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Abstract Methods of Peusner’s network of thermodynamics enable the symmetric or hybrid
transformation of classic Kedem–Katchalsky (K–K) equations into a network form. In the
case of binary non-electrolyte solutions (homogenous and non-homogenous ones), two sym-
metric and two hybrid forms of the K–K equations may be obtained, containing relatively
symmetric (R∗

i j , Ri j , L∗
i j or Li j ), or hybrid (P∗

i j , Pi j , H∗
i j or Hi j ) Peusner’s coefficients.

In the following paper, the network form of the K–K equations was obtained, containing
the Peusner’s coefficients P∗

i j (i, j ∈ {1, 2}), and creating matrix of the second row of the
Peusner’s coefficients [P∗]. The equations were used to study transport of aqueous glucose
solutions through a Nephrophan membrane oriented horizontally as well as configurations
A and B of a membrane system. The configuration A involves a solution with a higher con-
centration placed under the membrane, whereas a solution with a lower concentration is
placed above the membrane. In the configuration B, the solutions are swapped with places.
Dependences of the Peusner’s coefficients P∗

i j and Pi j (i, j ∈ {1, 2}) for non-homogenous
(P∗

i j ) and homogenous (Pi j ) solutions upon the average concentration of glucose in the

membrane (C) were calculated. The transport properties of membrane are characterized by
coefficients determined experimentally: the coefficient of reflection (σ ), hydraulic perme-
ability (Lp), and solution permeability (ω) for aqueous glucose or ethanol solutions. The
calculations show that values of coefficients P∗

11, P∗
12, P∗

21, and P∗
22 depend non-linearly on

both the membrane C and the configuration of the membrane system. The values of the coef-
ficients are different from the values of the coefficients P11, P12, P21 and P22. Moreover,
the coefficients P11, P12, P21 and P22 do not depend on the configuration of the membrane
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system. It was shown that there is a threshold value of concentration above which relations
P∗

11/P11, P∗
12/P12 and P∗

22/P22 depend on the configuration of the membrane system.

Keywords Membrane transport · Peusner’s network thermodynamics · Kedem–Katchalsky
equations · Concentration polarization · Peusner’s coefficient

List of Symbols

Ri j , Li j Symmetric Peusner’s coefficients for homogeneous solutions
Pi j Hybrid Peusner’s coefficients for homogeneous solutions
Xi Thermodynamic forces in homogeneous conditions
Ji Thermodynamic fluxes in homogeneous conditions
R∗

i j , L∗
i j Symmetric Peusner’s coefficients for non-homogeneous solutions

P∗
i j Hybrid Peusner’s coefficients for non-homogeneous solutions

X∗
i Thermodynamic forces in non-homogeneous conditions

J ∗
i Thermodynamic fluxes in non-homogeneous conditions

Lp Hydraulic permeability coefficient
Jv Volume flux in homogeneous conditions
Jvs Volume flux in non-homogeneous conditions
σ Reflection coefficient
ω Solute permeability coefficient
ν Kinematic viscosity
ρ Mass density of solution
δd , δk Thickness of concentration boundary layers in diffusive (d) and convective

(k) states
Ph, Pl Hydrostatic pressure (h higher and l lower value)
�π Osmotic pressure difference
�P Hydrostatic pressure difference
Ch, Cl Solute concentrations in chambers of the membrane system
C Mean solute concentration in the membrane
R Gas constant
RC Concentration Rayleigh number
T Thermodynamic temperature
Dd, Dk Diffusion coefficient in diffusive (d) and convective (k) states
ζp Hydraulic concentration polarization coefficient
ζv Osmotic concentration polarization coefficient
ζs Diffusive concentration polarization coefficient
ζa Advective concentration polarization coefficient
κi j Asymmetry factor between configurations A and B

1 Introduction

Network thermodynamics (NT), created by Leonardo Peusner (Peusner 1970, 1986a) and
George Oster, Alan Perelson, and Aharon Katchalsky (Oster et al. 1971; Perelson 1975) have
introduced mathematical formalisms constituting one of many tools for analogical modeling
of properties of complex systems functioning in different disciplines of science, technology,
and medicine (Alhama et al. 2012; Bristow and Kennedy 2013; Imai 1996, 2003; Mikulecky
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Network Hybrid Form of the Kedem–Katchalsky Equations 3

1990, 2005; Moya and Horno 2001, 2004; Peusner 1983a, b, 1985a, b, 1988, 2002; Peusner
et al. 1985; Jamnik and Maier 2001; López-Garcia et al. 1996). A version of NT worked out
by Oster, Perelson and Katchalsky uses symbols of connectivity graphs (Oster et al. 1971),
whereas the NT version worked out by Peusner (PNT) uses non-equilibrium thermodynamics
and theory of electric circuits (Peusner 1970, 1986a). Despite different symbols, the both of
versions are of equal importance (Peusner 1986a). One of the PNT use is the mathematical
modeling of membrane transport (Batko et al. 2013a, b, c; Horno et al. 1989, 1990, 1992;
Imai 1989, 1996, 2003; Imai et al. 1989; Horno and Castilla 1994; Szczepański et al. 2012;
Szczepański and Wódzki 2013; Ślęzak et al. 2012; Wódzki et al. 2004) and micro-flows
(Biscombe et al. 2014).

The original papers of Peusner (1983a, b, 1985a, b, 1986a) as well as papers of followers
of his idea (Ślęzak et al. 2012; Batko et al. 2013a, b, c) show that PNT enables the symmetric
or hybrid transformation of the membrane transport Kedem–Katchalsky (K–K) equations
from the classic form into the network form. The network form of the equations includes
new types of coefficients, called the Peusner’s tensor coefficients (Ślęzak et al. 2012; Batko
et al. 2013a, b, c, 2014). The coefficients may be calculated by means of transport parameters
determined experimentally, i.e., the coefficients of hydraulic permeability (Lp), solution
permeability (ω), and reflection (σ ) (Ślęzak et al. 2012; Batko et al. 2013a, 2014). In the
case of binary non-electrolyte solutions, the transformation results in two symmetric and
two hybrid forms of the K–K equations (Peusner 1983a, 1985a, 1986a). Under conditions of
concentration polarization involving creation of concentration boundary layers (CBLs) at the
both sides of the membrane (Barry and Diamond 1984; Kargol 1999, 2000; Ślęzak 1989),
the symmetric network forms of the K–K equations contain the Peusner’s tensor coefficients
R∗

i j or L∗
i j , whereas the hybrid network forms contain the Peusner’s tensor coefficients H∗

i j

or P∗
i j (i, j ∈ {1, 2}) (Ślęzak et al. 2012; Batko et al. 2014). The network form of the K–K

equations containing the Peusner’s coefficients R∗
i j (i, j ∈ {1, 2}) may be written in the

following way (Ślęzak et al. 2012):

