that the microtubule plus ends at the spindle midzone are

regulated in anaphase similarly to the kinetochore-microtubule attachments in

prometaphase. Future work will determine whether the Ipl1/Aurora protein kinase and

other spindle midzone proteins are global regulators of microtubule plus ends.

4.4 FUTURE PLANS

4.4.1. How is Ipl1p accumulation to the midzone achieved?

I have shown that Ipl1p localization in anaphase is very dynamic localizing

onto the entire spindle length in anaphase, accumulating at the spindle midzone in late

anaphase and then tracking the plus ends of the depolymerizing spindle back to the

poles (Figure 4.2.1.). Furthermore, I have also shown that Ipl1p kinase activity is not



90

important for this localization pattern (Figure 3.2.6. and 4.2.7.), as a kinase inactive

mutant is able to accumulate at the midzone in late anaphase. It will therefore be

interesting to determine the requirement for this localization. As Ipl1p is found in a

punctate pattern along the spindle length, one likely possibility is that it is transported

by a motor protein. To test this, I will analyze Ipl1p localization in anaphase in cells

lacking a motor protein. As discussed in chapter 3.4.2, of the six motor proteins

implicated in mitosis, two are thought to be plus end directed motor proteins, the

direction needed to accumulate at the midzone: Cin8p and Kip1p. In addition, Cin8p

does localize to the midzone in anaphase making it a likely candidate (Hoyt et al.,

1992). It is interesting to note that Cin8p and Ipl1p alleles are synthetically lethal,

even though the nature of this synthetic lethality is unclear (Geiser et al., 1997). I will

therefore analyze the localization of Ipl1-GFP by live microscopy in anaphase in a

background deleted in one of these motor proteins. If no motor is implicated in Ipl1p

accumulation at the midzone, I will test the contribution of other members of the

Ipl1/Sli15/Bir1 complex as in chapter 3.4.3. Ipl1-GFP localization in anaphase will be

analyzed in cells depleted for one of the component of the complex.

4.4.2. Does Ipl1p directly regulate microtubules?

I show here that Ipl1p plays a role in spindle disassembly in late anaphase,

however it is unclear whether Ipl1p acts directly on microtubules or not. Since Ipl1p

is able to directly bind microtubules in vitro (Kang et al., 2001), I will determine

whether Ipl1p is able to promote microtubule depolymerization in vitro. Taxol

stabilized microtubules will be polymerized in vitro (Hyman et al., 1991). They will

then be incubated with increasing amount of bacterial Ipl1p and incubated at RT.

After sedimentation on a glycerol cushion, the supernatants and the pellets will be
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analyzed by SDS-PAGE. Intact microtubules will appear in the pellet whereas

depolymerized microtubules will appear in the supernatant (Desai et al., 1999). If

Ipl1p is able to promote microtubules depolymerization, the amount of tubulin in the

supernatant will increase. If not that would suggests that Ipl1p acts by regulating a

minrotubule binding protein (see below).

As mentioned above, Ipl1p is able to bind microtubules in vitro. However it

would be interesting to determine whether Ipl1p has a preference for microtubule plus

ends as it is found at the plus ends of microtubules in vivo. To do this, I will

determine whether Ipl1p binding to microtubules increases when more plus ends are

present. Taxol stabilized microtubules will be polymerized in vitro (Hyman et al.,

1991). Half of the microtubules will be mechanically sheared whereas the other half

will be kept intact. Bacterial Ipl1p will then be incubated with the microtubules. After

sedimentation through a glycerol cushion, I will determine whether the amount of

Ip1lp precipitated is different when the microtubules are sheared or not. If more Ipl1p

is precipitated when the microtubules are sheared that would suggest that Ip1lp has a

preference for the ends of the microtubules. As in vivo Ip1lp is found at the plus ends

of microtubules I would infer that Ipl1p has a preference for microtubules plus ends.

If no difference is observed that would suggest that Ipl1p binds the length of the pure

microtubules.

4.4.3. Ipl1p substrate for the spindle depolymerization function

As mentioned in the discussion, a number of potential Ipl1p substrates exist

for the spindle function. This includes the motor protein Kip3, the MAPs Ase1p and

Stu2p as well as Ipl1p potential substrates at the midzone Ndc10p, Sli15p and

Dam1p. First I will determine whether Ipl1p phosphorylates Kip3p, Ase1p or Stu2p.
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In vivo phosphate labeling will be performed on wild type versus ipl1 mutant cells

shifted to the restrictive temperature (37°C) for 1 hour to inactivate mutant Ipl1

protein. The phosphorylation status of the different proteins will then be analyzed by

autoradiography. All three proteins contain Ipl1p potential phosphorylation sites.

Kip3p has 3 potential sites, whereas both Ase1p and Stu2p have 5 potential sites. If

one of the proteins is phosphorylated in an Ipl1p dependent manner, I will mutate the

potential phosphorylation sites and analyze spindle dynamics in anaphase by live

microscopy as done in Figure 4.2.3. to determine whether the phosphorylation by

Ipl1p of this protein plays a role in spindle disassembly. In parallel, the potential

phosphorylation sites of Ipl1p in Ndc10p, Sli15p or Dam1p will be mutated and

spindle dynamics in anaphase will be analyzed in the resulting mutants to determine if

any of these proteins plays a role in spindle disassembly. If none of the potential

substrates tested play a role in spindle disassembly, more work will be needed on the

regulation of spindle disassembly to determine which protein(s) Ipl1p is regulating for

its spindle disassembly function.

4.4.4. Spindle orientation characterization

I show here that ipl1 mutant cells have a spindle orientation defect: the spindle

takes longer to align with the mother-bud axis in an ipl1 mutant cell than wild type. I

will characterize this function further to determine whether this is a new function for

Ipl1p or whether this an indirect effect. I will determine whether the defect in spindle

orientation can be uncoupled from Ipl1p chromosome segregation function. To do

this, I will arrest cells expressing Tub1-GFP in metaphase by depleting the Cdc20

protein (pGAL-CDC20 vs. pGAL-CDC20 ipl1) and then inactivate Ipl1 mutant protein

by shifting to the restrictive temperature. I have shown that under those conditions,
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Ipl1p function in chromosome segregation is fulfilled (Figure 4.2.5.A.). Fixed cells

will then be analyzed to determine whether ip1l mutant cells show a defect in spindle

orientation under those conditions. If this is observed, it suggests that the defect in

spindle orientation is an independent function of Ipl1p. If no defect in spindle

orientation can be seen, no strong conclusion can be drawn. Indeed, it could mean that

Ipl1p does not play a direct role in spindle orientation or that in metaphase Ipl1p has

already fulfilled its role in spindle orientation.

I will also analyze the behavior of cytoplasmic microtubules carefully over the

cell cycle, as they are thought to regulated spindle orientation. I show here that the

number of cytoplasmic microtubules is unaltered in anaphase. However, a recent

study found that β-tubulin mutant that has orientation defects similar to ipl1 mutants,

showed an altered number of cytoplasmic microtubules in G1 (Gupta et al., 2002). I

will therefore determine whether the number of cytoplasmic microtubules is altered in

other phases of the cell cycle. To do this, wild type and ipl1 mutant cells expressing

Tub1-GFP will be analyzed by live microscopy throughout an entire cell cycle at the

restrictive temperature. This will also allow me to determine whether the length of

cytoplasmic microtubules is affected by an ipl1 mutation. I will also determine

whether the dynamics of the microtubules are affected by analyzing the rates of

polymerization and depolymerization. Those studies will determine whether Ipl1p

affects cytoplasmic microtubules.

I will investigate whether Ipl1p shows genetic interaction with proteins known

to play a role in spindle orientation. Two pathways promoting spindle positioning

have been described. One pathway containing Kar9p, Kip3p, Bim1p etc is responsible

for the migration of the nucleus to the bud neck and for alignment with the mother-

bud axis (Kusch et al., 2002). The second pathway containing Dyn1p, Num1p, etc is
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responsible for the migration of the nucleus through the bud neck (Eshel et al., 1993;

Li et al., 1993; Yeh et al., 1995)(Heil-Chapdelaine et al., 2000). The two pathways are

partially redundant and spindle positioning occurs in most cases with the presence of

only one pathway. In addition, other protein such as Stu2p, β-tubulin, etc have been

shown to play a role in spindle positioning even though it is not clear how (Kosco et

al., 2001) (Gupta et al., 2002). My preliminary experiments analyzing the double

mutant ipl1 kip3∆ suggested that Ipl1p might act in the Kip3p pathway but further

genetic evidence would be necessary to confirm this result. In addition, if Ipl1p shows

specific genetic interaction with only one pathway this would strengthen the idea that

this is a specific function for Ipl1p.

