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EXISTENCE OF NON-TRIVIAL LIMIT CYCLES IN ABEL

EQUATIONS WITH SYMMETRIES

M.J. ÁLVAREZ, J.L. BRAVO, AND M. FERNÁNDEZ

Abstract. We study the periodic solutions of the generalized Abel
equation x′ = a1A1(t)x

n1+a2A2(t)x
n2+a3A3(t)x

n3 , where n1, n2, n3 >
1 are distinct integers, a1, a2, a3 ∈ R, and A1, A2, A3 are 2π-periodic
analytic functions such that A1(t) sin t,A2(t) cos t, A3(t) sin t cos t are π-
periodic positive even functions.

When (n3−n1)(n3−n2) < 0 we prove that the equation has no non-
trivial (different from zero) limit cycle for any value of the parameters
a1, a2, a3.

When (n3 − n1)(n3 − n2) > 0 we obtain under additional conditions
the existence of non-trivial limit cycles. In particular, we obtain limit
cycles not detected by Abelian integrals.

1. Introduction and Main Result

The number of limit cycles (periodic solutions isolated in the set of peri-
odic solutions) of generalized Abel equations

(1.1) x′ = c1(t)x+ c2(t)x
2 + . . .+ cn(t)x

n,

where c1, c2, . . . , cn are 2π-periodic functions has been intensively studied
due to its relation to Hilbert’s 16th problem. This famous unsolved problem
deals with the number and location of limit cycles of the planar system

x′ = P (x, y), y′ = Q(x, y),

where P (x, y), Q(x, y) are nth-degree polynomials of x and y.
When P,Q are quadratic, this problem is equivalent to the determination

of limit cycles of

x′ = c1x+ c2(t)x
2 + c3(t)x

3,

where c1 ∈ R and c2(t), c3(t) are trigonometric polynomials [17]. Some
higher degree planar systems, in particular rigid systems, can also be reduced
to generalized Abel equations [9] [12, 13].

Even in the case n = 3, the number of limit cycles of (1.1) is not bounded
[17]. Thus, to obtain upper bounds for the number of limit cycles one must
ask for some conditions to be set on the coefficients c1(t), c2(t), . . . , cn(t).
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These additional conditions are that some of ck(t) have definite sign [1, 10,
11, 18], that cn(t) ≡ 1 and the rest of the coefficients are bounded by a
certain constant [7, 15], or that there exists a linear combination of some of
the coefficients with definite sign [4, 5, 14].

When (1.1) comes from a planar system, via Cherkas’s transformation [8],
the coefficients c1(t), . . . , cn(t) are trigonometric polynomials. Our aim is to
explore the relation between limit cycles and the trigonometric monomials
present in the coefficients.

To this end, let us consider the family of generalized Abel equations

(1.2) x′ = a1A1(t)x
n1 + a2A2(t)x

n2 + a3A3(t)x
n3 , a1, a2, a3 ∈ R,

where n1, n2, n3 ≥ 1 are different fixed integers, and A1, A2, A3 are 2π-
periodic analytic functions. Note that x(t) ≡ 0 is always a periodic solution,
which we shall call the trivial solution.

Throughout this communication, we shall assume the following conditions
on the symmetries and the order of the functions Ak,:

(A1) Assumptions on the symmetries of the functions: A1(t) sin t, A2(t) cos t,
A3(t) sin t cos t are π-periodic positive even functions.

(A2) Assumptions on the order of the functions Ak at the origin:

Ak(t) = tik + o(tik).

(A3) Assumptions on the order of the functions Ak at π/2:

Ak

(π
2
− t
)
=
(π
2
− t
)jk

+ o

((π
2
− t
)jk)

.

There is no restriction in assuming that the coefficients of tik and (π2−t)jk are
1, because we shall obtain conditions that do not depend on the coefficients
a1, a2, a3.

The previous assumptions are satisfied for instance, when Ak are trigono-
metric monomials, Ak(t) = sinik t cosjk t, such that i1, j2, i3, j3 are odd and
j1, i2 are even. The study of (1.2) in the case of Ak being trigonometric
monomials was begun in [2] and continued in [3]. In both papers, the ex-
istence of non-trivial limit cycles is characterized under certain hypotheses,
in terms only of the symmetries of A1(t), A2(t), A3(t) and the number of
different elements in the set {n1, n2, n3}, except for the case studied in this
present paper. The remaining case, i.e., the one with the symmetries of
assumption (A1), presents a more complicated behaviour and can not be
characterized just in terms of the symmetries and of the number of different
{nk}.

Let u(t, x, a1, a2, a3) denote the solution of (1.2) determined by the initial
condition u(0, x, a1, a2, a3) = x. To obtain periodic solutions, one only has
to look for zeros of the displacement function defined as

∆(x, a1, a2, a3) := u(π, x, a1, a2, a3)− u(−π, x, a1, a2, a3).
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Note that the sign of the displacement function is invariant under the elec-
tion of the initial time, i.e., the sign of u(t+2π, x, a1, a2, a3)−u(t, x, a1, a2, a3)
is invariant with respect to t.

