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Self-assembly of 5,10,15,20-tetra(4-py
ruthenium clips [Ru2(g6-arene)2(dhbq
1,4-benzoquinonato) affords the cat
([1]8+), [Ru8(g6-p-PriC6H4Me)8(tpp-H
([3]8+). These octanuclear cations have
trometry, NMR and IR spectroscopy.
dimensional and two-dimensional NM
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orphyrin (tpp-H2) tetradentate panels with dinuclear arene
rene = C6H5Me, p-PriC6H4Me, C6Me6; dhbq = 2,5-dihydroxy-
rganometallic boxes [Ru8(g6-C6H5Me)8(tpp-H2)2(dhbq)4]8+

bq)4]8+ ([2]8+) and [Ru8(g6-C6Me6)8(tpp-H2)2(dhbq)4]8+

olated as their triflate salts and characterised by mass spec-
olecular structure of these systems was deduced by one-
riments (ROESY, COSY, HSQC).
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Organometallic half-sandwich complexes of Ru(II), Rh(III) an
Ir(III) are becoming more and more popular as versatile buildin
blocks in supramolecular chemistry. The lability of the ligand
opposite to the inert g6-arene ligand can generate a pre-organise
arrangement that allows the controlled formation of supramolecu
lar assemblies. These three facial coordination sites have bee
extensively exploited to build up rectangles, macrocycles an
cages [1–9].

Recently we used arene ruthenium complexes as buildin
blocks for the assembly of a series of cationic triangular metallo
prisms containing bridging chloro [10], oxalato [11] and 2,5-dihy
droxy-1,4-benzoquinonato [12] ligands connected by 2,4,6-tri(py
idyl)-1,3,5-triazine subunits. Herein we report the synthesis an
characterisation of three rectangular metallo-prismatic cation
incorporating arene ruthenium building blocks (arene = C6H5M
p-PriC6H4Me, C6Me6), bridged by 2,5-dihydroxy-1,4-benzoquino
nato (dhbq) ligands, and connected by 5,10,15,20-tetra(4-pyr
dyl)porphyrin (tpp-H2) tetrapodal ligands.

The dinuclear arene ruthenium complexes [Ru(g6-arene)Cl2

(arene = C6H5Me, p-PriC6H4Me, C6Me6) react in methanol wit
2,5-dihydroxy-1,4-benzoquinone (dhbq-H2) to form in good yiel
the dinuclear complexes [Ru2(g6-C6H5Me)2(dhbq)Cl2] [13], [Ru2

(g6-p-PriC6H4Me)2(dhbq)Cl2] [12a] and [Ru2(g6-C6Me6)2(dhbq
Cl2] [12c], respectively. Addition of silver triflate to these dinuclea
clips in the presence of 5,10,15,20-tetra(4-pyridyl)porphyrin (tpp
H2) leads to the connection of two tetradentate panels, affordin
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the octanuclear metallo-prismatic cations [Ru8(g6-C6H5Me)8(tpp
H2)2(dhbq)4]8+ ([1]8+), [Ru8(g6-p-PriC6H4Me)8(tpp-H2)2(dhbq)4]8

([2]8+) and [Ru8(g6-C6Me6)8(tpp-H2)2(dhbq)4]8+ ([3]8+) in goo
yield (�80%), see Scheme 1. These rectangular prismatic cation
are isolated as their trifluoromethanesulfonate salt [14].

The 1H NMR spectra of 1, 2 and 3 display a similar signal patter
for the tpp-H2 protons. Interestingly, diastereotopic protons ar
observed upon formation of the cationic cages, suggesting a ti
of the bi-metallic clips, thus introducing helical-type chiralit
[15]. A similar chiral conformation was observed in th
oxalato-bridged analogous cage [Ru8(g6-p-PriC6H4Me)8(tpp
H2)2(C2O4)4]8+, for which a racemic mixture of two helical isomer
was found in the crystal [16]. Surprisingly, in this oxalato-bridge
analogue, the NH signal of the tpp-H2 panels is found unchange
as compared to free tpp-H2 at d = �3.1 ppm, while in the cage mo
ecules 1–3 this signal is strongly shifted upfield to d � �7.0 ppm
Moreover, in the oxalato-bridged analogue, the CH and CH3 signa
of the p-cymene ligands are superimposed at d = 3.35 ppm, whi
in 2 the two signals are well separated at d = 3.13 (CH) and 2.4
(CH3), respectively.

