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In the process of denoising color images, it is very important to enhance the edge and texture information of the images. Image
quality can usually be improved by eliminating noise and enhancing contrast. Based on the adaptive wavelet threshold shrinkage
algorithm and considering structural characteristics on the basis of color image denoising, this paper describes a method that
further enhances the edge and texture details of the image using guided filtering. The use of guided filtering allows edge details
that cannot be discriminated in grayscale images to be preserved. The noisy image is decomposed into low-frequency and high-
frequency subbands using discrete wavelets, and the contraction function of threshold shrinkage is selected according to the energy
in the vicinity of the wavelet coefficients. Finally, the edge and texture information of the denoised color image are enhanced by
guided filtering. When the guiding image is the original noiseless image itself, the guided filter can be used as a smoothing operator
for preserving edges, resulting in a better effect than bilateral filtering. The proposed method is compared with the adaptive wavelet
threshold shrinkage denoising algorithm and the bilateral filtering algorithm. Experimental results show that the proposed method

achieves superior color image denoising compared to these conventional techniques.

1. Introduction

During their acquisition and transmission, images are
adversely affected by noise. Color images contain better visual
effects than gray image in terms of visual perception, and
the edge information of color images is more abundant than
in gray images. Ideally, when removing the additive noise
from an image, as many of the important features as possible
should be retained. The denoising of color images often
results in the loss of some edge and texture information,
making the image blurred and creating a poor visual effect.
Denoising methods of color image commonly, Wiener
filter and Gaussian filter denoising, have edge blurred sit-
uation. Bilateral filtering [1] is the most intuitive nonlinear
smoothing filter, although it suffers from the gradient inver-
sion effect, which uses a histogram-based approximation
to calculate the weight, and it is computationally complex.
Recently, Zhang et al. [2] develop an improved bilateral filter

based framework which is capable of effectively removing
universal noise. Bilateral filter takes spatial information and
grayscale similarity into account and achieves both denoising
and edge-preserving. Bilateral filter preserves too much high-
frequency information but, however, does not denoise the
high-frequency noise in color images. Thus, bilateral filter
has better denoising effect for low-frequency noise merely.
Sometimes, bilateral filter suffers from gradient reverse. The
reason is that when an edge pixel has few similar pixels
around it, the Gaussian weighted average is unstable. In this
paper, proposed method based on local linear model has good
edge-preserving smoothing properties like bilateral filter, but
it does not suffer from the gradient reverse.

Wavelet threshold denoising [3-8] is a simple and effec-
tive denoising method. This technique effectively involves
the decomposition of a signal into a set of independent,
spatially oriented frequency channels. The discrete wavelet
threshold [9] can be used to decompose the original image
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into a sequence of images of different spatial resolutions.
Dong and Ding [10] proposed a method that can always
achieve better performance with lower computation cost and
fewer decomposition scales than a high-frequency denoising
method. Elyasi and Zermchi [11] proposed several adaptive
wavelet denoising methods: Bayes Shrink, Modified Bayes
Shrink, and Normal Shrink.

In recent years, many algorithms have improved and
studied the wavelet threshold denoising. Like, Bhandari et al.
[12] developed an optimized adaptive thresholding function
which selects the appropriate threshold values to separate
noise from the actual image and preserve edge details. In
this paper, a new adaptive wavelet shrink denoising algorithm
is proposed. Compared with other threshold algorithms, the
proposed approach improves the denoising performance and
has lower complexity than existing adjacent pixels methods
(13, 14].

In the process of color image denoising, we compared
the proposed method with the algorithms mentioned above
(bilateral filter, Wiener filter, Gaussian filter, and wavelet
threshold methods). Proposed method achieves superior
color image denoising to these conventional algorithms. The
reason is that classic algorithms could suppress the Gaussian
noise effectively, but, at the same time, these methods fail to
maintain the quality of denoised color images (like, texture)
and may blur edges in the image. To address these short
comings, this paper proposes a method based on image
structure using adaptive wavelet threshold and guided filter
to maintain edges when denoising. It makes edges continuous
and the color of image more brightly. Because guided filter
using a local linear model to enhance the image, the edge
details remain. In particular, the details in color image, like
texture, are more abundant and saturation is more greater.