Taken together, these experiments should reveal how Ipl1p mechanically

functions during different phases of mitosis. Results should reveal more information

about this oncogene and its substrates or binding partners and should therefore help to

understand the generation of genomic instability.
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CHAPTER 5. ipl1 MUTANTS BYPASS A METAPHASE ARREST

CAUSED BY INACTIVATION OF THE APC

5.1. SUMMARY

The spindle checkpoint is a surveillance mechanism that arrests cells in

metaphase when kinetochore-microtubule attachment is impaired. It acts by inhibiting

the Cdc20 specificity factor of the anaphase promoting complex. Mutations in any

subunit of this complex show a metaphase arrest phenotype. The laboratory has

previously published that in an apc ipl1-321 double mutant strain the spindle

elongates. I decided to analyze this phenotype further and found that sister chromatid

separation occurs in an apc ipl1-321 strain, resulting in spindle elongation. I show

here that this actually represents a new function of the spindle checkpoint. The bypass

of the metaphase arrest caused by a mutation in the APC is dependent on the Esp1p

protease but does not depend on Pds1p/securin degradation. Even though the exact

mechanism is not clear, data presented here suggest that the checkpoint acts as an

inhibitor of the Esp1p protease. In this model, in an apc mutant, Esp1p is inhibited

both by securin and by the spindle checkpoint. Inactivation of either pathway would

lead to Esp1p activation resulting in sister chromatid separation and spindle

elongation. I also show that even though sister chromatid separation and spindle

elongation are normally coupled, they are independent processes. Spindle elongation

can occur in the absence of sister chromatid separation.
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5.2. RESULTS

5.2.1. The spindle elongation in an apc ipl1 mutant cell is independent from

Ipl1p’s kinetochore function

The APC is a protein complex that targets mitotic inhibitors for ubiquitin

dependent degradation (for reviews see Peters, 2002; Zachariae and Nasmyth, 1999).

When this complex is inactivated, by a mutation in a protein of the complex (Cdc26p,

Cdc20p, Cdc23p…), cells arrest in metaphase with sisters held together and short

spindle (Zachariae et al., 1996). The laboratory had previously published that in

cdc23-1 ipl1-321 mutant cells, the spindle elongates (Biggins et al., 1999). This was

originally thought to represent a defect in kinetochore function. I decided to analyze

this phenotype more thoroughly and found that the original hypothesis was not correct

as discussed below. I first repeated the experiment with another mutant of the APC

complex to determine whether this was an allele specific phenomenon. Cdc26p is a

heat shock protein that stabilizes the interaction of the core subunits with the rest of

the particle (Zachariae et al., 1998b; Zachariae et al., 1996). It is therefore only

essential at 37°C. cdc26∆ and cdc26∆ ipl1-321 mutant cells expressing Tub1-GFP

were grown to mid-log at the permissive temperature (23°C) and then shifted to the

restrictive temperature (37°C) for 4 hours to inactivate the gene products. The cells

were then fixed and analyzed by microscopy. The spindle pole-to-pole distance was

measured in at least 100 cells in each background. A representative example is shown

for each strain in Figure 5.2.1.A. As reported, cdc26∆ cells arrested as large budded

cells with a short spindle (Zachariae et al., 1996). I found that 70% of cdc26∆ ipl1-

321 cells elongated their spindle (see Figure 5.2.2.), suggesting that spindle

elongation is a general property of apc ipl1-321 mutant cells.
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I next wanted to determine whether the spindle elongation in an apc ipl1-321

mutant cell really reflected Ipl1p’s kinetochore function. S. Biggins had previously

reported that if Ipl1p is inactivated after bipolar spindle formation chromosome

segregation is normals. Therefore, Ipl1p’s function at the kinetochore is completed

once bipolar spindle is established (Biggins and Murray, 2001). I therefore arrested

cells containing Tub1-GFP in metaphase by depleting the Cdc20 protein (pGAL-

CDC20 vs. pGAL-CDC20 ipl1-321) and then shifted the cells to the restrictive

temperature to inactivate Ip1lp for 4 hours (Figure 5.2.1.B shows the design of the

experiment). After fixation of the cells, the pole-to-pole distance was measured. A

pole-to-pole distance of 1-3 µm was considered to be a short spindle, whereas a pole-

to-pole distance of 4 µm and longer was considered to be a long spindle. The graph in

Figure 5.2.1.C shows that, under those conditions, a majority of pGAL-CDC20 cells

(79%) arrested with a short spindle as expected for a mutation in the APC complex. In

contrast, 59% of pGAL-CDC20 ipl1-321 cells elongated their spindle. This suggests

that spindle elongation in apc ipl1-321 mutant cell is independent from Ipl1p’s

function in chromosome segregation. In addition, this data support the idea that

spindle elongation is a general property of an apc ipl1-321 cell as a third mutant in the

APC complex (a run down in Cdc20p) shows the phenotype.

5.2.2. Spindle elongation in an apc ipl1-321 mutant is a general function of the

spindle checkpoint.

Because spindle elongation in an apc ipl1-321 mutant cell did not seem to

reflect Ipl1p’s function in chromosome segregation, I decided to investigate whether

it reflected Ipl1p’s function in the spindle checkpoint. I therefore analyzed spindle

elongation in an apc mutant combined with a spindle checkpoint mutant (mad1∆). I
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also analyzed two other kinetochore mutants: a mutant in the histone H3-variant

Cse4p, and a mutant in a member of the CBF3 complex: Ndc10p. The two mutants

differ from each other in their ability to activate the spindle checkpoint: cse4-323

mutants are checkpoint proficient whereas ndc10-1 mutants are checkpoint deficient

(S. Biggins data not shown) (Tavormina and Burke, 1998). cdc26∆, cdc23-1 cse4-

323, cdc26∆ ipl1-321, cdc26∆ ndc10-1 and cdc26-100 mad1∆ strains expressing

Tub1-GFP were grown at the permissive temperature (23°C) and then shifted to the

restrictive temperature (37°C) for 4 hours. After fixation of the cells, the pole-to-pole

distance was measured as described above. The graph in Figure 5.2.2. shows that 78%

of cdc26∆ cells arrest with a short spindle. cdc26-100 and cdc23-1 mutant cells also

show a large bud arrest with a short spindle and are not significantly distinct from

cdc26∆ (data not shown). As previously reported, 66% of cdc23-1 cse4-323 cells are

able to maintain a short spindle (Biggins et al., 2001). As mentioned above, cdc26∆

ipl1-321 cells are unable to maintain a short spindle and 70% of the cells elongate

their spindle. I found that 76% of cdc26∆ ndc10-1 and 73% of cdc26-100 mad1∆

cells, like a cdc26∆ ipl1-321 strain, are unable to maintain a short spindle in a

metaphase arrest due to inactivation of the APC. In conclusion, spindle checkpoint

mutants (ipl1-321 and mad1∆) and mutants unable to activate the checkpoint (ndc10-

1) are unable to maintain a short spindle in an apc mutant, suggesting that spindle

elongation in an apc ipl1-321 strain might reflect Ipl1p’s function in the spindle

checkpoint.

5.2.3. The spindle elongation in an apc ipl1-312 requires Esp1p activity

In order to further characterize spindle elongation in an apc ipl1-321 cell, I

decided to analyze DNA segregation to determine whether chromosome segregation



99

was coupled to spindle elongation in an apc ipl1-321 cell. I was also interested in

determining whether chromosome segregation was normal. Because ipl1-321 mutants

missegregate their chromosomes, I could not directly study chromosome segregation

in an apc ipl1-321 strain. I therefore used the same system as in Figure 5.2.1.C. Cells

from the experiment in Figure 5.2.1.C were stained with DAPI to visualize DNA and

analyzed by microscopy. Figure 5.2.3.A shows that DNA segregation occurs in a

pGAL-CDC20 ipl1-321 strain with an elongated spindle. In addition, segregation

appears normal judging by the two masses of DNA of equal intensity at each pole,

suggesting that sister chromatid separation has occurred. To confirm this result, I also

analyzed DNA segregation in a cdc26-100 mad1∆ strain that was shifted for 4 hours

to 37°C, fixed and processed for immunofluorescence and stained with DAPI to

recognize DNA and with anti-Tub1 to recognize the spindle. Chromosome

segregation also appears normal in cells with an elongated spindle (see Figure

5.2.3.B). These experiments suggests that sister chromatid separation and spindle

elongation are initiated in an apc ipl1-321 (or apc mad1∆) strain even though the

APC is inactive.