Sometimes we shall simply write ∆(x) to denote ∆(x, a1, a2, a3), assuming
a1, a2, a3 are fixed. For briefness, we shall denote the partial derivatives by
a subindex and u(t, x, a1, a2, a3) as u(t) when no confusion will arise.

Our focus will be on finding conditions on the exponents nk and on the or-
der of the zero of Ak at the origin or at π/2 to determine whether there exist
non-trivial limit cycles of Equation (1.2). Our main result is the following:

Theorem A. Consider Equation (1.2) where A1, A2, A3 are 2π-periodic
analytic functions such that A1(t) sin t, A2(t) cos t, A3(t) sin t cos t are π-
periodic positive even functions. Assume that Ak(t) = tik + o(tik) and
Ak(π/2 − t) = (π/2 − t)jk + o((π/2 − t)jk). Then the following statements
hold:

(1) If nk = 1 for any k ∈ {1, 2, 3}, or (n3 −n1)(n3 −n2) < 0, then (1.2)
has no non-trivial limit cycle for any a1, a2, a3 ∈ R.

(2) If 1 < n3 < n2 < n1, and (i1 + 1)(n3 − 1) > (i3 + 1)(n1 − 1), then
there exist a1, a2, a3 such that (1.2) has at least one non-trivial limit
cycle.

(3) If 1 < n3 < n1 < n2, and (j2 + 1)(n3 − 1) > (j3 + 1)(n2 − 1), then
there exist a1, a2, a3 such that (1.2) has at least one non-trivial limit
cycle.

The proof of the above theorem will be divided into two parts. In Section 2
we prove the first statement by analysing the sign of ua2(π, x, a1, a2, a3).
Statements (2) and (3) are proved in Subsection 3.1 where we find positive
zeros of ua2(π, x, a1, 0, a3), analysing their behaviour near x = 0 and x = ∞.

In Subsection 3.2, we study the bifurcation of the limit cycles by using
Abelian integrals. The linear perturbations of the integrable centre x′ =
akAk(t)x

nk , i.e.,

x′ = akAk(t)x
nk + ǫ

(
alAl(t)x

nl + amAm(t)xnm

)
,

where 1 ≤ k, l,m ≤ 3 are distinct integers, do not give rise to any bifur-
cation of limit cycles, since uǫ(2π, x, a1, a2, a3)|ǫ=0 is either identically null
(when k = 3) or does not change sign (when k = 1, 2). Consequently, we
study the second-order perturbations, and then look for positive zeros of
ua1a2(π, x, 0, 0, a3), analysing their behaviour near x = 0 and x = ∞.

The present study is finally summarized in Theorem 3.3 in whose proof
we obtain some results that complement the main one, showing that there
exist limit cycles detected by Theorem A but not by Abelian integrals, and
limit cycles detected by Abelian integrals but not by Theorem A.
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2. Families with no Non-Trivial Limit Cycles

In this section, we shall assume that A1, A2, A3 are only 2π-periodic con-
tinuous functions.

Firstly, we solve the case when nk = 1 for any k ∈ {1, 2, 3}. If n3 = 1,

then the change of variable x → x exp
(
a3
∫ t
0 A3(s) ds

)
preserves periodic

solutions and transforms (1.2) with the assumed symmetries (A1) into

x′ = f1(t)x
n1 + f2(t)x

n2 ,

where f1(t) is odd and does not change sign in (0, π), and f2(t−π/2) is odd
and does not change sign in (π/2, 3π/2). From [6, Theorem 24], one obtains
that (1.2) has no non-trivial limit cycle. When nk = 1, k = 1, 2, the change

of variable x → x exp
(
ak
∫ t
0 Ak(s) ds

)
transforms (1.2) with the assumed

symmetries into

x′ = fj(t)x
nj + f3(t)x

n3 , j ∈ {1, 2}, j 6= k,

where fj(t) and f3(t) are odd. Then every bounded solution is periodic.
Since ∆(x) is analytic, there is no non-trivial limit cycle. Henceforth, there-
fore, we shall assume that nk > 1, k = 1, 2, 3.

The first comment is that the change x → −x does not change the family
(just the signs of some of the coefficients a1, a2, a3). Henceforth, therefore,
we shall only study the existence or non-existence of positive limit cycles.

To prove the existence of positive limit cycles when (n3−n1)(n3−n2) < 0,
we shall first prove that if a1, a3 are fixed then a2 → ∆(x, a1, a2, a3) is
monotonic (its derivative has constant sign), and using that for a2 = 0
every bounded solution is periodic (one has a centre), we conclude.

Proposition 2.1. Assume that A1, A2, A3 are 2π-periodic continuous func-
tions such that A1(t) sin t, A2(t) cos t, A3(t) sin t cos t are π-periodic positive
even functions. Given x, a1, a2, a3 such that u(t, x, a1, a2, a3) is defined in
[−π, π], one has

(2.3) ua2(π) = un2(π)

∫ π/2

0
A2(t)

(
e
∫ π
t L2(s) ds − e

∫ π
π−t L2(s) ds

)
dt,

where

L2(s) = (n1 − n2)a1A1(s)u
n1−1(s) + (n3 − n2)a3A3(s)u

n3−1(s).

