EU wide campaign exercise on bioassays and chemical mixture effects


Published in:
Science Across Bridges, Borders and Boundaries

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
EU wide campaign exercise on bioassays and chemical mixture effects

Teresa Lettieri1, Raquel N. Carvalho1, Augustine Arukwe2, Selim Ait-Aissa3, Anne Bado-Nilles3, Stefania Balzamo4, Sabrina Barbizzi4, Monica Buchetti4, Anders Baun5, Shimshon Belkin6, Maria Belli4, Martin Benišek7, Ludek Blaha7, Mirco dalla Bona7, François Brion3, Elisa Calabretta4, Daniela Conti4, Nicolas Creusot9, Yona Essig8, Valentina Ferrero1, Vesna Flander-Puttle9, Maria Fürhacker10, Regina Grillari10, Anne-Katrine Haldorsen11, Christer Hogstrand12, Chris Hopkins8, Adam Jonáš7, Bogdan Jug10, Ramon Lavado1, Robert Loos1, Cristina Martone6, Petr Masner7, Carina Modig13, Alena Nekvapilová7, Per-Erik Olsson13, Alessandra Patti8, Smitha Pillai14, Natasa Polak14, Monica Potalivo4, Marek Pipal7, Nic R. Bury12, Wilfred Sanchez2, Andrea Schifferli15, Sabine Schnell12, Shirmer14, Liv Søfteland11, Stephen Sturzenbaum8, Simona Tavazzi1, Valentina Turk8, Aldo Viarengo16, Inge Werner15, Sharon Yagur-Kroll6, Radka Zounková7

1European Commission – DG Joint Research Centre, Institute for Environment and Sustainability, T.P. 270, Via E. Fermi 2749, 21027 Ispra (VA), Italy
2Norwegian University of Science & Technology, Trondheim, Norway
3National Institute for Environmental Technology and Hazards, Verneuil en Halatte, France
4Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Rome, Italy
5University of Technical University of Denmark (Department of Environmental Engineering), Kgs Lyngby, Denmark
6The Hebrew University of Jerusalem, Israel
7Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
8Analytical and Environmental Sciences Division, King’s College London, United Kingdom
9Marine Biological Station Piran - National Institute of Biology, Slovenia
10University of Natural Resources and Life Sciences, Vienna, Austria
11National Institute of Nutrition and Seafood Research, Bergen, Norway
12Diabetes and Nutritional Sciences Division, King’s College London, United Kingdom
13Life Science Center, Örebro University, Sweden
14Swiss Federal Institute for Environmental Science and Technology / ETH, Switzerland
15Oekotoxzentrum/Eawag, Dübendorf, Switzerland
16Università del Piemonte Orientale, Alessandria, Italy

E-mail contact: teresa.lettieri@jrc.ec.europa.eu

1. Introduction

Thousands different chemicals are discharged into the environment from agriculture, industry, medical facilities, house-holds. Currently, there is an increasing concern for the environmental impact of mixture of compounds since the additive and eventual synergistic effects are unknown and could produce serious adverse effects. Indeed, it is virtually impossible to analyse, detect and quantify all chemicals present in the water bodies, including transformation products.

So far, the effects of mixture have been described in literature for combination of few compounds e.g. for Polycyclic aromatic hydrocarbons PAHs, pesticides and only for few model organisms. Recently, a document from the European Commission on combination effects of chemicals highlighted the need to ensure that risks associated with chemical mixtures are properly understood and assessed.

In 2012, European Commission JRC launched an EU-wide Exercise to test the effects of chemical mixture using existing and innovative bioassay applied to aquatic environment. The chemical Mixtures included pesticides, pharmaceuticals, heavy metals and polyaromatic hydrocarbons. The mixtures included each compound at Equivalent Quality Standard (EQS) value, the safety limit concentration allowed by the European Water Framework Directive (WFD) and distributed to 16 laboratories to test on bioassays routinely in use in each laboratory.