[
�P − �π

�π

C

]
=

[
R∗

11 R∗
12

R∗
21 R∗

22

] [
Jvs

Jss

]
= [R∗]

[
Jvs

Jss

]
, (1)

where [R∗] is the matrix of Peusner’s coefficients R∗
i j (i, j ∈ {1, 2}) given by

[R∗] =
⎡
⎣ ζsω+ζp LpC(1−ζvσ)(1−ζaσ)

ζp Lpζsω
− 1

ζsω
(1 − ζvσ)

− 1
ζsω

(1 − ζaσ) 1
Cζsω

⎤
⎦ , (1a)

where �P − �π, �π1/C are thermodynamic forces, �P = Ph − Pl is the hydrosta-
tic pressure difference (Ph, Pl is the higher and lower value of hydrostatic pressure),
�π = RT �C is the osmotic pressure difference generated by the concentration differ-
ence �C = Ch − Cl (Ch, Cl are the higher and the lower value of concentration), Jv is
the volume flux, Jss is the dissolved substance flux, RT is the product of gas constant and
absolute temperature, σ is the reflection coefficient, ω is the solution permeability coefficient,
C = (Ch − Cl)[ln(ChC−1

l )]−1 is the average solution concentration in the membrane, Jvs

and Jss are the volume and solution fluxes, ζp, ζv, ζs, and ζa are, respectively, coefficients
of hydraulic, osmotic, diffusive, and advective concentration polarization (Table 1).

Under the conditions of homogeneity of solutions separated by the membrane, i.e., when
the condition ζp = ζv = ζs = ζa = 1 is fulfilled, Eqs. (1) and (1a) are simplified to the
following expression (Peusner 1985a, 1986a)
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[
�P − �π

�π

C

]
=

[
R11 R12

R21 R22

] [
Jv

Js

]
= [R]

[
Jv

Js

]
, (2)

where [R] is the matrix of Peusner’s coefficients Ri j (i, j ∈ {1, 2}) given by

[R] =
[

ω+LpC(1−σ)2

Lpω
− 1

ω
(1 − σ)

− 1
ω
(1 − σ) 1

Cω

]
. (2a)

In Eq. (3), Jv (Jv > Jvs) and Js (Js > Jss) stand for respectively the volume flux and
the solution flux through the membrane under the conditions of homogeneity of solutions
separated by the membrane. Determinants of the square matrix of Peusner’s coefficients R∗

i j

and Ri j are equal to det [R∗] = (CζpζsLpω)−1 and det[R] = (C Lpω)−1, whereas the
quotient of the determinants is equal to det [R∗]/ det[R] = (ζpζs)

−1.

Transforming Eq. (1) we get (Batko et al. 2014)[
Jvs

Jss

]
=

[
L∗

11 L∗
12

L∗
21 L∗

22

] [
�P − �π

�π

C

]
= [L∗]

[
�P − �π

�π

C

]
, (3)

where [L∗] is the matrix of Peusner’s coefficients L∗
i j (i, j ∈ {1, 2}) given by

[L∗] =
[

ζpLp C (1 − ζvσ) ζpLp

C (1 − ζaσ) ζpLp C
[
ζsω + C (1 − ζaσ) (1 − ζvσ) ζpLp

]
]

. (3a)

If the condition ζp = ζv = ζs = ζa = 1 is fulfilled, then Eqs. (3) and (3a) are simplified
to the following expression (Peusner 1985a, 1986a)[

Jv

Js

]
=

[
L11 L12

L21 L22

] [
�P − �π

�π

C

]
= [L]

[
�P − �π

�π

C

]
, (4)

where [L] is the matrix of Peusner’s coefficients Li j (i, j ∈ {1, 2}) given by

[L] =
[

Lp C(1 − σ)Lp

C(1 − σ)Lp C
[
ω + C(1 − σ)2 Lp

]
]

. (4a)

Determinants of the square matrix of Peusner’s coefficients L∗
i j and Li j are equal to det

[L∗] = CζpζsLpω and det[L] = C Lpω (Peusner 1985a, 1986a; Batko et al. 2014), whereas
the quotient of the determinants is equal to det[L∗]/ det[L] = ζpζs.

Equations (1)–(4) may be derived by the symmetric transformation of the classic
K–K equations using the methods of PNT (Peusner 1983a, 1985a, 1986a). In the case
of homogenous non-electrolyte solutions, PNT implements four tensor coefficients into the
study of membrane transport: Li j , Ri j , Pi j and Hi j (Peusner 1983a, 1985a, 1986a). For
non-homogenous solutions, the tensor coefficients are as follows: L∗

i j , R∗
i j , P∗

i j and H∗
i j .

The coefficients P∗
i j are derived when in Eq. (1) places of �P − �π and Jv are swapped,

whereas the coefficients H∗
i j are derived when places of �π/C and Jss are swapped.

It results from Eqs. (1a) and (2a) that for the tensor Peusner’s coefficients of the second
degree R∗

i j and Ri j (i, j ∈ {1, 2}) we have R∗
12 = −(1 − ζvσ)ζ−1

s ω−1 �= R∗
21 = −(1 −

ζaσ)ζ−1
s ω−1, R12 = −(1 − σ)ω−1 �= R21 (Ślęzak et al. 2012). By contrast, Eqs. (3a)

and (4a) show that for the tensor Peusner’s coefficients L∗
i j and Li j (i, j ∈ {1, 2}) we

have L∗
12 = C(1 − ζvσ)ζpLp �= L∗

21 = C(1 − ζaσ)ζpLp, L12 = C(1 − σ)Lp = L21

(Batko et al. 2014).
In the previous papers (Ślęzak et al. 2012; Batko et al. 2014), using the symmetric transfor-

mation of the classic K–K equations, the network form of the K–K equations was derived. The

