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Abstract

The work presented within this thesis details the experimental investigation of the

surface waves supported on metasurfaces. Particular attention has been given to the

reflection of these surface waves from planar discontinuities associated with these meta-

surfaces. Various experimental techniques have been developed throughout this work to

characterise surface wave supporting metasurfaces. These include a new technique for

measuring the dispersion of surface waves supported on metasurfaces, characterisation

of the near-field associated with the surface waves, a device for launching planar phase

front surface waves and finally a technique for measuring the surface wave reflection

coefficient.

The dispersion of surface waves on a square array of square cross-section metal

pillars has been fully characterised and compared to FEM modelling. The results show

that a family of surface waves may be supported by pillar or crossed slit structures

rather than just holes even though there is now no lowest cut-off frequency. A family

of TM surface modes have been shown to exist with dispersions which asymptote to

frequencies defined by the pillar heights (slit depth) and the refractive index of the

material filling the slits.

Primarily this work focussed on the surface wave properties associated with a square

array of square metal patches on a dielectric coated ground plane and a Sievenpiper

‘mushroom’ metasurface. The amplitude reflection coefficient of these surface waves

has been studied for three distinct systems: Firstly for surface waves incident upon the

termination of a these metasurfaces to free space, secondly for surface waves incident

upon the interface between a dielectric coated and uncoated metasurface and thirdly

for surface waves incident on the boundary between two metaurfaces.

The reflection coefficient of surface waves incident upon the termination of the

metasurface to free space is found to increase significantly with the confinement of the

surface mode. This confinement, and therefore the form of the reflection coefficient,

is significantly different for the two metasurfaces considered due to their dispersions.

This increase in the reflection coefficient is caused by both the momentum mismatch

of the surface wave compared to the freely propagating modes and the different field

distributions of the two modes.

The reflection coefficient of surface waves incident upon the boundary between a

coated and uncoated metasurface has been experimentally characterised for the metal



patch array and Sievenpiper ‘mushroom’ metasurfaces. It is shown that the addition

of a thin, significantly subwavelength, dielectric overlayer onto the metasurface vastly

perturbs the surface wave dispersion. The reflection coefficient of the surface waves is

found to depend on the dispersion of the mode supported on the coated and uncoated

metasurface and the overlayer thickness. Most noticeably the thickness of the overlayer,

by comparison to the surface wave decay length, has a significant effect on scattering

to free space associated with the surface wave reflection.

The final system considered was designed to investigate the impedance approxima-

tion, often used to describe metasurfaces, and found it to be an incomplete descrip-

tion of the surface waves supported on the metasurfaces used within this study. In

the impedance approximation the two surfaces considered are said to be ‘impedance

matched‘ at certain frequencies. It is demonstrated that the failure of the impedance

approximation to accurately describe this system is due to the behaviour of the electric

field within the metasurfaces. These are not analytically described in the impedance

approximation and are required for an accurate description of the surface waves sup-

ported on these metasurfaces.
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Chapter 1

Introduction

1.1 Aim of Research

Surface waves on metal-dielectric interfaces have been extensively studied throughout

the electromagnetic (EM) spectrum starting with the discovery of the Wood’s anomaly

in 1902 [1]. Although this optical phenomena wasn’t full explained until much later

[2] surface waves at microwaves were extensively studied during this period [3–9]. The

behaviour of these surface waves at microwave frequencies is dominated by the high

conductivity of metals in this frequency range which leads to the exclusion of the

electric field from within the metal. As such planar metal surfaces are considered not

to support bound surface waves at microwave frequencies. This has been overcome by

the addition of structure to the planar metal [5, 10–12], a phenomenon which has been

experimentally investigated with a resurgence of interest [13–19] occurring after the

prediction of tightly bound microwave surface waves with properties similar to those

found at optical frequencies [20].

Controlling these surface waves has been of great interest in recent years in many

new areas of technology including applications for surface wave suppression [21–25],

improved antenna performance [25–31], wireless communication technologies and mi-

crowave circuits [24, 29, 30, 32] among others. The radar cross-section of a stealth

aircraft has a significant contribution from surface wave mediated processes. There-

fore, since the radar cross-section of military aircraft is a primary factor in their mission

performance [33], a significant amount of research into non-reflecting surface wave ab-

sorbing materials has been performed [34, 35] (and references therein).

In this thesis the properties of these surface waves supported on thin structured

surfaces, known as metasurfaces, have been experimentally characterised. Particular

attention has been paid to developing a system capable of measuring the local electric

field associated with these surface waves and determining their interaction with planar
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interfaces in the metasurface.

1.2 Thesis Outline

The work in this thesis focusses on the experimental investigation of the reflection,

transmission and scattering of microwave surface waves supported on metasurfaces.

Initially a new type of surface wave supporting structure is characterised to determine

the properties of the surface waves supported by such a structure. Secondly the re-

flection and radiation scattered to free space from the termination of a metasurface

is experimentally determined. The techniques developed in characterising the surface

wave and radiation scattered to free space are then applied to measuring the reflection,

transmission and scattering of a surface wave incident on a dielectric overlayer and

finally the interface between two metasurfaces.

A summary of the work previously undertaken in this research area is presented in

Chapter 2, along with a discussion of the background theory dictating the behaviour of

surface waves on metasurfaces. In particular the dispersion of the surface waves sup-

ported on the metasurfaces used within this thesis and their associated properties are

fully discussed. A discussion of the impedance description of surface wave supporting

metasurfaces and the effect of the lattice on the surface dispersion is performed.

Details of the experimental methods developed to characterise these surface waves

and determine their reflection, transmission and scattering from discontinuities is pre-

sented in Chapter 3. Also theory dictating the detection of these microwave surface

waves is explored and presented as it pertains to the methods employed within this

study. A brief explanation of the techniques employed within the finite element method

modelling to design the metasurface structures and determine the expected reflection

coefficient is also given. The techniques developed to excite planar phase front sur-

face waves and fully characterise the near-field associated with the surface waves are

discussed.

In Chapter 4 the surface waves supported on a square array of square cross-section

metallic pillars is experimentally characterised. Particular attention is given to the

azimuthally independent nature of the modes supported due to the symmetry of the

system. The dispersion of these surface modes is experimentally investigated using a

new technique involving the use of parabolic mirrors to collimate the surface waves.

The reflection and scattering to free space of a surface wave incident upon the ter-

mination of a metasurface, presented in Chapter 5, is shown to be highly frequency

dependent. The characterisation of the amplitude reflection coefficient is performed

along with the form of the scattered radiation. The amplitude reflection coefficient

is compared to that obtained from both an analytical model, utilising the impedance
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approximation, and finite element method modelling. The validity of the impedance

approximation in describing the metasurfaces considered is discussed. It is also shown

that the orientation of the coaxial probe has a significant effect on the measured scat-

tered radiation.

Investigation of the reflection, transmission and scattering to free space of a surface

wave incident upon a finite thickness dielectric overlayer on a metasurface is presented

in Chapter 6. The reflection of a surface wave incident upon the dielectric overlayer on a

metasurface consisting of a square array of square metal patches is measured along with

a dielectric overlayer on a Sievenpiper ‘mushroom’ structure. For the metallic patch

array the reflection coefficient is studied both as a function of frequency, where the

waveguide-like nature of the surface mode has significant effect, and as function of the

overlayer thickness. The surface wave reflection coefficient for the dielectric overlayer

on the Sievenpiper ‘mushroom’ array is explored as a function of frequency. It is shown

that the addition of a dielectric overlayer leads to a frequency band where transmission

as a surface wave is forbidden, particular attention is paid to this phenomena.

The final experimental results are presented in Chapter 7, where the reflection,

transmission and scattering is investigated for the interface between two surface wave

supporting metasurfaces. The impedance description traditionally used to describe

surface wave supporting structures is investigated by designing a surface which is

‘impedance matched’ at a single frequency. At this condition the surface wave may

be expected to experience no reflection when incident upon the discontinuity. How-

ever it is shown that for a metasurface matching of the impedance is not sufficient to

eliminate the surface wave reflection, since the distribution of the electric fields within

the two metasurface unit cells is significantly different in the two metasurfaces at the

‘impedance matched’ condition.

Finally in Chapter 8 the conclusions from this thesis are presented along with sug-

gestions for future extension of this work.
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Chapter 2

Surface Waves Supported on

Metasurfaces

2.1 Introduction

In this thesis a study of surface wave reflection, transmission and scattering at mi-

crowave frequencies has been performed. Surface wave properties at microwave frequen-

cies are predominately determined by surface structuring since all metals can usually

be considered as perfect conductors. Subwavelength surface structure can confine the

otherwise unconfined surface wave, often referred to as a surface current, by introduc-

ing a resonance of the electromagnetic (EM) field due to the structure. Recently the

study of surface waves supported by structured surfaces has been revisited [20] and a

resurgence of interest in this area has taken place [19, 36, 37]. In this chapter a general

understanding of microwave surface waves is presented, with a particular focus on the

effect of surface structure on the surface wave dispersion. In particular the surface wave

properties of the metasurfaces used in this thesis are discussed.

2.2 Surface Waves Along Metallic Surfaces at Microwave

Frequencies

The guiding of surface waves along a planar interface between dissimilar media has

been studied as far back as 1902 [1, 3, 38, 39] and in all frequency bands ranging from

the radio to the optical regime [40]. At optical frequencies guided modes supported

at the interface of a metal and a dielectric are referred to as surface plasmon polari-

tons (SPP) whilst at radio frequencies surface structuring or dielectric coatings on the

planar metallic surface are required to confine surface waves in a manner similar to
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the localisation found at optical frequencies. It will be shown that guided modes can

be supported at microwave frequencies on both a dielectric coated ground plane, sec-

tion 2.3.1, and structured metallic surfaces, section 2.3.2. These confined modes are

in contrast to the modes supported on a bare and unstructured metallic ground plane

at microwave frequencies which are considered to be unconfined in the dielectric half

space above.

It is possible to engineer the dispersion of surface modes at microwave frequencies

by introducing subwavelength structure to the interface [10, 15, 20, 41–49]. An example

of this is presented in which subwavelength corrugations of a metallic ground plane are

shown to lead to a tightly confined mode close to a microwave frequency dictated by

its surface geometry, section 2.3.2. A material whose subwavelength structuring deter-

mines its properties and whose thickness is a single unit cell is termed a metasurface.

These metasurfaces have applications in controlling both surface waves and free space

EM radiation. The unit cell of a metasurface must be significantly smaller than the

wavelength of the radiation incident upon the metasurface in order for it to be seen as

a homogeneous medium.

Surface modes at microwave frequencies were first investigated in the early 1900’s

and a comprehensive review article was published in 1953 [50] along with other more

detailed sub-field reviews [51, 52]. The structures considered included coating a metal-

lic ground plane with a dielectric and subwavelength corrugation of the metallic ground

plane [5–7, 12, 53, 54]. Further investigation into the guided modes supported on a

structured surface was performed by Cutler [12] and more recently a new metasurface

was proposed which mimics optical plasmonics at microwave frequencies [20]. Low fre-

quency plasmonic surfaces were quickly realised experimentally at both microwave [14]

and terahertz frequencies [55–59]. Some of these results will be discussed in due course,

but in summary, they all rely on a resonant surface behaviour, somewhat analogous to

the resonant surface plasma of electrons in the plasmonic equivalent.

The experimental investigation into low frequency plasmon-like surface modes used

an array of square waveguides [14]. These surface modes rely on the penetration of

the electric and magnetic fields into the waveguides below their fundamental resonant

frequency, known as the ‘cutoff’ frequency. The metallic boundary conditions imposed

by the sides of the interior of the waveguide exclude propagating fields from existing

within the waveguide below its fundamental resonant frequency. For frequencies below

this cutoff the fields which penetrate within the waveguide are therefore exponential in

character, mimicking the penetration of fields into a metal at optical frequencies. This

exponentially decaying field penetration at microwave frequencies modifies the bound-

ary condition of the surface such that the surface wave has a comparable dispersion

to that of a SPP. This phenomenon inspired a plethora of research into surface wave
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supporting metasurfaces [16, 17, 40, 60–70] two of which have been used extensively in

this study [60, 71].

In this chapter a discussion of the physical principles dictating the behaviour of

surface waves on metasurfaces is presented along with the behaviour of the surface

modes supported on the particular structures employed within this thesis. A general

derivation of surface waves guided by an interface is presented in section 2.3 with an

extension to include the properties of surface waves guided by a dielectric overlayer.