The Esp1p protease has been implicated both in sister chromatid separation

and spindle elongation even though the latter is controversial as discussed in the

introduction. I therefore wanted to determine whether Esp1p was required for spindle

elongation in an apc ipl1-321 mutant. To test this, I analyzed whether spindle

elongation in an apc ipl1-321 and apc mad1∆ strain was Esp1p dependent. cdc26∆,

cdc26∆ ipl1-321, cdc26∆ esp1-1, cdc26∆ ipl1-321 esp1-1 and cdc26∆ mad1∆ esp1-1

strain were shifted to 37°C for 4 hours and analyzed by microscopy as described

above. As seen before, cdc26∆ cells show a majority of short spindles, whereas

cdc26∆ ipl1-321 cells elongate their spindle. esp1-1 mutants are unable to segregate
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their sister chromatids or elongate their spindle (Ciosk et al., 1998; Funabiki et al.,

1996a). In agreement with that, 71% of cdc26∆ esp1-1 cells arrest with a short spindle

(see Figure 5.2.3.C). 82% of cdc26∆ ipl1-321 esp1-1 cells and 80% of cdc26∆ mad1∆

esp1-1 cells arrest with a short spindle, showing that spindle elongation in apc ipl1-

321 and apc mad1∆ cells is dependent on active Esp1p. In addition, this suggests that

Esp1p may be activated in an apc ipl1-321 mutant cell to lead to sister chromatid

separation and spindle elongation.

5.2.4. Spindle elongation in an apc ipl1-321 mutant cell is independent from

Pds1p degradation

The evidence so far suggested that Esp1p may be getting activated in an apc

ipl1-321 mutant cell. Esp1p is normally kept inactive by binding Pds1p. One possible

explanation for Esp1p activation is that Pds1p was getting inappropriately degraded in

an apc ipl1-321 mutant liberating an active Esp1p. To test this, I analyzed Pds1p

levels in an apc ipl1-321 mutant cell. cdc26∆ ipl1-321 cells expressing Pds1-myc

were shifted to the restrictive temperature (37°C) for 4 hours and were processed for

immunofluorescence. The cells were stained with anti-Tub1 to recognize the spindle,

with DAPI to recognize the DNA and with anti-myc antibodies to recognize Pds1-

myc. I found that Pds1p levels stay high in apc ipl1-321 cells with long spindles

(Figure 5.2.4.A), indicating that the spindle is able to elongate without Pds1p being

degraded.

To confirm that spindle elongation in an apc ipl1-321 cell occurred without

Pds1p degradation, I tested whether spindle elongation in an apc ipl1-321 cell could

occur when non-degradable Pds1p was overexpressed. To do this, cdc26∆ cells

conditionally overexpressing non-degradable Pds1p, pGAL-pds1mdb (mutated in its
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destruction box, (Cohen-Fix et al., 1996)) and cdc26∆ ipl1-321 pGAL-pds1mdb cells

expressing Tub1-GFP were grown in raffinose and arrested in G1 using α-factor. 4%

galactose was added to induce non-degradable Pds1p and 30 minutes later cells were

released into the cell cycle in galactose at 37°C. Cells were harvested at t = 4 and 5

hours, fixed and analyzed by microscopy. At 4 and 5 hours, 95% and 80%

respectively of cdc26∆ overexpressing non-degradable Pds1p cells arrested with a

short spindle (Figure 5.2.4.B). This is comparable to cdc26∆ alone (see Figure

5.2.5.A), so overexpression of non-degradable Pds1p in a cdc26∆ background does

not alter the terminal phenotype. At 4 hours, 48% of cdc26∆  ipl1-321 cells

overexpressing non-degradable Pds1p elongated their spindle (see Figure 5.2.4.B);

this result is similar to cdc26∆ ipl1-321 cells alone (see Figure 5.2.5.A). Also, at 5

hours cdc26∆ ipl1-321 cells overexpressing non-degradable Pds1p were able to

elongate their spindle (82% long spindles, see Figure 5.2.4.B), again comparable to

cdc26∆ ipl1-321 cells (68% long spindles, see Figure 5.2.5.A). Non-degradable Pds1p

(pds1-mdb) was highly overexpressed to equivalent amounts in cdc26∆ pGAL-

pds1mdb and cdc26∆ ipl1-321 pGAL-pds1mdb strains (data not shown). In

conclusion, spindle elongation in an apc ipl1-321 strain occurred normally in cells

overexpressing non-degradable Pds1p. Therefore, Esp1p activation in an apc ipl1-321

is independent from Pds1p degradation.

5.2.5. Spindle elongation in an apc ipl1-321 mutant cell is not a direct

consequence of sister chromatid separation

I next wanted to determine whether spindle elongation was a direct

consequence of sister chromatid separation. Esp1p plays role in the FEAR network

and in spindle elongation/stability even though the latter is controversial (see
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introduction). I therefore wanted to determine whether these other functions of Esp1p

were implicated in spindle elongation in an apc ipl1-321 mutant. To address this, I

decided to test whether I could uncouple spindle elongation from sister chromatid

separation by overexpressing a non-cleavable version of the cohesin protein Scc1p

that blocks sister chromatid separation. I expressed this in an apc ipl1-321 cell to

determine whether spindle elongation is blocked when sisters cannot separate.

cdc26∆, cdc26∆ ipl1-321 and cdc23-1 ipl1-321 cells conditionally overexpressing a

non-cleavable version of Scc1p (pGAL-scc1ndb, mutated in its cleavage site,

(Uhlmann et al., 1999)) expressing Tub1-GFP were grown in raffinose and arrested in

G1 using α- factor. 4% galactose was added to induce non-cleavable Scc1p and 30

minutes later cells were released into the cell cycle in galactose at 37°C. Cells were

harvested at t = 4 and 5 hours and fixed and analyzed by microscopy. Under these

conditions, cdc26∆ cells arrested with a short spindle: 77% short spindles at 4 hours,

84% at 5 hours (see Figure 5.2.5.A). In this experiment, cdc26∆ ipl1-321 cells

elongated their spindle: 48% had long spindles at 4 hours and 67% at 5 hours. The

spindle elongation at 4 hours may not be as dramatic as in other experiments because

the cells are grown in galactose and therefore progression through the cell cycle is

slowed down. Overexpression of non-cleavable Scc1p in cdc23-1 cells gave rise to an

arrest with short spindles as expected (data not shown). Spindle elongation is delayed

but not abolished in an apc ipl1-321 strain overexpressing non-cleavable Scc1p. At 4

hours, the majority of cdc23-1 ipl1-321 pGAL-scc1ndb cells have a short spindle

(72%, see Figure 5.2.5.A), showing that the overexpression of non-cleavable Scc1p,

which inhibits sister chromatid separation, affects spindle elongation. However at 5

hours, the spindle does elongate: 63% of cdc23-1 ipl1-321 pGAL-scc1ndb cells have
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long spindles. This is similar to cdc26∆ ipl1-321 cells, suggesting that spindle

elongation can occur even when sister chromatids do not separate.

I wanted to make sure that spindle elongation was occurring without sister

chromatid separation. First, I analyzed scc1nb levels throughout the experiment and

found that it was highly overexpressed even at t = 5 hours (data not shown).

Therefore, the inability of a cdc23-1 ipl1-321 pGAL-scc1ndb strain to maintain a

short spindle cannot be explained by an inability to maintain high levels of non-

cleavable Scc1p. Second, I analyzed DNA segregation in the experiment described

above. The fixed cells were stained with DAPI to recognize DNA. Figure 5.2.5.B

shows that even though spindle elongation occurs, DNA segregation does not. The

DNA gets fractionated into several blobs of unequal size. This suggests that sister

chromatid separation does not occur blocking proper DNA segregation. Therefore,

spindle elongation can be uncoupled from sister chromatid separation and suggests

