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ABSTRACT

An improvedk-ε turbulence model is developed and applied to a single wind turbine wake in a neutral atmospheric
boundary layer using a Reynolds averaged Navier-Stokes solver. The proposed model includes a flow-dependentCµ that
is sensitive to high velocity gradients, e.g. at the edge of awind turbine wake. The modifiedk-ε model is compared with the
originalk-ε eddy viscosity model, Large-Eddy Simulations and field measurements using eight test cases. The comparison
shows that the velocity wake deficits, predicted by the proposed model are much closer to the ones calculated by the Large-
Eddy Simulation and those observed in the measurements, than predicted by the originalk-ε model. Copyrightc© 2013
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The energy losses in a wind farm due to the effects of wind turbine wakes can often range between 10% to 20% [1].
Wind turbine wakes also increase turbulence levels and can lead to early fatigue of wind turbines downstream. Therefore
reliable and practical modeling of the influence of wind turbine wakes in wind farms is necessary, in order to estimate the
wind farm annual energy production and the wind turbine loads. Wake effects have been studied using many tools, ranging
from simple empirical engineering models to ComputationalFluid Dynamics (CFD) methods such as Reynolds average
Navier-Stokes (RANS) or Large-Eddy Simulation (LES). LES results have proven to compare well with results of wake
measurements [2], but the computational costs are still high, especially ifcomplete wind farms are considered. RANS
is roughly three orders of magnitude less of computational resources than LES (as illustrated in Sec.4.2.3), however,
previous studies have shown that the most widely used turbulence models in RANS, e.g. the (linear)k-ε eddy viscosity
model (EVM), fail to predict the wake deficit and the Reynolds-stresses in a wake [3, 4, 5, 6]. The basis of a linear EVM
is the eddy viscosity hypothesis of Boussinesq, which linearly relates the Reynolds-stresses to the symmetrical part of the
velocity gradients [7]. Boussinesq hypothesis is seldom valid and can only predict isotropic turbulence [8]. Therefore, the
k-ε EVM cannot describe the anisotropic turbulence that is present in a neutral atmospheric boundary layer (ABL) nor in a
wind turbine wake. In addition, the parameterCµ present in definition of the eddy viscosity is a constant in thek-ε EVM,
which makes the model too dissipative when it is employed fora wake.

Modifications of thek-ε EVM have been proposed and tested successfully for wind turbines wakes. El Kasmi and
Masson [5] used an extra source term in the dissipation equation of thek-ε EVM (originally proposed by Chen and Kim
[9]), which is only active in the vicinity of rotor. This sourceterm includes a constantCε,4 that, together with the size
of region where the source term is applied, determines the performance of the model. El Kasmi and Masson showed that
the source term improves the velocity deficit for several cases compared to single wake measurements. Unfortunately, a
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thorough calibration of the source term is not published in the work of El Kasmi and Masson. Prospathopoulos et al. [6]
and Réthoré [3] investigated the modifiedk-ε EVM of El Kasmi and Masson, using different values ofCε,4, while keeping
the region of activity constant. Their work shows that the value ofCε,4 is not general and needs to be adjusted for different
single wind turbine wake cases. In addition, Prospathopoulos et al. showed that if the source term is calibrated to describe
the velocity wake deficit at the far wake, it may not perform well in the near wake and vice versa. It should be noted that
Prospathopoulos et al. and El Kasmi and Masson only comparedthe modifiedk-ε EVM with measurements, not with
LES, which can lead to an unfair comparison due to uncertainties in measurements. Cabezón et al. [4] investigated another
modifiedk-ε EVM, known as the realizablek-ε EVM of Shih [10]. The model has a variableCµ that is complex scalar
function of the local flow, i.e. a flow-dependentCµ, and it has a new transport equation for the dissipation rate. Cabezón
et al. showed that the velocity deficit and the Reynolds-stresses (in some extend) predicted by the realizablek-ε EVM
compares better with those of LES and measurements, with respect to the standardk-ε EVM. However, Cabezón et al.
only considered one test case.

Another type of alternative eddy viscosity models are the nonlinear eddy viscosity models (NLEVMs). Instead of using
the traditional Boussinesq hypothesis, the NLEVMs are based on a nonlinear stress-strain relationship in which products
of the velocity gradients are present. In addition, the NLEVMs often have a flow-dependentCµ that has similar behavior
as the flow-dependentCµ of the realizablek-ε EVM of Shih [10]. In previous work, modified versions of the cubic
NLEVM of Apsley and Leschziner [11] and the quartic NLEVM of Taulbee [12] have been employed for wind turbine
wake simulations [13]. The NLEVM of Taulbee is also applied to a single wind turbine wake in the work of Gomez-Elvira
et al. [14]. In terms of wake deficit and Reynolds-stresses, the performance of these NLEVMs is improved compared to
thek-ε EVM. The nonlinear terms in the stress-strain relationshipcan model anisotropic turbulence and this is the main
reason for the improved Reynolds-stress predictions. The flow-dependentCµ lowers the eddy-viscosity downstream of the
wind turbine, which increases the wake deficit. As a result, the wake deficit predicted by the NLEVMs is closer to the one
calculated by LES and observed in measurements. Unfortunately, the tested NLEVMs show numerically unstable behavior
for high turbulence levels [13]. In addition, it has been found that the cubic and the quartic NLEVMs are not stable for fine
grids, which is a major problem for grid refinement studies.

The goal of the present research is to develop a general RANS-based turbulence model that solves the shortcomings
of thek-ε EVM, without losing its simplicity and numerical stability. In addition, a model is desired that is general for
a large range of different wind turbine wake cases and does not need recalibration. In this paper, a modifiedk-ε EVM
is presented that has a flow-dependentCµ, which we label as thek-ε-fP EVM. fP is a scalar function that includes
variability of the flow-dependentCµ. Hereafter, the flow-dependentCµ is referred asC∗

µ, i.e,C∗
µ = CµfP with Cµ as

the traditional constant from the standardk-ε EVM. The proposed model is a simplified version of the cubic NLEVM of
Apsley and Leschziner [11], in which the nonlinear terms in the stress-strain relationship are disregarded. By removing the
nonlinear terms, the model is stable for the practical rangeof turbulence levels and grid spacings. Hence a grid refinement
study is feasible, and the results show that the model becomes grid-independent for fine enough grids, as discussed in
Sec.4.1.1. Since the proposed model is linear, only isotropic turbulence can be predicted, and one should not expect to
observe significant improved Reynolds-stresses compared to the originalk-ε EVM, as observed for NLEVMs in the work
of van der Laan et al. [13]. Therefore, the current work focuses on improving the wakedeficit. An advantage of thek-ε-fP
EVM over the modifiedk-ε EVM of El Kasmi and Masson [5], is that thek-ε-fP EVM lets the flow decide where the
modification is active, instead of using an arbitrary regionin which it should be activated.

