Organometallic boxes built from 5,10,15,20-tetra(4-pyridyl)porphyrin panels and hydroxyquinonato-bridged diruthenium clips

Nicolas P.E. Barry, Padavattan Govindaswamy, Julien Furrer, Georg Süss-Fink, Bruno Therrien*

Institut de Chimie, Université de Neuchâtel, Case, postale 158, CH-2009 Neuchâtel, Switzerland

ABSTRACT

Self-assembly of 5,10,15,20-tetra(4-pyridyl)porphyrin (tpp-H₂) tetradentate panels with dinuclear arene ruthenium clips [Ru₂(η^{6} -arene)₂(dhbq)Cl₂] (arene = C₆H₅Me, *p*-PrⁱC₆H₄Me, C₆Me₆; dhbq = 2,5-dihydroxy-1,4-benzoquinonato) affords the cationic organometallic boxes [Ru₈(η^{6} -C₆H₅Me)₈(tpp-H₂)₂(dhbq)₄]⁸⁺ ([**1**]⁸⁺), [Ru₈(η^{6} -C₆H₅Me)₈(tpp-H₂)₂(dhbq)₄]⁸⁺ ([**1**]⁸⁺), [Ru₈(η^{6} -C₆He₆)₈(tpp-H₂)₂(dhbq)₄]⁸⁺ ([**3**]⁸⁺). These octanuclear cations have been isolated as their triflate salts and characterised by mass spectrometry, NMR and IR spectroscopy. The molecular structure of these systems was deduced by one-dimensional and two-dimensional NMR experiments (ROESY, COSY, HSQC).

Keywords: Bridging ligands Arene ligands Ruthenium Supramolecular chemistry Cage compounds

Organometallic half-sandwich complexes of Ru(II), Rh(III) and Ir(III) are becoming more and more popular as versatile building blocks in supramolecular chemistry. The lability of the ligands opposite to the inert η^6 -arene ligand can generate a pre-organised arrangement that allows the controlled formation of supramolecular assemblies. These three facial coordination sites have been extensively exploited to build up rectangles, macrocycles and cages [1–9].

Recently we used arene ruthenium complexes as building blocks for the assembly of a series of cationic triangular metalloprisms containing bridging chloro [10], oxalato [11] and 2,5-dihydroxy-1,4-benzoquinonato [12] ligands connected by 2,4,6-tri(pyridyl)-1,3,5-triazine subunits. Herein we report the synthesis and characterisation of three rectangular metallo-prismatic cations incorporating arene ruthenium building blocks (arene = C_6H_5Me , $p-Pr^iC_6H_4Me$, C_6Me_6), bridged by 2,5-dihydroxy-1,4-benzoquinonato (dhbq) ligands, and connected by 5,10,15,20-tetra(4-pyridyl)porphyrin (tpp-H₂) tetrapodal ligands.

The dinuclear arene ruthenium complexes [Ru(η^{6} -arene)Cl₂]₂ (arene = C₆H₅Me, *p*-PrⁱC₆H₄Me, C₆Me₆) react in methanol with 2,5-dihydroxy-1,4-benzoquinone (dhbq-H₂) to form in good yield the dinuclear complexes [Ru₂(η^{6} -C₆H₅Me)₂(dhbq)Cl₂] [13], [Ru₂-(η^{6} -*p*-PrⁱC₆H₄Me)₂(dhbq)Cl₂] [12a] and [Ru₂(η^{6} -C₆Me₆)₂(dhbq)-Cl₂] [12c], respectively. Addition of silver triflate to these dinuclear clips in the presence of 5,10,15,20-tetra(4-pyridyl)porphyrin (tpp-H₂) leads to the connection of two tetradentate panels, affording

the octanuclear metallo-prismatic cations $[Ru_8(\eta^6-C_6H_5Me)_8(tpp-H_2)_2(dhbq)_4]^{8+}$ $([1]^{8+})$, $[Ru_8(\eta^6-p-Pr^iC_6H_4Me)_8(tpp-H_2)_2(dhbq)_4]^{8+}$ $([2]^{8+})$ and $[Ru_8(\eta^6-C_6Me_6)_8(tpp-H_2)_2(dhbq)_4]^{8+}$ $([3]^{8+})$ in good yield (\approx 80%), see Scheme 1. These rectangular prismatic cations are isolated as their trifluoromethanesulfonate salt [14].

