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Selection and optimization of pure and mixed working fluids for low

grade heat utilization using organic Rankine cycles

J.G. Andreasen∗, U. Larsen, T. Knudsen, L. Pierobon, F. Haglind

Technical University of Denmark, Department of Mechanical Engineering Building 403, Nils Koppels Allé,
DK-2800 Kgs. Lyngby, Denmark

Abstract

We present a generic methodology for organic Rankine cycle optimization, where the working

fluid is included as an optimization parameter, in order to maximize the net power output of

the cycle. The method is applied on two optimization cases with hot fluid inlet temperatures

at 120◦C and 90◦C. Pure fluids and mixtures are compared to see how mixed working

fluids affect performance and important design parameters. The results indicate that mixed

working fluids can increase the net power output of the cycle, while reducing the pressure

levels. The maximum net power output is obtained by fluids with a critical temperature

close to half of the hot fluid inlet temperature. For some mixtures we find the maximum

net power when the temperature glide of condensation matches the temperature increase

of the cooling water, while for other mixtures there are large differences between these two

parameters. Ethane is a fluid that obtains a large net power increase when used in mixtures.

Compared to pure ethane, an optimized ethane/propane mixture attains a 12.9% net power

increase when the hot fluid inlet temperature is 120◦C and a 11.1% net power increase when

the hot fluid inlet temperature is 90◦C.

Keywords: organic Rankine cycle, genetic algorithm, fluid selection, zeotropic mixtures,

low grade heat, geothermal

1. Introduction

The organic Rankine cycle (ORC) is a technology, that can produce mechanical power

from various heat sources. Compared to the traditional steam Rankine cycle the ORC has
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Nomenclature

Acronyms Subscripts and superscripts
GWP Global warming potential boil Boiling
HMIS Hazardous Materials Identification System cond Condenser
ODP Ozone depletion potential cool Cooling water
ORC Organic Rankine cycle exp Expander

g Glide of condensation
Greek symbols hf Hot fluid
∆ Difference I First law/thermal
ε Effectiveness, [%] i Input
η Efficiency, [%] min Minimum

NET Net
Symbols n Normalized
A Area, [m2] o Out
cp Specific heat capacity, [kJ/kgK] p Polytropic
h Specific enthalpy, [kJ/kg] pp Pinch point
ṁ Mass flow rate, [kg/s] pump Pump
n Number of discretization points, [-] ref Reference
P Pressure, [bar] s Isentropic

Q̇ Heat transfer rate, [kW] sat Saturated
s Entropy, [kJ/kgK] sc Subcritical
T Temperature, [◦C] sh Superheated
Ū Average overall heat transfer coefficient, [kW/m2K] tc Transcritical

V̇ Volume flow rate, [m3/s] wf Working fluid

Ẇ Mechanical power, [kW]
X Mole fraction, [-]
x Vapour quality, [-]

several advantages when considering utilization of low temperature heat [1]. This makes the

ORC suited for environmentally-friendly power conversion from geothermal heat sources,

concentrated solar energy, waste heat streams and as bottoming cycles for power plants.

An important part of the optimization and design of an ORC is the working fluid selec-

tion, since the properties of the working fluid affect both cycle performance and component

design. The volume flow ratio, enthalpy drop and Mach number are some important param-

eters when considering expander design, while thermal conductivity and viscosity are key

variables in heat exchanger design. Hazard levels, ozone depletion potential (ODP), global

warming potential (GWP) and thermal stability must also be considered. When choosing a

working fluid for an ORC, it is therefore necessary to consider many different parameters,

in order to reach a feasible design. For example, it is possible that a thermodynamically

beneficial working fluid requires infeasibly large heat exchanger areas or an overly expensive

expander (e.g. a multi-stage axial turbine). The review on fluid selection studies recently

provided by Bao and Zhao [2], gives an overview of the abundant literature which is available

on fluid selection for pure fluids. Binary working fluids have been studied far less, despite

the available literature suggesting possible performance benefits when zeotropic mixtures
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are used in ORCs.

The non-isothermal phase change of zeotropic mixtures, can be utilized to optimize

the heat transfer processes in the evaporator and the condenser thus increasing the effi-

ciency of the ORC [3]. Heberle et al. [4] optimized subcritical ORCs using the mixtures:

isobutane/isopentane and R227ea/R245fa, as working fluids. The analysis showed that the

second law efficiency of the best isobutane/isopentane mixture was 8% higher than that of

pure isobutane. The best R227ea/R245fa mixture showed 0.8% higher second law efficiency

than pure R227ea. For the isobutane/isopentane mixture, Heberle et al. [4] also showed

that the condenser UA-value peaked with the second law efficiency, while the UA-values

for the preheater and the evaporator remained close to constant over a range of mixture

compositions.

Trapp and Colonna [5] maximized the net power output of an ORC for low grade waste

heat recovery from a pre-combustion CO2 capture process as part of an integrated gasifica-

tion combined cycle power plant. The waste heat stream was a 140◦C syngas/water mixture

which partly condensed as heat was transferred from the waste heat stream to the ORC.

For this unconventional heat source they showed that it was thermodynamically beneficial

to have a supercritical boiler pressure and/or a binary zeotropic working fluid in the ORC.

The results of an exergy analysis indicated that the exergetic efficiency of the condenser

increased by 31% when a binary mixture was used instead of a pure fluid, and that the exer-

getic efficiency of the primary heat exchanger (boiler) was increased by 4-6% when an ORC

with a supercritical boiler pressure was used instead of a subcritical ORC. An estimation

of the required condenser heat transfer area indicated that a larger condenser is needed for

mixtures than for pure working fluids.

Chys et al. [6] optimized a large number of working fluids (pure fluids, binary mix-

tures and three-component mixtures) in ORCs. For their low temperature heat source they

optimized eight different binary mixtures of hydrocarbons and refrigerants to reach maxi-

mum thermal efficiency. For cyclohexane the thermal efficiency increased from 10.85% to

11.57% when isopentane was combined with cyclohexane to form a binary zeotropic working

fluid, and a further increase to 11.74% was obtained when isohexane was added to form a

three-component working fluid mixture.