Thek-ε-fP EVM is presented in Sec.2, where the effect ofC∗
µ is discussed. Sec.2, also shows that the relation ofC∗

µ

in thek-ε-fP EVM is very similar to the one of the realizablek-ε EVM of Shih [10], however, it is much simpler and has
only one constant to calibrate, namely the Rotta constantCR. The constantCR can be used to fit a certain measurement,
however, it would be preferable not to calibrate the turbulence model each time a flow parameter is changed. Therefore,
a comprehensive calibration ofCR in thek-ε-fP EVM is presented in Sec4, in which eight single-wake cases are used.
Four of the eight single-wake cases are based on field measurements and they are discussed in Sec.3. Section4 also covers
the simulation methods, and a comparison is made between thek-ε-fP EVM, original k-ε EVM, LES and available
measurements.

2. MODEL DESCRIPTION

In Sec.2.1a brief description of the proposedk-ε-fP EVM is presented. The background and the effect ofC∗
µ is discussed

in Sec.2.2. Note that repetitive indices are summed and an index after acomma represents a derivative.

2.1. Definition

The stress-strain relationship in thek-ε-fP EVM is exactly the same as the standardk-ε EVM:

u′
iu

′
j =

2

3
kδij − νT (Ui,j + Uj,i) , (1)

2 Wind Energ. 2013; 00:1–19 c© 2013 John Wiley & Sons, Ltd.
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with u′
iu

′
j as the Reynolds-stress,k as the turbulent kinetic energy,δij as the Kronecker delta andUi,j as the mean velocity

gradient. The turbulent eddy viscosityνT in the proposed model is different from the standardk-ε EVM but has the same
form:

νT = C∗
µ
k2

ε
, (2)

with ε as the turbulent dissipation andC∗
µ as a flow-dependent parameter which is a constant in the originalk-ε EVM, i.e.

Cµ. The flow-dependent parameterC∗
µ is defined as [11]:

C∗
µ = CµfP , (3)

in which fP is a scalar function that models the effect of non-equilibrium flow conditions [11]:

fP (σ/σ̃) =
2f0

1 +
√

1 + 4f0 (f0 − 1)
(
σ
σ̃

)2 , f0 =
CR

CR − 1
, (4)

with CR as the Rotta constant, originally chosen as 1.8 [15]. Eq. 4 is motivated in Sec.2.2. The shear parameterσ ≡
k
ε

√
(Ui,j)

2 is used to quantify how far the local flow deviates from the loglaw regime of a simple shear flow, for which

thek-ε-fP EVM is calibrated. In the calibration flow the shear parameter σ is equal toσ̃, i.e. σ̃ = k
ε

∥∥ ∂U
∂z

∥∥ = 1/
√

Cµ,
using the log law solution of thek-ε EVM [16]. Hence,fP is also a function ofCµ, i.e.,fP (Cµ).

Thek-ε-fP model uses the same transport equations fork andε as employed in the originalk-ε EVM:

Dk

Dt
= ∇ ·

[(
ν +

νT
σk

)
∇k

]
+ P − ε,

Dε

Dt
= ∇ ·

[(
ν +

νT
σǫ

)
∇ε

]
+ (Cε,1P − Cε,2ε)

ε

k
, (5)

whereν is the kinematic molecular viscosity,P is the turbulent production andCε,1, Cε,2, σk, σε are constants. In total,
seven model constants exist in thek-ε-fP EVM, which are summarized in TableI. The traditionalk-ε EVM constants are
chosen to be able to describe a neutral atmospheric boundarylayer in whichCµ = 0.03 andCε,1 is set such that the log
law solution is recovered. The constantCR is calibrated with LES, as discussed in Sec.4.

Table I. Model constants.

CR Cµ Cε,1 Cε,2 σk σε κ

4.5 0.03 1.21 1.92 1.00 1.30 0.40

2.2. The fP function

Apsley and Leschziner [11] introduced the limiter functionfP (Eq.4) to bound the nonlinear terms of their cubic NLEVM
and extend it to non-equilibrium conditions. In the cubic NLEVM, fP is also used to obtain the relation forC∗

µ, similar to
Eq.3. In the present research, the relation forC∗

µ is adopted, but all nonlinear terms are disregarded. Hence,the standard
linear k-ε EVM is recovered, including a variableCµ. Apsley and Leschziner derived their cubic NLEVM from an
algebraic Reynolds-stress model in an approximate manner,with algebraic Reynolds-stress parametersα, β andγ that
are proportional to1/(CR + P/ε− 1). CR represents the constant in the “slow” part of the pressure-strain model of
Launder et al. [17, 18]. P/ε is the ratio of turbulent production to dissipation. The derived cubic NLEVM includes the
same parametersα, β andγ; however, they are used to calibrate the cubic NLEVM with a simple shear flow. Therefore,
one can suggest to multiply the calibratedα, β andγ in the cubic NLEVM with a factor:

fP =
CR + P̃/ε− 1

CR + P/ε− 1
, (6)

in which P̃/ε is the ratio of turbulent production and dissipation in the calibration flow, i.e.,P̃/ε = 1. Apsley and
Leschziner found that the direct use of Eq.6 is numerically unstable, and proposed the approximationP/ε ≈ fPCµσ

2,

which is adopted in the present research. This approximation, and using̃P/ε = Cµσ̃
2, leads to Eq.4.

The behavior ofC∗
µ is plotted in Fig.1 in terms offP for the original and the calibrated value ofCR; 1.8 and 4.5,

respectively. For comparison a normalizedC∗
µ of Shih [10] is also shown, which is discussed in the next paragraph.fP is

unity when the flow is in equilibrium (σ = σ̃, irrespective off0) andC∗
µ is equal toCµ. Forσ > σ̃, fP < 1, C∗

µ is lower
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thanCµ. As a result, the eddy viscosity from Eq.2 is lowered and thek-ε-fP EVM behaves less dissipatively for high
shear parameters compared to the originalk-ε EVM. In the near-wake of a wind turbineσ can be much larger thañσ,
hence,C∗

µ has a high impact on the flow solution, which is mainly seen in the wake deficit, as shown in Sec.4. WhenCR

is increased the effect offP is reduced, and the model behavior of thek-ε-fP EVM will approach that of the originalk-ε
EVM. In terms of wake deficit, increasingCR will enhance the wake recovery, hence,CR controls the flow solution and
should be carefully chosen. Instead of using the original value of1.8, a comprehensive calibration ofCR is carried out in
Sec.4.

σ
σ̃

fP

fP with CR = 1.8

fP with CR = 4.5

fShih
P with A0 = 4.0

fShih
P with A0 = 16

0
0

0.5

1.5

2.5

3

3.5

2

2

1

4

4

6 8 10

Figure 1. fP of k-ε-fP EVM and fShih
P , derived from the realizable k-ε EVM of Shih, in a stationary frame of reference with

SklSlmSmk = 0.