Moreover, if u(t, x, a1, ā2, a3) is defined in [−π, π] for every |ā2| ≤ |a2|, then
there exists ā∗2 ∈ [−a2, a2] such that

(2.4) u(π, x, a1, a2, a3)− u(−π, x, a1, a2, a3) = 2ua2(π, x, a1, ā
∗
2, a3)a2.

Proof. By symmetries,

u(−t, x, a1, a2, a3) = u(t, x, a1,−a2, a3).

Now (2.4) follows from the Mean Value Theorem.
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Firstly, differentiating (1.2) with respect to a2,

(2.5) u′a2 = A2u
n2 + (a1n1A1u

n1−1 + a2n2A2u
n2−1 + a3n3A3u

n3−1)ua2

Since u′ = a1A1u
n1 + a2A2u

n2 + a3A3u
n3 , then

a2A2u
n2−1 =

u′

u
− a1A1u

n1−1 − a3A3u
n3−1.

Substituting the above equality into (2.5), and integrating from 0 to π, one
has

ua2(π) =

∫ π

0
A2(t)u

n2(t)e
∫ π
t n2

u′
u
+a1(n1−n2)A1un1−1+a3(n3−n2)A3un3−1 ds dt

= un2(π)

∫ π

0
A2(t)e

∫ π
t a1(n1−n2)A1un1−1+a3(n3−n2)A3un3−1 ds dt.

Now, taking into account that A2(π/2 − t) is odd, we conclude (2.3). �
Proposition 2.2. Assume that A1, A2, A3 are 2π-periodic continuous func-
tions such that A1(t) sin t, A2(t) cos t, A3(t) sin t cos t are π-periodic positive
even functions, and let u(t) > 0 be a solution of (1.2) defined for every
t ∈ [0, π]. Then

sign(u(t)− u(π − t)) = sign(−a1), for every t ∈ (0, π/2).

Proof. Assume there exists t0 such that u(t0) = u(π − t0). Then, by sym-
metries,

(u(t)− u(π − t))′ = 2a1A1(t)u
n1(t).

Since for t = π/2, u(t) = u(π − t), the claim holds. �
We recall that a function α(t) is an upper solution (respectively lower

solution) of the equation x′ = f(t, x) provided that α′(t) ≥ f(t, α(t)) (resp.
α′(t) ≤ f(t, α(t))).

We can now restate the first part of Theorem A, and prove it.

Theorem 2.3. Assume that A1, A2, A3 are 2π-periodic continuous functions
such that A1(t) sin t, A2(t) cos t, A3(t) sin t cos t are π-periodic positive even
functions, and (n1 − n3)(n2 − n3) < 0. Then there is no non-trivial limit
cycle of (1.2) for any value of a1, a2, a3 ∈ R.

Proof. Assume the following:
Claim. Fix x, a1, a2, a3 such that u(π, x, a1, a2, a3) is defined. Then

u(π, x, a1, ā2, a3) is defined for each |ā2| < |a2|.
As a consequence one has that ua2(π, x, a1, ā2, a3) is also defined for every

|ā2| < a2, and Proposition 2.1 holds.
Given a1, a3 we shall prove that sign(n1 − n2) = sign(a3(n2 − n3)) im-

plies that ua2(π, x, a1, a2, a3) has definite sign for every x, a2 whenever it
is defined. As a consequence of (2.4), we shall obtain that Equation (1.2)
has no non-trivial limit cycles. Applying the above arguments to (1.2) after
the change of variable t → π/2 − t, we shall prove that sign(n1 − n2) =
sign(a3(n1−n3)) implies that Equation (1.2) has no non-trivial limit cycles.
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Finally we shall show that if (n1−n3)(n2−n3) < 0 then Equation (1.2) has
no non-trivial limit cycles for any a1, a2, a3.

By (2.3), if

e
∫ π
t

L2(s) ds − e
∫ π
π−t L2(s) ds, t ∈ (0, π/2),

has definite sign, where

L2(s) = (n1 − n2)a1A1(s)u
n1−1(s) + (n3 − n2)a3A3(s)u

n3−1(s),

then ua2(π) has the same sign. Therefore it suffices to show that
∫ π−t

t
L2(s) ds, t ∈ (0, π/2),

has definite sign. This last expression can be rewritten, taking into account
the symmetries of A1 and A3, as
∫ π/2

t
(n1 − n2)a1A1(s)(u

n1−1(s) + un1−1(π − s))

+ (n3 − n2)a3A3(s)(u
n3−1(s)− un3−1(π − s)) ds, t ∈ (0, π/2).

The above expression has definite sign when its integrand has definite sign.
By Proposition 2.2,

sign(un1−1(s)− un1−1(π − s)) = sign(−a1).