The concept of surface structure, section 2.3.2, is introduced along with its applications

to the dispersion of a surface wave supported by metasurfaces, with particular attention

paid to the structures used in this thesis, sections 2.5.2 and 2.5.3. The topic of this

thesis concerns the propagation of surface waves on metasurface structures containing

planar discontinuities. Particularity the reflection of these discontinuities will be studied

and therefore an overview of the previous work undertaken on analytically determining

the reflection coefficient of a surface wave incident upon a reflection discontinuity is

presented.

2.3 Surface Waves at a Planar Interface

A derivation of the field solution for a surface wave can be made by considering the

scattering of an EM wave incident onto a planar interface [72], figure 2.1. Consider a

planar interface in the xy-plane at z = 0 between dissimilar media. The region above

the interface, z > 0, is considered to be an isotropic material with relative material

parameters ε1 and µ1 and the region below the interface, z < 0, to be an isotropic

material with relative material parameters ε2 and µ2. A transverse magnetic (TM)

polarised wave incident in the xz -plane at some angle θi to the z -axis possesses field

components Hy, Ex, and Ez and a wavevector k =
√
ε1µ1k0 = n1k0 where nj =

√
εjµj

is the refractive index of region j and k0 is the free-space wavevector, figure 2.1.

The reflection coefficient of such a system can be determined by the Fresnel equa-

tions written in terms of impedance, equation 2.1, which are simply derived from the

continuity of fields across the interface between the two regions [73]. The bound modes

of any system are determined by poles in the scattering matrix, which for a planar

interface system are equivalent to poles in the reflection coefficient, i.e. when the de-

nominator of equation 2.1 is equal to zero [74].

r12 =
Z2 − Z1

Z2 + Z1
(2.1)

where rjk is the amplitude reflection coefficient for a wave incident from region j to

region k and Zj is the relative impedance of the region indicated by the subscript. The
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Figure 2.1: A TM polarised wave incident in the xz-plane onto a planar interface
between two dissimilar media, with relative permittivities and permeabilities ε1, µ1

and ε2, µ2, for regions 1 and 2 respectively.

impedance is defined as the ratio of the E-field to the H-field which at the interface is

simplified from the bulk impedance definition (ZBULK = E/H), to take into account

that only a single component of the total E-field is in the plane of the interface, Ex.

Therefore the surface impedance can be written as ZSURF = Ex/Hy for TM waves. The

surface impedance is simply a modified version of the bulk impedance which differs by

the cosine of the incident angle, equation 2.2. This can be rewritten in terms of the

wavevector of the incident field, 2.3.

ZSURF = Z cos(θ) =

√
µr
εr

cos(θ) (2.2)

ZSURF =

√
µr
εr

kz
nk0

=
kz
εrk0

(2.3)

where εr and µr are the relative permittivity and permeability of the material respec-

tively and n2k2
0 = k2

x + k2
z . Substituting this into equation 2.3 for kz we can solve the

equation for the pole in the reflection coefficient, Z2
2 = Z2

1 where these are the surface

impedances:

n2
2k

2
0 − k2

x

ε2
2

(
1

k0

)2

=
n2

1k
2
0 − k2

x

ε2
1

(
1

k0

)2

(2.4)

Rearranging for a solution to the in-plane wavevector, kx, as a function of the

angular frequency, ω, and the material properties of the two regions the generalised
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dispersion for a bound surface mode is found:

kx = ±k0

√
ε1ε2(ε1µ2 − ε2µ1)

ε2
1 − ε2

2

(2.5)

If region 1 is vacuum and region 2 is a metal with relative permittivity ε then we

obtain the dispersion for a TM surface wave on a metal surface, equation 2.6.

kx = ±k0

√
ε

ε+ 1
(2.6)

The dispersion of these bound surface modes is determined by the dispersion of the

material parameters which describes how the photon interacts with the material. In

the case of the metasurfaces considered later in this chapter the dispersion of the effec-

tive material parameters describes how the mircowaves interact with the metasurface

structure. Equation 2.5 is the general equation for the bound surface modes of a single

planar interface system, and a similar analysis may be performed for a N -layer system

since the Fresnel equations are well established for a multilayer system. Whilst the pole

of the reflection coefficient is readily obtained analytically for a single planar interface

system this analysis is not possible for the many interface system we will consider later.

Figure 2.2: Comparison of the SPP dispersion on a silver-vacuum interface calculated
using an analytical solution (black circles) with the pole in the reflection coefficient,
plotted on a log scale (greyscale), obtained numerically. The light line is also shown
for context (red line).
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Figure 2.3: Schematic of the electric field normal to the metal dielectric interface at both
microwave, where the mode is on the light line and photon-like, and optical frequencies,
where the mode is away from the light line and plasmon-like.

A numerical solution is still possible for such a system, the reflection coefficient is de-

termined and the dispersion of the bound modes determined from the maxima in the

reflection coefficient. Beyond the light line the amplitude of the reflection coefficient

clearly has no physical meaning as the ‘incident’ wave is decaying and we are only

interested in the position of the maxima.

Verification of this method can be performed by comparing the analytical solution

for a single interface system with the numerical solution for the same system. This

was done for a surface plasmon polariton (SPP) supported on the interface between

silver, modelled as a Drude metal, and vacuum in the optical regime where the SPP

dispersion changes rapidly, figure 2.2. The greyscale shows the numerically determined

reflection coefficient, where the bright band shows the solution for the SPP dispersion

whilst the black circles are the analytical solution for the same system. The light line

shows the maximum in-plane momentum possible for a freely propagating photon. The

silver has been modelled using the form of the Drude model found in equation 2.7 with

a plasma frequency of ωp = 1.32× 1016 Hz and a relaxation time of τ = 1.45× 10−14 s.

ε = 1−
ω2

p

ω2 + iωτ
(2.7)

where ω is the angular frequency of the EM radiation.

The dispersion of the SPP is on the light line at microwave frequencies and diverges

from it at optical frequencies. This leads to a mode that is unconfined at microwave

10



2. Surface Waves Supported on Metasurfaces

frequencies. This is because the electric field is entirely excluded from the metal at these

frequencies since it can be considered to act as a Perfect Electric Conductor (PEC),

figure 2.3. However as the frequency of the radiation increases the PEC approximation

becomes invalid and the field can penetrate into the metal with a finite decay length.

This decay length induces a decaying field above the interface, to satisfy the boundary

condition, leading to a bound mode at optical frequencies, figure 2.3. This occurs as

the SPP dispersion diverges from the light line, with the confinement of this mode

increasing the further the mode sits from the light line.

2.3.1 Guided Waves Supported by a Dielectric Coated Ground Plane

𝑧 

𝑥 𝜀𝑟 , 𝜇0 

𝜀0, 𝜇0 
Region 1 

Region 2 

𝜀𝑚, 𝜇0 

Dielectric Coated Metallic Ground Plane 

𝑡 

Figure 2.4: Dielectric coated metallic ground plane system, in which the dielectric
coating has thickness t and relative permittivity εr.

Investigation of the surface waves supported on a dielectric coated ground plane

at microwave frequencies is performed by extending the method used in the previous

section. However as previously stated it is now not possible to solve this system an-

alytically and as such a numerical approach will be taken. The amplitude reflection

coefficient for a planar interface system with three regions is derived analytically in

Appendix A equation A.4, and is given below:

r13 = r12 +
t12t21r23exp(2iα)

1− r21r23exp(2iα)
(2.8)

Here tjk is the amplitude transmission coefficient from layer j to layer k and rjk is the

equivalent amplitude reflection coefficient. Unlike the single interface system previously

discussed it is not possible to analytically determine the poles of the scattering matrix.

However it is still possible to determine the reflection coefficient by numerically solving

the single interface reflection and transmission coefficients for a matrix of kx and ω.

The dispersion of a surface mode supported on a metal ground plane coated with

a lossless dielectric is obtained using this method, and is shown in figure 2.5. The

chosen system has a dielectric overlayer with permittivity εr = 2.2 and a thickness of

11



2. Surface Waves Supported on Metasurfaces

Figure 2.5: Amplitude reflection coefficient for a thin dielectric overlayer obtained
numerically, plotted on a log scale (greyscale). The pole in the reflection coefficient
shows the dispersion of the bound surface mode for this system. The light line is also
shown for context (red line). Coloured circles indicate the position of the simulated
fields in figure 2.6.

Figure 2.6: Simulated Ez field strength as a function of the height above the dielec-
tric layer shown in figure 2.4 for three different frequencies shown in figure 2.5. The
black lines indicate the position of the interface between the metallic ground plane and
the dielectric overlayer and the half space above. The frequencies of the modes are
approximately 25 (red), 60 (green) and 100 GHz (blue).
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2. Surface Waves Supported on Metasurfaces

t = 787 µm, corresponding to the printed circuit board (PCB) core material parameters,

with the loss ignored, used later in this study. This illustrates that at low frequencies,

where the optical thickness of the dielectric is much smaller than the wavelength, the

dispersion is approximately that of a grazing photon. As the optical thickness of the

dielectric increases the dispersion of the mode diverges from the light line. The limit

of this divergence is given by the dispersion of a grazing photon supported at the

planar interface of the metal and dielectric half space with the material properties of

the dielectric overlayer. This dispersion of the light line of the infinite dielectric metal

interface is linear but with a shallower gradient modified from the vacuum case by the

refractive index of the dielectric.

The calculation of the fields within the dielectric overlayer and half space above

is possible from the in-plane wavevector and the frequency of the radiation, both of

which are extracted from the calculated amplitude reflection, figure 2.5. The electric

field perpendicular to the interface, Ez, is extracted at the positions indicated by the

red, green and blue points and plotted in the corresponding colours in figure 2.6. The

confinement of the field in the z-direction increases as the mode diverges from the light

line since the decay length away from the interface is inversely proportional to the

imaginary part of kz and that k2
0 = k2

x + k2
z , as the in-plane wavevector increase the

magnitude of the imaginary part of kz increases and hence mode confinement increases.

Figure 2.6 shows that the electric field strength within the dielectric overlayer also

increases as the mode diverges from the light line which leads to a greater proportion

of the power flowing within the dielectric overlayer.

2.3.2 Surface Waves on a Corrugated Plane

Surface waves supported on a structured ground plane form the basis for understanding

metasurface structures, one of the simplest forms of which is a corrugated metallic plane

[5, 6, 75], figure 2.7. The modes supported on a corrugated metallic plane are considered

here for the case where the metallic corrugations are considered to be infinitely thin

and invariant in the y-direction, with a height, d, and a spacing, S.

The solution for a TM surface wave propagating in the x-direction is considered; this

mode has a single component of the magnetic field, Hy, from which the two components

of the electric field, Ex and Ez, can be derived. Since the structure is periodic the form

of the Hy field is dictated by Floquet’s theorem [76]. Above the corrugations, z > d,

the form of Hy is given by:

Hy =

∞∑
N=−∞

An exp

[
ikzz + i

(
kx +

2Nπ

S

)
x

]
(2.9)
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𝑥 

𝑧 

PEC 

𝑑 
𝑆 

Figure 2.7: Schematic diagram of a corrugated metallic ground plane with infinitely
thin perfectly conducting walls with height d spaced distance S apart.

where k2
z = k2

0 − (kx + 2Nπ/S)2. In the corrugations, 0 < z < d, the Ez component of

the electric field must vanish at the corrugations and the Ex component must vanish at

the ground plane, these boundary conditions dictate the form of Hy. Therefore within

the corrugated region the magnetic field is:

Hy =

∞∑
N=0

Bn cos

(
Nπx

S

)
cosh(kzz) (2.10)

where k2
z = k2

0 − (Nπ/S)2. If we consider subwavelength corrugations, such that S is

small by comparison to the wavelength, the only propagating mode supported between

the corrugations is the transverse electromagnetic (TEM) mode, where kz = k0. All

other kz solutions are imaginary, forcing the field to decay exponentially in the negative

z-direction. This behaviour is seen clearly in equation 2.10 since k2
z = k2

0 − (Nπ/S)2 if

S is small enough then when N = 1 kz will be purely imaginary and only the N = 0

mode, i.e. the TEM mode, will propagate between the plates.

A solution for kx of the surface wave supported on top of the corrugations may be

found by considering a semi-infinite parallel plate system, figure 2.8, where the spacing

of the plates is S but the plates are infinite in the negative z-direction. Since the

condition for a bound surface mode is that above the corrugations the field decays

exponentially in the positive z-direction, (kx + 2Nπ/S)2 > k2
0, the reflection coefficient

at the interface for the parallel plate system must be 1. Since the reflection coefficient

is equal to 1 a perfect standing wave is set up within the parallel plates and the Ex

field vanishes at spacings of λ/2. A conducting ground plane may be placed at these

positions and the field will be unperturbed, in this way the corrugated plane has been

recovered and shows that this system is suitable for determining the value of kx for the

surface wave.
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𝑥 

𝑧 

𝑑 
𝑆 

𝑘 

𝑅 

Figure 2.8: Schematic diagram of an array of parallel plate waveguides with infinitely
thin perfectly conducting walls with height d in the positive z-direction and infinite in
the negative z-direction, with a width S between the perfectly conducting walls.