On this basis, this paper presents a new color image
denoising method based on the adaptive wavelet threshold
shrinkage algorithm combined with image structure-based
guided filtering [15]. The method uses the discrete wavelet
transform to calculate the energy near the wavelet coefficients
and then uses the adaptive threshold shrinkage function
to denoise the image. The threshold function depends on
the energy of adjacent pixels. Further using guided filter
enhances the image after denoising. Experiments show that
the proposed technique enables better preservation of edge
information during the denoising process.

The rest of the paper is organized as follows. Section 2
reviews the related work. Algorithm analysis and the struc-
ture of proposed method are presented in Section 3. Then
experimental results and analysis are shown in Section 4.
Section 5 concludes the paper.

2. Related Work

Numerous works have been proposed for image denoising. In
this part, we review previous and related work about wavelet
threshold algorithms and guided filter.

2.1. Wavelet Threshold Shrinkage Algorithm. Wavelet thresh-
old denoising is done by Donoho in 1994, which is based
on thresholding the discrete wavelet transform (DWT) of
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the signal. Hard threshold and soft threshold are traditional
threshold algorithm. Donoho [5] proposed wavelet soft
threshold denoising and the threshold VisuShrink algorithm.
This method for image denoising obtains a series of wavelet
coefficients from the wavelet transform and applies a thresh-
old to determine the smaller coeflicients (which correspond
to noise). Denoising and an inverse wavelet transformation
yield the reconstructed image with reduced noise. Hard and
soft threshold functions are defined as follows.

The hard threshold function is expressed in

X, |X]|=A
Y= 1)
0, |X|<A.

The soft threshold function on the other hand is expressed in

sgn(X) (IX]-4), [X]=zA
Y= 2)
0) |X| < A’

where A is a threshold value, X is wavelet coeflicients value
after the DW'T of images, and Y is output value using wavelet
threshold shrinkage function.

Normally, hard threshold function can preserve the
wavelet coeflicients well generated by the useful information
from images, but it is discontinuous at |[X| = A after
reconstruction. An alternative approach to hard threshold is
the soft threshold, which has advantages of continuity. Soft
threshold function is smooth and continuous relatively at the
threshold. But sometimes, there are defects that decreased the
wavelet coefficients generated by the effective signal.

An appropriate threshold A is the most important role
of discrete wavelet denoising. In the process of denoising, if
the threshold A is too small, the wavelet coefficients contain
too many noise components and cannot denoise effectively.
Otherwise, the threshold A is particularly large resulting in
the loss of useful components that causes distortion. Thus,
new methods are proposed and some of them have been
delivered to real applications.

Adaptive wavelet threshold method first assigns zeroes
when the wavelet coefficients are smaller than the given
threshold. As the threshold increases, the number of coef-
ficients below the threshold will increase rapidly. When the
number of nonzero coefficients reaches a certain value, the
threshold is further enlarged and the number of nonzero
values slowly decreases; this method can remove most of
the noise and improve the compression efficiency. Nasri and
Nezamabadi-pour [16] proposed a new thresholding function
to be further used in a new subband-adaptive thresholding
neural network to improve the efficiency of the denoising
procedure. Liu et al. [17] found that a wavelet denoising using
neighbor coefficients and level dependency was proposed to
separate spikes from background noise.

2.2. Guided Filter. The guided filter is based on a dual integral
image architecture VLSI [18] (Very Large Scale Integration).
The filtering method computes the output image based on the
input guiding image, which preserves the edges of the image
well; this is an accurate and fast edge-preserving filtering
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algorithm. He et al. [15] proposed a new explicit local linear
guided filtering model, which is a fast and nonapproximate
linear time algorithm. Their model senses the edges and
enhances the texture detail. Gadge and Agrawal [19] used
guided filtering to color images.

Guided filter of image is a linear transformable filtering
process, where the guidance image I needs to be preset
according to the specific application and I could be identical
to the input image p. The output value at pixel i is calculated
as follows:

4qi =Z‘/Vij @ pj» (3)
i

where i and j are pixel indexes. W;; is filter kernel function,
which defined in [15] expressed by

I — I. -

‘/Vij(l)z% Z <1+(1 A“kz)(] Hk))) (4)
0™ i ew, Opte

where wy is the local window that center of k, |w| is count of

pixels in the local window, ;. and o} are mean and variance of

guidance image I in the window, and, finally, € is a smoothing

factor.