Thus, if

sign(n1 − n2) = sign(a3(n2 − n3)),

then ua2(π) has definite sign and Equation (1.2) has no non-trivial limit
cycles.

By the change of variable t → π/2− t, (1.2) becomes

(2.6) x′ = −a1A1(π/2 − t)xn1 − a2A2(π/2− t)xn2 − a3A3(π/2 − t)xn3 ,

where now the symmetries of the functions A1 and A2 have been inter-
changed, i.e., A1(π/2− t) cos t, A2(π/2− t) sin t, are π-periodic positive even
functions. Repeating the above arguments, one obtains that if

sign(n2 − n1) = sign(−a3(n1 − n3))

then Equation (2.6) has no non-trivial limit cycles. Therefore, neither does
(1.2).

By hypothesis, sign(n1 −n3) = − sign(n2 −n3). Then, for each a3, either
sign(n1 − n2) = sign(a3(n2 − n3)) or sign(n1 − n2) = sign(a3(n1 − n3)). In
both cases we conclude that Equation (1.2) has no non-trivial limit cycles.

Proof of the Claim. Under our hypotheses

signua2(π) = signL2(s) = sign((n1 − n2)a1).

Thus, by the change of variable t → π+t, one may choose the sign of a1 such
that ua2(π, x, a1, a2, a3) > 0. Note that there is no restriction of assuming
a2 > 0.



EXISTENCE OF NON-TRIVIAL LIMIT CYCLES 7

Define u(t, x, λ) = u(t, x, a1, λa2, a3). Since a2 > 0, one has that u(t, x, 1)
is an upper solution of

(2.7) x′ = a1A1(t)x
n1 + λa2A2(t)x

n2 + a3A3(t)x
n3

for every λ < 1, t ∈ [0, π/2], and a lower solution for every λ < 1, t ∈ [π/2, π].
Writing

I = {λ0 ∈ (−1, 1): u(t, x, λ) < u(t, x, 1), t ∈ (0, π], λ0 ≤ λ < 1},
we shall prove that I is a non-empty, open and closed subset of (−1, 1), i.e.,
I = (−1, 1). Note that uλ(π, x, λ) = a2ua2(π, x, a1, λa2, a3) > 0. Then, for
any λ0 < 1 close enough to 1, u(π, x, λ0) < u(π, x, 1). Since u(0, x, λ0) =
u(0, x, 1) = x and u(t, x, 1) is an upper-solution for t ∈ [0, π/2], then
u(t, x, λ0) < u(t, x, 1) for every t ∈ (0, π/2], and since u(π, x, λ0) < u(π, x, 1)
and u(t, x, 1) is a lower-solution for t ∈ [π/2, π], then u(t, x, λ0) < u(t, x, 1)
for every t ∈ [π/2, π). Therefore I is not empty. Let λ0 ∈ I. By defini-
tion of I, u(π, x, λ) < u(π, x, 1) for λ0 ≤ λ < 1, and the same inequality
holds for close enough λ < λ0 since uλ(π, x, λ) > 0. Thus, the above argu-
ments show that I is open. To prove that I is a closed subset of (−1, 1), let
λn → λ0 ∈ (−1, 1) and λn ∈ I. Then, for each t ∈ [0, π] belonging to the
interval of the definition of u(t, x, λ0), one has

u(t, x, λn) → u(t, x, λ0), u(t, x, λ0) ≤ u(t, x, 1).

As a consequence, one has that u(π, x, λ0) is defined. Necessarily λn > λ0,
since otherwise λ0 ∈ I. Since uλ(π, x, λ0) > 0, if u(π, x, λ0) = u(π, x, 1) then

u(π, x, λn) > u(π, x, λ0) = u(π, x, 1)

for λn sufficiently close to λ0, in contradiction with λn ∈ I. Therefore,
u(π, x, λ0) < u(π, x, 1), and repeating the arguments above, we get λ0 ∈
I. �

3. Families with At Least One Non-Trivial Limit Cycle

In this section we shall present two criteria for the existence of non-trivial
limit cycles. These criteria will be obtained by two different methods. In
Subsection 3.1, we study the order of the solution at infinity. We will thereby
be able to prove the remaining statements of the main theorem. In Sub-
section 3.2, as was mentioned in the Introduction, we study the bifurcation
of limit cycles by the linear perturbation of an integrable centre. As the
first-order perturbations do not give rise to any limit cycle, we study the
second-order ones. Applying this method, we obtain some additional results
that give conditions different from those in the main theorem.

3.1. Proof of Theorem A. In the following we prove a preliminary result
studying the order of the solution at infinity and its behaviour.

Proposition 3.1. Assume that A1, A2, A3 are 2π-periodic analytic func-
tions such that A1(t) sin t, A2(t) cos t, A3(t) sin t cos t are π-periodic positive
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even functions, n3 < n2 < n1, a2 = 0, and a1, a3 < 0 are fixed. Denote by
ik the order of Ak at the origin, and

u(t,∞) = sup{u(t, x, a1, a2, a3) : x > 0}.
Then

(1) Every bounded solution of (1.2) is periodic. Moreover, u(t, x) is
defined on [0, 2π] for every x > 0, and u(t, x) > u(π− t, x) for every
t ∈ (0, π/2).