that Esp1p function is required for spindle elongation in an apc ipl1-321 mutant.
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Figure 5.2.1. The spindle elongation in an apc ipl1-321 mutant cell is independent
from Ipl1’s kinetochore function. (A) cdc26∆ (SBY912) and cdc26∆ ipl1-321
(SBY913) cells expressing Tub1-GFP were grown to mid-exponential phase at
permissive temperature and then shifted to the restrictive temperature (37°C) for 4
hours. The cells were then fixed and analyzed by microscopy. A representative
example for each strain is shown. DIC is shown on the left and the corresponding
fluorescence picture is shown on the right. cdc26∆ cells arrest with a short spindle,
whereas cdc26∆ ipl1-321 cells elongate their spindle. Bar: 10 µm. (B) Design of the
experiment in (C) pGAL-CDC20 (SBY952) and pGAL-CDC20 ipl1-321 cells
(SBY943) expressing Tub1-GFP were grown in galactose and then shifted to glucose
for 3 hours to arrest cells in metaphase. Cells were then shifted to 37°C for 4 hours to
inactivate Ipl1-321p, fixed and analyzed by microscopy. C. Quantification of the cells
as described in B. Pole-to-pole distance was measured. 1-3 µm corresponds to a short
spindle, 4 µm and higher to a long spindle. 79% of pGAL-CDC20 cells stay arrested
in metaphase with a short spindle, whereas 59% of pGAL-CDC20 ipl1-321 cells
elongate their spindle. Bars represents the 95% confidence interval.
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Figure 5.2.2. Spindle elongation in an apc ipl1-321 mutant cell is a general function
of the spindle checkpoint. cdc26∆ (SBY912), cdc23-1 cse4-323 (SBY815), cdc26∆
ipl1-321 (SBY913), cdc26∆ ndc10-1 (SBY916) and cdc26-100 mad1∆ (SBY953)
cells expressing Tub1-GFP were grown to mid-exponential phase at permissive
temperature and then shifted to the restrictive temperature (37°C) for 4 hours. The
cells were then fixed and the pole-to-pole distance was measured as described in
Figure 5.2.1. cdc26∆ (78%) and cdc23-1 cse4-1 (66%) cells arrest with a short
spindle, whereas cdc26∆ ipl1-321 (70%), cdc26∆ ndc10-1 (76%) and cdc26- mad1∆
(73%) cells elongate their spindle. Bars represents the 95% confidence interval.
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Figure 5.2.3. Spindle elongation in apc ipl1-321 cells is due to Esp1p activity. (A)
DNA segregation occurs normally in an apc ipl1-321 cell when Ipl1-321p is
inactivated after metaphase. pGAL-CDC20 ipl1-321 cells (SBY952) expressing Tub1-
GFP from experiment in Figure 5.2.1.C. were stained with DAPI to recognize DNA
and analyzed by microscopy. DAPI staining is shown on the left and GFP-Tub1 on
the right. The DAPI staining shows that DNA segregates equally under these
conditions. (B) DNA segregation occurs normally in apc mad1∆ cells. cdc26-100
mad1∆ cells (SBY953) shifted for 4 hours to 37°C, were processed for
immunofluorescence and stained with DAPI (left) to recognize DNA and with anti-
Tub1p to recognize the spindle (right). The DAPI staining shows that DNA
segregates normally. Bar: 10µm. (C) Spindle elongation is blocked in apc ipl1-321
cells and apc mad1∆ mutant cells when Esp1p is inactivated. cdc26∆ (SBY912),
cdc26∆ ipl1-321 (SBY913), cdc26∆ esp1-1(SBY914), cdc26∆ ipl1-321 esp1-1
(SBY915) and cdc26-100 mad1∆ esp1-1 (SBY983) cells expressing Tub1-GFP were
shifted to 37°C for 4 hours and analyzed as described in Figure 5.2.1. Spindle
elongation does not occur in cdc26∆ ipl1-321 and cdc26-100 mad1∆ strains when
Esp1p is inactive. Bars represent the 95% confidence interval.
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Figure 5.2.4. Spindle elongation in an apc ipl1-321 mutant cell does not depend on
Pds1p degradation. (A) Pds1 is still present in an apc ipl1-321 mutant cell with a long
spindle. cdc26∆ ipl1-321 cells expressing Tub1-GFP and Pds1-18myc (SBY938)
were shifted to 37°C for 4 hours and indirect immunofluorescence was performed.
The cells were stained with anti-Tub1 to recognize the spinde (left pannel), DAPI to
recognize DNA and with anti-myc to recognize Pds1-18myc. The merge (on the
right) shows that Pds1p levels are still high in a cdc26∆ ipl1-321 mutant cell with a
long spindle. Bar: 10µm. (B) The overexpression of non-degradable Pds1p does not
prevent spindle elongation in an apc ipl1-321 mutant cell. cdc26∆ pGAL-pds1mdb
(SBY1031) and cdc26∆ ipl1-321 pGAL-pds1mdb (SBY1032) expressing Tub1-GFP
were grown in raffinose and then arrested in G1 using α- factor. 4% galactose was
added to induce non-degradable Pds1p and 30 min later cells were released into the
cell cycle in galactose at 37°C. Cells were harvested at t = 4 and 5 hours, fixed and
analyzed as described in Figure 5.2.1. Spindle elongation still occurs in cdc26∆ ipl1-
321 cells when non-degradable Pds1p is overexpressed. Bars represent the 95%
confidence interval.
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5.3. DISCUSSION

5.3.1. Spindle elongation in an apc ipl1-321 likely represents a new function of

the spindle checkpoint

As previously published, I show here that the spindle elongates in an apc ipl1

double mutant cell over time (Biggins et al., 1999). This phenomenon can be

observed with mutations in three different subunits of the APC complex: Cdc23p,

Cdc26p and Cdc20p. Thus it is not allele specific and most likely represents a general

property of apc ipl1 mutants. In contrast to what had been previously published

(Biggins et al., 1999), I show that this does not represent Ipl1p’s function in

promoting bi-orientation, as demonstrated by the fact that the spindle elongates in an

apc ipl1 double mutant even when Ipl1p’s function in bi-orientation is fulfilled.

Spindle elongation in an apc ipl1 double mutant cell likely reveals a new function of

the spindle checkpoint since checkpoint mutant or mutants that are checkpoint

deficient also elongate their spindle in an apc mutant cell. This result is in

disagreement with the work of Tavormina and Burke (Tavormina and Burke, 1998),

who found that a cdc20-1 mad1∆ double mutant cell arrested in metaphase with a

short spindle. This likely represents an allele specific difference since cdc20-1 is not a

null mutation. However, since I observed spindle elongation in apc checkpoint

deficient cells with several alleles, I believe that spindle elongation is a general

property of cells defective in both APC and checkpoint function.

The only other mutant that has been shown to elongate its spindle in

combination with an apc mutation is dam1. However, this seems to be allele specific.

As alleles of Dam1p affect spindle function and stability I cannot interpret those

results. I propose that spindle elongation in an apc ipl1 mutant cell represent a new

function of the spindle checkpoint.
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An alternative hypothesis would be that the spindle elongation in the apc ipl1

double mutant is a bypass of a weak metaphase arrest. I do not think this is the case

for two reasons. First, this phenomenon is observed with several APC mutants, some

of which give an extremely tight metaphase arrest. Second, the APC complex does

not get activated in an apc ipl1 mutant cell since Pds1p destruction does not occur. It

is therefore not allele specific and does not require APC activity, suggesting that there

is another mechanism that allows spindle elongation.

5.3.2. Esp1p may be activated in an apc ipl1-321 strain

The data presented here suggest that the spindle checkpoint negatively

regulates Esp1p in an apc mutant cell. I found that spindle elongation in an apc ipl1

mutant cell is independent from Pds1p degradation by two means. First, Pds1p is still

present in apc ipl1 cells when spindle elongation has occurred. Second, spindle

elongation is not stopped by overexpression of non-degradable Pds1p. This also

suggests that the APC complex does not get activated in an apc ipl1 mutant and

therefore that the APC is not the target of the spindle checkpoint in this situation.

Scc1p does not appear to be the target either, as overexpression of non-cleavable

Scc1p does not abolish spindle elongation. Taken together, neither the APC, nor

Pds1p nor Scc1p seem to be affected in an apc ipl1 mutant strain. However, Esp1p

may be activated in the double mutant for the following reasons. First, spindle

elongation in an apc ipl1 mutant cell is Esp1p dependent. Second, DNA segregation

occurs normally in an apc ipl1 mutant cell. Although I did not show that sister

chromatids separate normally, it is likely since the DNA segregates into two equally

intense spots (see figure 5.2.5.B). Since sister chromatid separation is initiated by

cleavage of Scc1 by Esp1p the normal sister chromatid segregation suggests that
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Esp1p has cleaved Scc1p. Taken together, these results suggest that Esp1p is being

activated in an apc ipl1 mutant cell. Although I cannot exclude that an unknown

mechanism is being regulated in an apc ipl1 cell, it is likely that Esp1p is activated

even though I have not yet formally demonstrated this. I propose the following model

(see Figure 5.2.5.C): the spindle checkpoint inhibits the APC, which regulates Pds1p

destruction. Pds1p normally inhibits the Esp1p protease. Esp1p activation leads to

sister chromatid separation and spindle elongation. In addition, I propose that the

spindle checkpoint inhibits Esp1p directly, at least in an apc mutant. When the

checkpoint is inactivated by mutations in Ipl1p or checkpoint proteins, Esp1p is

activated, leading to sister chromatid separation and spindle elongation.

Alternatively, it is possible that Esp1p is not directly regulated by the spindle

checkpoint and that its activation in an apc checkpoint deficient cell is triggered by an

indirect mechanism. One possibility is that another component of the FEAR network

is activated in an apc ipl1 mutant cell and that this results in Esp1p activation. The

order of action of the different components of the FEAR network is not known and it

is therefore possible that Esp1p is not the first actor in the network. It is interesting to

note that the polo kinase, Cdc5p (a member of the FEAR network) has been shown to

be regulated by the spindle checkpoint for its role in regulating the MEN (Hu et al.,

2001; Stegmeier et al., 2002). In addition, Cdc5p has six potential Ipl1p

phosphorylation sites. It may therefore be another candidate for the substrate of the

spindle checkpoint in an apc mutant. Slk19p, another component of the FEAR

network also possesses three potential Ipl1p phosphorylation sites. However, Slk19p

is thought to act after Esp1p in the FEAR network as it is cleaved by it (Sullivan et

al., 2001). Nevertheless, it is conceivable that some feedback loop exists in the FEAR
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network and that activation of Slk19p results in activation of Esp1p. Other possible

mechanisms will require more knowledge of the regulation of Esp1p.

