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We derive a piecewise linear difference equation from logistic equations with time delay by ultradiscretization.The logistic equation
that we consider in this paper has been shown to be globally stable in the continuous and discrete time formulations. Here, we
study if ultradiscretization preserves the global stability property, analyzing the asymptotic behaviour of the obtained piecewise
linear difference equation. It is shown that our piecewise linear difference equation has a threshold property concerning global
attractivity of equilibria, similar to the stable logistic equations with time delay.

1. Introduction

Ultradiscretization is proposed as a procedure to obtain a dis-
crete system, where unknown variables also take discretized
values [1]. The discrete systems are a class of piecewise-
defined difference equations [2, 3]. Specifically, ultradiscreti-
zation converts addition, multiplication, and division for two
numbers in a discrete system into max operator, addition,
and subtraction for other two numbers in the ultradiscrete
model. Ultradiscretemodels are related to the continuous and
discretemodels via formal solutions and conserved quantities
[1, 4]. See also [5–7] for the application of ultradiscretization
to the traffic flow.

In this paper, we consider the following difference equa-
tion:

𝑥𝑛+1 = max (𝑥𝑛, 𝑏 + 𝑥𝑛−𝜔) −max (𝑐, 𝑏 + 𝑥𝑛−𝜔) , (1)

where 𝑏 is a real number and 𝑐 is a real positive number, with
the following initial condition:

𝑥−𝑗 ∈ R for 𝑗 ∈ {0, 1, . . . , 𝜔} . (2)

We derive the difference equation (1) from a nonlinear
difference equation studied in [8, 9]. The difference equation
is an extension of a discrete logistic map and can be seen

as a discrete analogue of a disease transmission dynamics
model studied in [10]. In Section 2, we briefly introduce
the disease transmission dynamics model formulated as a
scalar delay differential equation. Subsequently we derive
the difference equation (1) from the differential equation via
discretization and ultradiscretization. It is known that the
applied discretization gives stable numerical solutions [11].
Nonstandard finite difference schemes are used, from a con-
tinuous dynamical system, to derive a dynamically consistent
discrete system, which preserves qualitative and quantitative
properties of the solution of the original continuous differen-
tial equation such as positivity, stability of equilibria, and con-
servation laws; see [12, 13] and references therein. The ultra-
discrete model (1) is related to two delay equations: delay dif-
ference equation studied in [8, 9] and delay differential equa-
tion studied in [10].

Those delay equations are an extension of a discrete
logistic map and the logistic equation, respectively. For the
nondelay case, three equations are related to each other,
sharing the qualitative property that every solution converges
to an equilibrium [14]. It is known that the solution of the
discrete model exactly follows the continuous solution of
the logistic equation [15]. In the two delay equations, the
corresponding equilibria are globally asymptotically stable;
thus the discretization preserves the global stability property
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as well as in the nondelay case. In this paper, we study if the
difference equation (1) derived from the stable difference and
differential equations has a similar property.The convergence
property of the difference equation (1) is analyzed in detail.

The paper is organized as follows. In Section 2, we sum-
marize stability of differential and difference logistic equa-
tions in [14] and derive our ultradiscrete model from the
difference equation.Our objective for this section is clarifying
qualitative correspondence between the differential and dif-
ference equations. In Section 3, we discuss the convergence
property of (1). We prove that the model exhibits the thresh-
old behaviour, similar to the differential equation studied in
[10] and the difference equation studied in [8, 9]. We find
here that a subsequence of the solution has amonotone prop-
erty and this monotonicity is used for the proof. We then
summarize our results in Section 4.

2. Differential and Difference
Logistic Equations

In this section, we summarize the previous studies related to
(1).

We start with a logistic equation:

𝑑𝑦 (𝑡)
𝑑𝑡 = 𝑦 (𝑡) (𝜆 − 𝛿 − 𝜆𝑦 (𝑡)) , (3)

where 𝜆 and 𝛿 are real positive constants. The reason for
the parameterization becomes clear, when we introduce time
delay. It is well known that, for the positive initial conditions,
the trivial equilibrium,𝑦 = 0, is globally asymptotically stable
if 𝜆 − 𝛿 ≤ 0, while the positive equilibrium, 𝑦 = (𝜆 − 𝛿)/𝜆, is
globally asymptotically stable if 𝜆 − 𝛿 > 0.