(2) The function u(t,∞) is a solution of (1.2) defined for t ∈ (0, 2π),
u(t,∞) → +∞ as t → 0, and

(3.8) u(t,∞) =




((1− n1)a3)

1
1−n1 t

i3+1
1−n3 + o(t

i3+1
1−n3 ), if i1+1

1−n1
< i3+1

1−n3
,

((1− n1)a1)
1

1−n1 t
i1+1
1−n1 + o(t

i1+1
1−n1 ), if i1+1

1−n1
> i3+1

1−n3
.

(3) If (i1 + 1)(n3 − 1) > (i3 + 1)(n1 − 1), then for a3 < 0 small enough

ua2(π, x, a1, 0, a3) > 0 for x sufficiently large.

Proof. (1) Since a2 = 0, one has that the equation is invariant under the
change of variable t → −t. Therefore, the solutions are even and hence 2π
periodic (u(−π, x) = u(π, x) whenever it is defined).

Let us show that u(t, x) is defined in [0, 2π] (and hence periodic). It
suffices to prove that u(t, x) is defined in [0, π], because u(2π − t, x) is also
a solution. Since a1, a3 < 0, then u(t, x) is decreasing for t ∈ [0, π/2], and
consequently is defined. Finally, u(π − t, x) is an upper-solution in [π/2, π],
so that u(t, x) is defined in [π/2, π]. Moreover, u(π− t, x) < u(t, x) for every
t ∈ (0, π/2).

(2) Since the solutions are even, decreasing in [0, π/2] and u(π − t, x) is
an upper solution, it suffices to prove that u(t,∞) is defined in (0, π).

By the change of variables y = x1−n1 , one obtains that any positive
solution of (1.2) corresponds to a positive solution of

(3.9) y′ = (1− n1)a3A3y
α + (1− n1)a1A1.

where 0 < α = n3−n1
1−n1

< 1. Let v(t) be the solution of (3.9) such that

v(0) = 0 (the uniqueness follows from [16]). Since (3.9) has no positive
solution with initial condition at (π, 0), then v(π) > 0. Hence

u(t, x) = v(t, x1−n1)
1

1−n1 , u(t,∞) = v(t, 0)
1

1−n1 ,

for every t ∈ (0, π].
But

v(t, 0) = (1− n1)a3

∫ t

0
A3(s)v(s, 0)

α ds+ (1− n1)a1

∫ t

0
A1(s) ds.

Hence,

v(t, 0) = (1− n1)a3t
(i3+1)/(1−α)O(1) or v(t, 0) = (1− n1)a1t

i1+1O(1).

Therefore, (3.8) holds.
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(3) As in Proposition 2.1, one has

ua2(π) = un1(π)

∫ π

0
A2(t)e

∫ π
t L2(s,x)ds dt,

where

L2(t, x) = (n1 − n2)a1A1(t)u
n1−1(t, x) + (n3 − n2)a3A3(t)u

n3−1(t, x).

By hypothesis, (i1 + 1)/(1 − n1) < (i3 + 1)/(1 − n3), so that

u(t,∞) = ((1− n1)a3)
1

1−n1 t
1+i3
1−n3 + o

(
t

1+i3
1−n3

)
.

In consequence, the first summand of L2(t, x) is

(n1−n2)a1A1(s)u
n1−1(s,∞) =

(n1 − n2)a1
(1− n1)a3

s
i1+

(1+i3)(n1−1)
(1−n3) +o

(
s
i1+

(1+i3)(n1−1)
(1−n3)

)
,

where

i1 +
(1 + i3)(n1 − 1)

(1− n3)
> −1,

and the second summand of L2(t, x) is

(n3 − n2)a3A3(s)u
n3−1(s,∞) = (n3 − n2)a3((1 − n1)a3)

n3−1
1−n1 s−1 + o

(
s−1
)
.

Then

exp

(∫ π

t
L2(s,∞) ds

)
= exp

(
(n3 − n2)a3 ((1− n1)a3)

n3−1
1−n1

∫ π

t
(s−1 + o

(
s−1
)
) ds

)

= Kt(n2−n3)a3((1−n1)a3)
n3−1
1−n1 + o

(
t(n2−n3)a3((1−n1)a3)

n3−1
1−n1

)
,

where

K = π(n3−n2)a3((1−n1)a3)
n3−1
1−n1 > 0.

Since 0 < 1 + (n3 − 1)/(1 − n1) < 1, one can choose a3 < 0 such that

1 + i2 + (n2 − n3)a3 ((1− n1)a3)
n3−1
1−n1 < 0.

Therefore, ∫ π

0
A2(t) exp

(∫ π

t
L2(s,∞) ds

)
dt = ∞.