Papadopoulos et al. [7] recently presented a fluid selection method where the Computer

Aided Molecular Design approach was used to find optimal molecular structures for fluids

used in binary working fluid mixtures. The method was applied to maximize the exergetic

efficiency of an ORC utilizing a heat stream with an inlet temperature at 95◦C and yielded 10
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potentially optimal fluid mixtures containing neopentane and/or fluorinated hydrocarbons.

A fluid selection and optimization study of ORCs, considering a large group of binary

mixtures as possible working fluids, combined with an evaluation of parameters which affect

the design of components, for a non-condensing (temperature independent cp) heat source,

has not yet been published in the scientific literature. Previous studies on binary mixtures in

ORCs concerned optimization and preliminary component design for specific fluid mixtures,

while other studies have considered many different binary mixtures with a primary focus on

efficiency maximization.

This paper provides an ORC optimization analysis where both pure fluids and mixtures

are considered as possible working fluids. Two liquid water streams with inlet temperatures

at 120◦C and 90◦C representing geothermal heat sources or industrial waste heat streams are

chosen as the basis of the analysis. These low temperatures are chosen, since mixtures have

shown beneficial performance compared to pure fluids when the hot fluid inlet temperature

is low [3–7]. A systematic methodology using a genetic algorithm optimizer is developed to

find promising pure fluids and mixtures for the maximization of the net ORC power output.

Both subcritical-saturated, subcritical-superheated and transcritical ORCs are considered

as possible solutions. The best candidates are evaluated based on: thermodynamic per-

formance, pressure levels, volume flow ratio over the expander, a turbine size parameter,

ŪA-values, fluid hazard levels and GWP, which are the critical parameters for the expander

design, heat exchanger design, safety and the environment. Furthermore, the critical tem-

perature and the temperature glide of condensation are evaluated in order to investigate if

the working fluids yielding maximum net power have common characteristics.

The paper begins with a description of the used methodology in Section 2. Then the

results are presented in Section 3. Section 4 provides a discussion of the results and a

comparison with the existing literature. Finally conclusions are given in Section 5.

2. Methodology

The ORC is optimized in its simplest configuration. In this configuration it consists of

four components: a pump, a boiler, an expander and a condenser. For subcritical cycles

the boiler contains a preheater, an evaporator and a superheater (optional). A sketch of the

simple cycle can be seen in Fig. 1 (a), while Fig. 1 (b) shows a subcritical and a transcritical

ORC with a zeotropic working fluid in a Ts-diagram.

The assumptions used in the numerical simulations are listed in Table 1. Additional

assumptions are the following: no pressure loss in piping or heat exchangers, no heat loss
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Figure 1: (a) a sketch of the ORC and (b) a subcritical (solid line) and a transcritical (dashed line) ORC
process in a Ts-diagram

from the system, steady state condition and homogeneous flow in terms of thermodynamic

properties.

The net power, ẆNET , given as the difference between the expander power and the pump

power, is chosen as the objective function in the optimization

ẆNET = ṁwf [h3 − h4 − (h2 − h1)] (1)

where ṁwf is the mass flow of the working fluid and h is the specific enthalpy.

The net power is chosen as the objective function, since the purpose of the ORC is

to produce maximum net power using the available heat. The corresponding optimization

variables can be expressed in an array as

Y = [T3, P3, Thf,o, fluid 1, fluid 2, Xwf ] (2)

where T is the temperature, P is the pressure, and Xwf is the composition of the working

fluid (for mixtures).

Table 2 shows the optimization parameters, and the range in which they are allowed to

vary. For the expander inlet temperature and the hot fluid outlet temperature, the upper

limit is dependent on the hot fluid inlet temperature.

The parameters listed in Tables 1 and 2 are used to determine all state points and mass
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Table 1: Modeling conditions

Parameter description Symbol Value

Hot fluid (water)
Hot fluid inlet temperature Thf,i 120◦C & 90◦C
Hot fluid mass flow ṁhf 50 kg/s
Hot fluid pressure Phf 4 bar
Condenser
Cooling water inlet temperature Tcool,i 15◦C
Cooling water temperature rise ∆Tcool 5◦C
Min. temperature difference ∆Tcond 5◦C
Outlet vapour quality x1 0
Cooling water pressure Pcool 4 bar
Condenser steps ncond 10
Pump
Isentropic efficiency ηs,pump 0.8
Boiler
Min. temperature difference ∆Tboil 10◦C
Boiler steps nboil 10
Expander
Polytropic efficiency ηp,exp 0.8
Min. vapour quality xexp,min 1
Expansion steps nexp 50

Table 2: Optimization parameters and range of parameter variation

Parameter description Symbol Range

Expander inlet temperature T3 20◦C - 110/80◦C
Expander inlet pressure P3 0.1 bar - 100 bar
Hot fluid outlet temperature Thf,o 20◦C - 110/80◦C
First working fluid - -
Second working fluid - -
Mole composition Xwf 0 - 1

flows in the ORC. The condenser pinch point is used to determine the condensation pressure,

and the boiler pinch point is used to check if the minimum limit on the boiler pinch point is

violated for the given hot fluid outlet temperature Thf,o and boiler pressure P3. The thermal

energy input and the net power output of the ORC vary depending on the outcome of the

optimizations. For the hot fluid characteristics chosen in this paper, the thermal energy

input to the cycle varies in the ranges 12.0-17.4 MW and 7.4-10.9 MW, while the net power

output varies in the ranges 1.0-1.5 MW and 0.4-0.6 MW for the 120◦C and 90◦C hot fluid

inlet temperature cases, respectively.

The thermodynamic simulation models were created using Matlab language, and the

database provided by Lemmon et al. [8] was used to obtain thermodynamic property data.

6



All pure fluids and predefined mixtures (e.g. R507A and R404A), with ODP = 0, within

the database are included as potential fluid candidates. The group of predefined mixtures

consists of mixtures including up to five fluids, and these mixtures are treated as pure fluids

in the optimizations. The property database also provides the possibility of combining

pure fluids to form mixtures of arbitrary composition. In this study we only consider the

possibility of combining pure fluids in binary mixtures. In order to ensure reliable property

data for these mixtures, we only consider mixtures, for which accurate and validated property

data is available. Accurate property data models for mixtures (relevant as ORC working

fluids) are provided by: Lemmon and Jacobsen [9] (R32, R125, R134a, R143a, R152a)

and Kunz and Wagner [10] (natural gas components, primarily hydrocarbons). For the

pure fluids reported in this paper the highest estimated uncertainties are the following: 1%

in density, 2% in speed of sound and 5% in heat capacities, within the temperature and

pressure ranges encountered in the optimizations. For the refrigerant mixtures in the model

of Lemmon and Jacobsen [9] the estimated uncertainties are: 0.1% in density, 0.5% in speed

of sound and 0.5% in heat capacities. For the mixtures in the model of Kunz and Wagner

[10] the estimated uncertainties are: 0.5% in density, 0.1% in speed of sound and 2% in heat

capacities. The uncertainties are higher close to the critical point.