The ¹H NMR spectra of **1**, **2** and **3** display a similar signal pattern for the tpp-H₂ protons. Interestingly, diastereotopic protons are observed upon formation of the cationic cages, suggesting a tilt of the bi-metallic clips, thus introducing helical-type chirality [15]. A similar chiral conformation was observed in the oxalato-bridged analogous cage [Ru₈(η^6 -*p*-PrⁱC₆H₄Me)₈(tpp-H₂)₂(C₂O₄)₄]⁸⁺, for which a racemic mixture of two helical isomers was found in the crystal [16]. Surprisingly, in this oxalato-bridged analogue, the NH signal of the tpp-H₂ panels is found unchanged, as compared to free tpp-H₂ at δ = -3.1 ppm, while in the cage molecules **1–3** this signal is strongly shifted upfield to $\delta \approx$ -7.0 ppm. Moreover, in the oxalato-bridged analogue, the CH and CH₃ signals of the *p*-cymene ligands are superimposed at δ = 3.13 (CH) and 2.43 (CH₃), respectively.

Multiple one-dimensional and two-dimensional NMR experiments (ROESY, COSY, HSQC) allow the complete assignment of the proton signals of the cages **1–3**. Fig. 1 shows the two-dimensional ¹H COSY spectrum of the pyridyl and pyrrole region of the tpp-H₂ panels in **2**. Strong cross-peaks attributed to ³*J* H–H coupling together with weak cross-peaks for ⁴*J* coupling constant allow the assignment of two distinct series of pyridyl and pyrrole protons, identified as H and H', respectively. The assignment is further confirmed by one-dimensional ¹H ROESY experiments in which strong cross-peaks are observed between H_a (dhbq protons)

^{*} Corresponding author. Tel.: +41 32 718 24 99; fax: +41 32 718 25 11. *E-mail address:* bruno.therrien@unine.ch (B. Therrien).

Fig. 1. ^1H COSY NMR spectrum of cation 2 in CD_3CN, showing the pyridyl and pyrrole region of the tpp-H_2 panels.

and the two diastereotopic H_{α} of the unsymmetrical pyridyl groups $(H_{\alpha} \text{ and } H'_{\alpha})$ [17].

The infrared spectra of **1–3** are dominated by absorptions of the 5,10,15,20-tetra(4-pyridyl)porphyrin (tpp-H₂) and 2,5-dihydroxy-1,4-benzoquinonato (dhbq) ligands [19]. In addition to the tpp-H₂ and dhbq bands, strong absorptions attributed to the triflate anions are observed in the infrared spectra of [**1**][CF₃SO₃]₈ (**2**][CF₃SO₃]₈ and [**3**][CF₃SO₃]₈ [1260(s), 1031(s), 638(s) cm⁻¹]

[20]. Under conditions of electrospray mass spectrometry, the cages **1–3** show a remarkable stability. The ESI-MS spectra of **1–3** show peaks corresponding to $[\mathbf{1} + (CF_3SO_3)_4]^{4+}$, $[\mathbf{2} + (CF_3SO_3)_4]^{4+}$ and $[\mathbf{3} + (CF_3SO_3)_4]^{4+}$ at m/z 983.0, 1067.3 and 1123.3, respectively [21]. These peaks can be assigned unambiguously on the basis of their characteristic Ru₈ isotope pattern. Furthermore, in the ESI-MS spectra of **1** and **2**, the second major peak corresponding to $[\mathbf{1} + (CF_3SO_3)_5]^{3+}$ and $[\mathbf{2} + (CF_3SO_3)_5]^{3+}$ is observed at m/z 1359.3 and 1472.5, respectively. Fig. 2 shows the ESI-MS spectrum of $[\mathbf{1}][CF_3SO_3]_8$ in acetonitrile.