By an applied discretization [16], the following discrete
analogue can be derived from the logistic equation (3):

𝑦𝑛+1 =
𝑦𝑛 + 𝛽𝑦𝑛
1 + 𝛾 + 𝛽𝑦𝑛

. (4)

Let ℎ be a sufficiently small step size. Then the parameters 𝛽
and 𝛾 are related to 𝜆 and 𝛿 via 𝛽 = ℎ𝜆 and 𝛾 = ℎ𝛿. The
difference equation (4) captures the continuous solution of
the differential equation (3); that is, the solution shows the
logistic curve [15]. See also [14].

The author in [14] obtains the following piecewise linear
difference equation from (4) by ultradiscretization:

𝑥𝑛+1 = 𝑏 − 𝑐 −max (−𝑥𝑛, 𝑏 − 𝑐) , (5)

where 𝑏 and 𝑐 are constants that satisfied 𝑏 − 𝑐 ≥ 0. Ultra-
discretization is proposed as a procedure to obtain the dis-
crete system, where unknown variables also take discretized
values [1]. In [14], it is shown that the three models (3), (4),
and (5) share the qualitative property that every solution
converges to an equilibrium.

Following [14, 17–19], let us derive (5) from (4). For 𝜀 > 0,
we introduce a variable 𝑥 via

𝑦𝑛 = 𝑒𝑥𝑛/𝜀 (6)

and parameters 𝑏 and 𝑐 > 0 through
𝛽 = 𝑒𝑏/𝜀,

1 + 𝛾 = 𝑒𝑐/𝜀.
(7)

Then we have

𝑒𝑥𝑛+1/𝜀 = 𝑒
𝑥𝑛/𝜀 (1 + 𝑒𝑏/𝜀)
𝑒𝑐/𝜀 + 𝑒(𝑏+𝑥𝑛)/𝜀 ;

(8)

thus

𝑥𝑛+1 = 𝑥𝑛 + 𝜀 log (1 + 𝑒𝑏/𝜀) − 𝜀 log (𝑒𝑐/𝜀 + 𝑒(𝑏+𝑥𝑛)/𝜀) . (9)

Letting 𝜀 → +0 and assuming 𝑏 > 0, we get (5) by the follow-
ing manipulations:

𝑥𝑛+1 = 𝑥𝑛 +max (0, 𝑏) −max (𝑐, 𝑏 + 𝑥𝑛)
= 𝑏 −max (𝑐 − 𝑥𝑛, 𝑏)
= 𝑏 − 𝑐 −max (−𝑥𝑛, 𝑏 − 𝑐) .

(10)

The key relation used here is the following limit:

lim
𝜀→+0
𝜀 log (𝑒𝐴/𝜀 + 𝑒𝐵/𝜀) = max (𝐴, 𝐵) (11)

for 𝐴, 𝐵 > 0.
An epidemic model considered in [10] is an extension

of the logistic equation (3). The model is formulated as the
following delay differential equation:

𝑑𝑦 (𝑡)
𝑑𝑡 = 𝜆𝑦 (𝑡 − 𝜏) (1 − 𝑦 (𝑡)) − 𝛿𝑦 (𝑡) , (12)

where 𝜏 is a real positive constant. The global stability con-
dition for (12) is the same as the condition for the nondelay
case (3): for the positive initial conditions, the trivial equilib-
rium, 𝑦 = 0, is globally asymptotically stable if 𝜆 − 𝛿 ≤ 0,
while the positive equilibrium, 𝑦 = (𝜆 − 𝛿)/𝜆, is globally
asymptotically stable if 𝜆 − 𝛿 > 0. Different logistic equations
with time delay have the instability property; see [20–22].