AnotherC∗
µ function is developed by Shih [10], which is derived using realizability arguments. ThisC∗

µ function is part
of the realizablek-ε EVM of Shih, which Cabezón et al. [4] tested successfully for wind turbine wake simulations. The
function can be written in the form of Eq.4 (in a stationary frame of reference):

fShih
P ≡ C∗

µ

C∗
µ |σ=σ̃

=
f0

1 + (f0 − 1) σ
σ̃

, f0 = 1 + σ̃
As

A0
,

As =
√
6 cos

[
1/3 arccos

(
√
6
SklSlmSmk

(SklSlk)
(3/2)

)]
, (7)

whereA0 is a constant, originally set to 4.0 [10]. As is a complex relation of traces of products of the strain-rate tensor
Sij ≡ 1/2 (Ui,j + Uj,i). Note that the normalization is done withC∗

µ |σ=σ̃, such that a comparison can be made with the
limiter functionfP of Apsley and Leschziner. ForSklSlmSmk = 0 (valid in the log law region of the ABL and for 2D
flows),As = 3/2

√
2 andfShih

P is very similar to thefP with CR = 1.8, especially forσ
σ̃
> 1. Deviations betweenfShih

P

andfP are observed forσ
σ̃
< 1. In addition, Fig.1 shows that increasingA0 (A0 = 16) has a similar effect as increasing

CR. In principlefShih
P can also be applied in thek-ε-fP EVM instead offP , however, it has been found thatfP is more

robust compared tofShih
P .

3. TEST CASES

Thek-ε-fP EVM is used to simulate the wake of a single wind turbine for eight test cases. An overview of the test cases is
given in Tab.II . The first two test cases are based on meteorological mast wake measurements from the Wind Turbine Test
Site Wieringermeer (EWTW), owned by the Energy Research Centre of the Netherlands (ECN) [19]. The third test case
is based on an old measurement campaign, namely the field wakemeasurements of the Nibe B wind turbine conducted
in Denmark [20]. The fourth test case is derived from a set of recent lidar measurements of a Nordtank 500 test wind
turbine, owned and maintained by the Technical University of Denmark (DTU) [21, 22]. Finally four additional test cases
are defined to investigate the influence of the undisturbed turbulence intensity at hub heightIH,∞ ≡

√
(2/3k)/UH and

the thrust coefficientCT . These parameters are considered as the most important onesfor a wind turbine wake in a neutral
atmospheric boundary layer, since other parameters are either used to normalize the wake deficit (undisturbed wind speed
at hub heightUH,∞ and rotor diameterD) or else they can be related to the turbulence intensity (roughness heightz0,
friction velocityu∗ and hub heightzH). In addition, the rotational force component is not expected to play a large role in

4 Wind Energ. 2013; 00:1–19 c© 2013 John Wiley & Sons, Ltd.
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the wake deficit compared to the thrust coefficient. The four additional test cases are based on the NREL 5 MW reference
wind turbine [23]. The high undisturbed turbulence intensity in case 6 is chosen to reflect the maximum stream-wise
undisturbed turbulence intensity of 16%, using Eq.9. In the last two test cases onlyCT is changed while other parameters
(CP , UH,∞, etc.) are kept the same. This approach leads to a setup that does not resemble theCP andCT dependency on
wind speed that correspond to the original NREL-5MW wind turbine, however, the influence ofCT on the wake deficit
can now be investigated.

In order to compare the measurements with the numerical simulations the following input parameters for the numerical
simulations are necessary: the undisturbed turbulence intensity at hub heightIH,∞, the thrust coefficientCT , the power
coefficientCP , the rotational speedΩ, the undisturbed wind speed at hub heightUH,∞, the rotor diameterD and the hub
heightzH . The roughness heightz0 and the undisturbed friction velocityu∗ are not input parameters for the simulations,
because these parameters will be used to control the turbulence intensity at hub height as discussed in Sec.4.1.1. The test
cases that are based on measurements are described in the following sections.

Table II. Summary of cases and corresponding input parameters for numerical computations.

Case Description Measurement data IH,∞ CT CP Ω UH,∞ D zH
[-] [-] [-] [RPM] [m/s] [m] [m]

1 Wieringermeer West Met. mast, 4.5 years, 3.5D 8.0% 0.63 0.44 19.1 10.7 80 80
2 Wieringermeer East Met. mast, 4.5 years, 2.5D 6.0% 0.63 0.44 19.1 10.9 80 80
3 Nibe B Met. mast, 2 years, 2.5D,4D,7.5D 8.0% 0.89 0.46 34 8.5 40 45
4 Nordtank 500 Lidar, 102x10 minutes, 11.2% 0.70 0.44 27.1 7.45 41 36

1D,2D,3D,4D,5D
5 NREL-5MW Low IH,∞ - 4.0% 0.79 0.47 9 8.0 126 90
6 NREL-5MW HighIH,∞ - 12.8% 0.79 0.47 9 8.0 126 90
7 NREL-5MW LowCT - 8.0% 0.50 0.47 9 8.0 126 90
8 NREL-5MW HighCT - 8.0% 0.90 0.47 9 8.0 126 90

3.1. Wieringermeer

ECN Wind Turbine Test Site is located in Wieringermeer, an area in the North West of the Netherlands. The landscape
mainly consist of flat farmland. 2 km East from the meteorological mast a large lake (IJsselmeer) is present. The land and
the lake are separated by a dike which rises 8 m and 3 m above theland and the lake, respectively. The meteorological mast
is located South of five 2.5 MW Nordex wind turbines, all with a80 m rotor diameter and hub height. The layout of the five
wind turbine positions is given in Fig.2. Two single wake cases are measured for wind directions around 31◦and 315◦with
a corresponding downstream distance of 2.5D and 3.5D, respectively. The results of almost five years of measurements
have been published by Schepers et al. [19]. In addition, the ten minute averaged data was made available for this research.

95◦

315◦ 31◦ North

2.5D3.5D

3.8D

MM3

T5 T6 T7 T8 T9

y
D

x
D

-2

0

0

2

4

-5 5 10 15

Figure 2. Sketch of wind turbines (red dots) and meteorological mast (blue triangle) at EWTW site.

The meteorological mast is instrumented with sonic anemometers, cups and vanes at 80 m. Unfortunately, upstream
measurements are not carried out. Therefore, the upstream undisturbed wind speed at hub height is estimated from
power measurements of wind turbine T5 (Eastern wake case) and wind turbine T6 (Western wake case). Only data with
undisturbed wind speeds between 10-12 m/s is selected, which is the highest wind speed bin available. The average wind
speed between 1-61◦and 285-345◦, corresponding to the two single wake cases, are 10.9 m/s and10.7 m/s, respectively.
The lack of upstream measurements makes it impossible to identify and disregard non-neutral atmospheric measurements.
However, the probability of a near neutral ABL increases with high wind speeds, i.e. 10-12 m/s. Another important

Wind Energ. 2013; 00:1–19 c© 2013 John Wiley & Sons, Ltd. 5
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consequence of missing upstream measurements, is the fact that the undisturbed turbulence intensity cannot be directly
measured for the wind direction of single wake cases. Schepers et al. [19] estimated the undisturbed stream-wise turbulence
intensitiesIu,H,∞ ≡ σu/UH (outside the region of wind directions corresponding to thesingle wake cases) to be 10%
and 7.5% for the Western and Eastern wind directions, respectively. Since the three standard deviations of the velocity
componentsσu, σv andσw are not all available, the total turbulence intensityIH,∞ is estimated from the standard ratios:

σv

σu
= 0.8,

σw

σu
= 0.5, (8)

which have been measured by Panofsky and Dutton [24] and are adopted in the IEC 61400-1 standard [25]. This leads to:

IH,∞ = Iu,H,∞

√
1

3
(1 + 0.82 + 0.52) ≈ 0.8Iu,H,∞, (9)

hence, the total turbulence intensityIH,∞ is estimated to be 8% and 6% for the Western and Eastern wind directions,
respectively.