It is well known that in coordinating solvents ligand exchange can occur with arene ruthenium complexes [10]. In order to examine the stability of the rectangular metallo-prism 2 in solution, we recorded the ¹H NMR spectra in various deuterated solvents {CD₂Cl₂, (CD₃)₂CO, CD₃CN, (CD₃)₂SO} with different coordinating ability. At room temperature and even elevated temperature, ¹H NMR experiments for **2** in dichloromethane- d_2 , acetone- d_6 and acetonitrile-d₃ showed no signal changes which could indicate the cleavage of the hydroxyquinonato bridges or the presence of free tpp-H₂ molecules. However, in dimethylsulfoxide- d_6 at 40 °C, compound [2][CF₃SO₃]₈ shows an additional new set of signals clearly attributed to the different components of the cage after decomplexation: doublets at 9.0 ppm and 8.2 ppm corresponding to H_{α} and H_{β} of the uncoordinated tpp-H₂ pyridyl protons as well as a singlet at 8.9 ppm for the pyrrolyl protons; the NH signal at -7.0 ppm being replaced by a new singlet at -3.0 ppm. The decomplexation is complete and irreversible at 60 °C, as shown by ¹H NMR.

In conclusion, we have shown a simple and straightforward synthesis of hydroxyquinonato-bridged arene ruthenium rectangular metallo-prisms using tetradentate porphyrin panels. The organometallic boxes **1–3** possess helical chirality, as demonstrated by NMR spectroscopy. These data are in agreement with the analogous compound $[Ru_8(\eta^6-p-Pr^iC_6H_4Me)_8(tpp-H_2)_2(C_2O_4)_4][CF_3SO_3]_8$, for which a chiral deformed cubic structure was confirmed by single-crystal X-ray structure analysis [16].

Acknowledgements

We are grateful to the Fonds National Suisse de la Recherche Scientifique (Grant 200020-119760). A generous loan of ruthenium chloride hydrate from the Johnson Matthey Technology Centre is gratefully acknowledged.