In order to ensure positivity of the solution in discrete
analogues of the differential equation (11), we use Mickens
nonstandard finite difference scheme [11] to discretize (12) as
follows:

𝑦 (𝑡 + ℎ) − 𝑦 (𝑡)
ℎ = 𝜆𝑦 (𝑡 − 𝜏) (1 − 𝑦 (𝑡 + ℎ))

− 𝛿𝑦 (𝑡 + ℎ) ,
(13)

where ℎ > 0 is a step size. Equation (13) can be written by the
following explicit form:

𝑦 (𝑡 + ℎ) = 𝑦 (𝑡) + ℎ𝜆𝑦 (𝑡 − 𝜏)1 + ℎ𝛿 + ℎ𝜆𝑦 (𝑡 − 𝜏) ; (14)

thus (13) is equivalently written as the following difference
equation with ℎ𝛿 = 𝛾, ℎ𝜆 = 𝛽, 𝑦(𝑡) = 𝑦𝑛, and 𝑦(𝑡+ℎ) = 𝑦𝑛+1:

𝑦𝑛+1 =
𝑦𝑛 + 𝛽𝑦𝑛−𝜔
1 + 𝛾 + 𝛽𝑦𝑛−𝜔

, (15)
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where 𝛽 and 𝛾 are positive constants and 𝜔 is a nonnegative
integer. It is obvious that the delay equation (15) is reduced to
(4) when 𝜔 = 0. Equation (15) is a special case of the model
considered in [8, 9]. For some specific and general cases,
the authors in [23–26] show global asymptotic stabilities of
the zero and positive equilibria. The zero equilibrium of (15)
is globally asymptotically stable when 𝛽 ≤ 𝛾. The unique
equilibrium of (15) is globally asymptotically stable when
𝛽 > 𝛾. From those results, the difference equation (15) can be
seen as a discrete analogue that preserves the global stability
property of (12).

Let us now derive the difference equation (1) from (15).
For 𝜀 > 0, we introduce the variable 𝑥 and the parameters 𝑏
and 𝑐 in the same way as the derivation of (5); then we get

𝑥𝑛+1 = 𝜀 log (𝑒𝑥𝑛/𝜀 + 𝑒(𝑏+𝑥𝑛−𝜔)/𝜀)

− 𝜀 log (𝑒𝑐/𝜀 + 𝑒(𝑏+𝑥𝑛−𝜔)/𝜀) .
(16)

Letting 𝜀 → +0 and using the key relation (11), we get (1).
Finally, we note that (5) is a special case of (1). In fact, let𝜔 = 0
and 𝑏 > 0 in (5). Then

𝑥𝑛+1 = max (𝑥𝑛, 𝑏 + 𝑥𝑛) −max (𝑐, 𝑏 + 𝑥𝑛)
= 𝑥𝑛 +max (0, 𝑏) − 𝑥𝑛 −max (𝑐 − 𝑥𝑛, 𝑏)
= 𝑏 − 𝑐 −max (−𝑥𝑛, 𝑏 − 𝑐) .

(17)

In the following section, we study the convergence of the
solution of (1).

3. Global Properties of the Solution

In this section, we elucidate that the three models (12), (15),
and (1) have the same qualitative properties. To do that, we
study the asymptotic behaviour of the solutions of (1).

Lemma 1. For any solution, there exists 𝑛 ∈ N+ such that 𝑥𝑛 ≤
0 for 𝑛 ≥ 𝑛.
Proof. Let us assume that 𝑥𝑛 ≥ 𝑐 for some 𝑛 ≥ 0. Then

max (𝑥𝑛, 𝑏 + 𝑥𝑛−𝜔) = 𝑥𝑛 − 𝑐
+max (𝑐, −𝑥𝑛 + 𝑐 + 𝑏 + 𝑥𝑛−𝜔)

≤ 𝑥𝑛 − 𝑐 +max (𝑐, 𝑏 + 𝑥𝑛−𝜔) .
(18)

Using this estimation in (1), we get

𝑥𝑛+1 ≤ 𝑥𝑛 − 𝑐 +max (𝑐, 𝑏 + 𝑥𝑛−𝜔) −max (𝑐, 𝑏 + 𝑥𝑛−𝜔)
= 𝑥𝑛 − 𝑐.

(19)

This implies that 𝑥𝑛 is decreasing with respect to 𝑛 as long as
x𝑛 ≥ 𝑐.Therefore, there exists 𝑘 such that 𝑥𝑘−1 ≥ 𝑐 and 𝑥𝑘 < 𝑐.
Then from (1) with 𝑛 = 𝑘, it follows that
𝑥𝑘+1 ≤ max (𝑐, 𝑏 + 𝑥𝑘−𝜔) −max (𝑐, 𝑏 + 𝑥𝑘−𝜔) = 0. (20)

Inductively we get that 𝑥𝑚 ≤ 0 for all𝑚 ≥ 𝑘 + 1 = 𝑛.