2.1. Solution assessment

The requirements of the heat exchangers are estimated based on the ŪA-value, which is

the product of the average overall heat transfer coefficient (Ū) and the heat transfer area (A).

The overall heat transfer coefficient depends on fluid properties and flow characteristics, and

the area is determined by the heat exchanger design and is directly related to heat exchanger

cost. The ŪA-value is thereby not a direct measure of the heat exchanger cost, since Ū may

vary for the various solutions, but it gives an indication of the requirements and costs related

to the design of the heat exchangers.

For the power ranges of the ORCs considered in this paper, it is reasonable to use an axial

turbine as the expander. The usually low enthalpy drop of organic fluids makes it possible

to design efficient and low cost single stage turbines for ORCs. Macchi and Perdichizzi

[11] related the volume flow ratio over the turbine V̇4/V̇3 and the turbine size parameter√
V̇4/(∆hs)

0.25 to the isentropic efficiency of a single stage axial turbine. It is possible that

an ORC solution yielding a large net power output, is not able to reach the desired turbine

efficiency with a simple single stage turbine design. In this case it is necessary to use one

or more additional stages (increasing the cost of the turbine) to attain the desired turbine

efficiency. Based on the work of Macchi and Perdichizzi [11], Astolfi et al. [12] used two
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criteria to evaluate whether one or more turbine stages were needed for their axial ORC

turbines. In order to avoid high Mach numbers and large blade height variations, leading

to increased losses, they set a limit on the volume flow ratio for a single stage to 4, and in

order to avoid high mechanical stresses they limited the stage enthalpy drop to 65 kJ/kg.

Furthermore, they used the size parameter to estimate the cost of the turbines. In this paper

we use the above criteria to compare the turbine designs of the ORC solutions.

Hazard levels and GWP of the working fluid are very important parameters to consider

when assessing a given ORC solution, since these parameters influence the safety of the

system and the environment. In order to evaluate the hazards of the system, the HMIS

(Hazardous Materials Identification System) rating system [13] is used. Here the hazards

are divided into three categories: health hazards (h), flammability (f) and physical hazards

(p). For mixtures the maximum hazards for each of the three categories are shown. The

GWP is given for a 100 year time horizon evaluated with CO2 as the reference [14, 15], and

for mixtures it is estimated as a weighted average of the GWP of the pure fluids based on

mass fractions.

In order to make the results independent of the hot fluid mass flow and heat capacity (cp),

the net power and the ŪA-value are normalized with ṁhfcp,hfThf,i and ṁhfcp,hf , respectively.

All results, except the turbine size parameter, are therefore also valid for other hot fluids and

hot fluid mass flows, given that the assumed parameters in Table 1 (except ṁhf and Phf ) are

used, the cp of the hot fluid is approximately independent of temperature, no limitation on

the hot fluid outlet temperature applies and that the power output of the ORC is in a range

which makes it reasonable to use an axial turbine expander. This is true, since a variation

in the mass flow and/or cp of the hot fluid, simply scales the working fluid mass flow, the

cooling water mass flow and the net power output. The mass flow and cp of the hot fluid,

therefore, do not impact the outcome of the optimizations, when the above conditions are

satisfied.

The normalized net power Ẇn is defined as

Ẇn =
ẆNET

ṁhfcp,hfThf,i
(3)

With Thf,i given in ◦C, the quantity used for normalization ṁhfcp,hfThf,i is 25.46 MW

for the 120◦C hot fluid inlet temperature case and 18.92 MW for the 90◦C hot fluid inlet

temperature case.

The thermodynamic performance of an ORC utilizing sensible heat is dependent on the

heat recovery effectiveness ε and the thermal efficiency ηI . These performance parameters
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are therefore included in the solution assessment. The heat recovery effectiveness is defined

as

ε =
hhf,i − hhf,o
hhf,i − hhf,ref

(4)

where hhf,ref is the specific enthalpy of water at T = 20◦C (equal to the cooling water outlet

temperature) and P = Phf .

The thermal efficiency is defined as

ηI =
ẆNET

ṁhf (hhf,i − hhf,o)
(5)

2.2. Optimization procedure

The optimizations of this paper are carried out using the genetic algorithm available

through the ga-function in Matlab [16]. The input parameters given to the genetic algorithm

are shown in Table 3.

Table 3: Specified input parameters to the genetic algorithm

Parameter Value

Population size 100
Total number of generations 500/200
Maximum number of stalled generations 500
Minimum tolerance 0
Elite count 2
Crossover fraction 0.7

For each hot fluid inlet temperature the optimization is divided in an optimization con-

sidering only pure fluids (including predefined mixtures) and an optimization considering

mixtures for which the composition can be optimized. For the pure fluids the optimization

is carried out using 500 generations. For mixtures an initial optimization (500 generations)

is followed by an additional optimization (200 generations), where the two working fluids

in the mixture are kept fixed, such that the turbine inlet state, the hot fluid outlet tem-

perature and the mixture composition are the only optimized parameters. This approach is

chosen, since the additional optimization parameters in the mixture optimizations (second

working fluid and the mixture composition) make it difficult to obtain high accuracies on

the optimizations. When a binary mixture reaches a lower net power output than any of the
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pure fluids in the mixture, then the mixture is discarded. The same is the case for multi-

component predefined mixtures when better performance can be achieved by excluding one

or more fluids from the mixture. In order to ensure that all relevant fluids are considered

in the optimizations, the optimization procedure is carried out to find more fluids than

those presented in the paper, such that each fluid candidate has many changes of ”being

discovered” by the genetic algorithm.