References

- R.H. Fish, Bioorganometallics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006. p. 321 and references therein.
- 2] [a] H. Yan, G. Süss-Fink, A. Neels, H. Stoeckli-Evans, J. Chem. Soc.; Dalton Trans. (1997) 4345;
 - [b] P. Govindaswamy, D. Linder, J. Lacour, G. Süss-Fink, B. Therrien, Dalton Trans. (2007) 4457;
 - [c] P. Govindaswamy, G. Süss-Fink, B. Therrien, Inorg. Chem. Commun. 10 (2007) 1489.
- [3] [a] S. Korn, W.S. Sheldrick, J. Chem. Soc.; Dalton Trans. (1997) 2191;
- [b] S. Korn, W.S. Sheldrick, Inorg. Chim. Acta 254 (1997) 85;
- [c] P. Annen, S. Schildberg, W.S. Sheldrick, Inorg. Chim. Acta 307 (2000) 115.
 [4] [a] K. Severin, Chem. Commun. (2006) 3859. and references therein;
- [b] C. Olivier, Z. Grote, E. Solari, R. Scopelliti, K. Severin, Chem. Commun. (2007) 4000;
 - [c] Z. Grote, H.-D. Wizemann, R. Scopelliti, K. Severin, Z. Anorg. Allg. Chem. 633 (2007) 858;
 - [d] Z. Grote, R. Scopelliti, K. Severin, Eur. J. Inorg. Chem. (2007) 694;
- [e] C. Olivier, E. Solari, R. Scopelliti, K. Severin, Inorg. Chem. 47 (2008) 4454.
 [5] [a] H. Suzuki, N. Tajima, K. Tatsumi, Y. Yamamoto, Chem. Commun. (2000)
- 1801; [b] Y. Yamamoto, H. Suzuki, N. Tajima, K. Tatsumi, Chem. Eur. J. 8 (2002) 372.
- [6] [a] K. Yamanari, S. Yamamoto, R. Ito, Y. Kushi, A. Fuyuhiro, N. Kubota, T. Fukuo, R. Arakawa, Angew. Chem. Int. Ed. 40 (2001) 2268;
 [b] K. Yamanari, R. Ito, S. Yamamoto, T. Konno, A. Fuyuhiro, K. Fujioka, R.
- [7] J.L. Boyer, M.L. Kuhlman, T.B. Rauchfuss, Acc. Chem. Res. 40 (2007) 233. and
- [7] J.L. DUYEI, M.L. Kumman, T.B. Kauchuss, Acc. Chem. Res. 40 (2007) 255. an references therein.
- [8] W.S. Han, S.W. Lee, Dalton Trans. (2004) 1656.
- [9] [a] Y.-F. Han, Y.-J. Lin, W.-G. Jia, L.-H. Weng, G.-X. Jin, Organometallics 26 (2007) 5848;
 [b] Y.-F. Han, W.-G. Jia, Y.-J. Lin, G.-X. Jin, J. Organomet. Chem. 693 (2008) 546;
- [c] Y.-F. Han, Y.-B. Huang, Y.-J. Lin, G.-X. Jin, J. Organometallics 27 (2008) 940,
 [c] Y.-F. Han, Y.-J. Lin, W.-G. Jia, G.-L. Wang, G.-X. Jin, Chem. Commun. (2008) 1807.
- [10] P. Govindaswamy, G. Süss-Fink, B. Therrien, Organometallics 26 (2007) 915.
- [11] P. Govindaswamy, D. Linder, J. Lacour, G. Süss-Fink, B. Therrien, Chem. Commun. (2006) 4691.
- [12] [a] B. Therrien, G. Süss-Fink, P. Govindaswamy, A.K. Renfrew, P.J. Dyson, Angew. Chem. Int. Ed. Engl. 47 (2008) 3773;
 - [b] P. Govindaswamy, J. Furrer, G. Süss-Fink, B. Therrien, Z. Anorg. Allg. Chem. 634 (2008) 1349;

[c] J. Mattsson, P. Govindaswamy, J. Furrer, Y. Sei, K. Yamaguchi, G. Süss-Fink, B. Therrien, Organometallics (2008), doi:10.1021/om800419s.