The thrust coefficient curve is measured and calculated by Schepers [26]. The measurements are based on the tower
bending moment and the calculations are carried out with PHATAS [27]. Both methods estimate a thrust coefficient of
0.63 for the averaged undisturbed wind speeds of 10.7 m/s and10.9 m/s.

The mechanical power curve is not available. Therefore, it is estimated from the electrical power curve (given by the
wind turbine manufacturer Nordex) assuming a loss of 6%. This gives a power coefficient of 0.44 for both Wieringermeer
cases.

The Nordex wind turbine has variable rotational speeds ranging from 10.9 RPM to 19.1 RPM. The dependency of the
rotational speed on the wind speed is not available. For the present research it is assumed that the rotor is rotating with
19.1 RPM.

3.2. Nibe

In the 1980s field measurements of two wind turbines at Nibe, in Northern Denmark, were conducted by Taylor [20]. The
wind turbines have a hub height and rotor diameter of 45 m and 40 m, respectively. The two wind turbines are located
at five rotor diameters away from each other. The Nibe B wind turbine is located South from Nibe A wind turbine. A
sketch of the layout is shown in Fig.3. Four meteorological masts are placed in a line at downstream distances: 2.5D,
4D, 6D and 7.5D with respect to the Nibe B wind turbine. The masts are instrumented with cup anemometers at several
heights. The selected data set includes wind directions from the South, which corresponds to inflow condition over land
with a relatively flat terrain. For the current single wake case of the Nibe B wind turbine, the Nibe A wind turbine is not
operational, however, an influence of the Nibe A wind turbineon the downstream meteorological masts at 6D and 7.5D
cannot be avoided. For this reason, the data at 6D (MM3, located at 1D from the Nibe A wind turbine) is disregarded.

188◦

North

2.5D

1.5D

1.5D

1D

1D
Nibe A

Nibe B

MM1

MM2

MM3

MM4

y
D

x
D

-4 -2
-2

0

0

2

2

4

4

6

8

Figure 3. Sketch of wind turbines (red dots) and meteorological masts (blue triangles) at Nibe.

The chosen data set consist of 1 min. averages, taken over a period of about 2 years. The averaged velocity of 8.5 m/s is
obtained from power measurements and the known power curve.
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Due to lack of upstream measurements, the undisturbed stream-wise turbulence intensity is estimated from a cup
anemometer located at the mast at 2.5D downstream from Nibe B, at a height of 3 m. It is assumed that the wake of the
Nibe B turbine has not expanded far enough to influence the measurement at this location [20]. Unfortunately, this estimate
of the undisturbed stream-wise turbulence intensity is notvery accurate because the influence of local surface variations
can be significant at 3 m. The rough estimate gives an undisturbed stream-wise turbulence intensity ofIu,H,∞ ≈ 10%
which corresponds to a total turbulence intensity ofIH,∞ ≈ 8% using Eq9.

Filtering out non-neutral atmospheric measurements has not been been carried out.
The thrust coefficientCT is estimated as an average of an LES actuator line simulationin which tabulated airfoil data

is used to calculated the blade forces. More details about this simulation can be found in the work of Troldborg et al. [28].
The method gives aCT of 0.89, which also corresponds to the calculated thrust curve given in the work of Taylor [20].
The power coefficient could also be taken from the same LES actuator line simulation; however, it has been found that the
LES actuator line simulation overestimates the power. [29, 30]. Therefore, the power coefficientCP = 0.46 is estimated
from the measured mechanical power curve, given by Taylor [20]. In addition, the rotational speed is also noted by Taylor:
Ω = 43 RPM.

3.3. Nordtank 500

A test site consisting of three wind turbines is situated on the Risø campus of DTU. An overview is sketched in Fig.4.
From left to right, the order of wind turbines is as follows: Tellus wind turbine, 95 kW,D = 18 m, zH = 29 m, Nordtank
500 wind turbine (NTK), 500 kW,D = 41 m, zH = 36 m, Vestas V27 wind turbine (V27), 225 kW,D = 27 m, zH = 30
m. In addition, there is a meteorological mast (MM) at 2.2D West from the Nordtank 500 wind turbine. During the
measurement campaign the rotor of the Vestas V27 wind turbine was taken down. The prevailing wind direction is South
East, therefore, only data is selected for wind directions between 120◦to 150◦. The single wake of the Nordtank 500 wind
turbine is measured using a nacelle mounted pulsed lidar. Details of this measurement campaign can be found in the work
of Machefaux et al. [21, 22]. The lidar is used to scan the wake in a cross section at five downstream locations between
1D and 5D with a uniform spacing of 1D. The meteorological mast is instrumented with cup and sonic anemometers at
several heights. Only the results at a height of 52.5 m are used from this mast, in order to prevent the wake influence of the
Tellus wind turbine.

197◦ 145◦

106◦
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2.2D
3D

1.8D

NTK

MM

V27

Tellus

y
D

x
D

-4
-4

-2

-2

0

0

2

2

4

Figure 4. Sketch of wind turbines (red dots) and meteorological mast (blue triangle) at the Risø campus of the Technical University of
Denmark. Distances are normalized with the rotor diameter of the Nordtank 500 (NTK) wind turbine: D = 41 m.

The undisturbed velocity at hub height is calculated from power measurements and the known power curve. This
velocity is also directly measured at the meteorological mast at hub height, however, these measurements are influenced
by the wake of Tellus wind turbine. In total 102 samples of approximately 10 min. averages are selected, with a velocity
of 7-8 m/s and wind directions between 120◦to 150◦. This represents almost 17 hours of data, and its average velocity is
calculated as 7.45 m/s.

The Obukhov lengthL is calculated from the sonics at the meteorological mast andit is used to identify the stability
class of the measurements. It is found that the atmospheric conditions during the time of measurements are neutral:
(mean(abs(L)) = 7.5× 102) [22].