A local linear model (3) is used in guided filter. This
linear relationship ensures that output g; has the same edge
information with guidance image I. Thus, guided filter has
a better edge-preserving smoothing and avoids the gradient
reverse. In addition, its algorithm computed efficiently and
nonapproximately.

3. Proposed Algorithm

In this paper, we describe an adaptive wavelet transform
method to remove noise from a color image and use the
inverse discrete wavelet transform to obtain the denoised
image. The guided filter is then applied for edge and texture
recovery and enhancement, producing a better color image
effect.

3.1. Overview of Method Structure. The framework of pro-
posed method contains two main stages (Figure 1). The first
step is to obtain preliminary denoised image p using adaptive
wavelet threshold shrinkage algorithm, which is based on
image structure feature to shrinkage wavelet coeflicients. The
wavelet coeflicients are decomposed by two-level discrete
wavelet transform (DW'T). The second step is further denois-
ing and enhancing by using guided filter to the previous result
p. In guided filter, the guidance image I should be preset.
Setting I and p is identical and can perverse edge and texture
of image.

In the ideal case, the wavelet threshold shrinkage algo-
rithm subtracts Gaussian noise from the image, and its
denoising effect is obvious. Natural image denoising using the
wavelet threshold is very effective because it can capture the
energy of the converted images.

Proposed denoising algorithm has the following steps in
detail:

(1) Transform the noisy image into the frequency domain
using DWT.

(2) Apply the adaptive wavelet threshold shrinkage algo-
rithm to the local window on each subband and then
use inverse DWT to obtain preliminary denoising
image p.

(3) Apply guided filter on image p to obtain further
denoise image g.

(4) Enhance g and output image.

3.2. Adaptive Wavelet Threshold Algorithm. The discrete
wavelet transform (DWT) applied to image processing
has two main components: decomposition and reconstruc-
tion. We use DWT to decompose the noisy image into a
sequence of images of different spatial resolutions. Two-
dimensional images can be decomposed in two-degree
directions, resulting in different frequency bands: LL (Low-
Frequency), LH (Horizontal High-Frequency), HL (Vertical
High-Frequency), and HH (Diagonal High-Frequency).

In Figure 2, using DWT to decompose the noisy image
into a sequence of images of different frequency bands. Low-
Frequency (LL) is decomposed using DWT. And decom-
posing it produces four different frequency subbands (LL2,
HL2, LH2, and HH2) using two-level wavelet decomposition
function. On the basis of these frequency subbands, the
different wavelet threshold shrinkage algorithm can be used
to denoise from the image.

After the two-level wavelet decomposition of the image
(Figure 2), an adaptive wavelet transform is used to extract the
structure information in the multiresolution image, and the
corresponding shrinkage function is applied to the structure
features of the image. In fact, the natural image structure
of the wavelet coefficients in the resolution scale exhibits a
certain similarity, so there is a certain degree of redundancy
in the wavelet decomposition scale. For example, the wavelet
coeflicients of the edge region are usually concentrated
together, indicating that there is a certain degree of depen-
dency in the adjacent wavelet coefficients corresponding to
the edge region.

The structure information of the image can be obtained by
calculating the energy of the local area in the wavelet domain.
The smoother the image, the lower the energy. A threshold
range is determined based on the local energy calculated by
the wavelet decomposition, and a different function is used
within the corresponding threshold. The specific algorithm
takes the average of the square of each pixel value in the
local window to calculate the energy of the center pixel of the
window. The appropriate shrinkage factor «, 8 is then selected
according to the corresponding shrink function (6).

In practice, we select the local window R * R (i.e., R = 5)
using (5) to calculate the local window center pixel energy
value S?)k and then use (6) to calculate the local shrinkage
function:

m=R n=R

L= 2 Y (5)

m=—R n=—R
d (1 oc*)&) if 2, >+ A’
~ ik — - 5 ik =
dj,k = J Sik J
0 else,

(6)
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FIGURE I: lllustration of the proposed method. It contains two main parts. Left part is denoising by adaptive wavelet threshold algorithm to
obtain denoise image p. Right part is using guided filter to enhance edges of image p.