Figure 2.9: Fundamental surface mode dispersion for a corrugated metallic ground
plane (black points), where d = 5 mm and S = 1 mm (figure 2.7), with the light line
(red line).
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2. Surface Waves Supported on Metasurfaces

The reflection coefficient of the TEM mode incident upon the termination of the

parallel plate waveguides is defined by R = e−iφ. Therefore we can define the phase

difference between the wave incident upon the boundary and the reflected wave at a

distance, d, from the interface θ = φ+ 2k0d. The conducting plane must be placed at

distance d such that θ = Nπ, since the electric field will vanish when the incident and

reflected TEM waves are completely out of phase, and therefore:

2k0d+ φ = Mπ, M = 1, 3, 5... (2.11)

The reflection coefficient for a terminated parallel plate system can be calculated,

however it is beyond the scope of this discussion to present it here [77]. For spacings,

S, less than approximately 0.2λ0 the phase of the reflection, φ is given by:

φ = 2

(
tan−1

(
k0

−ikz

)
− k0

S

π
ln(2)

)
(2.12)

Substitution of 2.12 into 2.11 and solving for kz gives:

−ikz = k0 tan

[
k0

(
d− S

π
ln(2)

)]
(2.13)

Solutions for the in-plane wavevector can then be trivially determined by:

kx =
√
k2

0 − k2
z (2.14)

The dispersion of a surface wave guided by such an interface can now be calcu-

lated, figure 2.9, with a highly confined surface wave supported close to the d = λ0/4

condition. At low frequencies where the depth, d, of the corrugations is much smaller

than the wavelength of the radiation the surface mode is almost unconfined and can

be considered to be a grazing photon. The confinement of the mode increases as the

mode disperses from the light line and both the phase and group velocities of the mode

decrease. These properties are typical of a surface wave supported on a metasurface at

microwave frequencies.

2.4 Impedance Description of a Surface

The propagation of a surface wave on a metasurface is often described using a de-

scription of the surface impedance [78–81]. Here we will briefly introduce the surface

impedance approximation used to calculate the surface wave reflection coefficient later

in this thesis in chapters 5 and 7. The analysis will show that a TM surface wave is

supported on a surface with an inductive surface impedance and will demonstrate how
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this impedance approximation may be derived from the dispersion relation.

Consider a planar interface at z = 0 that is in the xy-plane which has a normalised

surface impedance given by, Zs = Rs + iχs. The surface impedance may be normalised

to the impedance of free space, Z0. Since we are considering TM surface waves only

the magnetic field has a single component, Hy, which can be written in the following

form for the region above the interface, z > 0:

Hy = A exp(ikzz − ikxx) (2.15)

where k2
0 = k2

x + k2
z . The two electric field components, Ex and Ez, are easily derived

from Maxwell’s equations:

iωε0Ex =
∂Hy

∂z
(2.16)

iωε0Ez = −∂Hy

∂x
(2.17)

The impedance of the incident inhomogenous plane wave is described as:

Z =
E

H
(2.18)

In the plane of the interface only two components of the field are projected onto the

xy-plane, Hy and Ex, so the surface impedance at z = 0 is given by:

ZS =
Ex
Hy

=
kz
ωε0

=
kz
k0
Z0 (2.19)

Which must be equal to the incident wave impedance at z = 0 to satisfy the boundary

condition. Here kz/k0 is the normalised wave impedance for the incident field and is

therefore equated to the normalised surface impedance to give the solution for kz:

kz = k0Zs = k0Rs + ik0χs (2.20)

The in-plane wavevector is trivial to determine with the knowledge of kz:

kx =
√
k2

0 − k2
x = k0

√
1 + χ2

s −R2
s − 2iRsχs (2.21)

Equation 2.20 indicates that in order for the field to exponentially decay in the z-

direction normal to the interface the value of χs must be positive and Rs should be

small. For the surfaces considered in this thesis it is assumed that the surface is lossless

and therefore Rs = 0. When this is the case the equation for the in-plane wavevector
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kx reduces to:

kx = k0

√
1 + χ2

s (2.22)

It is clear that the impedance of the surface can be readily obtained from the

dispersion of the mode, equation 2.22, if the surface is assumed to be lossless. The

surface mode can also be characterised by considering the phase velocity of the wave

with reference to the speed of light, an equivalent description to the refractive index,

known as the mode index, n:

n =
c

vp
=
ckx
ω

=
√

1 + χ2
s (2.23)

The surface impedance description can be used to describe the modes supported

on the metasurfaces presented within this thesis and in doing so an analytical solution

for the reflection coefficient of a surface mode incident upon a surface discontinuity

is possible [82]. This thesis will consider the application of this surface impedance

approximation to the problem of determining the reflection coefficient of a surface

wave incident upon a variety of metasurface discontinuities.

2.5 Surface Waves Supported on Metasurfaces

In this section we will present an overview of the surface waves supported on the

metasurfaces used in this thesis. Within this thesis a new class of metasurface has been

experimentally characterised in chapter 4 and two structures, whose microwave surface

wave properties are well known, have subsequently been employed; the first is a square

array of square metallic patches on a dielectric coated ground plane [44] and secondly a

Sievenpiper ‘mushroom’ array [71]. The surface wave properties of these metasurfaces

is presented here along with the concept of a Brillouin Zone (BZ) boundary and its

effect on the surface wave dispersion of these structures.

2.5.1 Brillouin Zone Boundaries

The BZ is the primitive unit cell of a lattice in reciprocal space, the boundaries of which

contain points of high-symmetry. The first BZ boundary is formed by the perpendicular

bi-sectors of the lattice vectors between nearest neighbours in reciprocal space followed

by the next-nearest neighbours and so on, this is known as the Wigner-Seitz method

[83]. All of the metasurfaces used within this thesis have square unit cells arranged

in a square lattice and as such their reciprocal space lattice is also square. Therefore

discussion of the BZ shall be limited to that in a square reciprocal lattice and its effects
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𝑘𝑥 

𝑘𝑦 BZ Boundary 

𝑣𝑔 = 0 

Figure 2.10: Schematic of the BZ boundary (black line) of a square lattice with example
mode shapes shown (red lines) with increasing frequency as the mode approaches the
BZ boundary. The crossing points are shown to be tangential indicating zero group
velocity.

on the surface waves supported by such metasurfaces. For the square lattice the BZ

boundary is a contour of high-symmetry, each edge of which is a mirror plane, with four

more mirror planes through the center of the BZ and four-fold rotational symmetry.

Within this thesis the properties of surface waves propagating along either of the

lattice vectors or at 45o to them are investigated. This simplifies the discussion of

the properties of these surface waves at the BZ boundary since they cross the BZ

at the points of highest symmetry, figure 2.10. The surface waves with momentum

along each lattice vector reach the BZ boundary at the center of the perpendicular

bi-sectors, whilst the surface waves propagating at 45o to the lattice vectors reach the

BZ boundary at the corners of the BZ. Each of these points are high symmetry points

at which the group velocity, vg, of the surface wave must vanish. This is caused by

the surface wave at the BZ boundary interacting with a counter propagating surface

wave, which has been scattered by a lattice vector, to form a standing wave. Since the

group velocity of the surface wave is directly related to its dispersion relation, equation

2.24, the interference between the two surface waves at the BZ boundary perturbs the

surface wave dispersion. It can be seen that the surface wave dispersion must have zero

gradient at the BZ boundary for all the square latticed metasurfaces used within this

thesis for both lattice vectors and the 45o directions of propagation.

vg =
∂ω

∂k
(2.24)
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2.5.2 Surface Waves Supported on a Metallic Patch Array

The first metasurface used in this thesis is a square array of square metallic patches

spaced from a metallic ground plane by a dielectric overlayer, figure 2.11. The dimen-

sions for the metasurface used in this study are as follows: t = 787 µm, λg = 1.6 mm

and a = 1.3 mm. It shall be shown that the response of this metasurface is similar

to that of a dielectric coated ground plane. The mode supported is fundamentally a

waveguide mode within the dielectric, however the periodicity of the metallic patches

perturbs the dispersion at in-plane wavevectors close to the BZ boundary, which for

this structure is close to 2π
λg

= 2000 m−1. This perturbation can be seen by the rapid

change of the group velocity, tending towards zero, with respect to ω, at high in-plane

momentum. The dispersion of the fundamental TM mode supported on the patch array

is shown in figure 2.12.

The dispersion of the TM surface mode supported on this metasurface structure

has several characteristics which make this surface wave ideal for the characterisation

of surface wave reflection coefficients. Firstly the group velocity of the surface wave

is ∼0.1c at 40 GHz, which combined with the low loss dielectric leads to propagation

lengths of the surface mode of many metres. Experimentally there is no appreciable

loss over a 60 cm long sample due to absorption within the metasurface. Secondly

the decay length of the surface mode perpendicular to the surface is on the order of a

wavelength or longer over a broad range of frequencies. This ensures that the overlap

integral of the near-field of the surface mode and the near-field coaxial probe is large

enough that the surface wave is readily coupled to by the near-field coaxial antenna

used to measure the surface waves. The relative power flow within the dielectric core

of the patch array structure is shown in figure 2.13. It can be seen that the amount of

power flowing in the core only exceeds that of the air above approximately 35 GHz and

a 

t 

𝜆𝑔 
𝑧 

𝑥 

𝑦 

Figure 2.11: Schematic diagram of the metallic patch array metasurface unit cell show-
ing the metal ground plane and patch (orange) and the dielectric layer (yellow).
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Figure 2.12: Dispersion relation of a square array of square metallic patches spaced
from a metallic ground plane by a dielectric overlayer from FEM modelling (red line)
and experiment (black circles), data taken by Joe Dockrey, with the light line (green
line) and BZ boundary (blue line) shown.

Figure 2.13: Relative power flow of the TM surface wave supported on a square array
of square metallic patches on a dielectric coated ground plane. The amount of power
confined within the dielectric layer is shown in the black points and the amount of
power in the upper half space in red, values taken from FEM modelling.
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(a) 12.9 GHz (b) 24.9 GHz (c) 43.2 GHz

Figure 2.14: Ez field component of the near-field associated with the TM surface mode
supported on the metallic patch array plotted along a line in the z-direction away from
the metasurface in the center of the metal patch at a) 12.9 GHz, b) 24.9 GHz and c)
43.2 GHz.

there is still greater than 20% of the power flowing above the surface at 45 GHz. The

power flowing within this metasurface has a large effect on the reflection coefficient of

this surface wave from an interface as shall be shown in Chapters 5, 6 and 7.

The surface wave confinement of the modes is shown in the field profiles extracted

from FEM modelling in figure 2.14. The near-field decay of the surface mode away

from the surface (kz) is strongly dependent on frequency: The confinement of the

mode increases with increasing kx (i.e. as the mode deviates from the light line).

This confinement is defined by the k-vector perpendicular to the interface, kz, which

is directly related to the k-vector of the surface wave in the direction of propagation,

kx, since the total k-vector, k0, is fixed by the frequency of the surface wave and

k2
0 = k2

x + k2
z . The near-field of the fundamental TM surface mode supported on the

metallic patch array is shown in figure 2.14 where the surface wave-like confinement

of the mode in the upper half space is clearly seen. Note the rapid decay of the near-

field of the surface wave fields at the highest frequency plotted, figure 2.14c, falling to

1/e over a distance of ∼ 3 mm. This, combined with the increased power flow within

the dielectric core of the metasurface, increases the experimental difficulty in accurate

determination of the surface mode propagation characteristics near at higher frequenies.
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(a) yz-plane (b) xz-plane

Figure 2.15: Normalised Ez field component of the fundamental TM surface mode
supported on the metallic patch array in a) the yz-plane and b) the xz-plane, at 24.9
GHz where the surface wave is propagating in the x-direction and the black represents
the metal.

A cross-section of the patch array metasurface on which the Ez field component

is plotted is shown in figure 2.15 where the mode is propagating in the x-direction.