The discretization of the heat exchangers is quite coarse and may lead to violation of

pinch points in the boiler. When the boiler pressure is well below the critical pressure,

the pinch point is typically located at the saturated liquid point. This point is therefore

included as an additional point in the boiler discretization, which ensures high accuracy of

the discretization. When the boiler pressure is subcritical and close to the critical pressure

or supercritical, it is difficult to predict the location of the pinch point, and nboil = 10 may

be insufficient to ensure high accuracy. A calculation with nboil = 100 is therefore carried out

for each of the found solutions, in order to evaluate the difference between the pinch points

of the solution with nboil = 10 and the solution with nboil = 100. If the pinch points deviate

more than 0.05◦C, then the solution is run through an additional optimization in the genetic

algorithm (200 generations), where the turbine inlet state, the hot fluid outlet temperature

and the mixture composition (only for mixtures) are optimized again with nboil = 30. Using

ncond = 10 for the condenser was found to be adequate for all solutions.

In order to check that the thermodynamic models provide reasonable results, and that the

genetic algorithm reaches satisfactory convergence, the models are validated by comparing

the results with similar results from the literature. For pure fluids the model is validated with

the exergetic plant efficiencies found by Walraven et al. [17] for a simple ORC configuration

(excluding R227ea and C4F10 due to expansion through the two phase region) and the

thermal efficiencies found by Larsen et al. [18] for the simple ORC (with a maximum pressure

limit of 20 bar) and the recuperated ORC. The largest relative deviation encountered is

3.27%. For mixtures the model is validated with the second law efficiencies found by Heberle

et al. [4] and the cycle efficiencies found by Chys et al. [6] (mixtures: R245fa/R365mfc,

R245fa/isopentane, R245fa/pentane and isopentane/cyclohexane). The maximum relative

deviation for this validation is 1.81%. The use of different versions of the property database

by Lemmon et al. [8], small differences in the modeling conditions (e.g. heat exchanger

discretization) and the possible event that the genetic algorithm does not achieve complete

convergence are deemed to cause the discrepancies in the validation.
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3. Results

Table 4: Results for the 120◦C hot fluid inlet temperature case

Fluids
Ẇn · 102

[-]
ηI

[%]
ε

[%]
Xwf

[%]
Pboil

[bar]
Pcond

[bar]
T3

[◦C]
Thf,o
[◦C]

∆Tg
[◦C]

V̇4

V̇3

[-]

√
V̇4

∆h
1/4
s

[cm]

ŪAtot
(ṁcp)hs

[-]

Hazard
[f/h/p]

GWP
[-]

R218tc 5.76 8.8 79.4 46.5 8.5 102.9 40.7 9.18 13.32 16.5 1/2/1 8830
R422Atc 5.71 9.5 72.9 57.4 12.3 102.2 47.2 1.4 6.27 10.04 15.5 4/1/0 3143
R125tc 5.66 9.2 74.2 57.7 13.7 100.8 45.9 5.45 9.95 15.0 1/1/0 3500
eth./prop.tc 5.53 8.9 75.3 87.5 89.7 32.5 110.0 44.8 6.3 2.67 5.83 17.2 4/1/0 3
R41tc 5.53 9.3 71.9 97.0 37.6 110.0 48.2 2.21 5.38 14.4 3/2/2 92

R143atc 5.46 9.5 69.4 49.3 12.6 97.2 50.7 4.86 9.37 13.4 1/1/0 4470
eth./ibut.tc 5.38 8.7 75.2 95.9 93.9 35.5 110.0 44.9 6.9 2.52 5.74 17.1 4/1/0 3
eth./but.tc 5.37 8.7 75.1 96.4 94.9 35.7 110.0 45.0 8.0 2.53 5.71 17.0 4/1/0 3
eth./ipent.tc 5.30 8.5 75.5 97.4 93.2 36.1 110.0 44.6 10.3 2.46 5.74 16.6 4/1/0 3
eth./pent.tc 5.26 8.4 76.3 97.9 89.7 36.4 110.0 43.8 13.0 2.36 5.78 16.3 4/2/0 3

eth./hex.tc 5.22 8.4 75.2 98.9 93.9 37.4 110.0 44.9 15.8 2.38 5.71 16.4 4/2/0 3
SF6tc 5.21 8.3 76.1 78.3 22.8 106.4 44.0 3.90 8.94 15.2 0/1/0 22800
eth./hept.tc 5.19 8.5 74.2 99.3 97.1 38.0 110.0 45.9 21.8 2.41 5.65 16.3 4/1/0 3
ethanetc 4.90 8.2 72.1 96.2 40.2 110.0 48.0 2.25 5.64 14.1 4/1/0 3
R32scsh 4.87 10.3 57.1 53.1 16.8 110.0 63.0 2.84 6.36 10.1 4/1/1 675

CO2/ibut.tc 4.86 7.2 81.4 88.6 100.0 49.3 110.0 38.7 15.7 1.84 5.79 14.8 4/1/0 1
CO2/but.tc 4.86 7.1 81.8 90.9 100.0 50.5 110.0 38.3 15.8 1.79 5.80 15.0 4/1/0 1
R1234yfscsat 4.83 9.3 63.2 24.2 6.8 79.0 57.0 4.51 12.21 11.1 0/2/0 4
R227eascsat 4.78 9.4 61.5 18.7 4.5 80.2 58.7 5.41 14.57 10.6 -/-/- 3220
C4F10scsat 4.75 8.6 67.0 10.6 2.6 75.9 53.1 5.00 19.96 11.3 0/1/0 8860

prop./ibut.scsat 4.75 9.5 60.8 80.2 23.0 7.3 76.0 59.4 5.2 3.52 9.56 13.2 4/1/0 3
CO2/prop.scsh 4.74 9.1 63.2 2.1 29.7 9.7 78.7 56.9 5.0 3.45 8.67 12.0 4/1/0 3
prop./but.scsh 4.73 9.4 61.1 89.2 24.1 7.7 76.4 59.0 6.0 3.45 9.32 13.0 4/1/0 3
prop./ipent.scsh 4.69 9.1 62.3 94.6 24.2 8.1 76.9 57.9 9.2 3.27 9.30 12.6 4/1/0 3
prop./pent.scsh 4.69 9.3 61.4 96.7 25.3 8.4 78.0 58.8 7.9 3.33 9.09 12.5 4/2/0 3

prop./hex.scsh 4.63 9.3 60.2 98.1 25.6 8.5 83.2 59.9 14.2 3.26 8.86 11.8 4/2/0 3
ibut./ipent.scsat 4.56 9.2 60.1 82.0 8.9 2.6 73.8 60.0 7.7 3.54 14.64 12.0 4/1/0 3
but./ipent.scsat 4.55 9.4 58.5 71.9 6.4 1.7 72.1 61.6 5.4 3.77 16.97 12.4 4/1/0 3
but./pent.scsat 4.53 9.2 59.4 81.4 6.4 1.8 72.3 60.8 7.0 3.64 16.76 12.1 4/2/0 3
propylenescsh 4.49 9.5 57.2 34.8 11.5 86.1 63.0 3.28 7.69 9.8 4/1/1 3