123



Network Hybrid Form of the Kedem–Katchalsky Equations 5

network equations contain the tensor coefficients R∗
i j or L∗

i j , constituting the combination of
the practical transport coefficients of membrane (Lp, σ, ω) and the average concentration of
solutions in the membrane (C). The equations were used to describe the membrane transport
of aqueous glucose solution through a hemodialysis Nephrophan membrane under condi-
tions of diffusion, and diffusion and convection simultaneously. The latter study includes the
Rayleigh concentration number (RC) used in equations describing the coefficients R∗

i j and
L∗

i j . In the following paper, we are presenting the further network form of the K–K equations
which were derived by the hybrid transformation of the classic K–K equations. The transfor-
mations were made by the methods of PNT. The equations derived contain the tensor coef-
ficients P∗

i j (i, j ∈ {1, 2}). Similar to previous experiments, the derived equations are used
for the study of the membrane transport of aqueous glucose solutions through the polymeric
membrane under the conditions of diffusion, and diffusion and convection simultaneously.
The coefficients P∗

11, P∗
12, P∗

21 and P∗
22 are calculated for aqueous glucose solutions and for

the hemodialysis Nephrophan membrane. Values of the coefficients are compared to values of
the coefficients P11, P12, P21 and P22 calculated for the conditions of solution homogeneity
and the same solution concentration but different configurations of the membrane system. The
concentration dependence of the determinant of matrix quotient [P∗] and [P] is calculated.

2 Theory

The source of coefficients P∗
i j (i, j ∈ {1, 2}) under the conditions of concentration polar-

ization, for a two-directional two-port of PNT with a single input for the flux J ∗
1 and the

flux-coupled force X1, as well as a single input for the flux J ∗
2 and the flux-coupled force

X2, is a hybrid equation (Ślęzak 2011a, 2011b)[
J ∗

1
X2

]
=

[
P∗

11 P∗
12

P∗
21 P∗

22

] [
X1

J ∗
2

]
. (5)

For the conditions of homogeneity of solutions separated by the membrane, the above
equation is written as follows (Peusner 1983a, 1985a, 1986a)[

J1

X2

]
=

[
P11 P12

P21 P22

] [
X1

J2

]
. (6)

For the conditions of concentration polarization, the K–K equations may be written in the
following way (Ślęzak et al. 2012)

Jvs = ζpLp�P − ζpLpζvσ�π, (7)

Jss = Lpζp (1 − ζaσ) C�P + [
ζsω − Lpζpσζv (1 − σζa)

]
�π. (8)

In the above equations Jvs is the volume flux, and Jss is the solution flux under the condi-
tions of concentration polarization. By contrast, ζp, ζv, ζa and ζs are respectively hydraulic,
osmotic, advective and diffusive coefficient of Katchalsky (Ślęzak et al. 2012).

Employing simple algebra, Eqs. (7) and (8) may be transformed into the following ones:

Jvs = Lpζps

ωζs + Lpζp(1 − σζv)(1 − σζa)C
[ωζs(�P − �π) + (1 − σζs) Jss] , (9)

�π

C
= 1

ωζs + Lpζp(1 − σζv)(1 − σζa)C

[
−Lpζp (1 − σζv) (�P − �π) + 1

C
Jss

]
.

(10)
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6 K. M. Batko et al.

The above system of equations is the further version (hybrid version) of the K–K transformed
equations for the conditions of concentration polarization, which may be written in a form
of matrix equation[

Jvs
�π

C

]
=

[
P∗

11 P∗
12

P∗
21 P∗

22

][
�P − �π

Jss

]
= [P∗]

[
�P − �π

Jss

]
, (11)

where [P∗] is the matrix of Peusner’s coefficients P∗
i j (i, j ∈ {1, 2}) given by

[P∗] =
⎡
⎣

Lpζpωζs
ξ

Lpζp(1−σζv)

ξ

− Lpζp(1−σζv)

ξ
1

Cξ

⎤
⎦ , (11a)

where ξ = [ωζs + Lpζp(1 − ζvσ)(1 − ζaσ)C].
It results from Eq. (11a) that for non-diagonal coefficients P∗

12 �= P∗
21 and P∗

12/P∗
21 =

(ζvσ − 1)/(1 − ζaσ ). Moreover, the matrix determinant [P∗] is equal to

det[P∗] = P∗
11 P∗

22 − P∗
12 P∗

21 = ζpLp

C[ζsω + CζpLp(1 − ζvσ)(1 − ζaσ)] . (12)

For the conditions of homogeneity of solutions separated by a selective membrane, i.e.,
when the condition ζp = ζv = ζs = ζa = 1 is fulfilled, Eq. (4) is taking the following form
(Peusner 1983a, 1985a, 1986a)

[
Jv
�π

C

]
=

[
P11 P12

P21 P22

][
�P − �π

Js

]
= [P]

[
�P − �π

Js

]
, (13)

where [P] is the matrix of Peusner’s coefficients Pi j (i, j ∈ {1, 2}) given by (Peusner 1983a,
1985a, 1986a)

[P] =
⎡
⎢⎣

Lpωζs

ω+Lp(1−σ)2C

Lp(1−σ)

ω+Lp(1−σ)2C

− Lp(1−σ)

ω+Lp(1−σ)2C
1

C[ω+Lp(1−σ)2C

⎤
⎥⎦ . (13a)

The determinant of the matrix [P] is equal to

det[P] = P11 P22 − P12 P21 = Lp

C[ω + C Lp(1 − σ)2] . (14)

Considering Eqs. (11a) and (13a), we are deriving the following expression for the selective
membrane

P∗
11

P11
= ζpζs[ω + C(1 − σ)2 Lp]

ζsω + CζpLp(1 − ζvσ)(1 − ζaσ)
, (15)

P∗
12

P12
= ζpLp(1 − ζvσ)[ω + C(1 − σ)2 Lp]

(1 − σ)[ζsω + CζpLp(1 − ζvσ)(1 − ζaσ)] , (16)

P∗
21

P21
= ζpLp(1 − ζaσ)[ω + C(1 − σ)2 Lp]

(1 − σ)[ζsω + CζpLp(1 − ζvσ)(1 − ζaσ)] , (17)

P∗
22

P22
= ω + C(1 − σ)2 Lp

ζsω + CζpLp(1 − ζvσ)(1 − ζaσ)
. (18)
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Network Hybrid Form of the Kedem–Katchalsky Equations 7

For a non-selective membrane (Lp = Lpmax, σ = 0 and ω = ωmax), Eqs. (15)–(18) are
written in the following forms

P∗
11

P11
= ζpζs[ωmax + C Lpmax]

ζsωmax + CζpLpmax
, (15a)

P∗
12

P12
= ζpLpmax[ωmax + C Lpmax]

ζsωmax + CζpLpmax
= P∗

12

P12
, (16a)

P∗
22

P22
= ωmax + C Lpmax

ζsωmax + CζpLpmax
. (18a)

This results in P∗
11/P11 = ζs P∗

12/Lpmax P12, P∗
11/P11 = ζpζs P∗

22/P22 and P∗
12/P12 =

ζp Lpmax P∗
22/P22. By contrast, for a partially selective membrane (Lp > 0, σ = 1 and

ω = 0) we have P∗
11/P11 = P∗

22/P22 → 0 and P∗
12/P12 = P∗

21/P21 → +∞.