Multiple one-dimensional and two-dimensional NMR exper
ments (ROESY, COSY, HSQC) allow the complete assignment o
the proton signals of the cages 1–3. Fig. 1 shows the two-dimen
sional 1H COSY spectrum of the pyridyl and pyrrole region of th
tpp-H2 panels in 2. Strong cross-peaks attributed to 3J H–H cou
pling together with weak cross-peaks for 4J coupling constant a
low the assignment of two distinct series of pyridyl and pyrro
protons, identified as H and H0, respectively. The assignment is fu
ther confirmed by one-dimensional 1H ROESY experiments i
which strong cross-peaks are observed between Hq (dhbq proton
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Scheme 1.

Fig. 1. 1H COSY NMR spectrum of cation 2 in CD3CN, showing the pyridyl and
pyrrole region of the tpp-H2 panels.
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and the two diastereotopic Ha of the unsymmetrical pyridyl groups
(Ha and H0a) [17].

The infrared spectra of 1–3 are dominated by absorptions of the
5,10,15,20-tetra(4-pyridyl)porphyrin (tpp-H2) and 2,5-dihydroxy-
1,4-benzoquinonato (dhbq) ligands [19]. In addition to the tpp-
H2 and dhbq bands, strong absorptions attributed to the triflate an-
ions are observed in the infrared spectra of [1][CF3SO3]8,
[2][CF3SO3]8 and [3][CF3SO3]8 [1260(s), 1031(s), 638(s) cm�1]
[20]. Under conditions of electrospray mass spectrometry, the
cages 1–3 show a remarkable stability. The ESI-MS spectra of 1–3
show peaks corresponding to [1 + (CF3SO3)4]4+, [2 + (CF3SO3)4]4+

and [3 + (CF3SO3)4]4+ at m/z 983.0, 1067.3 and 1123.3, respectively
[21]. These peaks can be assigned unambiguously on the basis of
their characteristic Ru8 isotope pattern. Furthermore, in the ESI-
MS spectra of 1 and 2, the second major peak corresponding to
[1 + (CF3SO3)5]3+ and [2 + (CF3SO3)5]3+ is observed at m/z 1359.3
and 1472.5, respectively. Fig. 2 shows the ESI-MS spectrum of
[1][CF3SO3]8 in acetonitrile.

It is well known that in coordinating solvents ligand exchange
can occur with arene ruthenium complexes [10]. In order to exam-
ine the stability of the rectangular metallo-prism 2 in solution, we
recorded the 1H NMR spectra in various deuterated solvents
{CD2Cl2, (CD3)2CO, CD3CN, (CD3)2SO} with different coordinating
ability. At room temperature and even elevated temperature, 1H
NMR experiments for 2 in dichloromethane-d2, acetone-d6 and
acetonitrile-d3 showed no signal changes which could indicate
the cleavage of the hydroxyquinonato bridges or the presence of
free tpp-H2 molecules. However, in dimethylsulfoxide-d6 at 40 �C,
compound [2][CF3SO3]8 shows an additional new set of signals
clearly attributed to the different components of the cage after
decomplexation: doublets at 9.0 ppm and 8.2 ppm corresponding
to Ha and Hb of the uncoordinated tpp-H2 pyridyl protons as well
as a singlet at 8.9 ppm for the pyrrolyl protons; the NH signal at
�7.0 ppm being replaced by a new singlet at �3.0 ppm. The
decomplexation is complete and irreversible at 60 �C, as shown
by 1H NMR.

In conclusion, we have shown a simple and straightforward
synthesis of hydroxyquinonato-bridged arene ruthenium rectan-
gular metallo-prisms using tetradentate porphyrin panels. The
organometallic boxes 1–3 possess helical chirality, as demon-
strated by NMR spectroscopy. These data are in agreement with
the analogous compound [Ru8(g6-p-PriC6H4Me)8(tpp-
H2)2(C2O4)4][CF3SO3]8, for which a chiral deformed cubic struc-
ture was confirmed by single-crystal X-ray structure analysis
[16].



e

is

,

s.

n

0

.

n.

3

.
0)

2.
o,

R.

d

6

6;
;
8)

.
.

n,

.

k,

g,
in
e

er
9

H,
d

.8
or

3)
e,
g,
n
n
e

re
g,
s,
,

r),
).
.6
.8
S:
):
8;
),
d

d,
H,
2),
),

r),
.3
.9
+

C,
d:
),
6

q),
d

.4
S:
or
H,

.

Fig. 2. ESI-MS of [1][CF3SO3]8.
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