The thrust coefficientCT is estimated from the tower bending moment which givesCT = 0.70.
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The meteorological mast is used to estimate the undisturbedturbulence intensity. Since the Tellus wind turbine wake
influences the measurements at the meteorological mast around hub height, the turbulence intensityIM,∞, obtained from
a sonic located at a height:zM = 52.5 m is used. The undisturbed turbulence intensity at hub height is estimated by using
the log law and assuming thatσu = Au∗ is constant with height. Hence,

IH,∞ =
IM,∞

1− Iu,M,∞

κA
ln
(

zM
zH

) , (10)

whereκ is the Von Karman constant andA is function of the roughness height. Following Panofsky andDutton [24],
A = 2.4 . Using Eq.10 the measured total turbulence intensity at the mast (IM,∞ = 10.7%) is extrapolated to the hub
height:IH,∞ = 11.2% which is equivalent to a stream-wise turbulence intensityof 14% using Eq.9.

4. SIMULATIONS

4.1. Method

The in-house incompressible finite volume code EllipSys3D is used as the flow solver, which can perform RANS and LES
simulations [31, 32]. The Navier-Stokes equations are solved with the SIMPLE algorithm [33], and the QUICK scheme
[34] is used to discretize the convective terms. The flow variables are stored in a co-located manner. To avoid decoupling
of the pressure with body forces, the pressure equation is solved with a modified Rhie-Chow algorithm [35, 36].

The wind turbine is modeled as an Actuator Disk (AD) [37, 3, 38] on which the blade forces are distributed in the
radial direction and constant in the circumferential direction. The blade force distributions that are applied on the AD
are calculated with a full rotor detached eddy simulation (Nordtank 500 and NREL 5 MW) or are calculated with a LES
simulation using an actuator line method including airfoildata (Nibe B) [28]. The result for the normal and the tangential
force distributions are shown in Fig.5. The radial blade force is not applied to the AD because it is often smaller than 1%
of the normal blade force. The real blade geometry of the Nordex wind turbine from EWTW is not available. Therefore,
the detached eddy simulation of the NREL 5 MW wind turbine blade is used, in which the original tangential (qT (r/R))
and normal blade force distribution (qN (r/R)) are scaled. FirstqT (r/R) andqN (r/R) are scaled to cover the desired
rotor radiusR. Subsequently,qT (r) and qN (r) are individually scaled withCP , Ω andCT , respectively. In addition,
both distributions are scaled withUH,∞, R andρ to obtain the tangential (qAD

T (r)) and normal blade force distribution
(qAD

N (r)) that are applied to the AD:

qAD
N (r) = q̂N (r)

1

n

1

2
ρU2

H,∞πR2CT , q̂N (r) =
qN (r)∫ R

0
qN (r)dr

, (11)

qAD
T (r) = q̂T (r)

1

n

1
2
ρU3

H,∞πR2CP

2πΩ/60
, q̂T (r) =

qT (r)∫ R

0
qT (r)rdr

,

wheren = 3 is the number of blades and̂q(r) denotes a normalized blade force distribution. The total normal forceFN

and the powerP are obtained by integration:

FN = n

∫ R

0

qAD
N (r)dr =

1

2
ρU2

H,∞πR2CT , (12)

P = 2πΩ/60n

∫ R

0

qAD
T (r)rdr =

1

2
ρU3

H,∞πR2CP .

The scaling equations can easily be verified by taking analytical force distributions for the original blade, e.q.:qN (r) =
−qT (r) = −r(r −R)/R2, and substitute these relations into Eq.11.

The input parameters from TableII are used in all AD simulations. Standard values for the density and the dynamic
fluid viscosity are used:ρ = 1.225 kg/m3 andµ = 1.784 × 10−5 kg/(m·s) (corresponding to a temperature of 15◦C at sea
level). It should be noted that the fluid viscosity is negligible compared to the eddy-viscosity, since the Reynolds number
(based on the rotor diameter and the hub height velocity) is in the order of107.

4.1.1. RANS
In the RANS simulations, the AD is placed in a box shaped domain of dimensions:25D × 16D × 16D, as shown in

Fig. 6. In total 1.18 million cells are used to discretize the domain. The boundary atz = 0 is modeled as a rough wall
where the first cell height is on the order of the roughness height. In EllipSys3D, a rough wall is modeled by placing the
flow domain on top of the roughness height. The wall stress andthe turbulent dissipation are specified at the first cell,
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Figure 5. Calculated tangential qT and normal force qN distributions [n/m].

using the analytical expressions of the log law. In addition, a Neumann boundary condition is used for the turbulent kinetic
energy. The top boundary atz = 16D and the boundaries atx = 0 are inlets, whereas, the boundary atx = 25D is an
outlet. At the inlet a stream-wise logarithmic profile is specified:

U =
u∗

κ
ln

(
z

z0

)
. (13)

A Neumann boundary condition is applied on the outlet boundary. The side boundaries aty = 0 andy = 16D are modeled
as slip walls. Around the AD a wake domain of dimensions:14D × 3D × 3D is defined where uniform spacing of D/10
is applied in all directions. (Belowz = 1/2zH the cells in the wall normal direction are refined due to the presence of
the wall.) The grid study in the section below shows that eight cells per diameter is sufficient. Outside the wake domain
stretching is allowed with a maximum edge growth ratio of 1.2.

Setting the turbulence level in RANS via z0

In the RANS modeling of atmospheric flows using the standardk-ε EVM, it is common to control the ambient
turbulence intensity at hub heightIH,∞:

IH,∞ ≡

√
2
3
k

UH,∞
=

κ
√

2
3

ln
(

zH
z0

)
4
√

Cµ

, (14)

by changingCµ and adapting one of the other model constants such that the log law solution (Eqs.13) is maintained:√
Cµσε (Cε,1 − Cε,2) + κ2 = 0 [16]. Note that Eq.13 is used forz = zH andU = UH , together with the analytical

solution for the turbulent kinetic energy in the log law:k = u2
∗/
√

Cµ. However, the behavior of thek-ε-fP EVM changes
when the constantCµ is modified, becauseCµ is also present infP : fP (Cµ), as explained in Sec.2.2. Van der Laan
et al. [13] showed thatfP reduces the wake recovery for lower values ofCµ, which correspond to a higher turbulence
intensity in Eq.14. This is unphysical, because higher turbulence levels should enhance mixing and increase the wake
recovery. Therefore, the ambient turbulence intensity at hub height is set by changing the roughness heightz0 in Eq. 14
instead ofCµ. Subsequently, the friction velocityu∗ is set using Eq.13, such that the correct undisturbed hub height
velocity is obtained. The changes in the stream-wise velocity profile are relatively small, especially at heights in therotor
area. For example, by physical site inspection one could argue to use a roughness height of 3 cm in the Western wake
case of Wieringermeer (case one from Tab.II ). The relative difference between the velocity profile using a roughness
height of 3 cm and the roughness height calculated by the alternative way of controlling the turbulence level:z0 = 0.44
cm is less than 0.1%, 2% and 5% at 120 m, 40 m and 20 m, respectively. In addition, there is often a high uncertainty in
calculating the roughness from field measurements, which can be much larger than the difference in the turbulence adapted
z0. Furthermore, the measured velocity profile close to the ground is often influenced by local roughness variations that are
not considered in the CFD simulations that use a uniform roughness height. It should be noted that the turbulent adapted
z0 can cause large differences in the velocity profile, for a case with a very low measured ambient turbulence intensity,
located at a site with relatively large roughness. In this situation the turbulent adaptedz0 can become orders of magnitude
smaller than thez0 from site inspection. However, it is most likely that in sucha measurement, the ambient turbulence
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intensity is dictated by a stable ABL instead of the roughness height. These flows cannot be simulated with the current
k-ε-fP EVM, since it is calibrated for a neutral ABL in which the shear parameter̃σ is a constant.