In order to make Eqs. (6)–(9) sensitive to hydrodynamic conditions, we may implement
into them the Rayleigh concentration number (RC). The number controls the processes of
turning from diffusive state into convective state in the membrane systems (Ślęzak et al. 1985,
2010): when the number value is becoming critical, then turning from diffusive (stable) state
into convective (non-stable) state is noticed. In the previous paper (Ślęzak et al. 2010) it
was shown that the critical value of RC is reached at a bifurcation point of the coordinates:
C = 5.41 mol m−3, (RC)crit. = 1, 709.3. To implement RC into Eqs. (6)–(9), we are using
procedure presented in a previous paper (Ślęzak et al. 2012). The paper showed that with a
sufficient approximation, we may write as follows

ζp = ζa = 1, (19)

ζv = ζp = ζi. (20)

By contrast, the coefficient ζi may be written with the equation (Katchalsky and Curran 1965;
Ślęzak et al. 2012)

ζi = Di (Di + 2RT ωδi )
−1 , (21)

where Di is the diffusion coefficient, RT is the product of gas constant and thermodynamic
temperature, δi is the thickness of CBL. For the diffusive conditions i = d, whereas for the
convective conditions i = k.

Including Eq. (21) into Eqs. (15)–(18), we are deriving

P∗
11

P11
=

(
1 + 2RT LpωC(1 − σ)δi

Di [ω + C(1 − σ)2 Lp]

)−1

, (22)

P∗
12

P12
=

(
1 + 2RT ωδi

Di (1 − σ)

) (
1 + 2RT Lp(1 − σ)ωCδi

Di [ω + C(1 − σ)2 Lp]

)−1

, (23)

P∗
21

P21
=

(
1 + 2RT ωδi

Di

) (
1 + 2RT Lp(1 − σ)ωCδi

Di [ω + C(1 − σ)2 L p]

)−1

= P∗
22

P22
. (24)

To derive Eqs. (16)–(18) for the diffusive conditions, the equations may be written assuming
that i = d. Under non-convective (diffusive) conditions, the thickness of CBLs (δd) for
C > (C)crit. is larger than that one under the convective conditions (δk) and it depends on the
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8 K. M. Batko et al.

solution concentration (Ślęzak et al. 2012). The diffusion coefficient value under the diffusive
conditions (Dd) is approximately constant, i.e., it does not depend on the concentration
of non-electrolyte solutions diluted and is lower than the diffusion coefficient value under
the convective conditions (Dk). Moreover, Dk depends on the solution concentration. The
equation for the diffusion coefficient under convective conditions (Dk) may be written as
follows (Ślęzak et al. 2012)

Dk = gαCδ3
k(Jv − Jvs)

2Lpσ RT νRC
. (25)

Including Eq. (25) in Eqs. (22)–(24), we are deriving

P∗
11

P11
=

(
1 + 4(RT )2 L2

pωσ(1 − σ)CνRC

gαCδ2
k(Jv − Jvs)[ω + C(1 − σ)2Lp]

)−1

, (26)

P∗
12

P12
=

(
1 + 4(RT )2 LpσωνRC

gαC(1 − σ)δ2
k(Jv − Jvs)

)(
1 + (RT )2L2

pσωC(1 − σ)νRC

gαCδ2
k(Jv − Jvs)[ω + C(1 − σ)2 Lp]

)−1

,

(27)

P∗
21

P21
=

(
1 + 4(RT )2 LpσωνRC

gαCδ2
k(Jv − Jvs)

)(
1 + 4(RT )2 L2

pσωC(1 − σ)νRC

gαCδ2
k(Jv − Jvs)[ω + C(1 − σ)2Lp]

)−1

= P∗
22

P22
.

(28)

The equation for the diffusion coefficient under convective conditions (Dk) may also be
written in the following form

Dk = gαCδ3
k(Js − Jss)

2ωRT νRC
. (29)

Including Eq. (29) in Eqs. (22)–(24), we are deriving

P∗
11

P11
=

(
1 + 4(RT )2 Lpω

2(1 − σ)CνRC

gαCδ2
k(Js − Jsm)[ω + C(1 − σ)Lp]

)−1

, (30)

P∗
12

P12
= [gαC(1 − σ)(Js − Jsm)δ2

k + 4(RT )2ω2νRC][ω + C(1 − σ)2 Lp]
(1 − σ){gαCδ2

k(Js − Jsm)[ω + C(1 − σ)2 Lp] + 4(RT )2ω2 LpC(1 − σ)νRC} ,
(31)

P∗
21

P21
= P∗

22

P22
= [gαCδ2

k(Js − Jsm) + 4(RT )2ω2νRC][ω + C(1 − σ)2 Lp]
gαCδ2

k(Js − Jsm)[ω + C(RT )2 Lp] + 4(RT )2ω2 LpCνRC
. (32)

Equations for δd and δk may be calculated using the equations below (Ślęzak et al. 2012)

δd = − Dd

2RT ωm

(
1 − Jv

Jvs

)
, (33)

δk = RT

2(Jv − Jvm)

(
LpσωνRC

gαC

)0.5

, (34)

or

δd = − Dd

2RT ωm

(
1 − Js

Jss

)
, (35)

δk = ωRT

2(Js − Jsm)

(
νRC

gαC

)0.5

. (36)
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Network Hybrid Form of the Kedem–Katchalsky Equations 9

In the equations above Jv, Jvs (Jv > Jvs), Js, Jss (Js > Jss) may be determined in a series
of independent experiments (Ślęzak et al. 2012). By contrast, the values δd and δk may be
determined by optical methods (Dworecki et al. 2003; Dworecki et al. 2005). The Peusner’s
coefficients P∗

i j and Pi j in the matrixes [P∗] and [P] may be linked by the determinant of
matrix quotient, which may be written in the following way

det[P∗]
det[P] = det

[P∗]
[P] = P∗

11 P∗
22 − P∗

12 P∗
21

P11 P22 − P12 P21
= ζp[ω + C Lp(1 − σ)2]

ζsω + CζpLp(1 − ζvσ)(1 − ζaσ)
. (37)

Assuming that ζp = ζa = 1 and ζv = ζs = ζ, and including Eqs. (21) and (25), then Eq. (37)
can be written for the diffusive and convective state, respectively(

det
[P∗]
[P]

)
d

= [ω + C Lp(1 − σ)2][Dd + 2RT ωδd)]
Dd[ω + C Lp(1 − σ)2] + 2RT C Lpω(1 − σ)δd

, (38)

det

( [P∗]
[P]

)
k

=
[

1 + 4(RT )2 LpσωνRC

gαCδ2
k(Jv − Jvs)

][
1 + 4C(RT )2 L2

pσων(1 − σ)RC

gαCδ2
k(Jv − Jvs)[ω + C Lp(1 − σ)2]

]−1

.