Tables 4 and 5 show the results of the ORC optimization for the 120◦C and 90◦C hot

fluid inlet temperature cases. The 30 fluids giving the highest net power are sorted with

respect to normalized net power in descending order. Subcritical and transcritical solutions

are indicated with superscripts sc and tc, respectively, and for the subcritical solutions the

subscript indicates either a superheated (sh) or saturated (sat) condition at the turbine

inlet. We define a solution as superheated when T3 > Tsat + 1, and as saturated when

Tsat ≤ T3 ≤ Tsat+1 (for mixtures the dew point temperature is used instead of the saturation

temperature Tsat). The mole composition of the more volatile component Xwf and the

temperature glide of condensation ∆Tg are only provided for mixtures.
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Table 5: Results for the 90◦C hot fluid inlet temperature case

Fluids
Ẇn · 102

[-]
ηI

[%]
ε

[%]
Xwf

[%]
Pboil

[bar]
Pcond

[bar]
T3

[◦C]
Thf,o
[◦C]

∆Tg
[◦C]

V̇4

V̇3

[-]

√
V̇4

∆h
1/4
s

[cm]

ŪAtot
(ṁcp)hs

[-]

Hazard
[f/h/p]

GWP
[-]

eth./prop.tc 3.21 6.1 68.5 86.9 60.3 32.3 80.0 42.1 6.5 1.87 5.40 11.1 4/1/0 3
CO2/but.tc 3.15 5.6 72.4 94.8 95.0 53.8 80.0 39.3 7.2 1.60 4.92 11.9 4/1/0 1
eth./ibut.tc 3.13 5.7 70.7 95.6 62.8 35.3 79.8 40.5 7.5 1.77 5.46 11.3 4/1/0 3
eth./but.tc 3.12 5.7 70.3 95.7 63.1 35.2 79.9 40.8 9.5 1.78 5.41 11.0 4/1/0 3
eth./ipent.tc 3.10 5.7 70.6 97.7 64.5 36.5 80.0 40.6 8.9 1.75 5.43 11.2 4/1/0 3

eth./pent.tc 3.09 5.7 70.5 98.2 65.1 36.9 80.0 40.7 10.9 1.74 5.40 11.1 4/2/0 3
R41tc 3.07 6.5 60.6 74.2 37.9 79.9 47.6 1.76 4.64 8.8 3/2/2 92
SF6tc 3.06 6.0 65.5 51.2 23.1 75.5 44.2 2.61 8.17 9.5 0/1/0 22800
CO2/prop.tc 3.05 5.3 73.9 82.1 85.1 50.1 80.0 38.3 6.1 1.58 5.26 11.9 4/1/0 1
ethanetc 2.89 5.8 64.8 74.2 40.6 80.0 44.7 1.78 5.18 9.6 4/1/0 3

R218scsat 2.78 6.2 57.8 20.3 8.6 60.1 49.6 3.24 11.50 7.7 1/2/1 8830
R419Asc

sh 2.77 6.4 55.8 21.7 9.7 57.8 51.0 5.4 2.47 9.06 9.0 4/1/2 2967
R32/134ascsh 2.75 6.8 52.6 64.7 24.3 11.4 80.0 53.2 5.3 2.09 7.16 8.3 4/1/1 1066
CO2tc 2.74 5.1 69.5 100.0 62.2 80.0 41.3 1.46 4.91 9.5 0/1/0 1
R125/R152ascsh 2.72 6.6 53.6 56.3 20.6 9.3 65.8 52.5 4.8 2.33 8.63 8.7 4/1/1 2489

R143a/R152ascsh 2.68 6.5 53.0 34.9 16.1 7.5 77.7 53.0 4.4 2.14 8.66 8.3 4/1/1 1888
R32/R152ascsh 2.68 6.7 51.7 19.7 15.1 6.9 77.2 53.8 4.9 2.13 8.46 7.7 4/1/1 213
R125/R134ascsh 2.67 6.3 54.4 54.0 20.6 9.4 65.1 52.0 3.6 2.34 8.98 8.3 1/1/0 2630
prop./ibut.scsat 2.66 6.6 51.9 77.3 15.0 7.1 57.0 53.7 5.6 2.20 8.39 8.3 4/1/0 3
but./ipent.scsat 2.65 6.6 51.7 67.0 4.0 1.6 55.7 53.9 5.9 2.43 15.26 8.1 4/1/0 3

R32/R125scsh 2.65 6.6 52.3 3.5 33.1 13.9 65.9 53.5 0.1 2.87 7.99 6.9 4/1/1 3456
ibut./ipent.scsat 2.64 6.7 51.0 81.5 6.1 2.6 58.2 54.3 7.8 2.38 12.58 7.7 4/1/0 3
prop./but.scsh 2.64 6.6 51.8 86.0 15.6 7.4 62.3 53.8 7.4 2.17 8.09 7.9 4/1/0 3
ibut./pent.scsat 2.62 6.6 51.3 84.8 6.2 2.6 59.5 54.1 9.8 2.36 12.49 7.5 4/2/0 3
prop./ipent.scsh 2.61 6.5 52.0 93.3 16.4 7.9 61.3 53.6 11.2 2.15 7.97 7.7 4/1/0 3