Figure 2.15a shows the waveguide-like nature of the mode within the dielectric core

of the metasurface; the Ez field component has a near uniform field intensity within

the dielectric. In contrast figure 2.15b shows the high field intensity and capacitative

coupling between the nearest-neighbour metal patches. These high field intensities arise

from the accumulation of charge at the edge of the patch. The charge accumulates at

these edges because the electric field of the surface wave has a much longer wavelength

than the dimensions of the patch. The electrons, which respond almost perfectly to

the electric field (due to the approximately PEC properties of the metal) experience

an electric potential gradient in the x-direction. The electrons accumulate at the edge

of the patches since the applied electric potential is much stronger than the restoring
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force associated with the imbalanced distribution of electrons within the patch. In both

of the measurement planes, shown in figure 2.15, the near-field of the surface wave is

shown to be uniform in the x- and y-directions in the upper half-space, except close to

the edges where charge accumulates.

2.5.2.1 Patch Layer Effective Medium

Representation of both the metallic patch array and the Sievenpiper ‘mushroom’ array

with an effective medium model is possible. In the effective medium model the structure

of interest is replaced with an isotropic material whose parameters are determined from

the structure. In both cases the effective medium model will be composed of two layers,

one to represent the patch layer and another to represent either the via layer for the

Sievenpiper ‘mushroom’ array or the dielectric layer below the metallic patch array.

The patch array, if taken in isolation, is a frequency selective surface (FSS) the EM

response of which is well known [84].

The FSS consisting of a square array of square metallic patches is shown in figure

2.16 and a TM polarised EM wave is considered incident upon the surface in the xz -

plane. In this orientation the electric field in the plane of the surface, Ex, is excluded

from the gaps (between the plates) whose direction is parallel to the x-axis. This is

due to the metallic boundary conditions imposed by the metallic patches. As such the

FSS may be approximated instead by a one dimensional array of strips, figure 2.16c,

where the periodicity of the array is maintained in the x-direction. A full analysis of

this structure has been performed by Clavijo et. al. [43], the results of which shall be

reproduced here.
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Figure 2.16: Schematic of the frequency selective surface created by a square array of
square metallic patches where a) shows the geometry of the incident wave b) the square
array and c) the reduction to a single set of strips possible due to the polarisation and
plan of incidence.
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Figure 2.17: The effective refractive index of the thin layer in the effective medium
model that represents the metallic patches calculated from the phase change through
the reduced FSS. Inset: Phase change extracted from FEM modelling.

The effective medium material parameters needed to represent the FSS patch layer

are found to be highly anisotropic such that the material parameters of interest are

εz = 1, µy = 1 with εx given by:

εx =
2λg

πtm
ln

([
cos

(
π(λg − a)

2λg

)]−1
)

(2.25)

where tm is the thickness of the metal and equivalently the thickness of the effective

medium layer. This is derived from considering the transmission of a wave through the

FSS layer, whose admittance is well know when reduced to a strip array [85], to free

space. An increase in this permittivity is caused by the fact that the dielectric core has

a permittivity which is larger than that of free space. The permittivity is increased by

the average of the permittivity of the dielectric and that of free space.

Due to the highly anisotropic nature of the effective patch layer determining the

refractive index from the permittivity and permeability of such a layer is not trivial.

However the phase change of the EM wave transmitted through the FSS can be used

to determine an estimate of the effective refractive index of the thin patch layer. This

phase change, ∆φ, has been obtained using FEM modelling, figure 2.17.

neff =
∆φ c

2πtmf
(2.26)
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It can be seen in figure 2.17 that the refractive index of this layer is significant (> 30)

and therefore even though the FSS layer is very thin a significant phase change occurs

as the wave is transmitted through it. This phase change lowers the gradient of the

dispersion of the surface wave supported on the metal patch array metasurface. This

change of the gradient of the dispersion leads to an increased confinement of the surface

wave than the equivalent for the simple dielectric coating.

2.5.3 Surface Waves Supported on a Sievenpiper Array
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Figure 2.18: Schematic diagram of the Sievenpiper ‘mushroom’ metasurface. a)
Schematic diagram of the Sievenpiper ‘mushroom’ metasurface unit cell showing the
metal ground plane, via and patch (orange) and the dielectric layer (yellow). b)
Schematic diagram of the Sievenpiper ‘mushroom’ metasurface array showing the
ground plane, via and patch layers.

The second metasurface discussed here, was first developed by Sievenpiper and

consists of an array of metallic ‘mushrooms’ on a dielectric coated ground plane [71].

Each ‘mushroom’ consists of a square metallic patch connected to the ground plane via

a metal cylinder, figure 2.18. The dimensions for the metasurface used in this study

are as follows: t = 787µm, λg = 1.6 mm, a = 1.3 mm and vr = 150 µm.

An effective medium approximation can be applied to the Sievenpiper ‘mushroom’

structure in the metasurface limit, when the unit cell is significantly subwavelength, the

via array layer, figure 2.18b, can be considered to be a homogeneous highly anisotropic

layer [43]. The effective permittivity in the direction normal to the surface of the metal

ground plane is given by:

εz(ω) = εd −
1

ω2ε0
µdµ0A

4π

[
ln( 1

α) + α− 1
] (2.27)

where εd is the permittivity of the dielectric medium in the via layer, ε0 is the per-

mittivity of free-space, A is the cross-sectional area of the metallic patch and α is the

ratio of the via cross-section to that of the unit cell. For this derivation the via layer is
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2. Surface Waves Supported on Metasurfaces

Figure 2.19: Real part of the effective relative permittivity of the via layer in the
Sievenpiper ‘mushroom’ structure in the z-direction within the metasurface limit for
the structure shown in figure 2.18.

considered to be a Brown’s rodded medium with the consideration of the effect of the

via radius since they vias are considered thin in the Brown’s rodded medium [86, 87].

It is clear to see that the dispersion of the effective normal permittivity is Drude-

like in its form [88], figure 2.19. In this way the Sievenpiper via layer for the electric

field normal to the interface may be considered like a metal in the optical regime when

there is a component of the E-field parallel to the vias and when the unit cell of the

metasurface is significantly subwavelength. However for the electric field in the plane of

the surface the via layer simply has a permittivity that is positive and approximately

equal to that of the dielectric. The derivation of 2.27 is valid in the limit that the

patch cross-sectional area occupies most of the cross-section of the unit cell of the

metasurface. This is due to the fact that the material parameters for the via layer are

calculated within a parallel plate waveguide, i.e. using a PEC boundary condition in

place of the patch layer. If the patch is significantly smaller than the unit cell then the

approximation that it can be considered as a continuous PEC boundary is invalid. The

patch layer is also approximated as a FSS in the same way as for the metallic patch

array that was discussed in section 2.5.2.1.

The dispersion of the TM surface mode supported on the Sievenpiper ‘mushroom’

structure used in this study is shown in figure 2.20. Several of the characteristics of

this surface wave dispersion are of relevance in the study of surface wave reflection
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Figure 2.20: Dispersion relation of the TM surface mode supported on the Sievenpiper
‘mushroom’ metasurface from FEM modelling (red line) and experiment (black circles),
data taken by Joe Dockrey, with the light line (red line) and BZ boundary (blue line)
shown.

coefficients. Firstly, in contrast to the metallic patch array, the group velocity of the

mode supported on the Sievenpiper array undergoes a change of sign in a very small

frequency range. This change is such that in a small frequency band the mode has both

positive group velocity and negative group velocity at the same frequency with different

in-plane wavevectors. The range of in-plane wavevectors for which the group velocity of

the surface wave is negative is associated with a condition when the power flow within

the core of the metasurface is greater than that of the dielectric half-space above, figure

2.21. The direction of the power flow within the core of the metasurface is opposite to

that in the half space above, indicated by the sign of the relative power flow, due to

the negative effective εz, figure 2.19. Secondly above the asymptotic frequency of the

mode there exists a surface wave stop band within which there are no surface waves

supported on the structure. This stop band is of particular interest because it allows

for the consideration of the reflection of surface waves at an interface that defines a

surface on which modes are forbidden above a given frequency. This has been studied

in both Chapter 6 and Chapter 7.

At frequencies close to the asymptote, the decrease in the group velocity of the

mode increases the non-radiative losses experienced by the surface mode and as such

its propagation distance is reduced. Interestingly, unlike the metallic patch array, at
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Figure 2.21: Relative power flow of the fundamental TM surface wave supported on
a Sievenpiper ‘mushroom’ array. The amount of power confined within the dielectric
layer is shown by the black crosses and the amount of power in the upper half space
by the red circles, values taken from FEM modelling.

these frequencies most of the power flow is not confined within the via layer, figure

2.21. However, as for the metallic patch array, the confinement of the surface mode

increases as the mode diverges from the light line. At frequencies close to the surface

wave stop band, equivalently the asymptote of the TM surface mode, the decay length

of the surface wave is ∼ 2.5 mm, figure 2.22c

The Ez field component associated with the TM surface wave supported on the

Sievenpiper ‘mushroom’ array is shown in figure 2.23 where the direction of propagation

of the surface mode is along the x-axis. The Ez field component of the surface wave

has a lower amplitude within the via layer than that found within the dielectric layer

for the metallic patch array. It is clear from both the ratio of the power flow within the

metasurface, figure 2.21, and the distribution of the Ez field component, figure 2.23, that

the TM surface mode supported on the Sievenpiper ‘mushroom’ structure is not a simple

waveguide mode of a grounded dielectric, which could be considered accurate for the

metal patch array metasurface. However the capacitive coupling between neighbouring

patches and the associated high electric field is seen for the Sievenpiper ‘mushroom’

structure as previously discussed for the metallic patch array.
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(a) 12.7 GHz (b) 21.8 GHz (c) 25.2 GHz

Figure 2.22: Ez field component of the near-field associated with the TM surface mode
supported on a Sievenpiper ‘mushroom’ array plotted along a line in the z-direction
away from the metasurface in the center of the unit cell at a) 12.7 GHz, b) 21.8 GHz
and c)25.2 GHz.

(a) yz-plane (b) xz-plane

Figure 2.23: Ez field component of the TM surface mode supported on the Sievenpiper
‘mushroom’ array in a) the yz-plane and b) the xz-plane, at 21.8 GHz where the surface
wave is propagating in the x-direction and the black represents the metal.
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2.6 Reflection of Surface Waves

Studies have analytically considered the reflection coefficient of surface waves for many

different types of reflecting interface [79–81, 89–95]. However each solution employs

different assumptions to solve the analytical equations and these assumptions introduce

limitations on their applicability to describe the systems investigated within this study.

Most importantly the geometry of the metasurface structure is never fully considered:

Previous works have considered the guiding surface to be a plasmonic metal [90, 91,

93, 94] or represented simply using an impedance boundary condition [79–81, 92].

Studies on the reflection coefficient of a surface wave incident upon the termination

of a surface wave supporting surface to free space was considered by Chu et. al in the

1960’s [79–81], where the reflection and scattering to free space of a surface wave was

calculated and measured experimentally. An impedance approximation was applied

to the guiding interface in order to provide the necessary boundary condition for sup-

porting a surface wave, whereas in the experiment a dielectric coated metallic ground

plane was used as the surface wave guiding interface [79]. Analytically the reflection

coefficient of surface waves has been considered for step changes in the guiding interface

[93], changing the guiding interface impedance [92], changing the dielectric half space

[89–91], gaps in the guiding interface [94] and introducing a finite height overlayer dis-

continuity [95]. Experimental investigation of these systems has seen less attention [79]

and full geometrical description of metasurface systems have not been described.

2.7 Conclusion

In this chapter an overview of the surface wave properties of various structures at

microwave frequencies has been presented. The confinement of surface waves at mi-

crowave frequencies through surface structuring, i.e. metasurfaces, has been introduced

and explored for the metasurfaces used in this thesis. The surface wave supported by

a dielectric coated ground plane has been shown to be primarily a waveguide mode

within the dielectric with near-field decay in the half-space above. Further the corru-

gation of a perfectly conducting plane has also been shown to support bound surface

waves, provided that the corrugations are sufficiently subwavelength, the dispersion of

which is defined by the resonances associated with the structure. These principles have

been extended to the two metasurfaces used within this thesis, the metallic patch ar-

ray and the Sievenpiper ‘mushroom’ array. The principles of BZ boundaries and their

effect on surface wave dispersions for periodic structures has been explored and the

effective medium model for representing the metasurface has been discussed. It has

been shown that the Sievenpiper ‘mushroom’ metasurface and the metallic patch array
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have significantly different surface wave dispersions. The dispersion of the surface wave

supported by the metallic patch array metasurface has been shown to have similarities

to the dispersion of a surface wave supported on a dielectric coated metal ground plane.

Whilst the dispersion of a surface wave supported on a Sievenpiper ‘mushroom’ meta-

surface has been shown to be dictated by the structural resonance of the metasurface.