(39)

3 Calculations Results and Discussion

In order to calculate the coefficients P∗
11, P∗

12, P∗
21, P∗

22 P11, P12 = P21, P∗
22, P∗

11/P11,

P∗
12/P12, P∗

21/P21, P∗
22/P22, as well as det([P∗]/[P]) we are using the following data:

Lp = 4.9 × 10−12 m3 N−1 s −1, σ = 0.068, ω = 0.8 × 10−9 mol N−1 s−1, Ch =
2.6 mol m−3 do Ch = 101 mol m−3, Cl = 2.6 mol m−3, Dd = 0.69 × 10−9 m2 s−1, αC =
ρ−1

l ∂ρ/∂C = 6.01 × 10−5 m 3 mol−1, νh = νl(1 + γ1Ch) when coefficients γ1 =
ν−1

l ∂ν/∂C = 3.95×10−4 m3 mol −1, νl = 1.012×10−6 m2 s −1 and (RC)crit. = 1, 709.3
(Ślęzak et al. 2010; Ślęzak et al. 2012). The coefficient values Lp, σ and ω were determined
under conditions of intensive stirring of solutions (Katchalsky and Curran 1965; Ślęzak
1989). Therefore, their values are independent of the membrane configuration, i.e., setup
of the membrane and solutions separated by the membrane relative to a gravitation vector.
According to Fig. 1, in the case of single-membrane system in which the membrane is placed
horizontally, two configurations are distinguished, namely A and B (Ślęzak 1989). In the con-
figuration A, the solution with the concentration Cl is in a compartment above the membrane,
and with the concentration Ch—under the membrane. The diverse placement of solutions
towards the membrane mounted horizontally is provided in the configuration B.

Under conditions of concentration polarization, i.e., when solutions separated by the
membrane are not stirred mechanically, at the both sides of the membrane the CBLs are
created limiting the volume and diffusive flows of the solution (Abu-Rjal et al. 2014; Barry
and Diamond 1984; Jasik-Ślęzak et al. 2011; Kargol 1999, 2000; Ślęzak 1989; Wang et al.
2014). The CBLs are created as a result of molecular diffusion of a dissolved substance from
the solution with the higher concentration into the solution with the lower concentration
(Dworecki et al. 2003; Nikonenko et al. 2010; Wang et al. 2014). That fact may be included
in equations introducing the additional/supporting coefficients ζp, ζv, ζs and ζa. For the
haemodialysis Nephrophan membrane and aqueous glucose solutions, the coefficients ζv and
ζs determined under the conditions of concentration polarization depend on the concentration
of solutions separated by the membrane as well as on the configuration of membrane system
(Ślęzak et al. 2012). By contrast, the coefficients ζp and ζa fulfill the condition ζp = ζa = 1
under conditions of solution homogeneity as well as conditions of concentration polarization
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10 K. M. Batko et al.

Table 1 Values of the volume fluxes of homogeneous solution (Jv), volume fluxes of non-homogeneous
solution in diffusive–convective state (Jvs), osmotic (ζv) and diffusive (ζs) concentration polarization coeffi-
cient in configurations A (ζvA, ζsA) and B (ζvB, ζsB), and thicknesses of concentration boundary layers (δi )
in diffusive (δd) and convective (δk) states for various mean concentrations of glucose (C; Ślęzak et al. 2012)

C (mol m−3) Jv × 108 (m s−1) Jvs × 108 (m s−1) ζv ζs δi × 103 (m)

ζvA ζvB ζsA ζsB δd δk
2.7905 0.41 0.09 0.208 0.208 0.21 0.21 0.698 0.698

4.1703 0.80 0.17 0.208 0.208 0.21 0.21 0.698 0.698

5.4101 1.19 0.26 0.208 0.208 0.21 0.21 0.698 0.698

6.5692 1.61 0.34 0.200 0.209 0.205 0.215 0.720 0.641

7.6732 2.04 0.43 0.190 0.210 0.200 0.220 0.760 0.576

8.7362 2.41 0.55 0.176 0.220 0.183 0.230 0.810 0.550

9.7669 2.79 0.70 0.168 0.260 0.178 0.250 0.871 0.552

10.7713 3.21 0.95 0.155 0.285 0.164 0.290 0.952 0.600

11.7535 3.59 1.20 0.144 0.320 0.154 0.330 1.046 0.632

12.7167 4.02 1.45 0.134 0.348 0.141 0.355 1.133 0.654

13.6634 4.41 1.70 0.126 0.371 0.131 0.375 1.214 0.669

14.5954 4.79 1.95 0.120 0.390 0.122 0.388 1.291 0.679

15.5144 5.21 2.20 0.114 0.406 0.115 0.412 1.361 0.685

16.4216 5.60 2.45 0.110 0.420 0.109 0.422 1.428 0.688

17.3180 6.02 2.70 0.106 0.432 0.105 0.438 1.490 0.690

18.2048 6.41 2.95 0.102 0.442 0.100 0.447 1.549 0.689

19.0820 6.79 3.20 0.100 0.451 0.096 0.457 1.607 0.688

19.9518 7.21 3.45 0.096 0.459 0.092 0.467 1.664 0.686

20.8130 7.59 3.70 0.092 0.467 0.088 0.475 1.721 0.683

21.6679 8.02 3.94 0.088 0.473 0.084 0.480 1.760 0.677

(Ślęzak et al. 2012). The dependences ζv = f (C) and ζs = f (C), Jv = f (C), Jvs =
f (C), δd = f (C) and δk = f (C) were already presented (Ślęzak et al. 2012). The calcula-
tions results of the dependence P∗

11 = f (C), P∗
12 = f (C), P∗

21 = f (C), P∗
22 = f (C),

P11 = f (C), P12 = P21 = f (C), P∗
22 = f (C), P∗

11/P11 = f (C), P∗
12/P12 =

f (C), P∗
21/P21 = f (C), P∗

22/P22 = f (C) and det[P∗]/ det[P] = f (C) are presented
in Figs. 2, 3, 4, 5, 6, 7, 8, and 9.