R125/R143ascsh 2.61 6.3 53.1 90.1 30.6 13.5 63.6 52.9 0.1 2.69 8.22 6.9 1/1/0 3569
prop./pent.scsh 2.60 6.5 52.0 94.3 16.5 8.0 63.5 53.6 13.0 2.13 7.92 7.7 4/2/0 3
hept./oct.scsat 2.60 6.6 50.7 39.9 0.1 0.0 56.0 54.6 6.3 4.08 89.03 7.2 3/2/0 3
R125scsh 2.59 5.7 58.4 28.4 13.8 58.0 49.1 2.41 8.94 7.6 1/1/0 3500
R143a/R134ascsh 2.59 6.5 51.9 57.7 19.4 9.1 76.1 53.7 2.8 2.20 8.46 7.4 1/1/0 3038

3.1. High performance fluids

For the 120◦C hot fluid inlet temperature case, R218 is the best performing fluid when

the net power of the ORC is considered. Compared to the other fluids in the top half of the

table, R218 has low pressure and hazard levels, which are desirable properties. On the other

hand R218 has a high GWP, high total ŪA, a high turbine size parameter and high turbine

volume flow ratio, indicating high investment costs and large environmental consequences if

a leakage occurs.

R125 and R143a both reach a high net power output, but many of the mixtures contain-

ing one or both of these two fluids are discarded due to too low net power outputs. R422A

(a mixture of R125/R134a/isobutane 85.1%/11.5%/3.4% by mass) on the other hand out-

performs R125 when rated on net power output.

By comparing performance values for pure ethane with the ethane mixtures, one sees
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that the mixtures achieve higher net power outputs at lower boiler and condenser pressures

than pure ethane (ethane/heptane is the only case where the boiler pressure is not reduced).

The relative increase in the net power of the ethane/propane solution is 12.9% compared to

the pure ethane solution. The results also indicate that the mixture solutions require larger

heat exchangers, since the ŪA-values are larger for the mixtures than for pure ethane. For

the ethane mixtures the highest performance is reached, when the other fluid in the mixture

has a boiling point close to the boiling point of ethane.

For the 90◦C hot fluid inlet temperature case, the results also suggest that high pres-

sure levels and ŪA-values are required in order to obtain maximum net power. The best

performing fluids are ethane mixtures with ethane as the dominating fluid. The optimal

ethane mixture is again ethane/propane, with a net power increase of 11.1% compared to

pure ethane. As for the 120◦C hot fluid inlet temperature optimization, the mixtures achieve

a pressure decrease, while the total cycle ŪA-value increases, compared to pure ethane.

For the 90◦C hot fluid inlet temperature case, the binary refrigerant mixtures do in many

cases obtain a net power increase compared to the pure refrigerants. The best performing re-

frigerant mixture is the predefined mixture R419A (a mixture of R125/R134a/dimethylether

77%/19%/4% by mass). Comparing R125 to R125/R152a and R134a/R125, one sees that

these refrigerant mixtures also achieve the net power increase at lower pressure levels and

with higher total cycle ŪA-values, as is the case for the ethane mixtures. For this hot fluid

inlet temperature, R218 shows benefits such as high net power output, low pressure levels,

low total ŪA-value and low hazard level.

For both hot fluid inlet temperatures the highest net power can only be reached if

high pressures and high ŪA-values are accepted. The high pressures in the boiler and the

condenser require that pressure resistant equipment is used in order to prevent leakages or

equipment failure at high pressure operation. Furthermore, it is desirable to have above

atmospheric condensation pressure, such that ambient air is prevented from entering the

condenser. All fluids, except heptane/octane, condense at pressures above the atmospheric

pressure.

3.2. Heat recovery effectiveness and thermal efficiency

In general the transcritical cycles achieve the highest power output compared to the

subcritical cycles, since they are more effective in recovering the heat from the hot fluid.

This is illustrated by the heat recovery effectiveness ε, which is high for the transcritical

cycles, while it is low for the subcritical cycles. On the other hand, the subcritical cycles

reach higher thermal efficiencies. R134a and R143a are two fluids which are commonly used
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in ORCs; however, R134a is not among the 30 best fluids for either of the two considered hot

fluid inlet temperatures, and R143a is only among the 30 highest performing fluids when the

hot fluid inlet temperature is 120◦C. For the 120◦C hot fluid inlet temperature case, R143a

is transcritical with a high heat recovery effectiveness and a high thermal efficiency, and

is therefore among the high performance fluids. For the 90◦C hot fluid inlet temperature

case, the critical temperature of R143a is too high for efficient transcritical operation, and

R143a does therefore obtain best performance when the boiler pressure is subcritical with

Ẇn = 2.47 · 10−2. The thermal efficiency of the R143a cycle is still high at ηI = 6.2%, but

the heat recovery effectiveness is reduced to ε = 51.1%, which leads to a large reduction

in performance compared to the competing fluids. Considering R134a, a low heat recovery

effectiveness is also the reason why this common fluid is not present among the 30 highest

performing fluids. For the 120◦C hot fluid inlet temperature case, the fluid attains ηI = 9.2%

and ε = 58.7%, and for the 90◦C hot fluid inlet temperature case, it achieves ηI = 6.2%

and ε = 48.5%. The thermal efficiency is therefore reasonably high in both cases, but the

low heat recovery effectiveness leads to normalized power outputs of Ẇn = 4.45 · 10−2 and

Ẇn = 2.35 · 10−2 for the 120◦C and 90◦C hot fluid inlet temperature cases, respectively.

3.3. Critical temperature and temperature glide

In Fig. 2 the solutions are placed according to their normalized net power output and

critical temperature. For both hot fluid inlet temperatures the best solutions are transcriti-

cal. For the 120◦C hot fluid inlet temperature the best solutions have critical temperatures

between 60◦C and 80◦C, and for the 90◦C hot fluid inlet temperature the critical tempera-

tures are roughly between 40◦C and 50◦C. For both hot fluid inlet temperatures, the best

solutions have critical temperatures around half of the hot fluid inlet temperature.