From Lemma 1, without loss of generality, we can set the
initial condition as

𝑥−𝑗 ≤ 0, 𝑗 ∈ {0, 1, . . . , 𝜔} . (21)

Note that Lemma 1 implies that

{𝑥 ∈ R | 𝑥 ≤ 0} (22)

is an invariant set.
To discuss global attractivity of equilibria of the scalar

difference equation (1), it seems to be convenient to consider
an equivalent two-dimensional system. From (22) and 𝑐 > 0,
one has

𝑏 + 𝑥𝑛−𝜔 ≥ 𝑥𝑛 − 𝑐 + 𝑏 + 𝑥𝑛−𝜔, (23)

and then we can write

max (𝑥𝑛, 𝑏 + 𝑥𝑛−𝜔)
= max (𝑥𝑛, 𝑥𝑛 − 𝑐 + 𝑏 + 𝑥𝑛−𝜔, 𝑏 + 𝑥𝑛−𝜔) .

(24)

Now we define 𝑤𝑛+1 = −max(0, −𝑐 + 𝑏 + 𝑥𝑛−𝜔); then from (1)
and (24) one has

𝑥𝑛+1 = max (𝑥𝑛, 𝑥𝑛 − 𝑐 + 𝑏 + 𝑥𝑛−𝜔, 𝑏 + 𝑥𝑛−𝜔) + 𝑤𝑛+1
− 𝑐

= max (𝑥𝑛 − 𝑤𝑛+1, 𝑏 + 𝑥𝑛−𝜔) + 𝑤𝑛+1 − 𝑐
= max (𝑥𝑛, 𝑏 + 𝑥𝑛−𝜔 + 𝑤𝑛+1) − 𝑐,

(25)

where we use 𝑤𝑛+1 ≤ 0 in (22). Therefore we can get the
following system:

𝑤𝑛+1 = −max (0, −𝑐 + 𝑏 + 𝑥𝑛−𝜔) , (26a)

𝑥𝑛+1 = max (𝑥𝑛, 𝑏 + 𝑥𝑛−𝜔 + 𝑤𝑛+1) − 𝑐. (26b)

The initial condition is given as (22).
To discuss global attractivity of equilibria, we now con-

sider (26a) and (26b) in the set given as in (22).

Theorem 2. Let one assume that 𝑏 < 𝑐 holds. Then

𝑤𝑛 = 0 for 𝑛 ≥ 1,
lim
𝑛→∞
𝑥𝑛 = −∞.

(27)

Proof. Since for any 𝑛 ≥ 0 one has that−𝑐+𝑏+𝑥𝑛−𝜔 ≤ 𝑏−𝑐 < 0
from Lemma 1, it follows that

𝑤𝑛+1 = −max (0, −𝑐 + 𝑏 + 𝑥𝑛−𝜔) = 0. (28)

Therefore it follows that 𝑤𝑛+1 = 0 for any 𝑛 ≥ 0 from (26a).
From (26b), we get

𝑥𝑛+1 = max (𝑥𝑛 − 𝑐, 𝑥𝑛−𝜔 + 𝑏 − 𝑐) . (29)

Let

𝑥𝑚 fl max
0≤𝑗≤𝜔
𝑥𝑚(𝜔+1)−𝑗 for 𝑚 ∈ N+. (30)
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Note that 𝑥𝑚(𝜔+1)−𝑗 ≤ 𝑥𝑚 for 𝑗 ∈ {0, 1, . . . , 𝜔}. We show that

𝑥𝑚+1 ≤ 𝑥𝑚 +max (−𝑐, 𝑏 − 𝑐) . (31)

From (29), we have

𝑥(𝑚+1)(𝜔+1)−𝜔 = 𝑥𝑚(𝜔+1)+1
= max (𝑥𝑚(𝜔+1) − 𝑐, 𝑥𝑚(𝜔+1)−𝜔 + 𝑏 − 𝑐)
≤ max (𝑥𝑚 − 𝑐, 𝑥𝑚 + 𝑏 − 𝑐)
= 𝑥𝑚 +max (−𝑐, 𝑏 − 𝑐) .