The calculations results of the coefficient dependence P∗
11 = f (C) and P11 = f (C) for

the configurations A and B of the membrane system within Eqs. (11) and (13) are depicted in
Fig. 2. Figure shows that the values of coefficient P11 are decreasing linearly together with the
increase in the value C . By contrast, the values of coefficient P∗

11 for C fulfilling the condition
0 ≤ C ≤ 5.41 mol m−3 are decreasing linearly and do not depend on the configuration of
the membrane system. For C > 5.41 mol m−3, the value of coefficient P∗

11 depends on both
the value C and the configuration of the membrane system. Moreover, from the comparison
of the value P∗

11 for the same values C > 5.41 mol m−3 and the configurations A and B of
the membrane system, it is resulting that (P∗

11)A < (P∗
11)B. Within the whole range of C, the

following condition (P∗
11)A < (P∗

11)B < P11 is fulfilled.
The calculations results of the coefficient dependence P∗

12 = f (C) and P12 = f (C) for
the configurations A and B of the membrane system are depicted in Fig. 3. Figure shows that
together with the increase in value C, the values of coefficients P12 are decreasing linearly
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Network Hybrid Form of the Kedem–Katchalsky Equations 11

Fig. 1 Configurations A and B of a single-membrane system: M membrane, ll and lh the concentration
boundary layers (CBLs), Ph and Pl mechanical pressures, Cl and Ch concentrations of solutions outside the
boundaries, Ce and Ci the concentrations of solutions at boundaries ll/M and M/ lh, Jvm the volume fluxes
through membrane M, Jvs the volume fluxes through complex ll/M/ lh, Jsl , Jsh and Jsm the solute fluxes
through layers ll, lh and membrane, respectively, Jss the solute fluxes through complex ll/M/ lh (Ślęzak et al.
2012)

Fig. 2 The graphic illustration of dependence P∗
11 = f (C) for aqueous glucose solutions in a concentration

polarization conditions for the configuration A (graph 1), and B (graph 2) of the membrane system. The graph
3 illustrates the dependence P11 = f (C) in conditions of homogeneous solutions separated by the membrane.
The values of the coefficients P∗

11 and P11 were calculated on the basis of Eq. (11) and of Eq. (13), respectively

and are the same in the configurations A and B of the membrane system. By contrast, the
values of coefficient P∗

12 for 0 ≤ C ≤ 5.41 mol m−3 are decreasing approximately linearly.
Similar to the coefficient P∗

11, the coefficient value P∗
12 does not depend on the configuration

of the membrane system. For C > 5.41 mol m−3, the coefficient value P∗
12 depends on both

the value C and the configuration of the membrane system. The comparison of values P∗
12

for the same values C > 5.41 mol m−3 and the configurations A and B of the membrane
system showed that (P∗

12)A > (P∗
12)B. Within the whole range of C, the following condition

(P∗
12)A > (P∗

12)B > P12 is fulfilled.
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12 K. M. Batko et al.

Fig. 3 The graphic illustration of dependence P∗
12 = f (C) for aqueous glucose solutions in a concentration

polarization conditions for the configuration A (graph 1), and B (graph 2) of the membrane system. The
graph 3 illustrates the dependence P12 = f (C) in conditions of homogeneous solutions separated by the
membrane. The values of the coefficients P∗

12 and P12 were calculated on the basis of Eq. (11) and of Eq.
(13), respectively,

Fig. 4 The graphic illustration of dependence P∗
21 = f (C) for aqueous glucose solutions in a concentration

polarization conditions for the configuration A (graph 1), and B (graph 2) of the membrane system. The
graph 3 illustrates the dependence P21 = f (C) in conditions of homogeneous solutions separated by the
membrane. The values of the coefficients P∗

12 and P12 were calculated on the basis of Eq. (11) and of Eq.
(13), respectively,

The dependences P∗
21 = f (C) and P21 = f (C) for the configurations A and B of the

membrane system are presented in Fig. 4. Figure shows that together with the increase in value
C, the values of coefficient P21 are increasing linearly and are the same in both configurations
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Fig. 5 The graphic illustration of dependence P∗
22 = f (C) for aqueous glucose solutions in a concentration

polarization conditions for the configuration A (graph 1), and B (graph 2) of the membrane system. The graph
3 illustrates the dependence P22 = f (C) in conditions of homogeneous solutions separated by the membrane.
The values of the coefficients P∗

22 and P22 were calculated on the basis of Eq. (11) and of Eq. (13), respectively

Fig. 6 The graphic illustration of dependence P∗
11/P11 = f (C) for the configuration A (graphs 1 and 1′)

and B (graphs 2 and 2′) of the membrane system. Graphs 1 and 2 were calculated on the basis of Eq. (15),
graph 1′ on the basis of Eq. (22), and graph 2′ on the basis of Eq. (26)

of the membrane system. By contrast, the values of coefficient P∗
21 for 0 ≤ C ≤ 5.41 mol m−3

are increasing linearly and are the same in the configurations A and B of the membrane
system. For C > 5.41 mol m−3, the coefficient value P∗

21 depends on both the value C and
the configurations A and B of the membrane system. From the comparison of values P∗

21 for
the same values C it is resulting that for C > 5.41 mol m−3 and the configurations A and
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Fig. 7 The graphic illustration of dependence P∗
i j /Pi j = f (C) (i, j ∈ {1, 2}) for aqueous glucose solutions

in condition a concentration polarization for configuration A (graphs 1, 1′, 3, 3′) and B (graphs 2, 2′, 4,
4′) of the membrane system. The graphs 1, 1′, 2 and 2′ illustrates the dependence P∗

12/P12 = f (C) and

graphs 3, 3′, 4 and 4′—the dependence P∗
21/P21 = P∗

22/P22 = f (C). Graphs 1 and 2 were calculated
on the basis of Eq. (16), graphs 3 and 4 on the basis of Eqs. (17) and (18), graph 1′ on the basis of Eq.
(23), and graph 2′ on the basis of Eq. (27), graph 3′ on the basis of Eq. (24) and graph 4′ on the basis of
Eq. (28)

Fig. 8 The graphic illustration of dependence det([P∗]/[P]) = f (C) for aqueous glucose solutions in a
concentration polarization conditions for the configuration A (graphs 1 and 1′), and B (graphs 2 and 2′) of
the membrane system. Graphs 1 and 2 were calculated on the basis of Eq. (37), graph 1′ on the basis of Eq.
(38), and graph 2′ on the basis of Eq. (39)
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Fig. 9 The graphic illustration of dependence κi j = f (C) (i, j ∈ {1, 2}) for aqueous glucose solutions in
a concentration polarization conditions. Graphs 1–3 were calculated on the basis of Eqs. (41)–(43), graph 1′
on the basis of Eq. (44), graph 2′ on the basis of Eq. (45) and graph 3′ on the basis of Eq. (46)

B of the membrane system, the following condition (P∗
21)A < (P∗

21)B is fulfilled. Moreover,
within the whole range of C the following condition (P∗

21)A < (P∗
21)B < P21 is fulfilled.