FIGURE 2: Two-level decomposition of the image. Obtaining Low-Frequency image (LL) from the noise image and decomposing it resulting
in subbands LL2, HL2, LH2, and HH2. The adaptive wavelet shrink algorithm is applied to each subband to denoise the image.

(Yi,j = subband HH) ,

o [Median (|Y,]')
0.6745

where A? = (407 log R). Equation (7) gives the noise variance
0% andd ik is the central pixel of the local window. If d ;. is at
the boundary of the second wavelet coeflicients, a boundary
condition is required. In the experiments, we set« = 0.1, 8 =
0.3. Finally, the reconstructed image is denoised.

This denoising algorithm uses the DWT to calculate the
energy near the wavelet coefficients and then applies the
adaptive wavelet threshold shrink function to denoise the
image. In the experiments, we added Gaussian noise with
variances of 0> = 0.01 and 0> = 0.03 to the images. Adap-
tive wavelet threshold shrink function denoising noise and

getting denoised image p. From the experimental results, it
can be seen that when the noise variance is large, the image p
is not very clear after denoising; in particular, the effect of tex-
ture is not obvious. Therefore, we need to enhance the image
p after this processing step. Thus, the proposed technique
uses the guided filter to enhance the image after denoising.

3.3. Guided Filter to Further Processing. Guided filtering is a
spatial enhancement technique for the spatial domain, and
the filtered output is a linear transformation of the localized
image. The filtering algorithm uses a guiding image to process
the edges of the noisy image. The guiding image can be the
image itself. At this time, their structures are the same; that
is, the edges of the original image are the same as the edges of
the guiding image. The output pixel values take into account
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the statistics of the local spatial neighborhood in the guided
image. Hence, using guided filtering, the output image is
more structured. This can be used for image dehazing and
so on. The guided filter adopts an exact linear algorithm. The
algorithm is efficient and fast and is considered to be one of
the fastest edge-preserving filters.

For both grayscale and color images, the guided filtering
algorithm has o(N) time complexity, regardless of the local
window radius (r).

3.3.1. Algorithm of Guided Filter

Guided Filter. 'The guide image can be a separate image or the
original input image; when the guiding image is the original
input image, the guided filter retains the edges for image
reconstruction.

Assume that the input image is p, the output image is
g, and the guiding image is I. q and I have a local linear
relationship in the window wj, centered on pixel k:

g =al+b, View, (8)

where a;, b, are linear (constant) coeflicients in the local
window, and the window radius is 7. Equation (8) calculates
the guidance of the guiding image to be Vg = aVI. Therefore,
the linear equation is only guaranteed if I is in the presence
of an edge, and the output image g will contain edges. To
determine the coeflicients, we require constraints from the
input image p. The output q is the input p with a number of
noise components #; subtracted, that is,

q; = pi — ;. 9

To minimize the difference between the output g and the
input p and ensure the linearity of (8), the function E(a, b;)
is minimized in the window wy, where ¢ is the regularization
parameter:

E(ap.b) = Z ((akli +h-p) 5“13)' (10)

In order to minimize the value of the model E(ay, b;), we can
derive g and b, respectively, and (10) can be solved using
linear regression:

((1/ ) Yicw, L.p;) - Py
ol+e ’ (11)

A

be = Py — Wt

where p; and o}, represent the mean and variance in the local
window wy, respectively; |w| is the number of pixels in the
window; and p, represents the mean value in the window wy,
of p. After obtaining g, and b, in Figure 3, the output g; is

1

%= ] Y (ali+b) =al +b, 12)

klicwy

where a; = (1/|wl]) Y e, %o b, = (1/|w]) Dkeaw, be- Convert
a and b into weights forms, which is the general form of
filtering.

FIGURE 3: Illustration of (12). When the window w is sliding in the
image, a pixel is involved in many windows that covers pixel. For
instance, windows w, and w, are different local windows that cover
the same pixel i. Therefore, the output g; should average all the values
of pixel i in different windows.