Usually, the optimum thermodynamic performance is obtained when the temperature

glide of condensation, ∆Tg, matches the temperature increase of the cooling water, ∆Tcool

[4, 6]. The results indicate that many of the mixtures have a ∆Tg close to ∆Tcool, but some

mixtures have a ∆Tg which is much higher than ∆Tcool. These mixtures have a non-linear

temperature glide and are therefore not able to match the temperature profile of the cooling

water when ∆Tg ' ∆Tcool. A curved condensation temperature profile, in the case where

∆Tg ' ∆Tcool, leads to a higher condensation pressure than if the temperature profile is lin-

ear. The condensation temperature profile is usually curved when the boiling points of the

fluids in the mixture are very different. Figure 3 shows the Q̇T -diagrams of condensation for

ethane/propane, ethane/heptane and CO2/propane mixtures optimized for the 120◦C hot

fluid inlet temperature. The Q̇T -diagrams for ethane/propane (low boiling point difference)
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Figure 2: Critical temperature for optimized pure fluids and mixtures for hot fluid inlet temperatures of (a)
Thf,i = 120◦C and (b) Thf,i = 90◦C
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Figure 3: Q̇T -diagram for the condenser for (a) ethane/propane, (b) ethane/heptane and (c) CO2/propane
for the 120◦C hot fluid inlet temperature case

and ethane/heptane (high boiling point difference) illustrate how the curvature of the tem-

perature profile affects condensation. Figure 3 (c) shows the Q̇T -diagram for CO2/propane

where the temperature profile curves in the opposite direction, thus enabling ∆Tg = ∆Tcool

although the condensation temperature profile is curved. These examples show that the

optimum mixture composition is not always found where ∆Tg = ∆Tcool.

For the 90◦C hot fluid inlet temperature, four mixtures: R32/R125, R125/R143a, R143a/R134a

and R125/R134a have temperature glides of condensation below 4◦C. The mixtures achieve

these low glides, since the fluids in the mixtures have similar boiling points, and it is there-

fore not possible for the mixtures to reach higher temperature glides at the given condenser

pressures.

The relationship between ∆Tg and ∆Tcool makes the results dependent on the type of

condenser used in the ORC. In the case where the condenser is air-cooled, the temperature
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increase of the cooling flow is larger than 5◦C. Repeating the optimizations with an air-cooled

condenser would therefore favor mixtures with higher temperature glides. In this case, other

mixture compositions and possibly also other mixtures would be thermodynamically optimal.

3.4. Turbine parameters

All fluid candidates, for both of the considered hot fluid inlet temperatures, have turbine

enthalpy drops below the limiting value of 65 kJ/kg, suggesting that a single stage turbine

is feasible for all solutions. Considering the volume flow ratio limitation, however, the

results suggest that a two stage turbine design must be employed for R218, R422A, R125,

R143a, R1234yf, R227ea and C4F10 for the 120◦C hot fluid inlet temperature case, and for

heptane/octane for the 90◦C hot fluid inlet temperature case. In addition to this, these

fluids all have a large size parameter and are therefore expected to require more expensive

turbines than the other fluids in the tables. The volume flows are generally lower for the

90◦C hot fluid inlet temperature case, and more fluid candidates are thereby available with

single stage turbine designs. For the ethane mixtures, the results indicate that compact and

low cost single stage turbines can be used.

3.5. Heat exchangers

Figure 4 shows the ŪA-values for the boiler and the condenser for all the optimized

solutions. For both hot fluid inlet temperatures it is seen that the subcritical cycles with

pure working fluids require low ŪA-values. For the subcritical mixture cycles the condenser

ŪA-value requirement increases, while the boiler ŪA-value requirement is similar to the

subcritical pure fluid ORCs. The transcritical cycles with pure working fluids require an

increase in both the ŪA-value of the boiler and the condenser compared to the subcritical

pure fluid ORCs. The ŪA-value increase is largest for the boiler. When comparing the

transcritical cycles with pure working fluids to the transcritical cycles with mixtures as

working fluids, primarily an increase in the condenser ŪA-value for the mixtures is observed.

When considering the ŪA-values, only one aspect of the heat exchanger design is taken

into account, i.e., the ratio of heat transfer to available temperature difference, relating

high heat transfer and low temperature difference to large heat transfer areas. Another

important aspect that impacts the heat exchanger size is the heat transfer properties of the

working fluid expressed through the Ū -value. Thermal conductivity, viscosity and diffusivity

(for mixtures) are transport properties which determine the heat transfer performance of a

specific fluid. Analysing the effect of the transport properties on the heat exchanger area

requires a detailed heat exchanger design analysis, which is out of the scope of this paper. In
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Figure 4: Normalized ŪA-values for the condenser and the boiler for optimized pure fluids and mixtures for
hot fluid inlet temperatures of (a) Thf,i = 120◦C and (b) Thf,i = 90◦C

a comparison of pure fluids and mixtures, it is expected that the heat transfer performance

of a mixture is worse than the heat transfer performance of the pure fluids in the mixture,

due to degradation of transport properties and the phase change process being limited by

diffusion [19].

3.6. Hazards and global warming potential

The lists of fluids shown in Tables 4 and 5 do not present many solutions where both

hazards and GWP are low, since the majority of the fluids have either high flammability

(hydrocarbons) or high GWP (refrigerants). CO2 for the 120◦C hot fluid inlet temperature

case and R1234yf for the 90◦C hot fluid inlet temperature case are the only two solutions that

provide the option of low hazards and GWP. Depending on regulations it may be required,

for example, to use a non-flammable working fluid, thus eliminating the flammable fluids

from the list of considered working fluids. In both optimization cases this requirement means

excluding a significant portion of the working fluids. The environmental effect of using a

high GWP working fluid is dependent on how the ORC plant is operated and managed, i.e.,

the procedures used for purging and refilling, and on how likely leakages are to occur.

4. Discussion

None of the analysed working fluids achieves optimal performance for all of the considered

criteria. The working fluid selection is thus a matter of finding a good compromise between

relevant parameters. When mixtures are considered as possible working fluids along with
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pure fluids, the total number of possible working fluids increases dramatically. This is

seen in Tables 4 and 5 where 19 and 24 mixtures, respectively, are included among the 30

thermodynamically best fluids for each of the two hot fluid inlet temperature cases, even

though many of the highest performing pure fluids are not considered in mixtures. This

suggests that a better compromise can be achieved, if mixtures are included in the ORC

optimization, than if only pure fluids are considered as working fluids.