The dependences depicted in Fig. 5 P∗
22 = f (C) and P22 = f (C) are hyperbolas. The

dependences P∗
22 = f (C) illustrated by a graph 1 (for configuration A) and a graph 2

(for configuration B) were obtained under conditions of concentration polarization. The
comparison of the curves present that for 0 ≤ C ≤ 5.41 mol m−3 we have (P∗

22)A = (P∗
22)B,

whereas for C > 5.41 mol m−3 we have (P∗
22)A > (P∗

22)B. The dependence P22 = f (C)

on a graph 3 shows that under the conditions of homogeneity of solutions separated by the
membrane, the values P22 are equal, i.e., (P∗

22)A = (P∗
22)B. Figure shows as well that for

C > 5.41 mol m−3 we have (P∗
22)A < (P∗

22)B < P22.

Considering the results showed in Fig. 2, it is possible to spot particular quantity differences
between the concentration dependences of coefficients P∗

11 and P11 and the dependence of
coefficient value P∗

11 on the configuration of the membrane system. Therefore, Fig. 6 presents
the dependence P∗

11/P11 = f (C) for the configuration A (graph 1) and the configuration B
(graph 2) of the membrane system. The dependences were calculated using Eqs. (15), (22),
(26) and (30). Figure shows that P∗

11/P11 depend on C, and for C > 5.41 mol m−3—they
depend on the configuration of the membrane system, too. Moreover, from figure it results that
for C > 5.41 mol m−3 we have the following values of relation (P∗

11/P11)B > (P∗
11/P11)B.

It may be noticed that the point with coordinates P∗
11/P11 = 0.898 and C = 5.41 mol m−3

is a last joint point of the graphs 1 and 2. The point may be treated as the bifurcation point.
It means that crossing the bifurcation point and reaching by P∗

11 the value belonging to the
graphs 1or 2 are constituting the choice between convective state (B) and non-convective
state (A) of the membrane system.

Data depicted in Figs. 3, 4 and 5 allow to make the quantity analysis of the con-
centration dependences P∗

12 and P12, P∗
21 and P21, P∗

22 and P22 on the configuration of
the membrane system. Therefore, Fig. 7 presents the dependences P∗

12/P12 = f (C) and
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P∗
21/P21 = P∗

22/P22 = f (C) for the configuration A (graphs 1, 1′, 3 and 3′) and the config-
uration B (graphs 2, 2′, 4 and 4′) of the membrane system. The dependences were calculated
using Eqs. (16)–(18), (23), (24), (27) and (28). The graphs depicted in Fig. 7 indicate that
for C ≤ 5.41 mol m−3, the values P∗

12/P12, P∗
21/P21 and P∗

22/P22 depend on C but do not
depend on the configuration of the membrane system. By contrast, for C > 5.41 mol m−3 the
values P∗

12/P12, P∗
21/P21 and P∗

22/P22 depend on both C and the configuration of the mem-
brane system. Moreover, it may be noticed that points with the coordinates P∗

12/P12 = 4.55
(for graphs 1 and 2), P∗

12/P12 = 4.7 (for graphs 1′ and 2′), P∗
21/P21 = P∗

22/P22 = 4.27
(for graphs 3 and 4), and P∗

21/P21 = P∗
22/P22 = 4.42 (for graphs 3′ and 4′) as well as

C = 5.41 mol m−3 are the last joint point of the graphs. The point has the properties of
the bifurcation point. What is more, the graphs show that for C > 5.41 mol m−3 we have
(P∗

12/P12)B < (P∗
12/P12)A, (P∗

21/P21)B < (P∗
21/P21)A and (P∗

22/P22)B < (P∗
22/P22)A.

Figure shows as well that (P∗
12/P12)A > (P∗

21/P21)A = (P∗
22/P22)A and (P∗

12/P12)B >

(P∗
21/P21)B = (P∗

22/P22)B.

Figure 8 depicts the calculations results of the dependence det([P∗]/[P]) = f (C) for the
configuration A (graphs 1 and 1′) and the configuration B (graphs 2 and 2∗). The graphs 1
and 2 were calculated on the basis of Eq. (37), graph 1′ on the basis of Eq. (38), and graph 2′
on the basis of Eq. (39). From the curves presented it results that for C ≤ 5.41 mol m−3, the
values det([P∗]/[P]) depend on C but do not depend on the configuration of the membrane
system. By contrast, for C > 5.41 mol m−3 the values det([P∗]/[P]) depend on both C
and the configuration of the membrane system. Moreover, it may be noticed that points
with the coordinates det([P∗]/[P]) = 4.27 (for graphs 1 and 2) and det([P∗]/[P]) = 4.41
(for curves 1 and 2) as well as C = 5.41 mol m−3 are the last joint point of the graphs.
Similar to the cases discussed above, the point has the properties of the bifurcation point
(Ślęzak et al. 2012). What is more, the graphs show that for C > 5.41 mol m−3 we have
(det[P∗]/[P])A < (det[P∗]/[P])B.

For coefficients Pi j and P∗
i j (i, j ∈ {1, 2}) with the same indices, units are the same

and values differ; whereas for these coefficients with different indices, units are different
and values differ even by several orders of magnitude. Quotients P∗

i j/Pi j are dimensionless
and their values have, at least for a Nephrophan membrane and water glucose solutions, the
same order of magnitude. This facilitates analysis of the results obtained under conditions
of concentration polarization or homogeneity of solutions. Calculation of det([P∗]/[P])
provides basis to reduce number of parameters needed to characterize transport properties of
the membrane.