5.3.3. How is Esp1p regulated in an apc ipl1 cells?

Esp1p seems to be activated in an apc ipl1 mutant cell in the presence of high

levels of Pds1p. Either the Pds1p/Esp1p complex is disrupted in an apc ipl1-321

leading to the liberation and activation of Esp1p, or Esp1p is activated by a new

mechanism even when bound to Pds1p. It has recently been shown that

phosphorylation regulates the stability of the Esp1p/Pds1p complex (Agarwal and

Cohen-Fix, 2002). Phosphorylation of Pds1p by the cyclin-dependent kinase Cdc28p

is important for efficient binding of Pds1p to Esp1p (Agarwal and Cohen-Fix, 2002).

I reasoned that if phosphorylation of Pds1p was altered in an apc ipl1-321 cell, this

might change the stability of the Esp1p/Pds1p complex leading to Esp1p activation.

In collaboration with O. Cohen-Fix’s lab, we analyzed Pds1p phosphorylation in an

apc ipl1-321 as compared to apc cells. We did not find a difference in Pds1p

phosphorylation (data not shown). This suggests that Esp1p is activated by a new

mechanism that does not seem to implicate Pds1p unless the Esp1p/Pds1p complex is

affected in a manner we have not yet detected. Unfortunately, I was not able to

determine whether Esp1p phosphorylation status was affected in an apc ipl1 mutant.

It is therefore unclear how the spindle checkpoint regulates Esp1p (see future

experiments). It is noteworthy that no evidence exists that the inhibition of Esp1p by

the spindle checkpoint occurs in a normal cell cycle. However, the spindle checkpoint

gets activated every cell cycle, making it possible that this mechanism plays a role in

a normal cell cycle but would not normally be required.
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Alternatively, it cannot be excluded that Esp1p exists in different pools

independent of Pds1p. There is some precedent for nuclear division independent of

Pds1p degradation in budding yeast. Lack of S-phase cyclins CLB5 and CLB6

bypasses the requirement of Pds1p destruction for sister chromatid separation in the

presence of DNA damage (Meyn and Holloway, 2000). A critical DNA damage

checkpoint is an arrest at metaphase. This arrest requires the S-phase cyclins Clb5p

and Clb6p. There are some striking similarities between the bypass of the DNA

damage checkpoint arrest in a CLB5 CLB6 double mutant and the bypass of the apc

arrest in a spindle checkpoint deficient cell (Meyn and Holloway, 2000). In both

cases, Pds1p destruction is not required for the cells to proceed to anaphase. In

addition, nuclear division is not inhibited by overexpressing non-degradable Pds1p.

No evidence for a direct action on Esp1p was found. However it is unlikely that the

two checkpoints act in a single pathway as a deletion of CLB5 does not bypass a

metaphase arrest due to mutation in the APC complex (Shirayama et al., 1999). It is

possible that deletion of both S-phase cyclins, Clb5p and Clb6p, is necessary to

bypass this arrest, however this is unlikely as deletion of Clb5p shows a stronger

phenotype than Clb6p (Shirayama et al., 1999). It is possible that the two checkpoints

act in parallel pathways to inhibit Esp1p by a Pds1p independent mechanism. Two

different checkpoints have already been shown to act in parallel pathway to regulate

mitotic exit (Hu et al., 2001).

5.3.4. Sister separation and spindle elongation can be uncoupled

In the literature, conflicting results exist concerning whether spindle

elongation is a direct consequence of sister chromatid separation. Here I show that

spindle elongation can be uncoupled from sister chromatid separation. Indeed, spindle
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elongation can occur even though sister chromatid separation is inhibited (Figure

5.2.5.A), leading to nuclear fractionation. This suggests that spindle elongation is

regulated independently of sister chromatid separation, even though the two events

are normally coupled. As both sister chromatid separation and spindle elongation are

inhibited in an apc ipl1 esp1 mutant cell and as spindle elongation is not inhibited in

the absence of sister chromatid separation, this suggests that spindle elongation in an

apc ipl1 mutant cell is dependent on another of Esp1p’s function. However, I cannot

determine whether Esp1p’s role is to directly promote spindle elongation or whether

this is a result of Esp1p’s function in the FEAR network. As stated in the

introduction, it is controversial whether Esp1p plays a role in spindle elongation. One

study found that esp1 mutant cells were unable to elongate their spindle in the

absence of the cohesin complex (scc1 mutant) suggesting that Esp1p played a role in

spindle elongation (Jensen et al., 2001). However, two other studies found no defect

in elongation in esp1 mutant cells in the absence of the cohesin complex and the

spindle checkpoint (Severin et al., 2001b; Stegmeier et al., 2002). The authors came

to the conclusion that Esp1p did not play a role in spindle elongation. It is possible

that the difference is due to the presence or absence of the checkpoint. In an esp1 scc1

double mutant cell, the spindle checkpoint is activated, which would explain why

spindle elongation would be inhibited in this case. Alternatively, it is possible that

spindle elongation is a consequence of activation of the FEAR network, as Esp1p is

known to play a role in this network, which is activated at about the time of the

initiation of spindle elongation (Stegmeier et al., 2002). Several proteins implicated in

the FEAR network have been shown to regulate spindle stability (Sullivan et al.,

2001; Uhlmann et al., 2000; Zeng et al., 1999). More work needs to be done to
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elucidate the various Esp1p functions and their consequence on spindle elongation

and/or stability.

5.4. FUTURE PLANS

5.4.1. Esp1p activation in an apc ipl1-321 mutant cell

All the data accumulated here suggest that Esp1p is activated in an apc

checkpoint deficient cell. However, the mechanism for this activation is not clear.

One likely possibility is that the spindle checkpoint is regulating Esp1p by

phosphorylating it, as several spindle checkpoint proteins are kinases, including Ipl1p.

In this regard, it is interesting to note that Esp1p contains one potential Ipl1p

phosphorylation site. I will therefore analyze Esp1p phosphorylation status in apc

versus apc checkpoint deficient cells to determine whether Esp1p is phosphorylated

in a checkpoint dependent manner. In vivo phosphate labeling will be performed on

apc versus apc ipl1 or apc mad mutant cells shifted to the restrictive temperature

(37°C) for 4 hours to inactivate the mutations. Esp1p phosphorylation status will then

be analyzed by autoradiography. This will determine whether the checkpoint is

regulating Esp1p by phosphorylating the protein.

If Esp1p is phosphorylated by the checkpoint, I will determine the

phosphorylation site by mass spectrometry (Shou et al., 2002). One likely candidate is

the Ipl1p potential phosphorylation site. The site(s) will then be mutated and I will

determine whether the mutation is able to bypass an apc arrest suggesting that this site

is responsible for the inhibition by the checkpoint. I will also analyze the phenotype

of the mutated Esp1p during a normal cell cycle to determine whether the inhibition

of Esp1p by the checkpoint plays a role during an unperturbed cell cycle.
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If Esp1p is not phosphorylated in a checkpoint dependent manner, it would

suggest that either the checkpoint activates Esp1p by an indirect mechanism, or that

the checkpoint acts directly on Esp1p but not by changing its phosphorylation state.

To test the first possibility and if the FEAR network is implicated in spindle

elongation in an apc checkpoint deficient cell (see below), I will test other

components of the FEAR network to see if they are phosphorylated in a checkpoint

dependent manner. I will start with Cdc5p because of the precedents in the literature

for regulation of Cdc5p by the spindle checkpoint (Hu et al., 2001). If none of these

proteins are regulated by phosphorylation, it will be difficult to determine how

checkpoint mutants are bypassing an apc arrest before more is known about Esp1p

function.

5.4.2. Is the FEAR network implicated?

Spindle elongation in an apc ipl1 mutant cell does not seem to be a direct

consequence of sister chromatid separation, thus implying that Esp1p is activated for

a second function. One possibility is that Esp1p’s role in the FEAR network is

required to initiate spindle elongation. I will therefore test another FEAR mutant in

our assay to see whether it prevents spindle elongation in an apc ipl1 background as

an esp1 mutation does. The FEAR network is composed of Slk19p, Spo12p and

Cdc5p in addition to Esp1p (Stegmeier et al., 2002). I will test the effect on spindle

elongation by mutating them in an apc ipl1 cell. slk19 and spo12 mutant cells have

weaker phenotypes in inhibiting Cdc14p release than esp1 mutant cells, so they might

not arrest spindle elongation in an apc ipl1 double mutant cells as well as esp1. Cdc5p

plays several roles in mitotic exit and the triple mutant might result in a phenotype

that is not easy to interpret. By testing all three of them I should be able to determine
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whether the FEAR network is implicated in spindle elongation in an apc ipl1 mutant

cell. If the FEAR network is not implicated it would imply that it requires another

function of Esp1p, probably in spindle elongation/stability. More work will be needed

to define more precisely Esp1p function on spindle dynamics as well as whether other

proteins act in concert with Esp1p to achieve those functions before I can determine

whether this function is implicated in spindle elongation in apc checkpoint deficient

cells.
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CHAPTER 6. GENERAL CONCLUSION

The Ipl1/Aurora protein kinase is an important regulator of chromosome

segregation and cytokinesis. In addition, it plays a role in the spindle checkpoint.