To end the proof, we need to show that
∫ π

0
A2(t) exp

(∫ π

t
L2(s, x) ds

)
dt →

∫ π

0
A2(t) exp

(∫ π

t
L2(s,∞) ds

)
dt = ∞

as x → ∞. Indeed, by the Dominated Convergence Theorem
∫ π

π/2
A2(t) exp

(∫ π

t
L2(s, x) ds

)
dt →

∫ π

π/2
A2(t) exp

(∫ π

t
L2(s,∞) ds

)
dt,
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as x → ∞. Since

L2(t, x) → L2(t,∞), as x → ∞,

exp

(∫ π

π/2
L2(t,∞) dt

)
< ∞,

the Dominated Convergence Theorem guarantees that

exp

(∫ π

π/2
L2(t, x) dt

)
→ exp

(∫ π

π/2
L2(t,∞) dt

)
as x → ∞.

Let L2(t, x) = L21(t, x) + L22(t, x), where

L21(t, x) = (n1 − n2)a1A1(t)u
n1−1(t, x),

L22(t, x) = (n3 − n2)a3A3(t)u
n3−1(t, x).

For t ∈ (0, π/2], L2k(t, x) → L2k(t,∞) as x → ∞, the convergence being
monotonic decreasing for k = 1 and monotonic increasing for k = 2. So,

exp

(∫ π/2

t
L2k(s, x) ds

)
→ exp

(∫ π/2

t
L2k(s,∞) ds

)

as x → ∞, the convergence being monotonic decreasing for k = 1 and
monotonic increasing for k = 2. Then

∫ π/2

0
A2(t) exp

(∫ π/2

t
(L21(s, x) + L22(s, x)) ds

)
>

∫ π/2

0
A2(t) exp

(∫ π/2

t
L21(s,∞) ds

)
exp

(∫ π/2

t
L22(s, x) ds

)
dt

→
∫ π/2

0
A2(t) exp

(∫ π/2

t
L2(s,∞) ds

)
dt = ∞.

�

Now we can restate and prove the last parts of Theorem A.

Theorem 3.2. Assume that A1, A2, A3 are 2π-periodic analytic functions
such that A1(t) sin t, A2(t) cos t, A3(t) sin t cos t are π-periodic positive even
functions, and denote by ik, jk the orders of Ak at the origin and at π/2,
respectively.

If n3 < n2 < n1, and (i1 + 1)(n3 − 1) > (i3 + 1)(n1 − 1), then there exist
a1, a2, a3 such that (1.2) has one non-trivial limit cycle.

The same holds if n3 < n1 < n2 and (j2 + 1)(n3 − 1) > (j3 + 1)(n2 − 1).

Proof. Let a1, a3 < 0. By Proposition 3.1, the stability for x sufficiently large
and a2 small is determined by the sign of a2. The stability at the origin is
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determined by the sign of a2(n2 − n1) because

sign∆(x, a1, a2, a3) = sign(u(2π, x, a1, a2, a3)− x)

= sign
(
a1a2(n2 − n1)IA2A1(2π) + o(a21, a1a2, a

2
2)
)
,

(3.10)

where

IA2A1(2π) =

∫ 2π

0
A2(t)

(∫ t

0
A1(s) ds

)
dt < 0.

See [2, Appendix A, (A34)–(A39)].
Since the above two stability-determining signs are opposite, there is one

non-trivial limit cycle for a1, a3 < 0 < a2 and a2 small enough.
To prove the second part of the result it is enough to perform the change

of variable t → π/2− t and apply the statement already proved. �

3.2. Second-order perturbation of an integrable centre. In this sub-
section we shall obtain some criteria for the existence of non-trivial limit
cycles by Abelian integrals. As we noted in the Introduction, the linear per-
turbations of the integrable centre given by x′ = akAk(t)x

nk do not give rise
to the detection of limit cycles. We therefore study the second-order pertur-
bations, obtained by perturbing by a1, a2 the centre given by a1 = a2 = 0.

Theorem 3.3. Assume that A1, A2, A3 are 2π-periodic analytic functions
such that A1(t) sin t, A2(t) cos t, A3(t) sin t cos t are π-periodic positive even
functions. and denote by ik, jk the orders of Ak at the origin and at π/2,
respectively. Moreover, assume that one of the following conditions holds:

(C1) (a) n1, n2 < n3,

(b)
i2 + 1

i3 + 1
≤ n2 − 1

n3 − 1
,

(c) (n1 − n2)

(
n3

k2
− n2

)
< 0.

(C2) (a) n3 < n1, n2,
i1 + 1

i3 + 1
<

n1 − n3

n3 − 1
,

i2 + 1

i3 + 1
>

n2 − n3

n3 − 1
,

(b)
i1 + 1 + i2 + 1

i3 + 1
≤ n1 + n2 − n3 − 1

n3 − 1
,

(c) (n1 − n2)

(
n1

k2
− n2

k1
+

n3

k1k2

)
< 0,

where

kl = 1 + il − (nl − n3)
i3 + 1

n3 − 1
, l = 1, 2.

Then there exist a1, a2, a3 ∈ R such that (1.2) has one non-trivial limit
cycle.