The experiments carried out previously indicate that if the coefficient values P∗
11, P∗

12, P∗
21

and P∗
22 do not depend on the configuration of the membrane system, then the CBLs setting is

symmetric towards the horizontal surface in which the membrane is placed separating solu-
tions with the concentrations Cl and Ch. In order to show the relationship between the coeffi-
cients P∗

11, P∗
12, P∗

21 and P∗
22 in the configurations A and B of the membrane system, we are

calculating the quotients (P∗
11)B/(P∗

11)A, (P∗
12)B/(P∗

12)A, (P∗
21)B/(P∗

21)A, (P∗
22)B/(P∗

22)A.

The quotients may be generalized and the definition of asymmetry coefficient κi j (i, j = 1,
2) may be introduced as follows

κi j = (P∗
i j )B

(P∗
i j )A

. (40)

It results from the definition that the absence of asymmetry means κi j = 1, whereas the
asymmetry κi j > 1 and κi j < 1.
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The calculations results of the dependence κ11 = f (C), κ12 = f (C), κ21 = f (C) and
κ22 = f (C) are point. For C > 5.41 mol m−3 the values of coefficients κ11, κ12, κ21 and κ22

depend on the concentration of solutions separated by the membrane. Moreover, the graphs
in Fig. 9 show that for C > 5.41 the course of the graph κ11 = f (C) differs from the course
of graphs κ12 ≈ κ21 = κ22 = f (C). The latter graphs showing the dependence overlie. What
is more, for C > 5.41 the conditions κ11 > 1 and κ12 ≈ κ21 = κ22 < 1 are fulfilled for each
C .

Using Eq. (11), then Eq. (40) for the coefficients κ11, κ12, κ21 and κ22 depicted in Fig. 9.
The calculations were made using Eq. (31). Figure shows that for C ≤ 5.41 mol m−3

the values of coefficients κ11, κ12, κ21 and κ22 do not depend on the solution concentra-
tion. Their value, similar to the value of the last joint point of the graphs 1–3, is equal to
κ11 = κ12 = κ21 = κ22 = 1. The point has the properties of the bifurcation may be written
in the following way

κ11 = (P11)B

(P11)A
= (ζs)B{(ζs)Aω + CζpLp[1 − (ζv)Aσ ](1 − ζaσ)}

(ζs)A{(ζs)Bω + CζpLp[1 − (ζv)Bσ ](1 − ζaσ)} , (41)

κ12 = (P12)B

(P12)A
= [1 − (ζv)Bσ ]{(ζs)Aω + CζpLp[1 − (ζv)Aσ ](1 − ζaσ)}

[1 − (ζs)Aσ ]{(ζs)Bω + CζpLp[1 − (ζv)Bσ ](1 − ζaσ)} , (42)

κ21 = (P21)B

(P21)A
= (ζs)Aω + CζpLp[1 − (ζv)Aσ ](1 − ζaσ)

(ζs)Bω + CζpLp[1 − (ζv)Bσ ](1 − ζaσ)
= κ22. (43)

Using Eqs. (21), (25), (34) and (35), then Eqs. (41)–(43) may be written in the following
way

κ11 = [
1 + Ca1 (1 + a2δd)

] [
1 + Ca1

(
1 + a3 RC

δ2
k(Jv − Jvs)

)]−1

, (44)

κ12 = [1 + a1 (1 + a2δd)]

(
1 + a3 RC

δk(Jv − Jvs)

) [
(1 + a2δd) (1 + a1)

(
1 + a4 RCC

δ2
k(Jv − Jvs)

)]−1

,

(45)

κ21 = Dd[1 + a1(1 + a2δd)]
Dd + 2RT ωδd

(
1 + a3(1 − σ)RC

δ2
d(Jv − Jvs)

) [
1 + a1C

(
1 + a3 RC

δ2
k(Jv − Jvs)

)]−1

= κ22,

(46)

where a1 = Lp(1 − σ)2ω−1, a2 = 2RT ω[Dd(1 − σ)]−1, a3 = 4(RT )2Lpσων[gαC

(1 − σ)]−1, a4 = a3(1 − σ)2 Lpω
−1(1 + Ca1)

−1.

According to theory of functionally graded materials (Shen 2009; Woźniak et al. 2001;
Woźniak 2007), contact of two objects, i.e., solutions with different concentrations and/or
composition, causes conflicts. In the case of solutions, the conflict is eliminated quickly
due to the transport processes such as diffusion or convection. The processes are generated
by concentration gradients of substance. Therefore, the situation discussed is a non-conflict
one when the concentrations and compositions of both solutions are homogenous within
the space and time. By contrast, the membrane placement (as an additional object) between
homogenous solutions is slowing down the transport processes due to extended in time
retention of concentration gradients of particular solutions flowing across the membrane,
and consequently it is defusing the conflict. It has to be emphasized that the homogeneity
of solutions separated by the membrane may be provided solely by intensive mechanical
stirring. Under real conditions (the absence of mechanical stirring), at the both sides of the
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membrane the CBLs (diffusive ones) are created. They may be treated as two additional
objects between the membrane and solutions, created spontaneously. The objects defuse the
conflict by the reduction of concentration gradients and become units of functionally graded
materials.

4 Conclusion

Considering the study above, we may be conclude that:

(1) The network form of the K–K equations introduced in the following paper, containing
the Peusner’s coefficients P∗

i j (i, j ∈ {1, 2}) creating the second degree matrix of the
Peusner’s coefficients [P∗], is the new tool in the study on the membrane transport under
conditions of concentration polarization.

(2) The calculated dependences of the Peusner’s coefficients P∗
i j and Pi j (i, j ∈ {1, 2, 3})

and the quotients of the coefficients for the conditions of non-homogeneity (P∗
i j ) and

homogeneity (Pi j ) of solutions depend on the average glucose concentration in the
membrane (C).

(3) Above the threshold value C = 5.41 mol m−3 we have the coefficients P∗
11, P∗

12 =
−P∗

21 and P∗
22, consequently the relations P∗

11/P11, P∗
12/P12 and P∗

22/P22 depend as well
on the configuration of the membrane system.

(4) For the same values C > 5.41 mol m−3, the coefficient value P∗
11 in convective state is

higher than in non-convective state, whereas the values of coefficients P∗
12 = −P∗

21 and
P∗

22 in convective state are lower than in non-convective state.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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Szczepański, P., Wódzki, R.: Bond-graph description and simulation of agitated bulk liquid membrane
system—dependence of fluxes on liquid membrane volume. J. Membr. Sci. 435, 1–10 (2013)
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Częstochowa University of Technology, pp. 16–35. CUT Press, Częstochowa (2007, in Polish)
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