Human homologs of the Ipl1p/Aurora family are oncogenes and several lines of

evidence suggest that the regulation of this protein is important. Here I present new

information on the regulation of the localization of this protein as well as discover

two previously unidentified functions for Ipl1p in spindle disassembly and spindle

orientation.

By analyzing Ipl1p localization throughout the cell cycle, I found that it

localizes to the kinetochores from G1 to metaphase consistent with its known function

in kinetochore bi-orientation. Ipl1p then relocalizes to the spindle. This relocalization

is independent from tension establishment, the unloading of cohesin and spindle

checkpoint inactivation. However, it requires the presence of microtubules. I therefore

propose that Ipl1p is being transported away from the kinetochores by an active

mechanism, a likely candidate being a motor protein. In addition, I found that

complex formation with the Bir1p/Survivin protein was required for optimal

relocalization.

In late anaphase, Ipl1p accumulates at the spindle midzone where is plays a

role in promoting spindle disassembly. I show that this represents a previously

unidentified function for Ipl1p that is independent from its role in chromosome

segregation and the spindle checkpoint. Ipl1p tracks the plus end of the

depolymerizing spindle back to the poles, suggesting that it might act on the plus ends

either directly or by the intermediary of a protein. I found that a number of Ip1lp

substrates localize to the midzone. I propose that the spindle midzone is a

kinetochore-like structure and that the regulation of the spindle midzone in anaphase
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is similar to the regulation of kinetochore-microtubule attachment in metaphase. I also

found that Ipl1p plays a role in spindle orientation, likely acting on cytoplasmic

microtubules. I therefore propose that Ipl1p is a general microtubule plus end

regulator.

In another study, I found that inactivation of the spindle checkpoint is able to

bypass a metaphase arrest caused by mutation in subunits of the APC complex. I

found that this bypass is independent of APC activation and Pds1p destruction and is

likely due to activation of the Esp1p protease. Esp1p is activated for both sister

chromatid separation and another less well defined function in spindle elongation. I

propose that the spindle checkpoint acts as an inhibitor of the Esp1p protease.
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CHAPTER 7. MATERIALS AND METHODS

7.1. Microbial techniques

Media and genetic and microbial techniques were essentially as described

(Rose et al., 1990; Sherman et al., 1974). All experiments where cells were released

from G1 arrest were carried out by adding 1 µg/ml α-factor (stock: 10 mg/ml in

DMSO, United Biochemical Research Inc., Seattle, WA) at the permissive

temperature (23°C) for 3 h., washing the cells twice in α-factor-free media, and

resuspending them in fresh media. α-factor was added back to 1 µg/ml after cells had

budded to prevent cells from entering the next cell cycle. Galactose induction was

performed by growing cells in 2% raffinose and adding galactose to a final

concentration of 4%. Galactose repression was performed by washing the cells twice

with glucose media and resuspending in glucose media. All experiments were

repeated at least twice with similar results.

7.2. Yeast strain construction

Yeast strains are listed in Table 1 and were constructed by standard genetic

techniques. Diploids were isolated on selective media at 23°C and subsequently

sporulated at 23°C. All strains containing the galactose repressible pGAL-CDC20

construct were obtained through crosses with the strain SLJ577, a gift of S. Jaspersen

and M. Winey, UC-Boulder. Strains containing TUB1-GFP:URA3 were obtained by

integrating pMAS27 (a gift from M. Shonn) cut with Stu1. SBY938 was created by

integration of a plasmid that was a gift from K. Nasmyth (pds1-myc18:LEU2;

(Shirayama et al., 1998)). SBY1036 was created by integration of a plasmid (TUB1-

CFP:URA3; gift of K. Bloom) with Stu1 at the URA3 locus. Strains containing CSE4-

myc12 were obtained by integrating pSB246 (CSE4-myc12:URA3, myc internal to the
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gene) with Cla1 at the CSE4 locus. Strains containing Clb2-LacZ were obtained as

previously described (Hwang and Murray, 1997). Strains containing TUB1-

GFP:LEU2 were obtained by integrating plasmid pSB340 cut with Age1 at the LEU2

locus. SBY554 was obtained by integrating pSB164 (pGAL-IPL1:URA3, Biggins et

al., 1999) cut with Stu1 at the URA3 locus. SBY736 was obtained by integrating

pSB257 (pGAL-myc12-IPL1:URA3) cut with Stu1 at the URA3 locus. SBY676 was

obtained by integrating pSB252 (pGAL-myc12-IPL1-catalytic domain:URA3) cut

with Stu1 to integrate at the URA3 locus. SBY735 was obtained by integrating

pSB256 (pGAL-myc12-IPL1-N-terminus:URA3) cut with Stu1 to integrate it at the

URA3 locus. SBY1031 and SBY1032 were obtained by integrating pSB369 (pGAL-

pds1mdb:LEU2 a gift from O. Cohen-Fix) cut with EcoRI to integrate is at the LEU2

locus. SBY1058 was obtained by integrating pSB373 (pGAL-scc1ndb:URA3 a gift

from A. Murray) cut with Stu1 to integrate it at the URA3 locus. Strains containing

pGAL-∆176-CLB2:LYS2 were generated as described (Biggins et al., 2001). To make

ipl1-as5 mutant, pSB428 (ipl1-as5:LEU2) was integrated at the LEU2 locus.

Deletions in yeast gene as well as GFP, CFP and Myc epitope tags were made using

the PCR based integration system described in (Longtine et al., 1998). YFP epitope

tags were made by PCR integration using pDH5, a gift from T. Davis. We generated

the following gene deletions and epitope tags using the primers listed in parentheses

after each gene: mad1∆ (primers SB210 and SB211), mad2∆ (primers SB194 and

SB195), IPL1-GFP and IPL1-YFP (primers SB62 and SB44) NDC10-CFP and

NDC10-GFP (primers SB51 and SB52), cdc26∆ (primers SB169 and SB170), kip3∆

(primers SB287 and SB275), SLI15-GFP (primers SB153 and SB154), bir1∆N-

terminus (primers SB147 and SB162), ASE1-GFP (primers SB264 and SB265),

KIP3-GFP (primers SB274 and SB275), STU2-GFP (primers SB345 and SB346),
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pGAL-HA-SCC1 (primers SB258 and SB259) and DAM1-GFP (primers SB261 and

SB262). All deletions and epitope tags were confirmed by PCR. The bacterial strain

XL1-Blue was used for all plasmid amplifications.

Table I. Yeast strains used in this study.

SBY3 MATa ura3-1 leu2-3,112 his3-11 trp1-1 can1-100 ade2-1 bar1∆

SBY97 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11:pCUP1-GFP12-

lacI12:HIS3 trp1-1:lacO:TRP1 lys2∆ ade2-1 bar1∆ can1-100 ipl1-321

SBY130 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11:pCUP1-GFP12-

lacI12:HIS3 trp1-1:lacO:TRP1 lys2∆ ade2-1 bar1∆ can1-100

SBY214 MATa ura3-1 leu2-3,112 his3-11:pCUP1-GFP12-lacI12:HIS3 trp1-

1:lacO:TRP1 lys2∆ ade2-1 bar1∆ can1-100

SBY322 MATa ura3-1 leu2-3,112 his3-11:pCUP1-GFP12-lacI12:HIS3 trp1-

1:lacO:TRP1 lys2∆ ade2-1 bar1∆ can1-100 ipl1-321

SBY539 MATa ura3-1 leu2-3,112 his3-11 trp1-1 can1-100 ade2-1 bar1∆

NDC10-GFP:KAN

SBY554 MATa ura3-1:pGAL-IPL1:URA3 leu2-3,112 his3-11 trp1-1 can1-100

ade2-1 bar1∆

SBY556 MATa ura3-1 leu2-3,112 his3-11 trp1-1 ade2-1 bar1∆ can1-100 IPL1-

GFP:KAN

SBY617 MATa ura3-1 leu2-3,112 his3-11 trp1-1 ade2-1 bar1∆ can1-100

CSE4-myc12:URA3

SBY676 MATa ura3-1:pGAL-myc12-IPL1-catalytic domain:URA3 leu2-3,112

his3-11 trp1-1 can1-100 ade2-1 bar1∆
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SBY735 MATa ura3-1:pGAL-myc12-IPL1-N-terminus:URA3 leu2-3,112 his3-