With the change of variables t → π/2 − t, one obtains similar results
replacing i by j, and interchanging the subindices 1 and 2.
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Remark 3.4. The proof of the theorem consists of studying the stability near

the origin and near infinity. The conditions (n1 − n2)
(
n3
k2

− n2

)
< 0 and

(n1 − n2)
(
n1
k2

− n2
k1

+ n3
k1k2

)
< 0 will imply that the stabilities are opposite,

and therefore there exists an odd number of non-trivial limit cycles. If one
of the inequalities is reversed then there are an even number of non-trivial
limit cycles or a semi-hyperbolic one, so that one can not conclude that
there exists a limit cycle different from x = 0.

The remaining conditions will imply that the stability near infinity is
determined by what happens around t = 0.

Proof. The proof will follow by computing the power series of ∆(x, a1, a2, a3)
in terms of a1, a2 around a1 = a2 = 0.

u(π, x, a1, a2, a3) = u(π, x, 0, 0, a3) + ua1(π, x, 0, 0, a3)a1 + ua2(π, x, 0, 0, a3)a2

+ ua21(π, x, 0, 0, a3)
a21
2

+ ua1a2(π, x, 0, 0, a3)a1a2

+ ua22(π, x, 0, 0, a3)
a22
2

+ o(a21, a1a2, a
2
2),

u(π, x, a1,−a2, a3) = u(π, x, 0, 0, a3) + ua1(π, x, 0, 0, a3)a1 − ua2(π, x, 0, 0, a3)a2

+ ua21(π, x, 0, 0, a3)
a21
2

− ua1a2(π, x, 0, 0, a3)a1a2

+ ua22(π, x, 0, 0, a3)
a22
2

+ o(a21, a1a2, a
2
2).

By Proposition 2.1,

∆(x, a1, a2, a3) = u(π, x, a1, a2, a3)− u(π, x, a1,−a2, a3)

= 2ua2(π, x, 0, 0, a3) + 2ua1,a2(π, x, 0, 0, a3)a1a2 + o(a21, a1a2, a
2
2)

Choosing a1, a2 small enough, and a3 < 0, one knows from (3.10) that

sign∆(x, a1, a2, a3) = a1a2 sign(n1 − n2), for x small enough.

We shall prove that

sign∆(x, a1, a2, a3) = a1a2 signua1a2(π, x, 0, 0, a3)

= a1a2 sign(n2 − n1), for x large enough.

Therefore, there exists a limit cycle for a1, a2 small enough, and a3 < 0.
We shall denote u(t, x, 0, 0, a3) as u(t) or simply as u. Differentiating with

respect to a1 in (1.2),

u′a1(t) = A1(t)u
n1(t) + n3a3A3(t)u

n3−1(t)ua1(t).
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Since ua1(0) = 0, integrating over [0, π],

ua1(t) =

∫ t

0
A1(s)u

n1(s) exp

(∫ t

s
n3a3A3(t)u

n3−1(τ) dτ

)
ds

= un3(t)

∫ t

0
A1(s)u

n1−n3(s) ds.

Arguing analogously with a2,

ua2(t) = un3(t)

∫ t

0
A2(s)u

n2−n3(s) ds.

Thus ua2(π) = 0.
Differentiating with respect to a1 and a2 in (1.2) and evaluating at a1 =

a2 = 0, one has

u′a1a2 =n1A1u
n1−1ua2 + n2A2u

n2−1ua1

+ n3(n3 − 1)a3A3u
n3−2ua1ua2 + n3a3A3u

n3−1ua1a2 .

Since u(0) = 0, integrating over [0, π],

ua1a2(π) =

∫ π

0

(
n1A1u

n1−1ua2 + n2A2u
n2−1ua1

+ n3(n3 − 1)a3A3u
n3−2ua1ua2

)
e
∫ π
t n3a3A3un3−1 ds dt.

Since x′ = a3A3(t)x
n3 , one has

∫ t

s
n3a3A3(τ)u

n3−1(τ) dτ =

∫ t

s
n3

u′(τ)
u(τ)

dτ = log(un3(t)/un3(s)).

Therefore,

ua1a2(π) = un3(π)

∫ π

0

(
n1A1u

n1−1−n3ua2 + n2A2u
n2−1−n3ua1

+ n3(n3 − 1)a3A3u
−2ua1ua2

)
dt.

(3.11)

Renaming the factors of the previous expression we get

(3.12) ua1a2(π) = un3(π)(S1(x) + S2(x) + S3(x)),

where

S1(x) =

∫ π

0
n1A1(s)u

n1−1(s)F2(s) ds,

S2(x) =

∫ π

0
n2A2(s)u

n2−1(s)F1(s) ds,

S3(x) =

∫ π

0
n3(n3 − 1)a3A3(s)u

2n3−2(s)F1(s)F2(s) ds,

Fk(t) =

∫ t

0
Ak(s)u

nk−n3(s) ds, k = 1, 2.
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Now we shall use symmetries to simplify (3.12). Firstly, note that

u(t, x) =
x

(1 + a3(1− n3)xn3−1IA3(t))
1

n3−1

, IA3(t) =

∫ t

0
A3(s) ds.

Thus, the function t → u(t − kπ/2) is even for every k ∈ Z. If one chooses
a3 < 0 then u(t, x) is defined for every t for any x, it is decreasing in (0, π/2),
and its maxima are at kπ.