Therefore, the guide filter algorithm proceeds as follows.
Traverse the entire image via each local window, implement-
ing the following calculation, where f is the mean filter with
local window radius r; input image is p; guidance image is
I; corr is the correlation coeflicient; var is the variance; € is
smoothing factor; and cov is the covariance:

mean; = f, ... (I,7)
meanp = fmean (p’ r)
corry = frean (L. % I, 1)

COI‘I‘IP = fmean (I' * D 1’)
var; = COrry — meany. * meany
= — .k
COVIp COVIp mean; meanp (13)
COVIp'

 (var; +¢)

b = mean, — a. * mean,

mean, = fmean (a’ 1’)
mean, = fy ., (b,1)

g = mean,,. * I + mean,,.

3.3.2. Edge Preservation. When I = p, the guided filter
becomes an edge-preserving filter. At this point, we have

a, = —O'i
k (0']3 +8)’ (14)
be = (1-a)

Therefore, when the local window variance is large, the
center pixel value remains unchanged. In smoother areas, the
average value of the neighboring pixels is used as the center
pixel value.



3.3.3. Guided Filter for Color Image. When the guided filter is
applied independently to the three color channels of the color
image, (8) can be rewritten as

q; = a,f[i +b, Vieuw, 15)

where I; is a 3 x 1 color vector, a; is a 3 x 1 coeflicient vector,
and g;, b, are scalars. Thus, the color image of the guided filter

is
-1
w=(2ow) (& Zn-wn).
k i€wy

(16)

where ), is the 3 x 3 covariance matrix of I in w; and U is
the 3 x 3 identity matrix.

Because the local linear model is more effective in the
color space, the edges of gray images cannot be identified but
through the color image of the guided filter it can be well-
preserved. Thus, the image edges have a significant effect.

3.4. Image Enhancement. For images with more texture (i.e.,
Image 5), the above denoising method may cause some
regions to appear too smooth. Therefore, it is necessary to
further enhance the image texture detail. Using (17), the
denoised image g is subtracted from the original noiseless
image to yield the details of the loss in g. Positive number ¢ is
to control and balance the degree of its stacking:

g-enhanced = (I - q) * ¢ +q. (17)

The proposed algorithm uses the characteristics of the image
structure. In the wavelet domain, threshold shrinkage is used
to denoise the image, and then the guided filter enhances the
edges of the denoised image to better reflect the texture details
of the image.

4. Experimental Results and Analysis

We conducted a series of experiments using MATLAB
R2015b and images in Figure 4. Images in Figure 4, Image 9,
Image 10, Image 11, and Image 12, are rich in texture. First,
variance of 0.01 and 0.03 Gaussian noise was added to the
color images in Figure 4. This produced the noisy images
shown in Figures 5(a), 6(a), 7(a), 8(a), 9(a), 10(a), 11(a), and
12(a). The proposed method based on image characteristics
and the adaptive wavelet threshold shrinkage algorithm was
then applied to obtain the denoised images p shown in
Figures 5(c), 6(c), 7(c), 8(c), 9(c), 10(c), 11(c), and 12(c). We
used the “sym4” two-level wavelet decomposition function to
decompose the noisy images, with a local window R = 5 « 5,
B =0.3,and a = 0.1 to control the degree of shrinkage in the
wavelet coeflicients.

The guided filter was used to denoise the image p with
the guiding image I set to the original image without noise.
This was intended to give the image a better edge effect after

Applied Computational Intelligence and Soft Computing

denoising. The local window radius was setto r = 8 and € =
0.02. The image p was denoised after the adaptive wavelet
threshold algorithm. In image p, the r, g,b channels were
individually subjected to the guide filter. The texture and edge
information of the images were enhanced and we obtained
the output q. The parameter c in (17) was found to give better
texture effects and undistorted images when ¢ = 1.5. The
final results g_enhanced images are presented in Figures 5(f),
6(f), 7(f), 8(f), 9(f), 10(f), 11(f), and 12(f). From Figures 9(f),
10(f), 11(f), and 12(f), it can be concluded that the texture
and the edge of images had a good performance in proposed
method.