- [13] [Ru₂(η^{6} -C₆H₅Me)₂(dhbq)Cl₂]: A mixture of [Ru(η^{6} -C₆H₅Me)₂Cl₂]₂ (500 mg, 0.95 mmol) and 2,5-dihydroxy-1,4-benzoquinone (133 mg, 0.95 mmol) in MeOH (100 mL) is stirred at room temperature for 2 h, then filtered. The blood-red precipitate is filtered, washed with diethyl ether, and dried under vacuum. Yield: 452 mg (80 %). IR (cm⁻¹): 3054 (w, CH_{aryl}), 1506 (s, C=0), 1269 (s, CH₃). ¹H NMR (400 MHz, (CD₃)₂SO): δ (ppm) = 7.20 (m, 2H, H_q), 6.14 (m, 2H, H_{ar}), 5.70 (m, 3H, H_{ar}), 2.13 (s, 6H, CH₃). ¹³C(¹H) NMR (100 MHz, (CD₃)₂SO): δ (ppm) = 175.5 (CO), 175.2 (CO), 128.7 (CH_q), 95.5 (CCH₃), 89.4 (CH_{ar}), 84.8 (CH_{ar}), 82.2 (CH_{ar}), 61.1 (CH₃). Elemental Analysis (%): Calc. for C₂₀H₁₈Cl₂O₄Ru₂: C, 40.34; H, 3.02; Found: C, 40.57; H, 3.32.
- of $Ag(O_3SCF_3)$ [14] $[Ru_8(\eta^6-arene)_8(tpp-H_2)_2(dhbq)_4][CF_3SO_3]_8$: A mixture (165 mg, 0.64 mmol) and $[Ru_2(\eta^6-\operatorname{arene})_2(dhbq)Cl_2]$ (arene = C_6H_5Me , 191 mg, 0.32 mmol; $P-P^1C_6H_4Me$, 218 mg, 0.32 mmol; C_6Me_6 , 235 mg, 0.32 mmol) in CH₂Cl₂ (80 mL) is stirred at room temperature for 3 h, then filtered. To the red filtrate, tpp-H₂ (99 mg, 0.16 mmol) is added. The solution is stirred for 15 h, and then the solvent removed under vacuum. The residue is dissolved in CH₂Cl₂ (3 mL), and diethyl ether is added, and the mixture stand overnight, to precipitate the purple solid. [1][CF₃SO₃]₈: Yield: 300 mg, (83 %). IR (cm⁻¹): 3470 (m, NH), 3075 (w, CH_{aryl}), 1520 (s, C=O), 1260 (s, CF₃). ¹H NMR (400 MHz, CD₃CN): δ (ppm) = 8.87 (m, 16H, $H_{pyr} + H'_{\alpha}$), 8.69 (m, 16H, H_{α} + H_{β}), 8.32 (m, 8H, H'_{pyr}), 7.45 (d, 8H, H'_{β}), 6.35 (m, 16H, H_{q} + H_{ar}), 6.14 (m, 16H, H_{ar}), 5.97 (m, 16H, H_{ar}), 2.48 (s, 24H, CH₃), -6.94 (s, 4H, NH). ¹³C{¹H} NMR (100 MHz, CD₃CN): δ (ppm) = 184.3 (CO), 183.9 (CO), 152.6 (CH'_{α}) , 151.1 (CH_{α}), 132.6 (CH'_{β}), 131.5 (CH_{β}), 123.0 (C_{pyr}), 120.1 (C_{pyr}), 101.8 (CH_q) , 89.4 (CCH₃), 79.7 (CH_{ar}), 79.1 (CH_{ar}), 76.7 (CH_{ar}), 18.2 (CH₃), ESI-MS: m/z 983.0 [**1** + (CF₃SO₃)₄]⁴⁺; 1359.3 [**1** + (CF₃SO₃)₅]³⁺. Elemental Analysis (%): Calc. for $C_{168}H_{124}F_{24}R_{18}N_{16}O_{40}S_8$: C, 44.52; H, 2.74; N, 4.95; Found: C, 43.98; H, 2.33; N, 4.65.