(32)

For some 𝑗 ∈ {1, 2, . . . , 𝜔}, suppose that
𝑥(𝑚+1)(𝜔+1)−𝑗 ≤ 𝑥𝑚 +max (−𝑐, 𝑏 − 𝑐) . (33)

Then using (29) and (33), we obtain

𝑥(𝑚+1)(𝜔+1)−𝑗+1
= max (𝑥(𝑚+1)(𝜔+1)−𝑗 − 𝑐, 𝑥𝑚(𝜔+1)−𝑗+1 + 𝑏 − 𝑐)
≤ 𝑥𝑚 +max (−𝑐, 𝑏 − 𝑐) .

(34)

By mathematical induction, it holds that 𝑥(𝑚+1)(𝜔+1)−𝑗 ≤ 𝑥𝑚 +
max(−𝑐, 𝑏 − 𝑐) for any 𝑗 ∈ {0, 1, . . . , 𝜔}. Therefore we get

𝑥𝑚+1 ≤ 𝑥𝑚 +max (−𝑐, 𝑏 − 𝑐) . (35)

Now it is obvious that lim𝑚→∞𝑥𝑚 = −∞ and hence
lim𝑛→∞𝑥𝑛 = −∞. We thus obtain the conclusion.

If 𝑏 > 𝑐,𝑤𝑛 and 𝑥𝑛 converge to a unique equilibrium. First
we show that system (26a) and (26b) has a nontrivial equilib-
rium.

Proposition 3. Let one assume that 𝑏 > 𝑐 holds. Then system
(26a) and (26b) has an equilibrium (−𝑏 + 𝑐, 0).
Proof. Let 𝑏 > 𝑐 > 0 holds. We show that system (26a) and
(26b) has the constant solution (−𝑏 + 𝑐, 0). From direct com-
putations, one can see

−max (0, −𝑐 + 𝑏) = −𝑏 + 𝑐,
max (0, 𝑐) − 𝑐 = 0.

(36)

Proposition 4. Let one assume that 𝑏 > 𝑐 holds. It follows that
𝑥𝑛+1

= {{
{

0 if 𝑥𝑛−𝜔 ≥ −𝑏 + 𝑐
max (𝑥𝑛 − 𝑐, 𝑥𝑛−𝜔 + 𝑏 − 𝑐) if 𝑥𝑛−𝜔 < −𝑏 + 𝑐.

(37)

Proof. Assume that 𝑥𝑛−𝜔 ≥ −𝑏 + 𝑐. Then it is straightforward
to get 𝑤𝑛+1 = 𝑐 − 𝑏 − 𝑥𝑛−𝜔 from (26a). Since we have 𝑥𝑛 ≤ 0
(see Lemma 1), we get

𝑥𝑛+1 = max (𝑥𝑛, 𝑐) − 𝑐 = 0. (38)

On the other hand, assume that 𝑥𝑛−𝜔 < −𝑏 + 𝑐. Then 𝑤𝑛+1 =
0 follows from (26a).Thus we immediately obtain the conclu-
sion from (26b) with 𝑤𝑛+1 = 0.

We now show that every solution converges to the non-
trivial equilibrium.

Theorem 5. Let us assume that 𝑏 > 𝑐. Then

lim
𝑛→∞
𝑤𝑛 = −𝑏 + 𝑐,

lim
𝑛→∞
𝑥𝑛 = 0.

(39)

Proof. Let

xℓ fl (𝑥ℓ(𝜔+1), 𝑥ℓ(𝜔+1)−1, . . . , 𝑥ℓ(𝜔+1)−𝜔) (40)

for ℓ ∈ N+. From Proposition 4, one can see that

𝑥ℓ(𝜔+1)−𝑘 ≥ 𝑏 − 𝑐 + 𝑥(ℓ−1)(𝜔+1)−𝑘 (41)

for 𝑘 ∈ {0, 1, 2, . . . , 𝜔} if 𝑥(ℓ−1)(𝜔+1)−𝑘 < −𝑏 + 𝑐. Therefore,

lim
ℓ→∞
𝑥ℓ(𝜔+1)−𝑘 = 0, 𝑘 ∈ {0, 1, 2, . . . , 𝜔} ; (42)

that is, each component of xℓ converges to the equilibrium as
ℓ → ∞. Then, there exists a sufficiently large integer 𝑚 such
that 𝑥𝑛 = ⋅ ⋅ ⋅ = 𝑥𝑛−𝜔 = 0 for 𝑛 ≥ 𝑚. For 𝑛 ≥ 𝑚, we obtain