The surface wave properties discussed within this chapter will subsequently be used

when describing the effect of planar discontinuities in the metasurface to surface waves

incident upon them. The planar discontinuities investigated within this thesis affect the

surface modes on the metal patch array metasurface and the Sievenpiper ‘mushroom’

metasurface differently due to their field profiles. These differences will be explored for

a variety of discontinuities in Chapters 5, 6 and 7.
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Chapter 3

Techniques Used to Characterise

Surface Waves on Metasurfaces

3.1 Introduction

In this chapter the experimental, numerical and analytical techniques used to char-

acterise the structures investigated in this thesis are presented. A brief overview of

the finite element method (FEM) modelling techniques used to produce the numeri-

cal results in this study is given in section 3.2. Development of a waveguide material

characterisation system for measuring the material parameters of the dielectrics and

composite materials used in this thesis is presented in section 3.3. A new technique for

measuring the dispersion of a surface wave supported on a metasurface is presented in

section 3.5. Development of an antenna capable of measuring the local electric field

of a surface wave supported on a metasurface is presented in section 3.4 and a system

for spatial mapping of the electric field using a 3-axis translation stage discussed in

section 3.6. The creation of planar phase front surface waves over a broad frequency

band is presented in section 3.7 which are utilised to measure the reflection coefficient

of a surface wave incident upon a discontinuity; the method for obtaining the reflection

coefficient is presented in section 3.8.

3.2 Finite Element Method Modelling

FEM modelling has been used extensively in this thesis to help design the metasurface

structures investigated, and to determine the reflection coefficient of surface waves inci-

dent upon various planar discontinuities. FEM modelling is performed using the High

Frequency Structure Simulator (HFSS) [96], which has been used to predict the disper-

sion of surface waves supported on metasurfaces and the reflection, transmission and
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scattering to free space of surface waves, supported on a metasurface, incident upon

various different planar discontinuities. HFSS contains a variety of distinct solution

types, two of which have been used in this thesis: The first is the Eigenmode solver

used for obtaining the dispersion relations of surface waves supported on a periodic

metasurface, useful in the design of such metasurfaces. The effect of varying the di-

mensions of the elements within the metasurface unit cell on the dispersion relation of

surface waves supported on the metasureface can be investigated using the Eigensolver.

Secondly the Driven Modal solver which solves the EM field in a region of interest at

a user defined frequency, which may be either periodic or non-periodic.

FEM is a numerical method which divides a three dimensional region into smaller,

usually tetrahedral shaped, volumes known as tetrahedra and then solves Maxwell’s

equations at the boundaries between these tetrahedra [97, 98]. The EM field solution

is then calculated at the vertices of the mesh element or the mid points of the edges

of the element. Which of these sets of points is used depends on whether the quantity

being calculated acts tangential to the edges or the face respectively. These points are

then formed into a matrix of equations of the form:

∇×
(

1

µ
∇×E

)
− k2

0εE = 0 (3.1)

where k0 is the free space wavevector and ε and µ are the relative permittivity and

permeability of the region respectively. This matrix of equations is then simultaneously

numerically solved for the E-field from which the H-field can be derived:

H =
1

ωµ
∇×E (3.2)

From the numerically calculated fields a generalised scattering matrix (S-Matrix) is

determined from which the reflection and transmission properties of the structure can

be extracted. The S-Matrix can also be used to analyse the eigenmodes of the modelled

structure by determining the frequencies at which poles in the S-Matrix occur [74].

3.2.1 Meshing and Convergence

In order to obtain an accurate representation of the EM fields present around a meta-

surface structure HFSS employs an adaptive iterative mesh refinement process. Initially

a coarse mesh is defined within the region of interest and a first approximation of the

EM fields is calculated. This mesh is then refined in regions of high field gradients,

equivalently in regions where the EM field solution error is high. Tetrahedra within

these regions are divided into a number of smaller tetrahedra and the EM field solution

recalculated. Solutions to the EM fields associated with a metasurface structure are
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expected to converge such that the further refinement of the mesh does not significantly

change the EM field solution. This convergence is determined through the change in the

generalised scattering matrix (S-matrix) for Driven Modal solutions and by the change

in the Eigenmode frequency for the Eigenmode solver. The change in the Eigenmode

frequency or the change in the S-matrix are expected to decrease through the iterative

meshing process with an approximately exponential form.

3.2.2 Boundary Conditions

In HFSS the region of interest must be surrounded by appropriate boundary conditions

in order for a physically correct solution to be obtained. These boundary conditions

take various forms including perfect electric, perfect magnetic, periodic boundary con-

ditions and many others. The eigenmode solutions determined within this thesis utilise

the periodic boundaries and both the perfect electric and magnetic boundaries. Since

the metasurfaces designed in this thesis are periodic, pairs of master-slave periodic

boundaries are required. A master-slave boundary pair requires that the electric and

magnetic fields at the slave boundary exactly match those at the master boundary.

These periodic boundary conditions produce a solution which is exactly equivalent to

an infinite array of these metasurface unit cells in the direction tangential to the faces

of the mast-slave boundary pair. A relative phase difference may be applied between

the master and slave boundary to allow angles of incidence other than normal to be

investigated. This relative phase difference may also be greater than that of a grazing

photon in order to investigate non-radiating surface modes whose dispersion lies out-

side the light line. The perfect electric and perfect magnetic boundary conditions act

as perfect electric conductors and perfect magnetic conductors respectively. Therefore

these boundaries force the tangential electric or magnetic field to zero at these bound-

aries, (E|| = 0) for the perfect electric boundary and (H|| = 0) for the perfect magnetic

boundary. Finally radiation boundary conditions are used to mimic the propagation

of radiation to free space. Therefore any EM field incident upon these boundaries is

absorbed without reflection without increasing the modelled region of interest.

3.2.3 Designing Metasurfaces

Designing metasurfaces with the required dispersion relation is performed by modelling

a single unit cell of the metasurface and applying periodic boundary conditions to the

unit cell faces. The eigenmodes of the unit cell are then computed using the eigenmode

solver within HFSS for a given in-plane wavevector, k|| =
√
k2
x + k2

y. The wavevector

is defined by the periodic boundary conditions, with any combination of kx and ky

possible, and the resonant frequency of the mode is obtained. The dispersion relations
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Figure 3.1: Schematic of a Sievenpiper ‘mushroom’ metasurface unit cell with the
coordinate system labelled where orange represents the metal structure.

of interest in this thesis are those along a lattice vector of the metasurface and as such

are either purely kx or ky. Since the metasurfaces considered within this structure all

contain square symmetry kx = ky, we shall therefore restrict ourselves to considering

the case when ky = 0. The Eigenmodes for a number of values of kx are found in order

to determine the whole dispersion of the mode propagating purely in the x-direction.

It is also possible to restrict the class of surface mode we are interested in, either TE or

TM, by applying perfect electric, TE, or perfect magnetic, TM, boundary conditions

to the faces in the xz-plane, figure 3.1.

3.2.4 Determining the Reflection Coefficient for Surface Waves

Modelling the reflection coefficient of surface waves incident upon a planar discontinu-

ity is performed by including the full metasurface structure. The inclusion of the full

metasurface structure is computationally intensive since the convergence of the FEM

solution depends on the accurate representation of the metasurface elements by the

tetrahedra. Therefore each sub-wavelength metasurface unit cell must be broken down

into many sub-unit cell size tetrahedra. Typically convergence of a model is achieved

with tetrahedra whose side length is approximately 0.2λ, this ensures that the varia-

tion of the EM field is represented on a sufficiently subwavelength scale. Since these

models require sub-unit cell size tetrahedra and a unit cell is typically 0.1− 0.2λ these

models require significantly more tetrahedra than usual to reach an accurate EM field

solution. In order to reduce the computational power required, and equivalently the

solving time, it is necessary to introduce a high density mesh into the region within

the metasurface structure and the region of high field gradients in the half space above,

but close to, the metsurface interface. Constraints on the size of the initial tetrahedra
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Figure 3.2: Plot of the reflection coefficient of a surface wave incident upon the termi-
nation of a metallic patch array to free space, chapter 5, obtained from analysis of the
EM field predicted by FEM modelling for increasing iterations of the adaptive meshing
process.

are manually applied to these regions, within the metasurface core and the dielectric

half-space region within 2 mm of the interface, such that approximately 1 million tetra-

hedra are placed within these volumes. The convergence of the model can be measured

by determining the value of the reflection coefficient for increasing iterations of the

adaptive mesh process. An example of this convergence is seen in figure 3.2, where the

reflection coefficient is determined for the termination of a metallic patch array to free

space at 25 GHz, see chapter 5. The convergence of these models in a relatively small

number of passes is achieved by these constraints on the initial mesh, the change in the

modelled amplitude reflection coefficient is small (<0.002) after pass number 3, figure

3.2. By increasing the density of the tetrahedra for the first pass within the metasur-

face structure and close to its interface the convergence of the reflection coefficient is

achieved with fewer tetrahedra and in less time than without such operations.

3.3 Material Parameters Characterisation

Determining the complex permittivity and permeability of a material is important in

the design of surface wave absorbing materials and surface wave devices [99–113]. Later

work presented here relies on the accurate measurement of the material parameters of
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Figure 3.3: Schematic of the waveguide system used to obtain the material parameters
of an unknown material, the measured S-parameters S11 and S21 are indicated.

composite materials; microwave absorbing materials have been realised through loading

of magnetic ferrite materials into a dielectric elastomer. The characterisation of the

material properties of these microwave absorbing materials and the dielectric elastomers

used in chapter 6 has been performed using this system. The microwave absorbing

materials have been used in the plane wave launcher discussed in section 3.7.

The complex permittivity and permeability of an unknown material can be ob-

tained from the complex reflection (S11) and transmission (S21) coefficients of a slab

of this material placed within a reflectionless waveguide [100, 101, 109, 114–119], figure

3.3. The derivation of the material parameters from the reflection and transmission

coefficients is presented in Appendix A.

In general the propagation of modes within a waveguide can be characterised by

the direction of the electric and magnetic fields by comparison to the direction of

propagation. For the descriptions of the modes that follows we shall consider the wave

propagating purely in the x-direction and waveguides to be infinite in extent in the x-

direction. We consider the fields in the yz-plane cross-sections unless otherwise stated.

The three possible mode types are transverse electric (TE), transverse magnetic (TM)

or transverse electromagnetic (TEM). In the TE case Ex = 0 (Hx 6= 0), there is no

longitudinal component of the electric field, conversely in the TM case Hx = 0 (Ex 6= 0),

there is no longitudinal component of the magnetic field. Finally in the TEM case

Ex = Hx = 0, there is no longitudinal component of either the electric or magnetic

field.

The fundamental mode supported within a rectangular waveguide is a TE mode

with the field quantised across the long edge of the waveguide a, the electric field

profile is shown in figure 3.4. Higher order quantisations of the electric field exist

within the rectangular waveguide and the lowest frequency propagating mode within
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Figure 3.4: Time averaged electric field associated with the TE10 eigenmode plotted
over the cross-section of an air filled X-band rectangular waveguide at 10GHz. Red and
blue regions correspond to high and low field respectively.

a rectangular waveguide is determined by a, when the wavelength is longer than twice

the length of the long edge, λ0 > 2a, no propagating modes exist below that frequency,

full derivation of waveguide fields can be found here [120].

The reflection and transmission of the fundamental waveguide mode upon a slab of

material has been used to determine the material parameters. Such a system has been

employed to characterise the materials used in this thesis, the initial calibration of this

system was performed by obtaining the material parameters of a well known material;

Teflon. The complex permittivity of Teflon is expected to be ε ≈ 2.05 + 0i and the

complex permeability is expected to be µ = 1 + 0i. Figure 3.5 shows the obtained

material parameters for a 5mm thick slab of Teflon in an X-Band waveguide (8.5-12.4

GHz).

3.3.1 Application to Microwave Absorbing Materials

A study of the microwave material parameters of manganese zinc ferrite (MnZnFe)

loaded into a base elastomer with non-dispersive material parameters, ε = 2.6+0i, µ =

1+0i, in the frequency range of interest has been performed. These composite materials

are a candidate for creating microwave absorbing materials [121–123], the material pa-

rameters of such a system has been measured for increasing concentration of MnZnFe,

figures 3.6a and 3.6b. The magnetic properties of the MnZnFe produces significant ab-

sorption at the microwave frequencies of interest due to a broad resonance and therefore

a large magnetic loss tangent. Whilst the significant dielectric loss is produced by the

electrical polarisability of the MnZnFe particles dispersed within the elastomer. This

microwave absorbing material has been employed within the plane wave launcher, dis-
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Figure 3.5: Complex material parameters of Teflon measured using the complex re-
flection and transmission coefficients. The expected values are as follows: εR ≈ 2.05,
µR = 1, εi ≈ µi ≈ 0.