11 trp1-1 can1-100 ade2-1 bar1∆

SBY736 MATa ura3-1:pGAL-myc12-IPL1:URA3 leu2-3,112 his3-11 trp1-1

can1-100 ade2-1 bar1∆

SBY815 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11:pCUP1-GFP12-

lacI12:HIS3 trp1-1:lacO:TRP1 lys2∆ bar1∆ cdc23-1 cse4-323

SBY875 MATa ura3-1 leu2-3,112 his3-11 trp1-1 can1-100 ade2-1 bar1∆

SLI15-GFP:HIS3

SBY896 MATa ura3-1 leu2-3,112 his3-11 trp1-1 can1-100 ade2-1 bar1∆ IPL1-

GFP:TRP1 bir1∆N-terminus:HIS3

SBY912 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11 trp1-1 can1-100

ade2-1 bar1∆ cdc26::KAN

SBY913 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11:pCUP1-GFP12-

lacI12:HIS3 trp1-1:lacO:TRP1 lys2∆ bar1∆ can1-100 ade2-1 ipl1-321

cdc26::KAN

SBY914 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11:pCUP1-GFP12-

lacI12:HIS3 trp1-1:lacO:TRP1 lys2∆:pGAL-176-Clb2:LYS2 bar1∆

can1-100 ade2-1 esp1-1 cdc26::KAN

SBY915 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11:pCUP1-GFP12-

lacI12:HIS3 trp1-1 lys2∆ bar1∆ can1-100 ade2-1 esp1-1 ipl1-321

cdc26::KAN

SBY916 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11 trp1-1 can1-100

ade2-1 ndc10-1 cdc26::KAN
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SBY938 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112:PDS1-myc18:LEU2 his3-

11:pCUP1-GFP12-lacI12:HIS3 trp1-1:lacO:TRP1 lys2∆ bar1∆ can1-

100 ade2-1 ipl1-321 cdc26::KAN

SBY943 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11 trp1-1 ade2-1

can1-100 cdc20::LEU2 ipl1-321 [pGAL(low)-CDC20-HIS3(CEN)]

SBY952 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11 trp1-1 ade2-1

can1-100 cdc20::LEU2 [pGAL(low)-CDC20-HIS3(CEN)]

SBY953 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11 trp1-1 ade2-1

bar1∆ cdc26-100 Clb2-LacZ mad1::HIS3

SBY964 MATa ura3-1 leu2-3,112:TUB1-GFP:LEU2 his3-11:pCUP1-GFP12-

lacI12:HIS3 trp1-1:lacO:URA3:TRP1 lys2∆ ade2-1 bar1∆ ipl1-321

mdc1-1 cdc26::KAN

SBY965 MATa ura3-1 leu2-3,112:TUB1-GFP:LEU2 his3-11:pCUP1-GFP12-

lacI12:HIS3 trp1-1:lacO:URA3:TRP1 lys2∆  ade2-1 mdc1-1

cdc26::KAN

SBY983 M A T x  ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11 trp1-

1:lacO:TRP1 ade2-1 bar1∆ cdc26-100 Clb2-LacZ lys2∆:pGAL-176-

Clb2:LYS2 esp1-1 mad1::HIS3

SBY1031 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112:pGAL-pds1mdb:LEU2

his3-11 trp1-1 can1-100 ade2-1 bar1∆ cdc26::KAN

SBY1032 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112:pGAL-pds1mdb:LEU2

his3-11:pCUP1-GFP12-lacI12:HIS3 trp1-1:lacO:TRP1 lys2∆ bar1∆

can1-100 ade2-1 ipl1-321 cdc26::KAN

SBY1036 MATa ura3-1:TUB1-CFP:URA3 leu2-3,112 his3-11 trp1-1 ade2-1

bar1∆ can1-100 IPL1-GFP:KAN



125

SBY1058 MATa ura3-1:pGAL-scc1ndb:URA3 leu2-3,112:TUB1-GFP:LEU2

his3-11:pCUP1-GFP12-lacI12:HIS3 trp1-1:lacO:TRP1 bar1∆ cdc23-

1 ipl1-321

SBY1115 MATαααα ura3-1 leu2-3,112 his3-11 trp1-1 can1-100 ade2-1 bar1∆

DAM1-GFP:TRP1

SBY1162 MATx ura3-1 leu2-3,112 his3-11 trp1-1 can1-100 ade2-1 bar1∆

ASE1-GFP:TRP1

SBY1246 MATαααα ura3-1 leu2-3,112 his3-11,15 trp1-1 ade2-1 can1-100

cdc20::LEU2 IPL1-YFP:HIS3 NDC10-CFP:KAN [pGAL(low)-

CDC20-HIS3(CEN)]

SBY1276 MATa ura3-1 leu2-3,112 his3-1 trp1-1 can1-100 ade2-1 ipl1-321

KIP3-GFP:TRP1

SBY1323 MATa ura3-1:CSE4-myc12:URA3 leu2-3,112 his3-11 trp1-1 can1-100

ade2-1

SBY1326 MATa ura3-1:CSE4-myc12:URA3 leu2-3,112 his3-11 trp1-1 can1-100

ade2-1 mad1::HIS3

SBY1355 MATa ura3-1 leu2-3,112 his3-11 trp1-1 can1-100 ade2-1 bar1∆ KIP3-

GFP:TRP1

SBY1356 MATa ura3-1 leu2-3,112 his3-11 trp1-1 can1-100 ade2-1 bar1∆

ipl1::KAN:ipl1-as5-GFP:TRP1:LEU2

SBY1422 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11:pCUP1-GFP12-

lacI12:HIS3 trp1-1:lacO:TRP1 lys2∆ ade2-1 bar1∆  can1-100

mad2::KAN
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SBY1423 MATa ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11:pCUP1-GFP12-

lacI12:HIS3 trp1-1:lacO:TRP1 lys2∆ ade2-1 bar1∆  can1-100

mad1::KAN

SBY1447 MATa ura3-1 leu2-3,112 his3-11 trp1-1 can1-100 ade2-1 bar1∆

STU2-GFP:TRP1

SBY1448 MATa ura3-1 leu2-3,112 his3-11 trp1-1 can1-100 ade2-1 ipl1-321

STU2-GFP:TRP1

SBY1475 MATa ura3-1 leu2-3,112 his3-11 trp1-1 can1-100 ade2-1 bar1∆ IPL1-

GFP:KAN SCC1:pGAL-HA-SCC1:HIS3

SBY1538 M A T a ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11 trp1-

1:lacO:TRP1 can1-100 ade2-1 bar1∆ kip3::KAN

SBY1539 M A T a  ura3-1:TUB1-GFP:URA3 leu2-3,112 his3-11 trp1-

1:lacO:TRP1 can1-100 ade2-1 bar1∆ kip3::KAN lys2∆ ipl1-321

SBY1543 MATa ura3-1 leu2-3,112 his3-11 trp1-1 can1-100 ade2-1 bar1∆

kip3::KAN IPL1-GFP:TRP1

SBY1802 MATa ura3-1 leu2-3,112 his3-11 trp1-1:lacO:TRP1 can1-100 ade2-1

bar1∆ ASE1-GFP:TRP1 ipl1-321

All strains are isogenic with the W303 strain background. Plasmids are indicated in

brackets.

7.3. Plasmid constructions

A clone that encoded Cse4p internally tagged with 12 copies of the myc

epitope (pSB246) was constructed by PCR amplification of the myc tag from pSB162

(Biggins et al., 1999) using primers SB84 and SB85. The PCR product was digested

with SpeI and ligated into the XbaI site of pSB241, a CSE4, URA3 integrating vector.
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pSB241 was created by digesting a genomic clone containing CSE4 with EcoRI and

PstI and the resulting 1.7 kb fragment was ligated into yiplac211 (Gietz and Sugino,

1988) digested with EcoRI and PstI. To create TUB1-GFP: LEU2, pMAS27 was

digested with Eag1 and the TUB1-GFP fragment was ligated into the EagI site of

pRS305 to create pSB340. To create a pGAL-myc12-IPL1 clone, IPL1 was PCR

amplified from genomic DNA, digested with Spe1 and Sac1 and then ligated into

pSB209 digested with the same enzymes to create pSB257. pSB209 is a pGAL-

myc13:URA3 integrating vector. To create pSB252, pGAL-myc12-IPL1catalytic

domain:URA3, (amino acid 97 to 367), pSB209 was cut with SpeI and SacI and

ligated to the C-terminal catalytic domain of Ipl1p that was PCR amplified using

primers SB109 (containing a SpeI site) and SB110 (containing a SacI site). To create

pSB256, pGAL-myc12-IPL1N-terminus:URA3 (amino acid 1 to 96), pSB209 was cut

with SpeI and SacI and ligated to the N-terminus of Ipl1p that was PCR amplified

using primers SB107 and SB108. To create pSB428, ipl1-as5-SSA(M181G,

T244A):LEU2, pSB338 (ipl1-as5-SSA(M181G,T244A):URA3:CENI was digested

with BamHI and HindIII and ligated into pSB425 (IPL1endogenous promoter:LEU2)

digested with the same enzymes. pSB338 was made by engineering a second

mutation site on a plasmid containing ipl1-as1 on pSB316 ( a gift from Charles Kung

in the Shokat lab).