The peak signal-to-noise ratio (PSNR) of the proposed
method is presented in Table 1. These PSNRs indicate that
the method proposed in this paper is superior to bilateral
filtering, the adaptive wavelet threshold algorithm, nonlocal
means [20] algorithm, and BM3D [21] method. When the
noise level increases, the denoising effect of all five methods
decreases, but the proposed method gives better performance
than the other four.

The PSNR is calculated as follows:

2
PSNR = 10 * log,, ( 255 )

MSE
MSE = ! (mser +mse, + mseb),
3 (18)
m n
msey = — ZZ (1Gij)-q(i )"

* 1

I\
—

i=1 j=1

k=r,g0b,

where the input image is I and the output image is
g-enhanced. The mean square error (MSE) is the average
mean square error of the three channels (r, g, b) in the color
image.

Wells [22] proposed a quality factor to evaluate the
edges of an image after denoising. This quality factor (Pratt’s
figure of merit) takes into account three kinds of error: the
loss of the effective edge, the edge of the positioning error,
and noise misjudged as the edge. Pratt’s figure of merit
provides a quantitative evaluation of image edges and can be
used to compare the edges in the denoised image and the
original image. From Figures 13 and 14, it is obvious that
there are differences between the texture parts. Pratt’s figure
of merit was measured in four images. The results in Figure 15
confirm that the edge quality factor (red curve) of the pro-
posed method is higher than that of the other four methods
for different degrees of noise variance. Thus, our method
achieves better edge effects.

From a subjective point of view, we find that not only
can the proposed method preserve edge better, it also reduces
noise well when compared with the other four methods. From
Figures 5-12, the result images (f) using proposed method
look clearer than the others because we use a guided filter
to filter the image and eliminate noise. Moreover, in Figures
13 and 14, the edge of the result image that uses the pro-
posed method is smooth and coherent, which greatly helps
to enhance edge.
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(a) o =0.01

(b) Bilateral filtering (c) Adaptive wavelet

(d) Nonlocal means (e) BM3D (f) Proposed method

FIGURE 5: Image 1: comparison of various experimental results under noise variance o> = 0.01.

To objectively evaluate the results, we use the Pratt’s figure
of merit and PSNR for image quality evaluation. Pratt’s figure
of merit results are listed in Figure 15. y-axis is the Pratt factor
results and x-axis is noise variance. The curves showed that
Pratt factor decreases when the noise variance increases, but
proposed method (red curves) is much higher than others.
Curves results suggested that edge of image using proposed
method is effective and abundant. Table 1 is result of PSNR.
The proposed method is superior to the other four methods
with respect to image processing.

From the data in Table 1 and the quality factor curves
in Figure 15, we can conclude that the proposed method is
superior to bilateral filtering, the adaptive wavelet threshold
denoising algorithm, nonlocal means algorithm, and BM3D
algorithm on color image denoising. From a visual point of
view, the proposed method not only gives a good denoising
effect but also achieves better edge retention.

5. Conclusion

In this paper, a new denoising method based on the adaptive
wavelet threshold denoising algorithm and edge-guided fil-
tering has been proposed. The image denoising is performed
according to the local structure of the image. In comparative
experiments against bilateral filtering, the adaptive wavelet
denoising method, nonlocal means algorithm, and BM3D
algorithm, the proposed method exhibited the best denoising
and edge preservation performance. The proposed approach
removes Gaussian noise in the frequency domain and then
uses linear guided filtering to further enhance the image
recovery, resulting in better denoising and edge effects. As
color images display more detailed textures, this filtering
overcomes the gradient inversion effect in the edge regions.
As the linear model (see (8)) is a block-unsupervised learning
method, it can be combined with other models to obtain new
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(b) Bilateral filtering (c) Adaptive wavelet (d) Nonlocal means (e) BM3D (f) Proposed method

FIGURE 6: Image 1: comparison of various experimental results under noise variance o* = 0.03.

(@) 0 =0.01 (b) Bilateral filtering (c) Adaptive wavelet (d) Nonlocal means (e) BM3D (f) Proposed method

FIGURE 7: Image 5: comparison of various experimental results under noise variance o = 0.01.