(a) Complex Permittivity (b) Complex Permeability

Figure 3.6: Measured complex material parameters for MnZnFe loaded elastomer at 10
GHz for increasing concentration of MnZnFe, straight line fits are added to guide the
eye.

cussed in section 3.7, to absorb microwave radiation within the parallel plate waveguide.

3.4 Near-Field Coaxial Probe

Excitation and detection of surface waves requires a source and detector capable of

measuring the near-field above the interface associated with these modes. Experimen-

tally this has previously been achieved in a variety of ways including via the diffracted

fields passing through a metallic letterbox [124] or via the exponential fields associ-

ated with total internal reflection [125]. A new device for experimentally characterising

the near-fields associated with a surface wave propagating on a metasurface has been

developed using a coaxial waveguide.

Measurement of the near-field associated with a surface wave in the microwave
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Figure 3.7: Schematic of the experimental near-field coaxial probe used to detect near-
fields associated with surface waves supported on metasurfaces.

(a) Electric field orientated parallel to the coax-
ial pin.

(b) Electric field orientated perpendicular to the
coaxial pin.

Figure 3.8: FEM modelled transmission of the radiation excited by a stripped coaxial
antenna, with l = 3.75 mm, and detected by a waveport. The distance between the
coaxial antenna and the waveport is 1.5 cm for the near-field (black line) and 20 cm
for the far-field (red line). The λ = 2l and λ = 4l frequencies are also shown.

regime is performed using a coaxial probe designed to be minimally perturbing to

the surface wave. This near-field probe has been experimentally realised by the use

of a coaxial waveguide, the inner metallic pin of which has been extended beyond the

termination of the coaxial waveguide, figure 3.7. This coaxial antenna is mostly sensitive

to electric field along the axis of the pin, it can be considered to act as an electric dipole

along the same axis. The length of the electric dipole can be approximated to lie close

to the λ = 2l resonant condition, as shown in figure 3.8. The electric fields associated

with the resonance of a stripped coaxial antenna with l = 3.75 mm are shown in figure

3.9.

Figure 3.8 shows the transmission between the stripped coaxial dipole antenna

with l = 3.75 mm and a waveport in FEM modelling. This waveport accepts both

propagating and non-propagating modes, and the transmission has been measured in
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Figure 3.9: Time average E-field associated with the near-field coaxial probe, with
l = 3.75 mm, driven at λ = 2l (40 GHz).

both the near-field of the coaxial antenna, where the distance is 0.5λ of the lowest

frequency, and far-field of the coaxial antenna, where the distance is >6λ of the lowest

frequency. The transmission in the far-field is dominated by the propagating modes

excited by the coaxial antenna whilst the near-field transmission is not only determined

by these but also the non-propagating fields which decay away from the source. The

non-propagating fields associated with the antenna have in-plane wavevectors greater

than k0 and are therefore able to couple directly to the near-field radiation associated

with surface waves. It can be seen that for this stripped coaxial antenna there exists a

peak in the near-field signal at approximately 15 GHz corresponding to non-propagating

modes since the far-field transmission at these frequencies has near zero amplitude.

A comparison between the transmission of both the propagating and non-propagating

fields associated with the antenna for both polarisations, electric field orientated par-

allel, TM, and perpendicular, TE, to the coaxial pin, has been performed. The trans-

mission coefficient for TM polarisation is shown in figure 3.8a and for TE polarisation

in figure 3.8b. It can be seen that the transmission coefficient is on the order of 10,000

times larger for TM polarisation than that of TE polarisation. It is therefore approx-

imated that these near-field coaxial antennas are only sensitive to the electric field

orientated along the coaxial pin of the near-field antenna. In order to simplify the dis-

cussion of the experimentally characterised electric field within this thesis they shall be

labelled with the component of the electric field parallel to the coaxial pin orientation.

Practically the thickness of the coaxial pin within the coaxial waveguide, rp = 0.25

mm, is too large to resolve sharp subwavelength features at higher frequency. An ex-

ample of such features is the minima associated with high reflection coefficients, shown

in figure 3.10, where the E-field strength of the interference between an incident and
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Figure 3.10: Time averaged electric field profile of the interference between an incident
wave and a reflected wave with r = 0.8 at 35 GHz.

reflected wave with an amplitude reflection coefficient of 0.8 at 35 GHz is shown. The

width of these minima is on the order of 2 mm which is not sufficiently resolved by the

original coaxial antenna. At higher frequencies or increase in the in-plane wavevector

the width of these features may become comparable to the effective size of the antenna.

In order to overcome this limitation the exposed coaxial pin has been replaced by a

short length of copper wire with a radius of rp = 40 µm, soldered to the pin of the

coaxial waveguide. This significantly increases the resolution of the coaxial antenna

and allows the measurement of sharp subwavelength features.

3.5 Surface Wave Dispersion Measurements

Measuring the dispersion of surface modes supported on a metasurface is a fundamental

part of understanding the EM response of such a structure and the characteristics of the

surface waves supported by it. Previous methods of measuring the dispersion mostly

relied upon one of two methods. Firstly Otto coupling of propagating radiation into the

surface mode via a higher index dielectric material [125, 126] and secondly referencing

the change in phase of the surface wave to that of a grazing photon [127]. The first

of these methods is time consuming since each value of k|| must be independently

obtained by varying the angle of incidence of the radiation through the prism. The

second method requires use of a metallic sample to produce a surface current with a

dispersion equivalent to that of a grazing photon, it would be preferable to determine

the dispersion from the surface wave using the metasurface alone.

At a single frequency the propagation of surface waves along a structure is directly
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Figure 3.11: Schematic of the collimating mirrors setup used to in the characterisation
of the surface wave dispersion, white cylinders indicate the position of the antenna and
the black boxes indicate the position of the absorbers with an example metasurface of
square pillars, see Chapter 4.

related to the dispersion of that surface, E ∝ exp(i(k · r−ωt)). Detection of the phase

of this surface wave at two different distances from the source enables the determination

of the k|| value for the surface at that frequency. The phase of the transmitted signal

is recorded at two different distances between the source and the receive antennas,

L1 and L2. By using two distances and obtaining the differences in phase for the two

situations, the phase shifts brought about at the coupling-in and coupling-out structures

are eliminated. Thereby the wavevector, k||, required for the derivation of the surface

modes dispersion, is obtained simply from the phase change (ϕ2−ϕ1) over the distance

(L2-L1) as given below:

k|| =
2π

L2 − L1

(
ϕ2 − ϕ1

2π
+m

)
(3.3)

Here m is an unknown integer since the system measures the phase only to modulo

2π. This unknown integer m is however readily obtained by changing it in unit steps

and examining how it impacts the resulting dispersion curve which, away from any

resonance, has to lie close to the light line.

This technique is combined with a collimating system, figure 3.11, to increase the
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amount of power transmitted across the sample in order to determine the dispersion

of lossy surface modes. These losses are typically found at large k|| values or small

group velocities, ∂ω/∂k [128, 129]. Stripped coaxial antennas are used as near-field

sources to excite and detect the surface waves, see section 3.4. These coaxial antennas

are situated at the focus of a metallic mirror whose profile is parabolic in the plane of

the surface and uniform in the direction perpendicular to the surface. Surface waves

are emitted with approximately cylindrical phase fronts from these antennas so the

purpose of the parabolic mirrors is to collimate the surface waves such that all the path

lengths reflected from the mirror are identical and guide the power across the sample.

Direct transmission of the surface waves between the coaxial antennas is prevented by

absorbing material. This technique has been employed to measure the dispersion of

surface wave supported on a square array of square cross section metallic pillars in

chapter 4.

3.6 Spatial Mapping of the Electric Field

Spatial mapping of the electric field is highly desirable at microwave frequencies since it

allows sub-wavelength characterisation of the near-field associated with a surface wave

supported on a metasurface. This system has been realised through the use the near-

field coaxial probe whose operation is discussed in section 3.4 and a 3-axis translation

stage with a resolution of 100 µm. A VNA is used to measure the intensity and phase

of the electric field detected by the near-field coaxial probe. The translation stage has a

range of approximately 1 m in the x and y directions, typically the plane of the sample,

and 80 cm in the z-direction, this allows the electric field across large samples to be

characterised along with the scattered radiation from any metasurface.

3.7 Launching Planar Phase Front Surface Waves

In order to determine the surface wave reflection coefficient for normal incidence at a

reflecting interface a source of surface waves with planar phase fronts was developed,

since in this case the interference between the incident and reflected waves is analytically

trivial. Such a system has been realised using an apsherical Perspex lens to shape the

emission from a source of microwaves with circular phase fronts within a parallel plate

waveguide into planar phase fronts.

Lenses are a common way of controlling the propagation of light and can be used

for focussing and collimating beams of radiation [130]. Within a parallel plate waveg-

uide the fundamental transverse electromagnetic (TEM) mode is excited by applying

an alternating voltage difference between the top plate and the bottom plate of the
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Figure 3.12: Schematic of the plane surface wave launching parallel plate waveguide
device

waveguide. This is achieved by connecting the inner core of a coaxial waveguide to the

bottom plate using a metallic pin and the outer sheath to the top plate, figure 3.12,

the wave propagates outwards from this pin with circular phase fronts in the xy-plane.

These waves then pass through a perspex lens which is uniform in the z -direction and

has an aspherical profile described by equation 3.4 in the xy-plane.

r(θ) = r0
n2 − n1

n2cosθ − n1
(3.4)

Here n1 is the refractive index of the material filling the waveguide (air), n2 is the

refractive index of the material used to make the lens, θ is the angle from the x-axis

and r0 is the distance from the point source to the front of the lens at θ = 0o.

This profile modifies the cylindrical phase fronts produced by the source at position

(0,0), figure 3.12, to planar phase fronts at the exit of the lens. This aspherical profile

is chosen to produce a wide region of planar phase fronts [131]. The beam is not

just planar but also has an approximately gaussian intensity distribution due to the

increasing reflection coefficient of the perspex at higher angles of incidence. A linear

taper in the xz -plane on the exit face prevents strong reflection at this interface, avoiding

interference effects within the lens. Microwave absorbing material is also placed within

the waveguide such that any radiation from the coaxial source which is not incident

upon the lens is absorbed. This microwave absorbing material is made from a composite

of MnZnFe dispersed in a dielectric elastomer base, see section 3.3.

The end of this waveguide structure is placed on the metasurface to excite the

surface waves via the diffracted fields produced at the waveguide exit. As well as pro-

ducing the required surface wave some scattered free space radiation is produced the

amount and form of which is strongly dependent on frequency and the metasurface

structure. To characterise the operation of this device, referred to as a plane wave

launcher (PWL), the near-field of the surface waves supported on a metallic patch ar-
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ray metasurface, section 2.5.2, is measured using the spatial field mapping technique

presented in section 3.6. As an illustration of the quality of the planar surface waves

produced by this device a comparison of the phase fronts produced from the PWL de-

scribed above with the phase fronts modelled from a dipole source at the same distance

as shown in figure 3.13. Comparison of the curvature of the wavefronts indicates that

the PWL has a bandwidth greater than 20 GHz.

3.7.1 Curvature Characterisation

The strength of the radiation along a line away from a cylindrical source of surface

waves, such as the near-field coaxial antenna, is inversely proportional to the distance

from the source, d, due to the expansion of the cross-sectional area of the wavefront. The

curvature of the surface waves excited by the PWL device have been characterised by

measuring the phase associated with the surface wave over the plane of the metasurface.

The metasurface used for the characterisation of the curvature is the metallic patch

array discussed in section 2.5.2. To calculate the radius of this curvature, x′, first a

parabola is fitted to the phase measured along each line parallel to the PWL exit face

in the two dimensional plane. From this fit the central position is calculated, from the

maximum in the phase, and the distance from the centre of the curvature, ∆y for a

given phase change ∆φ is obtained. Then x′ is calculated from:

x′ =
2π∆y2

8∆φ
(3.5)

The average radius of curvature for the system is then obtained by simply averaging

the radius across all of the lines. This radius of curvature is then compared to the

physical distance to the source within the PWL device which would be the radius of

curvature is the lens was not present. Figure 3.14 shows the radius of curvature at the

exit of the lens with the physical source distance subtracted. Therefore this illustrates

the increased radius of curvature caused by the lens as a function of frequency. For all

the frequencies measured the radius of curvature is significantly larger than the physical

distance to the source within the PWL. However the lens works most effectively above

20 GHz, where the radius of curvature increases significantly. This curvature is used

to apply a correction in the measurement of the reflection coefficient of a surface wave

in section 3.8.
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Figure 3.13: Comparison of the phase fronts of a surface wave on the metallic patch
array, measured experimentally, (a,c,e) with the phase fronts of a surface wave modelled
from a point source on the same surface, (b,d,f). Three frequencies are presented 10
GHz (a,b), 20 GHz (c,d) and 30 GHz (e,f).
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Figure 3.14: Radius of curvature of the phase fronts of the surface waves launched by
the PWL with the physical source distance subtracted, illustrating the increased radius
of curvature caused by the lens as a function of frequency.