𝑤𝑛+1 = −max (0, −𝑐 + 𝑏) = −𝑏 + 𝑐. (43)

Theorems 2 and 5 show that 𝑏 < 𝑐 and 𝑏 > 𝑐 are,
respectively, the criteria of the global divergence to −∞ and
the convergence to the unique equilibrium. Equation (1) also
has the threshold dynamics as in (12) and (15).

For 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝜔+1) ∈ R𝜔+1, we define ‖𝑌‖ =
√∑𝜔+1𝑗=1 𝑦2𝑗 . Let

𝑋𝑛 fl (𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥𝑛−𝜔) . (44)

Here we show that the equilibrium is stable. Assume that
𝑥𝑛−𝜔 > 0. If ‖𝑋𝑛‖ < 𝑐, then from (1) we obtain 𝑥𝑛+1 = 0.
Thus

󵄩󵄩󵄩󵄩𝑋𝑛󵄩󵄩󵄩󵄩 ≥ 󵄩󵄩󵄩󵄩𝑋𝑛+1󵄩󵄩󵄩󵄩 (45)

follows. On the other hand, assume that 𝑥𝑛−𝜔 ≤ 0. If ‖𝑋𝑛‖ <
𝑏− 𝑐, then, from Proposition 4, we obtain 𝑥𝑛+1 = 0. Thus (45)
follows. Consequently, if ‖𝑋𝑛‖ < min(𝑐, 𝑏−𝑐), then we obtain
(45). Thus the equilibrium is stable in R𝜔+1.

In Figure 1, we plot 𝑥𝑛 with respect to 𝑛. For 𝜔 = 6, the
initial condition is chosen as

(𝑥−6, 𝑥−5, 𝑥−4, 𝑥−3, 𝑥−2, 𝑥−1, 𝑥0)
= (−10, −11, −20, −13, −20, −15, −16) .

(46)

We set the parameters as 𝑏 = 1 and 𝑐 = 3 in Figure 1(a), while
𝑏 = 5 and 𝑐 = 2 in Figure 1(b). As in Theorems 2 and 5, one
can see that 𝑥 tends to −∞ as 𝑛 → ∞ in Figure 1(a) and that
𝑥 tends to 0 as 𝑛 → ∞ in Figure 1(b).
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Figure 1: Numerical illustration of a solution behaviour (𝜔 = 6).

4. Conclusion

In this paper, we consider an ultradiscrete model with time
delay. In Theorems 2 and 5, we show that the ultradiscrete
model also has the threshold property concerning global
attractivity of equilibria, similar to the difference equation [8]
and differential equation [10]. For the proof of global attract-
ivity of the nontrivial equilibrium in Theorem 5, we reduce
system (26a) and (26b) to the scalar difference equation in
Proposition 4 and then use a certain monotone property of
the solution.

In a different study, the scalar difference equation system
(26a) and (26b) also appears, where we derive an ultradiscrete
model from an SIR type epidemic model. In the SIR type
epidemic model, no reinfection is assumed after the recovery
[27], differently from the assumption of the SIS type epidemic
model. Although those model structures are different, we
encounter the same difference equation system (26a) and
(26b) in the ultradiscrete level. The implication shall be
explored in the future study.

In this paper, we study qualitative properties of the ultra-
discretemodel (1). In [19], it is shown that simple ultradiscrete
models can capture disease transmission dynamics. Cellular
automata have been used to model complex phenomena
including disease transmission dynamics. Since cellular au-
tomata are computationalmodels, in general, it isnot straight-
forward to perform a mathematical analysis, in order to
provide theoretical basis for the simulation studies. Our ana-
lytical study for the ultradiscretemodel could be complement
for numerical simulation studies for some cellular automaton
models.
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