Since the function s → A2(π/2−s)un2−n3(π/2−s) is odd, then F2(π/2−t)
is even and

S1(x) = 2

∫ π/2

0
n1A1(t)u

n1−1(t)F2(t) dt.

Since ∫ π

0
n2A2u

n2−1(t)F1(π/2) dt = 0,

then

S2(x) =

∫ π

0
n2A2u

n2−1(t)(F1(t)− F1(π/2)) dt.

Now observe that

t → n2A2u
n2−1(π/2 − t)(F1(π/2− t)− F1(π/2))

is an even function. Thus,

S2(x) = 2

∫ π/2

0
n2A2u

n2−1(t)(F1(t)− F1(π/2)) dt.

Analogously, as
∫ π

0
n3(n3 − 1)a3A3u

2n3−2(t)F1(π/2)F2(t) dt = 0,

then

S3(x) =

∫ π

0
n3(n3 − 1)a3A3(t)u

2n3−2(t)(F1(t)− F1(π/2))F2(t) dt.

Moreover the function

t → A3(π/2 − t)u2n3−2(π/2− t)(F1(π/2− t)− F1(π/2))F2(π/2 − t)

is even, and consequently

S3(x) = 2

∫ π/2

0
n3(n3 − 1)a3A3(t)u

2n3−2(t)(F1(t)− F1(π/2))F2(t) dt.

Note that for each t ∈ (0, π/2], u(t, x) tends to u(t,∞) as x → ∞, where

u(t,∞) =
(
(1− n3)a3IA3(t)

) −1
n3−1

=
(
(1− n3)a3t

i3+1
) −1

n3−1
+ o

(
t
−i3−1
n3−1

)
.

We shall write Sk(∞) to denote Sk(x) when we replace u(t, x) by u(t,∞).
Since the convergence is monotonic, Sk(x) → Sk(∞) as x → ∞, k = 1, 2, 3.

Consider the following two cases:
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(C1) Condition (a) guarantees that k1 > 0 and k2 > 0. Thus, Fj(t) is
defined for every t close to zero, j = 1, 2. From n1 < n3, one obtains

1 + i1 −
(n1 − 1)(i3 + 1)

n3 − 1
+ k2 > 0,

which implies S1(∞) < ∞. Condition (b) is equivalent to

k−
def
= i2 − (n2 − 1)

(i3 + 1)

n3 − 1
≤ −1.

Moreover

S2(∞) + S3(∞) =

∫ π/2

0

(
K1

(
n3

k2
− n2

)
tk

−
+ o(tk

−
)

)
dt,

with

K1 = 2((1− n3)a3)
n2−1
1−n3 F1(π/2) > 0.

Then S2(x) + S3(x) → S2(∞) + S3(∞) and

lim
x→∞

ua1a2(π, x) = sign

(
n3

k2
− n2

)
∞.

(C2) Condition (a) guarantees that k1 < 0 and k2 > 0. Condition (b) is
equivalent to

k+
def
= 1 + i1 + i2 − (n1 + n2 − n3 − 1)

(i3 + 1)

n3 − 1
≤ −1.

Moreover

S1(∞)+S2(∞)+S3(∞) =

∫ π/2

0

(
K2

(
n1

k2
− n2

k1
+

n3

k1k2

)
tk

+
+ o(tk

+
)

)
dt,

with

K2 = 2((1− n3)a3)
n1+n2−n3−1

1−n3 > 0.

Then S1(x) + S2(x) + S3(x) → S1(∞) + S2(∞) + S3(∞) and

lim
x→∞

ua1a2(π, x) = sign

(
n1

k2
− n2

k1
+

n3

k1k2

)
∞.

In both cases, ua1a2(π, x) tends to ±∞ when x → ∞, and sign(ua1a2(π, x))
is opposite to the sign of (n1 − n2) by Condition (c). Therefore we obtain a
limit cycle by a Hopf bifurcation.

To prove the second part of the result, it is enough to perform the change
of variable t → π/2− t and apply the statement already proved. �
Example 3.5. If n1 < n2 < n3, then Theorem 3.2 does not apply while
Theorem 3.3 does (with the convenient choice of i1, i2, i3). In other words,
Abelian integrals obtain limit cycles that Theorem 3.2 does not.

Indeed, since (i3 + 1)(n3 − n1) < (i3 + 1)(n3 − 1), then Theorem 3.3 and
Theorem 3.2 do not apply simultaneously. Taking for instance, n1 = 4,
n2 = 3, n3 = 2, i1 = 9, i2 = 2, i3 = 1, one obtains an example for which
Theorem 3.2 applies but Theorem 3.3 does not.
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