[**2**][CF₃SO₃]₈: Yield: 287 mg (74 %); IR (cm⁻¹): 3450 (m, NH), 3070 (w, CH_{aryl}), 1520 (s, C=0), 1260 (s, CF₃). ¹H NMR (400 MHz, CD₃CN): δ (ppm) = 8.89 (d, 8H, H_{pyr}), 8.81 (d, 8H, H'_a), 8.59 (m, 16H, H_a + H_b), 8.30 (d, 8H, H'_{pyr}), 7.45 (d, 8H, H'_{β}), 6.20 (m, 16H, H_{ar}), 6.17 (s, 8H, H_{q}), 6.03 (m, 16H, $\begin{array}{l} H_{ar}, \ 3.13 \ (sept, 8H, CH(CH_{3})_2), \ 2.43 \ (s, \ 24H, CH_3), \ 1.54 \ (m, \ 48H, CH(CH_{3})_2), \\ -6.96 \ (s, \ 4H, \ NH). \ ^{13}C\{^{1}H\} \ NMR \ (100 \ MHz, \ CD_3CN): \ \delta \ (ppm) = \ 184.1 \ (\textbf{CO}), \end{array}$ 183.6 (CO), 152.4 (CH'_α), 151.2 (CH_α), 133.0 (CH'_β), 131.5 (CH_β), 122.8 (C_{pyr}), 119.6 (C_{pyr}), 101.9 (CH_q), 104.1 (CCH(CH₃)₂), 98.8 (CCH₃), 83.8 (CH_{ar}), 83.3 (CH_{ar}), 82.3 (CH_{ar}), 82.2 (CH_{ar}), 31.3 (CH(CH₃)₂), 21.5 (CH(CH₃)₂), $(CH_{3})_{2}$, 17.5 (CH₃). ESI-MS: m/z 1067.3 [**2** + (CF₃SO₃)₄]⁴⁺; 1472.5 [**2** + (CF₃SO₃)₅]³⁺. Elemental Analysis (%): Calc. for $C_{192}H_{172}F_{24}Ru_8N_{16}O_{40}S_8$: C, 47.37; H, 3.54; N, 4.60; Found: C, 46.87; H, 3.11; N, 4.43. [3][CF₃SO₃]₈: Yield: 346 mg, (85 %). IR (cm⁻¹): 3430 (m, NH), 3080 (w, CH_{aryl}), 1520 (s, C=O), 1260 (s, CF₃). ¹H NMR (400 MHz, CD₃CN): δ (ppm) = 8.88 (d, 8H, H_{pyr}), 8.56 (m, 24H, H'_{α} + H_{α} + H_{β}), 8.20 (d, 8H, H'_{pyr}), 7.48 (d, 8H, H'_{β}), 6.08 (s, 8H, H_q), 2.52 (s, 144H, CH₃), -6.96 (s, 4H, NH). ¹³C{¹H} NMR (100 MHz, CD₃CN): δ $(ppm) = 184.8 (CO), 184.2 (CO), 152.2 (CH'_{\alpha}), 151.6 (CH_{\alpha}), 134.7 (CH'_{\beta}), 132.4$ (CH_{β}) , 123.8 (C_{pyr}), 120.6 (C_{pyr}), 102.9 (CH_q), 95.5 (CCH₃), 16.1 (CH₃). ÉSI-MS: m/z 1123.2 [**3** + (CF₃SO₃)₄]⁴⁺. Elemental Analysis (%): Calc. for C208H204F24Ru8N16O40S8: C, 49.06; H, 4.01; N, 4.40; Found: C, 48.67; H, 4.32: N. 4.51.
- [15] [a] D.L. Caulder, K.N. Raymond, Acc. Chem. Res. 32 (1999) 975;
- [b] D.C. Caskey, T. Yamamoto, C. Addicott, R.K. Shoemaker, J. Vacek, A.M.

- Hawkridge, D.C. Muddiman, G.S. Kottas, J. Michl, P.J. Stang, J. Am. Chem. Soc. 130 (2008) 7620;
 [c] B. Therrien, G. Süss-Fink, Chimia 62 (2008) 514.
 [16] Y.-F. Han, Y.-J. Lin, L.-H. Weng, H. Berke, G.-X. Jin, Chem. Commun. (2008) 350.
 [17] The one-dimensional ¹H ROESY experiments have been recorded using the MP-ROESY mixing sequence, which has shown its effectiveness with regard to TOCSY transfer suppression and cross-relaxation peak intensity enhancement [18] [18].
- [18] T.-L. Hwang, A.J. Shaka, J. Magn. Reson. 135 (1998) 280.
- [19] Infrared spectra are recorded as KBr pellets on a Perkin-Elmer FTIR 1720-X spectrometer.
- [20] D.H. Johnston, D.F. Shriver, Inorg. Chem. 32 (1993) 1045.
- [21] Electrospray mass spectra were recorded at the University of Fribourg (Switzerland) within the group of Prof. Titus Jenny.