16D

3D

25D

3D

x

y 

12D2D

6.5D

16D 3D

x

z

25D

3D 12D2D

Figure 6. Computational domain RANS. Left: top view. Right: side view. Dashed black box marks the wake domain. Actuator disk is
illustrated as a red filled box. One in every two nodes is shown.

Grid refinement study
The influence of the grid size on the flow solution for an AD in a uniform flow has been previously investigated in

the work of Réthoré et al. [38]. This work was meant to verify the numerical procedure of the AD as implemented in
EllipSys3D, by estimating the (mixed) order of the discretization error [39]. Therefore the grid study was performed such
that all the individual components are at least second orderaccurate, i.e., a low Reynolds number was used such that a
(low order) turbulence model is redundant. In addition, an analytical quadratic force distribution on the AD was used that
made the behavior of the discretization error of the integrated force distribution second order accurate. From mixed order
analysis Réthoré et al. showed that the AD method in EllipSys3D is still first order accurate [38]. In the grid study of the
present research, the goal is to the estimate the discretization error of a more realistic setup, i.e., including a real wind
turbine blade force distribution on the AD, applying a shearand using a high Reynolds number (ReD ∼ 107) that requires
a turbulence model. It should be noted that the EllipSys3D ADmethod corrects for errors in the integrated force that arise
from the discretization of the force distribution. Hence the same total force is used in each grid level, although distributed
differently. One could argue that the use of a grid-independent total force is wrong, since a grid study of the same flow
problem including the rotor geometry would have a total force that is dependent on grid size. On the other hand, one could
claim that having a grid-independent total force is a feature of the AD method since it allows the use of coarser grids,
which is the reason to use an AD in the first place.

The grid layout in the grid study is similar to the one presented in figure6, but the stream-wise extent of the wake
domain is chosen to be 10D in order to reduce the amount of cells. The number of cells in each grid level is given in
Tab.III . A refinement ratio of two is used.

Table III. Computational grid size.

Cells per rotor diameter
Grid level in wake domain Cells

1 32 9830400
2 16 1228800
3 8 153600
4 4 19200

The normalized momentum deficit at hub height
〈
U2

def

〉
taken from a volumetric horizontal straight sectionV is used

to compare the solution on the different grid levels.
〈
U2

def

〉
is defined as:

〈
U2

def

〉
≡ 1

U2
H,∞V

∫

V

(UH,∞ − U(x, y, z))2 dV, (15)

where the normalization is carried out with the undisturbedhub height velocityU2
H,∞ and the integration volumeV has

dimensions(∆x,∆y,∆z) = (0.5D, 3D, 0.5D). The comparison criterion is computed at three downstream distances
from the AD: 2.5D, 5D and 7.5D. In order to make a fair comparison between the grid solutions, only cell centered values
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are used within the volumeV . The discretization errorǫn of each grid leveln is estimated using a mixed order analysis
[39]:

ǫn = fn − fh→0 = g1hn + g2h
2
n + g3h

3
n +O(h4

n), (16)

wherefn is the grid solution,fh→0 is the extrapolated solution for an infinitely small grid sizehn andg1, g2, g3 are the
unknown constants to be evaluated. The finest grid size (n = 1) is set to unity (h1 = 1) and the coarser grid sizes are
defined as (hn+1 = rhn), with r as the refinement ratio. Using the momentum deficit

〈
U2

def

〉
from Eq.15computed at the

four grid levels of Tab.III , the discretization error can be estimated by disregardingfourth order errorsO(h4
n) and solving

the corresponding closed system. The first order (g1hn), second order (g2h2
n) and third order (g3h3

n) contributions to the
total discretization error can now be investigated.

Total error 1st 2nd 3rd |ǫn|
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Figure 7. Order decomposition. Top row: k-ε EVM. Bottom row: k-ε-fP EVM.
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Figure 8. Wake deficit for different grid sizes with D = 80 m, UH,∞ = 10.7 m/s, IH,∞ = 8%. Solid lines: k-ε EVM. Dashed lines:
k-ε-fP EVM with CR = 1.8.

The grid study is performed for thek-ε EVM and thek-ε-fP EVM using case one (Wieringermeer, see Tab.II ). The
discretization error and its first-, second- and third- order contributions are plotted in Fig.7 at downstream distances of
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2.5D, 5D and 7.5D. Thek-ε EVM shows a very small discretization error. Even for the coarsest grid size the discretization
error in terms of momentum deficit is smaller than 1% at all three downstream distances. Thek-ε-fP EVM, simulated with
the original Rotta constantCR = 1.8, is more sensitive to the grid size, although all errors are still below 1%. Note that
higher values ofCR (as motivated in Sec.4.2.2) will have discretization errors closer to the ones of thek-ε EVM, since the
high gradients at the edge of the wake decrease withCR. The decomposition of errors shows that the linear contribution
is the dominant term in the discretization error for both turbulence models. The relative low mixed order is caused by the
AD method, which is first order near the AD [38], and it is possibly degraded by the turbulence model further downstream
from the AD.

The velocity deficit at the same three downstream distances is shown in Fig.8. The deficit is extracted on a horizontal
line at hub height, hence, an interpolation between the nearest cell centers is inevitable which makes it difficult to compare
in absolute numbers. Nevertheless, the trends can be compared. The wake deficit in thek-ε EVM is not very sensitive to
the used grid sizes, as observed before in mixed error analysis. However, thek-ε-fP EVM shows larger deviations between
grid solution, especially for the coarsest grid (four cellsper rotor diameter in the wake domain). This is mainly causedby
the fact thatk-ε-fP EVM predicts higher velocity gradients at the edge of wake compared to the standardk-ε EVM. The
second coarsest grid (eight cells per rotor diameter in wakedomain) show only small deviations from the two finer grids.
Therefore, it is recommended to use at least eight cells per rotor diameter in the wake domain when using thek-ε-fP EVM
for wake simulations.

4.1.2. LES

4D

3D

x

z
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3.5D3.5D
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1.75D
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25D

3.25D
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 7.75D1.75D

16D 2D
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3.25D  7.75D

Figure 9. Computational domain LES. Left: top view. Right: side view. Dashed boxes: black is the wake domain and green marks the
Mann turbulence domain. Actuator disk is illustrated as a red filled box. The inflow plane of Mann turbulence is shown as blue filled

line. One in every eight nodes is shown.