7.4. Statistics

The Bernoulli trial was used to calculate the confidence interval. For each

experiment, the 95% confidence is shown (bars) but all experiments were significant

with 99% confidence. The formula used is: p x
x x

n
= ±

× −
1 96

1
.

( )
 where x is the
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percentage of spindle breakdown and n is the number of cells counted. At least 100

cells were counted in each experiment.

7.5. Protein and immunological techniques

Protein extracts were made and immunoblotted as described (Minshull et al.,

1996). Anti-Tub1p antibodies were obtained from Accurate Chemical and Scientific

(Westbury, NY) and used at a 1:1,000 dilution, anti-Clb2p antibodies (a gift from A.

Rudner) were used as described (Rudner et al., 2000), and anti-Ipl1p antibodies were

used 1:1,000. To generate anti-Ipl1p antibodies, 2.5 mg of GST-Ipl1p was purified as

previously described (Biggins et al., 1999) and 1.5 mg was injected into rabbits at

Cocalico Biological Inc (Reamtown, PA) according to their protocol. For the 4th and

5th boosts, 1 mg of boiled protein total was injected. The antibodies were affinity

purified using a column that was made by coupling GST-Ipl1p to SulfoLink Coupling

gel as directed by the manufacturer (Pierce Chemicals, Rockford, IL). The column

was equilibrated in 10 mM Tris, pH 7.5, and serum (previously spun for 10 min to

eliminate insoluble material) was loaded on the column. After the column was

washed once with 25 column volume of 10 mM Tris, pH7.5, and then once with 50

column volume of 10 mM Tris, pH 7.5 containing 0.5 M NaCl, the antibodies were

eluted with 100 mM glycine, pH 2.5. 1.5 M Tris pH 8.8 was immediately added to

neutralize the solution. Fractions containing the antibodies were pooled and dialyzed

into 1X PBS containing 0.02% NaN3 and 30% glycerol.

7.6. Microscopy

For live microscopy to analyze GFP fusion proteins, cells were grown to mid-

logarithmic phase in liquid YM media, washed and resuspended in 1/10 volume
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minimal media with casamino acids. For live microscopy at room temperature, the

protocol described in (Maddox et al., 2000) was followed with modifications.

Agarose (Fisher Scientific, US) was added to minimal media with casamino acids to

2% (w/v) and then heated to liquefy the preparation. 0.5 ml of this solution was then

placed between two cleaned microscope slides. When solidified, the slides were pried

apart, leaving a slab of about 0.5 µm on one of the slides and 1.5 µl of the cell

preparation was pipetted onto the pad and covered with a coverglass. The slide was

then sealed with VALAP (1:1:1 vaseline: lanolin: paraffin) and imaged. For live

microscopy at 35°C, prepared cells were mounted directly onto a heated stage

(Bioptechs, Butler, PA). Images were collected through an Olympus 1X17 60x

objective with a CH350 CCD camera (Roper Scientific, AZ) using the softwox 2.5

(Applied Precision, WA) software. The same software was used for deconvolution. At

least 10 cells were analyzed for all reported experiments.

Chromosome spreads were performed as described (Loidl et al., 1991;

Michaelis et al., 1997). Lipsol was obtained from Lip Ltd. (Shipley, England). 4’,6’-

diamidino-2-phenylindole (DAPI) was obtained from Molecular probes (Eugene, OR)

and used at 1 µg/ml final concentration. 9E10 antibodies that recognize myc tag were

used at a 1:500 dilution and obtained from Covance (Princetown, NJ) Anti-Tub1p

antibodies (Accurate Chemical and Scientific, Westbury, NY) were used at a 1:500

dilution. Anti-Ipl1p antibodies were used at a 1:250 dilution. Alexaflour-594 and

Alexaflour-488 secondary antibodies were obtained from Molecular Probes (Eugene,

OR) and used at a 1:250 dilution.

Indirect immunofluorescence was carried out as described (Rose et al., 1990).

4’,6’-diamidino-2-phenylindole (DAPI) was obtained from Molecular probes

(Eugene, OR) and used at 1 µg/ml final concentration. C-myc A-14 (Santa Crux
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biotechnology, CA) that recognize the myc tag were used at 1:1000 dilution and anti-

Tub1p antibodies (Accurate Chemical and Scientific, Westbury, NY) were used at

1:200. Cy3 secondary antibodies were obtained from Jackson immunoresearch (West

Grove, PA) and used at a 1:2000 dilution. FITC secondary antibodies were obtained

from Jackson immunoreseach and used at a 1:500 dilution.

7.7. Cse4 histone fold domain purification

The histone fold domain of CSE4 (encoding amino acids 121 to 229) was PCR

amplified from S. cerevisiae genomic DNA and cloned into a T7 expression vector of

the pCRT7/CT TOPO TA cloning kit (Invitrogen, CA). The resulting expression

plasmid (pT7Cse4c) was transformed into BL21-CodonPlus (DE3)-RIL competent

cells (Stratagene, CA) and grown overnight. This culture was used to inoculate 2

liters of 2xTY media. The culture was induced with ITPG to 0.2 mM for 2.5 hours at

37°C and Cse4 was purified under denaturing conditions as described (Gelbart et al.,

2001). The final preparation of Cse4 histone fold domain was verified for purity by

SDS-PAGE and Coomassie staining, extensively dialyzed against water and stored in

1 ml aliquots at -80°C. A substantial portion of the protein was not soluble in water,

but solubility was adequate for kinase assays in vitro.

7.8. Ipl1p kinase assays

Cells from 40 ml cultures of mid-log cells were collected and resuspended in

500 µl lysis buffer (100 mM NaCl, 50 mM Tris pH 7.5, 50 mM NaF, 50 mM β-

glycerophosphate pH 7.4, 2 mM EDTA, 2 mM EGTA, 0.1% Triton-X-100). The

following reagents were added fresh: 2 mM NaVO4, 2 mM PMSF, 10 µg/ml LPC

(leupeptin, pepstatin and chymostatin; Chemicon, CA), 1 mM DTT, 0.1 µg/ml
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microcystin (Calbiochem; 100 µM stock in 100% EtOH and stored at -80°C). All

subsequent steps were performed at 4°C. Cells were lysed with glass beads in a beater

(Biospec Products Inc, OK) for 30 s and then centrifuged for 10 min. 400 µl

supernatant was added to 5 µl magnetic Protein G beads (Dynal Biotech Inc., NY)

and 4 µl anti-Ipl1p antibodies. Samples were rotated for 2 hours, and beads were

washed three times with 400 µl lysis buffer and once with 100 µl kinase buffer

without ATP (50 mM Tris pH 7.4, 1 mM DTT, 25 mM β-glycerphosphate, 5 mM

MgCl2). Beads were resuspended in kinase buffer with 10 µM ATP, 5 µCi 32P-ATP

and 5 µg Cse4p substrate and incubated at 30°C for 30 min. 2x sample buffer was

added to stop the reaction. The kinase assays were separated on SDS-PAGE and

subjected to either autoradiography using a Phosphorimager Screen (Molecular

Dynamics, NJ) or immuoblotting with anti-Ipl1p antibodies. Quantitative immuoblots

were performed as described using the LI-COR Biosciences Odyssey infrared

imaging system (Reeves and Hahn, In Press). Kinase assays were quantified using

ImageQuant (Molecular Dynamics, NJ) software.
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CHAPTER 8. ABBREVIATIONS

1-NA 1-naphtyl-PP1

ATP Adenosine triphosphate

APC Anaphase promoting complex

CEN Centromere

Cdk Cyclin dependent kinase

CFP Cyan fluorescent protein

Cy3 Cyan 3

DAPI 4,6-diamidino-2-phenylindole

DIC Differential interference contrast

DMSO Dimethyl sulfoxide

DNA Deoxyribonucleic acid

DTT Ditiothreitol

EDTA Ethylene diamine tetraactetate

EGTA Ethylenebis(Oxyethylenitriol) Tetraacetic acid

FEAR Cdc Fourteen early anaphase release

FITC Fluorescein isothiocyanate

FRAP Fluorescence redistribution after photobleaching

Gal Galactose

GDP Guanosine diphosphate

GFP Green fluorescent protein

GST Glutathione S transferase

GTP Guanosine triphosphate

h Hour

IP Immunoprecipitation
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IPTG Isopropyl β-D-thiogalactopyranoside

kb Kilo base

kD Kilo Dalton

MAP Microtubule associated protein

MEN Mitosis exit network

min Minute

mRNA Messenger ribonucleic acid

PBS Phosphate buffered saline

PCR Polymerase chain reaction

PMSF Phenylmethylsulfonyl fluoride

RFP Red fluorescent protein

s Second

SDS-PAGE Sodium dodecylsulfate polyacrylamide gel electrophoresis

SPB Spindle pole body

ts Thermosensitive

WT Wild type

YFP Yellow fluorescent protein
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