3.8 Measuring the Reflection Coefficient of a Surface Wave

Determining the reflection coefficient of a surface wave, supported on a metasurface,

incident upon a discontinuity is of interest for a variety of applications such as the

characterisation of surface wave devices and evaluation of the performance of surface

wave absorbing materials. As such a technique for determining the reflection coefficient

of surface waves from any discontinuity has been developed using the spatial field

mapping presented in section 3.6. The reflection coefficient of a surface wave incident

upon a discontinuity is determined by examining the interference between the incident

surface wave and the reflected one.

The instantaneous Ez-field is reconstructed by measuring both the time averaged

field strength and the phase of the electric field. A fast fourier transform (FFT) is

performed on the measured Ez-field to determine the relative amplitudes of the fourier

components present in the measured electric field. The amplitude reflection coefficient

is simply obtained from the ratio of the magnitude of the Fourier component whose

wavevector corresponds to the reflected wave to that of the incident wave. The FFT

is a form of a Fourier transform in which the integral over all wavevectors is replaced

with a discrete sum with finite maximum values, this is done to allow solutions to

be found for non-trivial spectra. The length of the spectrum analysed determines
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Figure 3.15: Example fast Fourier transform of the Ez-field showing the relative am-
plitudes of the forward and backward propagating waves. Inset:Corresponding Ez-field
measured using the near-field coaxial probe reconstructed from the time averaged field
amplitude and the phase.

the resolution of the wavevectors available within the FFT sum and the resolution of

the spectrum determines the maximum wavevector within the sum. The wavevectors

available within the FFT sum will be those whose wavevector corresponds to half

wavelength quantisations along the length of the measured spectrum, L = Nλ/2 where

N is an integer and L is the length of the measured spectrum. If the wavevectors

corresponding to the incident and reflected surface waves are not present within the

FFT sum then the incorrect reflection coefficient will be measured. To ensure the

required wavevectors are within the FFT sum a peak finding algorithm is used to find

the position of the interference peaks in the spectra, which has been passed through a

smoothing algorithm [132]. The measured spectrum is then truncated at the positions

of the first and last peaks to ensure that the optimal L = Nλ/2 condition is used, an

example of the measured intensity and corresponding FFT spectrum is shown in figure

3.15.

3.8.1 Application of the Curvature Measurement

The residual curvature in the surface wave phase fronts excited by the PWL has an

effect on the measured reflection coefficient of a surface wave incident upon a planar

discontinuity on a metasurface. The curvature associated with the PWL source reduces
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Figure 3.16: Schematic of the example system of a surface wave incident upon the
discontinuity between two metasurfaces.

the amplitude along a line perpendicular to the waveguide exit due to the expansion of

the surface wave phase fronts area, see section 3.7. The measurement of the interfer-

ence between the incident and reflected surface wave begins at a distance, d, from the

reflecting discontinuity and has length l. Since the surface wave amplitude is decaying

along the direction of propagation the amplitude of the surface wave incident on the

discontinuity is lower than that measured at distance d. The amplitude of the wave

incident upon the planar discontinuity, A′, is derived from the radius of curvature of

the surface wave phase fronts, R0, at the distance d from the discontinuity and the

amplitude of the surface wave at distance d from the discontinuity A.

A′ =
AR0

R0 + d
(3.6)

The reduction of the amplitude of the surface wave incident upon the discontinuity

leads to a reduced amplitude reflected surface wave. The measured reflection coefficient,

r′, is reduced from the true reflection coefficient, r, by the same factor as the surface

wave amplitude. A simple correction is possible to determine the amplitude reflection

coefficient of the discontinuity from the measured reflection coefficient.

r′ = r

(
AR0

R0 + d

)
∴ r = r′

(
R0 + d

AR0

)
(3.7)

3.8.2 Reflection Coefficient and Fabry-Perot Effects

Measurement of the reflection coefficient of surface waves incident upon a discontinuity

has several inherent difficulties which must be considered. In order to present these

difficulties in a coherent manner the example system shown in figure 3.16 will be con-

sidered. The example system involves the measurement of the reflection coefficient of
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a surface wave incident upon a change in the metasurface supporting the surface wave.

The surface waves are excited using the PWL described in section 3.7 and are normally

incident onto the planar discontinuity. The reflection coefficient of interest is r12 and

the effect on the measured reflection coefficient of two difficulties inherent to this system

shall be considered. Firstly the effect of the Fabry-Perot like cavity between interface

1 and interface 2 on the measured reflection coefficient shall be analysed. Secondly the

effect of the transmission through interface 2, t12, and the subsequent reflection, re, on

the measured reflection coefficient shall be considered.

Throughout this section the Fresnel equations shall be used; however these equations

are designed to be used in free space where the two possible channels through which

power can leave the interface are reflection and transmission. For surface waves there is

an additional mechanism present at each boundary, scattering to free space. The modal

matching requirements at a planar discontinuity induces scattered EM radiation which

propagates into the dielectric half space above. Often, in free space, a simplification of

the reflection coefficient for a complex system is performed using the knowledge that

the reflection and transmission coefficients must sum to unity. However in the case of

surface waves these simplifications cannot be performed. Therefore within this section

the scattering mechanism is considered to be a loss channel at each interface and the

reflection and transmission coefficients no longer sum to unity.

3.8.2.1 Reflection Coefficient within a Fabry-Perot Cavity

The field profile within the PWL used in this thesis is significantly different from that

of the surface waves supported on metasurfaces, since one is a parallel plate waveguide

mode and the other confined to the metasurface interface. Therefore considering a

surface wave incident upon the termination of the PWL the modal matching require-

ments will produce surface wave reflection, waveguide transmission and scattering to

free space. From this surface wave reflection, rs, it can be seen that a Fabry-Perot-like

cavity is present between the interface of interest, interface 2, and the PWL, interface

1. It is therefore important to determine the effect of this cavity, if any, on the mea-

sured reflection coefficient, r12. In order to determine the effect of this cavity it shall

be assumed that re = 0.

It is possible to write the forward and backward propagating surface waves sup-

ported on metasurface 1 as two separate sums which are then simplified using a similar

derivation to that provided in appendix A. The forward propagating component is

given by equation 3.8 and the backward component by equation 3.9. The relationship

between these components is shown in equation 3.10 and therefore the modification to

the reflection coefficient is exp(iα). Since | exp(iα)| = 1 the magnitude of the reflection
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coefficient is unaffected by the cavity and the measurement of the local electric field

only contains information about the |r12|.

ψf =
1

1− r12rs exp(2iα)
(3.8)

ψb =
r12 exp(iα)

1− r12rs exp(2iα)
(3.9)

ψb = ψfr12 exp(iα) (3.10)

3.8.2.2 Effect of Subsequent Reflections

The effect of the transmission, t12, and the subsequent reflection, re, on the measured

reflection coefficient shall now be considered. The reflection coefficient for a system

within which there are two reflecting interfaces is determined in appendix A, the equa-

tion for the total amplitude reflection coefficient from a two interface system is equation

A.4, into which we have substituted the relevant symbols for the system shown in figure

Figure 3.17: Effect on the measured reflection coefficient, rm, of a subsequent reflection,
re of the transmitted component showing the varying period oscillation (black points).
Mean of the reflection coefficient (black line) and the actual amplitude reflection coef-
ficient (red points), all analytical data.
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3.16. Then

rm = r12 +
t12t21reexp(2iβ)

1− r21reexp(2iβ)
(3.11)

where rm is the measured amplitude reflection coefficient.

Extracting the reflection coefficient r12 is not a trivial exercise, unless re = 0, it is

therefore necessary to consider the system numerically. The reflection coefficient, rm,

has a complex form which has been numerically calculated, the reflection and trans-

mission coefficients used are non-dispersive as a function of frequency, figure 3.17. This

function becomes significantly more complex once the dispersion of the individual in-

terface reflection and transmission coefficients is included in the equations. It can be

seen that the measured reflection coefficient oscillates as a function of frequency, this

is due to the constructive and destructive interference of the surface wave reflected

from interface 3, re, with the reflection from interface 2, r12. An increased reflection

coefficient is measured when the interference is constructive and a decreased reflection

coefficient is measured when the interference is destructive. For small subsequent re-

flection coefficients it can be seen that the reflection coefficient r12 is approximately

the mean of the oscillating total reflection coefficient, rm. As such great care is taken

within the experiments performed throughout this thesis to reduce the magnitude of

re through the use of microwave absorbing materials.

3.9 Conclusions

In this section the numerical, analytical and experimental techniques developed and

used for the characterisation of the surface waves supported on metasurfaces are pre-

sented. In section 3.2 the FEM techniques used to efficiently design metasurface struc-

tures and to measure the reflection coefficient of surface waves incident upon planar

discontinuities has been discussed. A system for characterising the material parameters

of composite materials in the microwave regime has been presented in section 3.3. A

new technique for measuring the dispersion of metasurfaces is presented in section 3.5,

a system for measuring the near-field associated with the surface waves in section 3.6

and a device for launching planar phase front surface waves in section 3.7. Finally a

discussion of the measurement of surface wave reflection and the difficulties involved

is present in section 3.8. These techniques are used throughout this thesis to char-

acterise the surface waves supported on metasurfaces and the reflection coefficients of

various planar discontinuities including the termination of metasurfaces to free space,

the addition of a dielectric overlayer onto a metasurface structure and a change in the

metasurface structure.
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Chapter 4

Surface Wave Resonances

Supported on a Square Array of

Square Metallic Pillars

4.1 Introduction

In this chapter the surface wave properties of a new metasurface, a square array of

square cross section metallic pillars on a metallic ground plane, have been charac-

terised using the experimental technique described in section 3.5. The structure pre-

sented within this section has been developed from the study of a sub-wavelength hole

array analytically considered by Pendry et. al [20] and experimentally characterised by

Hibbins et. al. [14] and later extended by Rance et. al. [49]. Studies on a 1D array

of grooves have been completed by Garcia-Vidal et. al. [133] and Rance et. al. [134].

Analytically the 1D array of grooves has been considered as an effective medium on a

metal ground plane in [133] where it is shown that the grooves can be considered to

be an anisotropic layer. This anisotropic layer on a ground plane is shown to support

bound modes whose dispersion asymptotes to the resonance of the waveguide modes

supported by the grooves.

The square array of square cross-section metallic pillars considered here is the com-

plimentary structure of the sub-wavelength hole array placed on a metal ground plane.

The square array of square cross-section metallic pillars can also be described as two

arrays of wax-filled slits which are orthogonal to one another and shall henceforth be

referred to as a bi-grating. The dispersions of the surface modes supported on the

sub-wavelength hole array are determined by the waveguide modes (i.e. the geometry

and the material filling the hole) supported within the holes and it will be shown that
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(a)

(b)

Figure 4.1: a) Schematic of the unit cell of the rectangular array of rectangular
dielectric-filled waveguides. The long pitch of the tube λa = 9 mm and the orthogonal
shorter pitch λb = 6 mm with the inner dimensions a = 8 mm and b = 5 mm. b) Ex-
perimentally measured dispersion (circles) together with predicted eigenmode solutions
(crosses) of the family of surface modes supported on the structure shown in figure 4.1a
at φ = 0o (along the y-axis). The red dashed line represents the cutoff frequency of
the rectangular waveguide and the solid black line is the light line. Reproduced with
permission from [135].

the dispersions of the surface modes supported on the bi-grating are also determined

by the waveguide modes within the structure. The dispersion of these modes has been

compared to an analytical description of the surface modes supported on an idealised

single grating structure, with infinitely thin metal walls. The reflection coefficient of

surface modes incident upon the termination of the bi-grating to free space has also

been fully characterised as a function of frequency. This reflection coefficient has been

shown to have features associated with the surface waves supported on the bi-grating.

