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ABSTRACT 

In this paper, we find that, by computing the difference between two 

consecutive state vectors of second-order double-loop sigma-delta modulators 

(SDMs) and plotting one component of the subtracted vectors against the other 

component, irregular chaotic patterns will become two vertical lines. By multiplying a 

matrix on the subtracted vectors, it can be further transformed to two fixed points. 

However, second-order interpolative bandpass SDMs still exhibit chaotic behaviors 

after applying the same transformations. Moreover, it is found that the Lyapunov 

exponent of state vectors of second-order double-loop SDMs is higher than that of 

second-order interpolative bandpass SDMs, whereas the Lyapunov exponent of 

transformed vectors becomes negative infinity for second-order double-loop SDMs 

and increases for second-order interpolative bandpass SDMs. Hence, by examining 

the occurrence of chaotic behaviors of the transformed vectors of these two SDMs, 

these two SDMs can be distinguished from their state vectors and their transformed 
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vectors without solving the state equations and knowing the information of input 

signals. 

 

I. INTRODUCTION 

It was well known that there are many important applications of SDMs in 

analog-to-digital conversions because only simple, robust and inexpensive 

components can achieve the objectives [1]-[3]. However, since SDMs consist of 

discontinuous nonlinear elements, which are quantizers, behaviors of SDMs could be 

very complex even though SDMs are as simple as second-order systems [4]-[5]. One 

of the most common complex behaviors is the exhibition of irregular chaotic patterns 

on the phase portraits [4]. 

However, since both second-order double-loop SDMs and second-order 

interpolative bandpass SDMs would exhibit irregular chaotic patterns on the phase 

portraits, it is not easy to distinguish these two types of SDMs from their state vectors 

without solving the state equations and knowing the information of input signals. This 

problem is important because SDMs are sometimes disturbed by a mechanical 

shaking or an electric shocking. In these situations, filter parameters in SDMs may be 

corrupted. In order to reconstruct signals, it is required to estimate the corresponding 

filter parameters. Although there are infinite numbers of choices of filter parameters, 

the most common one is either from second-order double-loop SDMs or second-order 

interpolative bandpass SDMs. By distinguishing these two types of SDMs, signals can 

be reconstructed. 

Although there are some existing methods for solving nonlinear system 

identification problems, such as using the fuzzy [7] and neural network [8] 

approaches, these approaches are too complicated for the identification of SDMs. This 

is because input signals are usually oversampled and the number of discrete samples 

is very large. Hence, the computational complexity is too high for these methods 

which make them practically impossible. On the other hand, properties of SDMs are 

exploited in this paper. The proposed method is less computational complex 

compared to the fuzzy [7] and neural network [8] approaches. Hence, it can be applied 

to distinguish these two types of SDMs from their state vectors. 

The outline of this paper is as follows. In Section II, we show that, after 

computing the difference between two consecutive state vectors of second-order 

double-loop SDMs, there are only two vertical lines by plotting the component of the 
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vectors against the other component, whereas, this is not the case for second-order 

interpolative bandpass SDMs. In Section III, we explain why this method can be used 

to distinguish these two types of SDMs from their state vectors without solving the 

state equations and knowing the information of input signals. Finally, the conclusion 

and summary of our works are given in Section IV. 

 

II. RESULTS 

For a lowpass SDM or a bandpass SDM with the natural frequency of the loop 

filter closed to zero, input signals are usually slow time varying and can be 

approximated by a step signal because the oversampling ratio is usually very high. 

Hence, a step input can be considered in this paper. For the second-order double-loop 

SDM shown in [4], the dynamical behavior of the SDM can be represented by the 

following state space equation: 

( ) ( ) ( ) [ ]Tukkk 111 ++=+ BsAxx , (1) 

for 0≥k , where ( ) ( ) ( )[ ]Tkxkxk 21≡x  is the state vector, 

( ) ( ) ( )[ ] ( )( )kQksksk T xs ≡≡ 21  is the quantized state vector, u  is the input step size, 
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Define 

( ) ( ) ( )kkk xxe −+≡ 1 , (3) 

then it can be shown easily that  

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]TT ksukxksukekek 21221 2−+−=≡e . (4) 

Since u  is a constant and ( ) { }1,1 −∈ksi  for 2,1=i , 

( ) { }1,11 +−∈ uuke  (5) 

and 

( )( ) ( ) ( )( ) 2max2min 121 ++≤≤−+
∀∀

ukxkeukx
kk

. (6) 

If ( )kx1  is bounded, then ( )ke2  is also bounded, and there are two vertical lines 

shown on the plot of ( )ke2  against ( )ke1 . 

It is worth noting that ( )ke  is obtained by highpass filtering of ( )kx . Hence, 

the mapping from ( ){ }kX x≡  to ( ){ }kE e≡  is not a static projection of ( )kx . 