The LES simulations are employed using the same AD as used in the RANS simulations and it is positioned in an
equally sized domain. Fig.9 shows the mesh where one in every eight nodes is plotted. The atmospheric turbulence is pre-
calculated with the Mann model [40] and the results are scaled such that the correct total turbulence intensity, averaged at a
cross section of2D × 2D located in front of the wind turbine, is obtained. In this way, the same turbulent kinetic energy is
felt by the wind turbine in the LES and in the RANS simulations. The domain of the Mann turbulence box is long enough to
be able to describe one hour of turbulence plus the start up time of the LES simulation (which is disregarded when average
results are calculated). The cross section of the Mann turbulence box is8D × 8D and a uniform spacing with cell size D/8
is used in all directions. During the simulation the Mann turbulence is injected in a plane at 1.5D upstream of the AD. The
injection plane is8D wide, centered around the AD and it is extending8D from the ground. This method is discussed in
more detail in the work of Troldborg et al. [2, 28]. Two refined domains are defined in the flow domain: the wake domain
7.75D × 2D × 2D and the Mann turbulence domain1.75D × 2D × 2D. In order to reduce the amount of cells, the wake
domain in the LES simulations is smaller compared to the RANSsimulations, however, it is still large enough to capture
the wake up to 7.5D downstream. The wake domain is uniformly discretized with a cell size of D/60 in all directions,
which is sufficient to resolve the wake [41]. The Mann turbulence domain is discretized with a cell sizeof D/30 in the
stream-wise direction and it inherits the grid spacing fromthe wake domain for the other two directions. Note that there
is smooth transition of cell size between the Mann turbulence domain and the Wake domain. The total domain consists of
17.7 million cells. The bottom boundary atz = 0 is modeled as a slip wall which, allows a first cell height equal to the
uniform grid spacing in the wake domain, which saves a lot of cells compared to wall-resolved LES. The inlet conditions
of the RANS simulations are also used in the LES simulations,however, a constant velocity ofu = u∗/κ ln((zH/10)/z0)
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is set for0 ≤ z ≤ zH/10 to comply with the slip wall. The rest of the boundaries are the same as used in the RANS
simulations. Details of the numerical methods of the LES implementation are described in the work of Bechmann [42].

In order to maintain the log law solution of the neutral ABL ina LES simulation without a rough wall boundary,
one could add small body forces in the entire domain [28]. However, it is not expected that the log-law solution decays
significantly in reasonable vicinity of the AD, i.e. 7.5D downstream. In the current method the additional body forces are
not included.

Even though the LES simulation is resolved in time, a constant forcing on the AD is applied. However, in terms of
averaged wake deficit, a LES simulation using a constant force does not differ that much from one where time dependent
forces are used [3].

The length of LES simulation is set such that one hour of converged data is gathered. The time integration in EllipSys3D
is implicit, allowing the user to set very high CFL numbers. Nevertheless, the time stepdt is set to a CFL number of one,
i.e.dt = dx/UH,∞ = (D/60)/UH,∞, such that the unsteady data is captured with a high resolution.

4.1.3. Calibration of CR

TheCR parameter that is present in thek-ε-fP EVM determines the wake deficits completely. In order to choose the
right value ofCR, a calibration is carried out against the LES using the eighttest cases that are described in Sec.3. The
wake deficit at hub height, at the wake center (relative wind direction of 0◦), at a downstream distance of 7.5D, is used
to measure how well thek-ε-fP EVM performs compared to LES. The results are shown in Fig.10 in which the relative
errorǫU of the wake deficit at the center at 7.5D is calculated as:

ǫU =
URANS − ULES

ULES
. (17)

k-ε EVM LES error bands
CR = 3 CR = 4 CR = 4.5 CR = 5 CR = 6

ǫU 0

0.05

0.1
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-0.15
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Figure 10. Calibration CR

In Fig. 10 the error bars represent the uncertainty of the LES results,i.e., the standard deviations. In first seven cases,
the wake center at 7.5D calculated by thek-ε-fP EVM fits well LES when usingCR = 4.5. In case six, representing a
case with a very high undisturbed turbulence intensity, thek-ε EVM performs better than thek-ε-fP EVM at the far wake,
although the result of thek-ε-fP EVM with CR = 4.5 does not exceed the standard deviation of LES significantly.Case
eight shows that for a high thrust coefficient both thek-ε EVM and thek-ε-fP EVM with CR = 4.5 do not compare well
with LES at 7.5D, however, both models have a comparable magnitude ofǫU .

4.2. Results and discussion

The results of the test cases based on measurements and the result for the test cases based on LES are shown in Fig.11
and Fig.12, respectively. The velocity wake deficit at hub height is plotted against the relative wind direction for a number
of downstream locations. For the test cases based on measurements, the locations are chosen to match the measured ones.
For case one, two and four, extra downstream locations are shown for comparison of the RANS results with the ones of
LES. Note that downstream locations for test case four are normalized withD∗ = 40 m instead of the real rotor diameter
(D = 41 m) to comply with the normalization distance of the measurements. The wake deficit for test cases that are not
based on measurements are plotted at 2.5D, 5D and 7.5D. For two of these cases (case five and six) the turbulence intensity
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at hub height is given in Fig.13. The results are shown for thek-ε EVM, the k-ε-fP EVM with CR = 4.5, LES and
measurements. If available, the measurements are presented with error bars representing one standard deviation. The one
hour LES simulations are averaged by using six bins of ten minutes. The standard deviation of the six bins are shown as
error bars. For each case, the results of LES are normalized with the undisturbed hub height velocity taken from another
LES simulation with the same setup but without using the AD. It has been found that in the case with a high undisturbed
turbulence intensity (case six), the undisturbed hub height velocity at 7.5D deviates around 2% from the one that is imposed
at the inlet. For all other cases the difference is much less,typically below 1%. A comparison of LES with measurements
is given in Sec.4.2.1and Sec.4.2.2, respectively.

4.2.1. LES compared to measurements
In the Western wake case from Wieringermeer (case one), shown in Fig.11, the results of LES compare well with the

available field measurements at 3.5D. Note that there is a clear offset of around 5 degrees in the measured wake center,
which is probably caused by yaw error, as also discussed in the work of Schepers et al. [19]. The measurement of the
Eastern wake case from Wieringermeer (case two) compares reasonably with the wake deficit predicted by LES, however,
the magnitude of the maximum wake deficit is underpredicted by LES. Possible causes for the underpredicted wake deficit
are effects of atmospheric stability on the measured wake deficit or the uncertainty in the prediction of the measured
undisturbed turbulence intensity due to the lack of upstream measurements. The measured and the calculated wake deficit
is asymmetric in the near wake (best visible in case two), which is caused by the interaction of wake rotation with a vertical
shear, a phenomenon that is discussed in more detail in the work of Zahle and Sørensen [43].