(a) 6 =0.03 (b) Bilateral filtering (c) Adaptive wavelet (d) Nonlocal means (e) BM3D (f) Proposed method

FIGURE 8: Image 5: comparison of various experimental results under noise variance o> = 0.03.

(@) 0% =0.01 (b) Bilateral filtering (c) Adaptive wavelet (d) Nonlocal means (e) BM3D (f) Proposed method

FIGURE 9: Image 9: comparison of various experimental results under noise variance ¢* = 0.01.

(a) 62 =0.03 (b) Bilateral filtering (c) Adaptive wavelet (d) Nonlocal means (e) BM3D (f) Proposed method

FIGURE 10: Image 9: comparison of various experimental results under noise variance o> = 0.03.
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TABLE 1: PSNR of the proposed method, bilateral filtering, and adaptive wavelet.

Noise variance 0.01 0.03 0.01 0.03 0.01 0.03
Image 1 (256 * 256) Image 2 (512 * 512) Image 3 (256 * 256)
Adaptive wavelet 26.7048 25.4507 28.0801 26.4821 277967 26.1699
Bilateral filtering 22.5751 22.0167 23.1551 22.6118 22.7560 22.1802
Nonlocal means 29.9765 27.4871 30.1415 27.6777 30.1910 27.6823
BM3D 28.9235 26.9276 30.4215 27.8901 30.9457 28.0957
Proposed method 39.5634 35.3129 41.5647 36.0267 40.8101 35.5930
Image 4 (256 * 256) Image 5 (256 * 256) Image 6 (512 * 512)
Adaptive wavelet 25.2375 24.2724 23.4663 22.7332 25.6576 24.5766
Bilateral filtering 22.6074 21.9415 22.1076 21.5494 22.3016 21.7254
Nonlocal means 26.6512 25.3287 25.3588 24.3120 27.8813 26.2105
BM3D 25.5157 24.4968 24.0394 23.2556 28.0621 26.3334
Proposed method 37.0265 34.1344 33.8535 32.1364 36.8294 33.9588
Image 7 (512 * 512) Image 8 (512 * 512) Image 9 (200 * 150)
Adaptive wavelet 27.5706 25.9130 29.0039 26.9908 21.4746 20.8466
Bilateral filtering 23.2116 22.4080 23.1373 22.4268 21.4834 21.0023
Nonlocal means 29.4155 27.0736 31.3181 28.2534 23.7273 23.0137
BM3D 29.1443 26.9120 32.0590 28.6197 21.7645 21.2712
Proposed method 39.1414 34.8926 41.2256 35.7943 31.4041 30.0693
Image 10 (200 * 150) Image 11 (187 = 171) Image 12 (187 * 171)
Adaptive wavelet 29.4247 27.5268 26.7443 25.4201 15.9075 16.9781
Bilateral filtering 23.6728 23.0581 22.2984 21.7973 22.7751 22.6673
Nonlocal means 30.3106 279794 28.7439 26.6227 17.4105 17.2673
BM3D 30.8146 28.3780 31.8744 28.4922 31.0366 30.1990
Proposed method 40.2191 35.9371 38.7096 35.0295 24.4256 25.7756

(@) 6% =0.01 (b) Bilateral filtering (c) Adaptive wavelet (d) Nonlocal means (e) BM3D (f) Proposed method

FIGURE 11: Image 10: comparison of various experimental results under noise variance o> = 0.01.

(b) Bilateral filtering (c) Adaptive wavelet (d) Nonlocal means (e) BM3D (f) Proposed method

FIGURE 12: Image 10: comparison of various experimental results under noise variance o* = 0.03.
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(a) Image 1 edge (b) Bilateral filtering (c) Adaptive wavelet (d) Nonlocal means (e) BM3D (f) Proposed method

FIGURE 13: Image 1: edge comparison of various experimental results under noise variance o> = 0.03.

(a) Image 5 edge (b) Bilateral filtering (c) Adaptive wavelet (d) Nonlocal means (e) BM3D (f) Proposed method

FIGURE 14: Image 5: edge comparison of various experimental results under noise variance o> = 0.01.
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FIGURE 15: Pratt’s figure of merit.
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denoising techniques. This will be the focus of future research
and exploration on color image denoising.
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