Furthermore, define 



 4

( ) ( ) ( )[ ] ( ) ( )kkekek T eIAe −≡≡ 21
~~~ , (7) 

where I  is a 22×  identity matrix, then 

( ) ( )[ ]Tksuk 20~ −=e . (8) 

In this case, ( )ke~  is obtained from a static projection of ( )ke . Since there are only two 

possible values of ( )ke~ , which are [ ]Tu 10 −  and [ ]Tu 10 + , there are only two 

points on the plot of ( )ke2
~  against ( )ke1

~ . 

Figure 1a shows the phase portrait of a second-order double-loop SDM with 

161027.0=u  and ( ) [ ]T08.0077.00 =x  [4]. Figure 1b shows the plot of ( )ke2  

against ( )ke1 . Figure 1c shows the plot of ( )ke2
~  against ( )ke1

~ . It can be seen from 

Figure 1a that an irregular chaotic pattern is exhibited on the phase portrait, while 

there are two vertical lines on the plot of ( )ke2  against ( )ke1 , and two points on the 

plot of ( )ke2
~  against ( )ke1

~ . 

 
Figure 1: (a) Phase portrait of a second-order double-loop SDM. (b) Plot of ( )ke2  

against ( )ke1 . (c) Plot of ( )ke2
~  against ( )ke1

~ . 

Now, we apply the same transformation to second-order interpolative 

bandpass SDMs [5]. Second-order interpolative bandpass SDMs can be represented 

by the following state space equation: 

( ) ( ) [ ] ( )( )kukk T sBxAx −′+′=+ 111 , (9) 

for 0≥k , where 
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Figure 2a shows the phase portrait when 1−=d , 05.0=θ , 3.0−=u  and 

( ) [ ]T5.01.00 −=x . Figure 2b shows the plot of ( )ke2  against ( )ke1 , and Figure 2c 

shows the plot of ( )ke2
~  against ( )ke1

~ . It can be seen from Figure 2a that an irregular 

chaotic pattern is exhibited on the phase portrait, while it seems to have four straight 

lines on the plot of ( )ke2  against ( )ke1  as shown in Figure 2b and four points on the 

plot of ( )ke2
~  against ( )ke1

~  as shown in Figure 2c. However, if we zoom-in into Figure 

2b and Figure 2c, as shown in Figure 2d and 2e, we find that they are not four straight 

lines and four points. In fact, the trajectories are confined in very narrow regions 

within the neighborhood of four straight lines and four points respectively. The width 

of the regions depends on θ . The Lyapunov exponents of ( )kx  and ( )ke~  for the 

second-order interpolative bandpass SDM are, respectively, 0.0619 and 0.0628, where 

the Lyapunov exponent is computed based on 50,000 samples of data and 30 total 

number of replacement steps [6]. It is worth noting that the Lyapunov exponent of 

( )ke~  is higher than that of ( )kx . If the Lyapunov exponent is employed for the 

measure of chaotic behaviors, since both Lyapunov exponents are positive, then ( )kx  

and ( )ke~  can be regarded as exhibiting chaotic behaviors and ( )ke~  is more chaotic 

than ( )kx  (in the sense of the Lyapunov exponent). Compared to that of ( )kx  and 

( )ke~  for the second-order double-loop SDM, the corresponding values are 0.2341 and 

∞− , respectively. Since the Lyapunov exponent of ( )kx  for the second-order double-

loop SDM is higher than that of the second-order interpolative bandpass SDM, while 

the Lyapunov exponent of ( )ke~  is negative and much smaller than that of the second-

order interpolative bandpass SDM, we can conclude that the state vectors of the 

second-order double-loop SDM is more chaotic than that of the second-order 

interpolative bandpass SDM, but it is no longer chaotic after the transformation, while 

the transformation causes more chaotic for the second-order interpolative bandpass 

SDM. 

The importance of the above findings is that we can distinguish these two 

types of SDMs from their state vectors without solving the state equations and the 

information of input signals. 
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Figure 2: (a) Phase portrait of a second-order interpolative bandpass SDM. (b) Plot of 

( )ke2  against ( )ke1 . (c) Plot of ( )ke2
~  against ( )ke1

~ . (d) Zoom-in of (b). (e) Zoom-in 

of (e). 

 

III. EXPLANATIONS 

For second-order double-loop SDMs, 

( ) ( ) ( ) ( ) [ ]Tukkk 11++−= BsxIAe , (11) 

for 0≥k , and 

( ) ( ) ( ) ( ) ( ) [ ]( )Tukkk 11~ 2 +−+−= BsIAxIAe  (12) 

for 0≥k . Since 
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( ) 0IA =− 2 , (14) 

the matrix IA −  is not a full rank matrix. Hence, the dimension of the signal is 

reduced after the projection. As a result, exactly two vertical lines and two points are 

exhibited on the plots of ( )ke2  against ( )ke1 , and ( )ke2
~  against ( )ke1

~ , respectively. 

For second-order interpolative bandpass SDMs, since 
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the matrix IA −′  is a full rank matrix, the dimension of the signals is preserved after 

the projection. Hence, they are not four straight lines and four points on the plots of 

( )ke2  against ( )ke1 , and ( )ke2
~  against ( )ke1

~ , respectively. However, if θ  is small 

enough, that is 0→θ , then 

⎥
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and 

( ) 0IA ≈−′ 2 . (18) 

In this case, it appears to be four straight lines and four points on the plot of ( )ke2  

against ( )ke1  and ( )ke2
~  against ( )ke1

~ , respectively. This accounts for the phenomena. 

 

IV. CONCLUSION 

In this paper, we have explored the difference between irregular chaotic 

patterns exhibited on the phase portraits of second-order double-loop SDMs and 

second-order interpolative bandpass SDMs. We have shown that by computing the 

difference between two consecutive state vectors, and plotting one component of the 

vectors against the other component, a simple regular pattern is resulted on the phase 

portrait for second-order double-loop SDMs. However, irregular chaotic patterns are 

still exhibited on the phase portrait for second-order interpolative bandpass SDMs. It 

is found that the Lyapunov exponent of state vectors of the second-order double-loop 

SDM is higher than that of the second-order interpolative bandpass SDM, while that 

of the transformed vectors of the second-order double-loop SDM is negative and 
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much smaller than that of the second-order interpolative bandpass SDM. Also, the 

Lyapunov exponent of the transformed vectors increases for the second-order 

interpolative bandpass SDM. Hence, the proposed simple method can be used to 

distinguish these two types of SDMs from their state vectors without solving the state 

equations and the information of input signals. 
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