2. Materials and methods

Chemicals: Reference materials for Mix14 and Mix19 have been prepared as 1000-fold concentrated mixtures, with the organic solution (in methanol) prepared separately from the inorganic (in 2% nitric acid in water). Additional reference materials were prepared for Mix14 as 10,000-fold concentrated solutions, to allow the assessment of effects at a wider range of concentrations. The chemicals used for the preparation of the reference mixtures were of the highest purity (≥ 96%).

Bioassays were performed according to each laboratory protocol, some of them according to the OECD guidelines or ISO standards.
3. Results and discussion

The mixtures were analysed for their stability up to four months to -20°C before being distributed. The bioassays were in vivo, in vitro assay including reporter gene assays and Estrogen Receptor binding and activity assays for the detection of endocrine disruptor chemicals.

<table>
<thead>
<tr>
<th>Bioassay (in vivo)</th>
<th>Bioassay (in vitro)</th>
<th>Endpoints (measured in more than one bioassay)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Microcosm</td>
<td>Zebrafish embryo</td>
<td>Mortality</td>
</tr>
<tr>
<td>(bacteria /phytoplakton)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteria</td>
<td>Frog embryo</td>
<td>Reproduction</td>
</tr>
<tr>
<td>Green algae</td>
<td>Fish cell lines</td>
<td>Development</td>
</tr>
<tr>
<td>Diatom</td>
<td>Mammalian cell lines</td>
<td>Teratogenicity</td>
</tr>
<tr>
<td>Yeast</td>
<td>Yeast (reporter genes)</td>
<td>Photosynthesis</td>
</tr>
<tr>
<td>Nematode</td>
<td>Bacteria (reporter genes)</td>
<td>Motility</td>
</tr>
<tr>
<td>Amoeba</td>
<td>Estrogen Receptor binding and activity assay</td>
<td>Immune response</td>
</tr>
<tr>
<td>Crustacean</td>
<td></td>
<td>Hormone interference</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td>Zona radiata protein</td>
</tr>
<tr>
<td>Frog</td>
<td></td>
<td>CYP1A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stress response</td>
</tr>
</tbody>
</table>

Table 1: List of the test in vivo and in vitro performed in the 16 laboratories

3.1. Low trophic level

Mix14 and Mix19 were exposed to the marine bacterial/plykton community, three algae (two freshwater and one marine) and the crustacean Dapnia magna to test the effects on photosynthesis, growth and motility respectively. The mixture could influence the microcosm at very low concentration impairing the composition of the community (bacteria>>>phytoplakton). The three algae showed a growth inhibition following exposure for 24h with a slight sensitivity for the marine diatom *Thalassiosira pseudonana*. The acute immobilisation assay in *Daphnia* was significant and comparable among the laboratories showing an effect at 10XEQS for the Mix14.

3.2. Higher trophic level

Going up in the evolution scale, we analysed the effects on fish and frog embryo development while other assays on nematode, fish, mammalian and fish cell lines were performed for endpoints e.g. growth, biomarker expression, immunotoxicity. At 1X EQS value Mix14 and Mix19 showed an effect during the development in both fish and frog.

3.3 Reporter gene system

In our exercise, reporter gene systems were tested in nematode, bacteria, yeast and mammalian cell lines for metal, stress and DNA damage response, among others. Among them, four bioassays were dedicated to the detection of endocrine disruptor chemicals. There was good agreement among the laboratories performing the EDC assays, and Mix19 showed higher responses in these assays, as expected from the presence of additional endocrine disruptor chemicals.

4. Conclusions

We showed that the exposure to mixtures of chemical with dissimilar mode of actions and at the annual average environmental quality standard (AA-EQS), induced effects in both chronic and acute toxicity tests, affecting not only single organisms but population and potentially the entire ecosystem.
5. References


Acknowledgement - The authors thank Marina Ricci (JRC-IRMM, Geel, Belgium) for the preparation of the reference mixtures. Robert Kase (Oekotoxzentrum; Swiss Centre for Applied Ecotoxicology; Eawag/EPFL; Dübendorf, CH) for the environmental quality standards for the emerging compounds. Joaquin Pinto grande for the technical assistance.