For many of the mixtures considered in this paper it is possible to achieve an increased

net power output while reducing both the boiler and condensation pressure. This is probably

also possible for the fluids, that were excluded as possible fluids in mixtures due to lack of

validated models for property data estimation. The results indicate that R218 is a high

performance working fluid for low temperature ORCs. If R218 is mixed with another high

performance fluid it is possible that the net power output can be further increased, while

the pressure levels are reduced. The three-component mixtures, R422A and R419A, do

also turn out as high performance fluids although the composition of the mixtures is not

optimized. By considering a larger number of three-component mixtures and optimizing the

composition, it is likely that even higher net power outputs can be achieved.

The hot fluid chosen for the analysis presented in this paper is typical for geothermal heat

sources. By changing the hot fluid from water to air or to a thermal oil, the heat capacity of

the incoming heat stream changes. This affects the mass flow of the ORC and the net power

output. The same is true for changes in the hot fluid mass flow. When the conditions stated

in Section 2.1 are satisfied, the results of the optimizations are unaffected by a change in hot

fluid mass flow and heat capacity, and the net power output and ŪA for a given application

can be obtained using the normalized values presented in Tables 4 and 5. Considering the

design of the components, the mass flow and heat capacity influence the size of the ORC

system and have a significant impact on the result of a heat exchanger or expander design

analysis. For hot fluid inlet temperatures other than Thf,i = 120◦C and Thf,i = 90◦C, the

presented fluid rankings are not valid, since the hot fluid inlet temperature has an important

influence on which fluid is optimal. In some ORC applications it is necessary to limit the

hot fluid outlet temperature. This also influences the results of the optimizations, and the

presented fluid rankings are therefore not valid when such a temperature limitation applies.

The ranking of the fluids in Tables 4 and 5 is based on the optimized net power outputs

which are quite close for some fluids. When this is the case, inaccuracies in the optimization

and the fluid property data might affect the fluid rankings. Since it is not possible to convert

directly the reported uncertainties in density, speed of sound and heat capacity of the fluid
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property data models [8–10] to uncertainties in e.g. enthalpy and entropy, it is out of the

scope of this paper to estimate quantitatively the impact of the fluid property data errors on

the net power outputs. The highest uncertainties are however below 5%, so a large impact

on the results is not expected. The fluids in the top of the tables will most likely remain

high performance fluids also when these inaccuracies are taking into account; however, they

might shift position with fluids that reach similar net power outputs.

4.1. Comparison with the literature

The modeling conditions used by Heberle et al. [4] have many similarities with the mod-

eling conditions used in this paper. In both studies there is no limit on the boiler outlet

temperature, and both studies use the same fixed temperature increase of the cooling water.

Heberle et al. [4] carried out optimizations for mole fractions ranging from 0 to 1 in steps

of 0.1 for a recuperated ORC, i.e., 11 different mole compositions were optimized. The

optimum mole composition for the isobutane/isopentane mixture was found as (0.9/0.1) by

Heberle et al. [4] and as (0.82/0.18) in this paper. The difference is caused by differences

in the boiler pinch point, differences in the definition of the turbine inlet state and the use

of different versions of fluid property models. For both optimizations the optimum is found

close to the point where the temperature glide of condensation matches the temperature

increase of the cooling water. For the 120◦C hot fluid inlet temperature case, the analysis

of this paper indicates that an even higher net power output can be achieved if isobutane is

mixed with either propane, CO2 or ethane or if isopentane is mixed with propane or ethane.

For the 90◦C hot fluid inlet temperature a higher net power output can be achieved if isobu-

tane is mixed with ethane or propane and if isopentane is mixed with ethane or butane.

The pressure levels in the ethane, CO2 and propane mixture cycles are however significantly

higher than the pressure levels in the isobutane/isopentane mixture cycle. Comparing the

mixtures isobutane/isopentane and butane/isopentane for the 90◦C hot fluid inlet temper-

ature, one sees that the two mixtures reach similar net power outputs, turbine volume flow

ratios, total ŪA-value, hazard level and GWP, while the pressure levels are lower for the bu-

tane/isopentane mixture. This indicates that it is preferable to mix isopentane with butane

instead of isobutane for the 90◦C hot fluid inlet temperature.

Larsen et al. [20] recently presented multiple regression models for prediction of the

maximum obtainable thermal efficiency of recuperated and non-recuperated ORCs. For hot

fluid inlet temperatures between 80 and 180◦C, the thermal efficiency can be calculated

from the hot fluid inlet temperature, the hot fluid outlet temperature and the polytropic

efficiency of the turbine (assuming fixed condensation temperature Tcond = 25◦C and fixed
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heat exchanger pinch points ∆Tpp = 5◦C). Considering pure fluids, R218 and R125 reach the

highest net power outputs for the 120◦C hot fluid inlet temperature optimization, with hot

fluid outlet temperatures of 40.7 and 45.9◦C, respectively. The thermal efficiencies estimated

with the multiple regression model developed by Larsen et al. [20] agree with the thermal

efficiencies calculated in this paper within 2.5% for these two fluids. This is a very good

correspondence considering that the condensation temperature, the boiler pinch point and

the hot fluid outlet temperature are out of the validity range given by Larsen et al. [20].

5. Conclusion

This paper presents a generic method for simultaneous fluid selection and optimization

of ORCs considering pure fluids, predefined mixtures and binary optimized working fluids.

The results obtained by implementing the proposed method to optimize ORCs for two low

temperature heat sources with inlet temperatures at 120◦C and 90◦C suggest that the solu-

tion space is significantly increased when mixtures are included as possible working fluids.

Even with a limitation on the fluids considered in mixtures, it is found that 19 of the 30

thermodynamically best fluids are mixtures for the 120◦C hot fluid inlet temperature opti-

mization, while 24 mixtures are found for the 90◦C hot fluid inlet temperature optimization.

The transcritical cycles achieve the highest net power outputs, and the highest performing

transcritical cycles have working fluids with critical temperatures around half of the hot

fluid inlet temperature. For the 120◦C hot fluid inlet temperature case, R218 achieves the

highest net power output. None of the mixtures analysed in this paper is able to compete

with this, but if mixtures containing R218 are included in the optimization, higher net power

outputs can possibly be reached. A mixture of propane and ethane is found to achieve high

net power outputs for both hot fluid inlet temperature cases. Compared to pure ethane, the

net power output is increased by 12.9% for the 120◦C hot fluid inlet temperature case and

11.1% for the 90◦C hot fluid inlet temperature case.
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