In the Nibe case (case three) two different LES results are shown in Fig.11: one with an average taken from of six
bins of ten minutes and one with an averaging take from sixty bins of one minute. Since the measured wake deficit is
processed with one minute averages it should be compared with the averaged LES results from the same bin length. The
LES results for the ten minute bins are used to compare with RANS, as discussed in Sec.4.2.2. A clear consequence
of using one minute bins is the increase of the standard deviations compared to ten minute bins. This gives an idea of
how large the standard deviations of the measurements can be. The measured wake deficit compares well with the results
of LES at 2.5D and 7.5D. At 4D, the calculated wake deficit is slightly overpredicted compared to the measured one.
However, assuming similar standard deviations for the measurements as observed in the LES results, obtained from one
minute bins, the difference falls within the error bars. In addition, since the estimate of the undisturbed turbulence intensity
in the measurements is very uncertain, as explained in Sec.3.2, it is difficult to compare the measurements with LES.

The lidar measurements of the Nordtank 500 wind turbine (case four) shows a similar trend in the wake deficits as the
ones calculated with LES. However, at 1D* the measurements do not show the clear double bell-shaped wake deficit as
observed in LES. The AD method is least accurate in the near vicinity of the wind turbine and can explain the difference.
For example, the forces of the nacelle are not present in the force distribution of the AD and it can lead to a lower wake
deficit at the center of wake in AD simulations compared to themeasurements. In addition, the measured wake deficit
at 5D* is more recovered compared to the one calculated by LES whichis not fully understood. The uncertainty in the
undisturbed turbulence intensity, terrain effects or large scale meandering are plausible causes for the difference in the
wake recovery.

4.2.2. RANS compared to LES
Compared to LES, the wake deficit is underpredicted by the original k-ε EVM for all test cases at all downstream

distances, as shown in Fig.11 and Fig.12, except for case six and seven at the far wake. These cases correspond to a high
undisturbed turbulence intensity and low thrust coefficient. Thek-ε EVM performs the worst for a high thrust coefficient
(case three and case eight) and for a low turbulence intensity (case two and case five).

All cases show that the near wake deficits calculated byk-ε-fP EVM, are much closer to the ones of LES, compared to
the ones of the originalk-ε EVM. The largest improvement in the near wake deficits is obtained for the cases with a low
turbulence intensity and a high thrust coefficient.

In the work of Réthoré [3], it has been found that thek-ε EVM overestimates the turbulence intensity of the wake. A
similar result for the case with a low undisturbed turbulence intensity (case five) at 2.5D is shown in Fig.13. In this case,
the turbulence intensity predicted byk-ε-fP EVM is more comparable with LES, however, at 7.5D both EVMs overpredict
the turbulence intensity. In the high turbulence case (casesix), the same conclusion can be made but the difference between
RANS and LES is smaller than seen in case five because of the high level of background turbulence. Note the calculated
turbulence intensity in LES simulations deteriorates outside the wake domain (relative wind directions larger than≈ ±10
◦at 7.5D) because the of increasing cell size.
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Case 4: Nordtank 500
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Figure 11. Test cases based on field measurements. The measurements and the LES results include error bars of one standard
deviation. CR = 4.5 in k-ε-fP EVM.

Wind Energ. 2013; 00:1–19 c© 2013 John Wiley & Sons, Ltd. 15
DOI: 10.1002/we
Prepared using weauth.cls



An improved k-ε model applied to a wind turbine wake M.P. van der Laan et al.
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Case 6: NREL highIH,∞
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Case 7: NREL lowCT
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Figure 12. Additional test cases based on LES. The LES results include error bars of one standard deviation. CR = 4.5 in k-ε-fP
EVM.
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k-ε EVM k-ε-fP EVM LES 6x10 min.
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Figure 13. Turbulent intensity I =
√

2/3k/UH,∞ for test case five and six. The LES results include error bars of one standard
deviation. CR = 4.5 in k-ε-fP EVM.

4.2.3. Computational cost
The computational effort of the simulations of all test cases are given in Tab.IV. All simulations are carried out on

the same cluster, however, a different number of nodes have been used: fifteen for LES and three for RANS simulations,
except for case five which has been calculated with five nodes for the RANS simulations. Each node has two Intel Xeon
X5650 processors with six cores each that have a clock frequency of 2.66 GHz. In most cases, the LES simulations are
approximately 103 computationally more expensive compared to the RANS simulations The RANS simulations of case
five are computationally more expensive because the low turbulence intensity is represented by a very low roughness.
Hence, more cells are necessary in the grid and the convergence of the numerical scheme is slowed down. The large mesh
and the simulation time that is needed to gather enough unsteady data, makes the LES very expensive, especially when a
small wind turbine is used which limits the time step (time step is proportional to the rotor diameter). The difference in
computational effort between the two RANS turbulence models is negligible. Note that the comparison is only a rough
estimate since a different number of nodes are employed for the LES and the RANS simulations. In addition, the cluster is
also used by others which can influence the effective computational effort.

Table IV. Computational effort in CPU hours of the single wake simulations.

LES RANSk-ε RANSk-ε-fP (CR = 4.5)

case 1 5360 4.2 4.6
case 2 5341 3.3 3.5
case 3 11036 3.0 3.9
case 4 10559 3.5 4.1
case 5 2749 25 28
case 6 2743 5.7 5.6
case 7 2747 3.9 5.2
case 8 2784 4.0 5.4
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5. CONCLUSIONS

A modifiedk-ε EVM with a flow-dependentCµ (calledC∗
µ) is proposed: thek-ε-fP EVM. C∗

µ decreases the eddy viscosity
in regions with high velocity gradients, e.g., in a wind turbine wake. The impact ofC∗

µ on the flow solution is controlled by
a parameterCR which is calibrated with LES for eight different single wakecases. From the calibration it is recommended
to useCR = 4.5. Four of the eight test cases are based on measurements and their results compare reasonably well
with LES. However, the comparison with measurements is limited because the uncertainty in the undisturbed turbulence
intensity is large and the effects of stability are not filtered out for three of four measured wake cases.

A grid refinement study has shows that thek-ε-fP EVM is more sensitive to grid size compared the originalk-ε EVM.
Nevertheless, both turbulence models show discretizationerrors below 1% for a grid spacing of D/8 in the wake region.

Where the originalk-ε EVM underpredicts the velocity wake deficit compared to LES and measurements, thek-ε-fP
EVM shows more comparable results with respect to LES, for seven of the eight wake cases. These improvements are
mainly observed for the test cases in whichk-ε EVM has the worst performance, i.e., a low turbulence intensity and a
high thrust coefficient. On the contrary, the test case with ahigh (total) turbulence intensity (12.8%) shows that the wake
recovery of LES is closer to the originalk-ε EVM. However, in the near wake thek-ε-fP EVM is superior to thek-ε EVM
for all eight cases. The fact that thek-ε-fP EVM is approximately 103 computationally less expensive than LES and it has
the same numerical stability as the originalk-ε EVM, makes thek-ε-fP EVM an attractive turbulence model which has
the potential to simulate wake effects on the power production of wind farms.
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