4.2 Background

It has been shown (chapter 2) that subwavelength structuring of the metal surface

produces surface-wave field confinement at microwave frequencies. One such struc-

ture, which has received significant attention, is the sub-wavelength hole array which

supports bound surface modes [14, 20, 49], where the lowest frequency surface mode is

asymptotic to the cutoff frequency, νcutoff , of the holes. The cutoff frequency is defined

as the frequency below which no propagating modes exist within the subwavelength

holes. For frequencies below the cutoff frequency the decay length into the subwave-
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length holes is much greater than the skin depth of the unstructured metal thereby

allowing the textured metal surface to become rather like the ‘poorer’ conductor it is

at optical frequencies [14]. This leads to much tighter confinement of this surface wave,

analogous to the surface plasmon polariton supported at visible wavelengths [20]. Of

course, above νcutoff there are a family of transverse electric (TE) waveguide modes

(see section 3.3), which are quantised (along the waveguide length (z)) due to the onset

of propagating solutions, within the holes. A family of surface waves may then be

supported with asymptotic frequencies defined by this quantisation in z, as shown in

figure 4.1b (circles and crosses labelled N = 1, 2, 3...).

In contrast to the hole array discussed above, a square array of subwavelength

square cross-section metal pillars on a conducting ground plane supports transverse

electromagnetic (TEM) waveguide modes within the slits that have no lower cut-off

frequency. However the TEM waveguide modes supported within the slits are also

quantised in the z-direction, which again leads to a family of bound surface waves

with asymptotic frequencies equal to the resonant frequencies of the modes in the slits.

These waveguide modes are analogous to the waveguide modes supported between a

pair of parallel metal plates. The slit structure will give a response which is similar to

that of the higher order waveguide modes supported above the cut-off frequency of the

aforementioned hole array [13, 47, 49, 136], where the lowest energy quantisation will

occur when a quarter wavelength resonance is supported in the slit cavity.

4.3 Experimental Observations

The experimental sample is created from a single block of aluminium 460 mm × 460 mm

in the x and y directions, with square bottomed slits cut to a depth h = 30 mm with all

of the resulting square metallic pillars remaining connected via a metal base (ground

plane), figure 4.2. Each square cross section pillar has side lengths of wp = 3 mm with

the slit width between pillars being ws = 1 mm, figure 4.2a. The pitch of the structure

is 4 mm in both the x and y directions giving the onset of diffraction in the air above

the sample as ν = 37.5 GHz, for grazing incident radiation at azimuthal angles of

φ = 0o or 90o. We consider only non-radiating surface modes (i.e. modes which lie to

the right of the light line) in this study and therefore it is straightforward to increase

the onset of diffraction (to further increase the range of the non-diffracting domain)

by changing the azimuthal angle to φ = 45o. At this angle the onset of diffraction

occurs at ν = 53 GHz because the distance between the diffraction planes reduces by

a factor of
√

2. To decrease the resonant frequencies of the modes within the slits, the

slits are filled with paraffin wax (εr ≈ 2.38), thereby increasing the number of modes

available for study in the non-diffracting regime. The dispersions of the surface modes
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Figure 4.2: Schematic diagrams of the a) bi-grating structure. b) the experimental
setup, white cylinders indicate the position of the antenna and the black boxes indicate
the position of the absorbers

supported by this structure are measured using the technique described in section 3.5.

This involves measuring the phase of the surface wave using a near-field coaxial probe

at two different positions and looking at the phase change between them.

The modes of the system are related to quantisation of the electromagnetic field

within the depth of the slits. Boundary conditions for such resonances are an ap-

proximate E-field maximum at the top surface and an E-field minimum at the ground

plane. Therefore these resonances occur whenever the external wavelength approaches

the condition given by equation 4.1.

λ =
4h
√
εr

(2N − 1)
(4.1)

Where N is an integer, h is the depth of the slits and εr is the permittivity of the

material filling the slits. This sets up a resonant standing wave in the cavity and

no power propagates across the sample since all of the power is localised within the

cavity resonance. Where the cavity resonance of the slits crosses the dispersion of the

grazing photon, indicated by the light line, an anti-crossing of the modes occurs due the

hybridising of the cavity resonance with the grazing photon. Thus a family of surface

waves are supported with asymptotic frequencies equal to those of the cavity resonances

which, because of the square symmetry, are largely unaffected by the azimuthal angle

of the sample. Modelled fields of the first four modes, from left to right, supported by

the system are shown in figure 4.3b, calculated using a finite element method (FEM)

modelling package [96].

From figure 4.3, it is clear that the group velocity of each mode decreases as the
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Figure 4.3: a) Plot showing the experimental dispersion of the first nine modes of the
structure together at φ = 0o (red) and φ = 45o(displaced by +200k||) (blue) with the
predictions of the resonant frequencies from numerical modelling (horizontal dashed
lines). b) Plots of the time averaged electric field strength in the centre of the slits
parallel to the x-axis for the first four modes at the resonant frequency of the mode
(kx = 1570 m−1 BZ boundary), where light indicates high field and dark low field.

resonant condition of the slit is approached tending to zero at the asymptote of the

surface wave dispersion. This decrease in group velocity and associated increase in

surface wave absorption eventually leads to a complete loss in received power at the

near-field antenna as the mode approaches the asymptote preventing the quantification

of the dispersion very close to the resonant frequency of the slit. The dispersion of

the modes measured at both φ = 0o and φ = 45o are nearly identical, showing the

azimuthal independence. Further, both agree extremely well with both the shape of

the dispersion and the asymptotes obtained from FEM modelling as illustrated by

figures 4.3 and 4.4. In addition the electromagnetic fields shown in figure 4.3 illustrate

clearly the quantisation, below the surface, as well as the obvious surface wave character

of the modes, shown by the decaying field above the surface.

Figure 4.4 shows in detail the measured and predicted dispersion of the first and

second modes demonstrating that these are surface-wave-like in character with wavevec-

tors extending well beyond the light line. This also shows the agreement between the

shape and position of the FEM dispersion curve and the experimental data. The lowest

order mode is only measured from frequencies above about 1.3 GHz as the wavelength
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Figure 4.4: Plot of the dispersion for the first two modes of the structure at both
azimuth angles φ = 0o (crosses) and φ = 45o (circles) along with the FEM modelled
dispersion (black lines).

of the microwaves (23 cm) is now becoming comparable to the overall size of the system,

L ∼ 30 cm.

The electric field profile of the first four modes, shown in figure 4.3, is presented

in more detail in figure 4.5. The electric field strength along a line in the z-direction

within the slit orientated along the y-axis, at x = λg/2 and y = λg/4, is extracted from

FEM modelling. The quantisation of the electric field within the depth of the slit is

shown along with the evanescent decay of the electric field away from the metasurface

interface, situated at approximately 30 mm (dashed line). The decay length of the

electric field perpendicular to the metasurface is the same for each of the 4 modes as

the field is extracted at the Brillouin Zone (BZ) boundary and therefore the in-plane

wavevector is identical for each of the modes.

The electric field strength is also extracted for the second order surface mode prop-

agating in the x-direction with kx ≈ 1300 m−1 (f ∼ 4.79 GHz) in the xy-plane at

z = h/2 and is shown in figure 4.6. The field is shown to be mostly restricted to the

slits perpendicular to the direction of propagation of the surface wave along the meta-

surface. When the surface wave is propagating along the x-axis (at φ = 0o) the electric

field is mostly excluded from the slits whose orientation is parallel to the x-axis due

to the boundary conditions imposed by the metal walls. Propagating modes are only

supported within the parallel slits above the frequency of the first quantisation across

ws since the tangential E-field must fall to zero at the slit walls, as such the cutoff
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frequency (fitting in λ/2) for these modes is approximately 97 GHz.

4.3.1 Analytical Dispersion

The surface mode supported on the bi-grating structure is similar to that supported by

a single grating when the mode is propagating perpendicular to the direction of the slit.

In this case it has just been shown that the electric field is mostly excluded from the

slits parallel to the direction of propagation and hence the response of the bi-grating

metasurface can be compared to that of a single grating.

An air-filled, single grating with infinitely thin walls has been analytically considered

in section 2.3.2. For this single grating a family of TM surface modes is supported

with asymptotic frequencies defined by the resonances of the truncated parallel plate

waveguides, figure 4.7. These resonances occur when the depth of the grating is equal

to (2N−1)λ0/4, where N is an integer and λ0 is the free space wavelength, and as such

they are equivalent to the resonances supported by the bi-grating since it is comprised

of a pair of orthogonal slits. The azimuthal independence of the bi-grating, shown in

figure 4.3, arises from the four-fold symmetry of the square sub-wavelength unit cell

which leads the sample to nearly appear isotropic. In the single grating case the sample

Figure 4.5: FEM predicted electric field strength, along a line in the z -direction at
x = λg/2 and y = λg/4, of the first 4 modes of the bi-grating structure at the BZ
boundary. The first mode (N=1) is shown in red, the second (N=2) in green, the third
(N=3) in blue and the fourth (N=4) in black. The interface of the metasurface is at
approximately 30 mm indicated by the dashed line.
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Figure 4.6: Greyscale plot of the time averaged electric field strength in the xy-plane
associated with the second order mode at ∼ 4.79 GHz at φ = 0o where white indicates
high field strength and black indicates low field strength.

is highly anisotropic due to the fact that the system is only periodic in one direction.

A comparison of the dispersion of the second order mode supported on the bi-

grating and the idealised single grating, whose asymptotic frequency is defined by the

h = (3/4)λ resonance within the slits, is presented in figure 4.8. Whilst the asymptotic

frequencies for the mode supported on the bi-grating and that predicted from the

single grating structure are similar, the change of the group velocity of the surface

waves with respect to ω, equivalently ∂2ω/∂k2, is significantly different for these two

structures. It has been shown, using an array of sub-wavelength holes, that the exact

dispersion of the surface modes supported on a metasurface are strongly dependent on

the evanescent near-fields associated with the structure [45]. The idealised single grating

considered analytically is significantly different from the bi-grating which, whilst only

providing a minor perturbation to the resonant frequencies, leads to vastly different

evanescent fields for the two structures. This difference in the evanescent fields makes

exact comparison of the form of the dispersion curves irrelevant since the rate of change

of the dispersion curve close to the asymptotic frequency is dominated by the evanescent

fields associated with the structure, as can be seen in figure 4.8.

4.4 Surface Wave Reflection Coefficient of the Bi-grating

Termination

The reflection coefficient of a surface wave incident upon the termination of the surface

on which it is supported (to free space) is determined primarily by the dispersion of
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Figure 4.7: The dispersion of the surface modes (black lines) supported on a corrugated
metallic ground plane derived from the analytical expressions presented in section 2.3.2.
Here the analytical method only solves for in-plane wavevectors greater than k0. The
red line indicates the light line and blue dashed lines the resonant frequencies of the
slits.

the surface waves supported on the structure. This is because the amplitude of the

reflection coefficient is related to the confinement of the surface wave in the z -direction

above the metasurface. This confinement is defined by the k-vector perpendicular to

the interface, kz, which is directly related to the k-vector of the surface wave in the

direction of propagation, kx, since the total k-vector, k0, is fixed by the frequency of

the surface wave and k2
0 = k2

x + k2
z . As such the reflection coefficient of the bi-grating

structure is expected to contain a significant number of features associated with the

dispersion of the family of surface modes supported. Accurate determination of the

amplitude reflection coefficient of a surface wave incident upon the termination of the

bi-grating structure to free space has been made possible by utilising the plane wave

launcher (PWL) described in section 3.7, and the measurement method described in

section 3.8.

The measured reflection coefficient exhibits a series of amplitude reflection coeffi-

cient peaks, at frequencies associated with the family of surface modes supported on

the bi-grating, figure 4.9. Peaks in the amplitude reflection coefficient are coincident

with the asymptotic frequencies of the surface waves supported. The reflection coeffi-

cient of a surface wave incident upon the termination of this structure is related to the
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Figure 4.8: Comparison of the dispersion for the second order mode obtained from
FEM modelling (green line) with the analytically derived dispersion for a corrugated
ground plane with similar parameters (black line). The light line is shown (red line) as
is the predicted asymptotic frequency for the mode (blue line).

Figure 4.9: The amplitude reflection coefficient of surface waves incident upon the
termination of the bi-grating metasurface to free space. The red dashed lines represent
the surface wave mode asymptotic frequencies.
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confinement of the surface wave to the metasurface interface, since no power propagates

below this interface. No power propagates along the slits parallel to the direction of

propagation for frequencies below the cutoff frequency of these slits (97 GHz). This

confinement is defined by the imaginary k-vector perpendicular to the interface, kz,

which is directly related to the k-vector of the surface wave in the direction of propaga-

tion, k||, since the total k-vector, k0, is fixed by the frequency of the surface wave with

kz =
√
k2

0 − k2
||. At frequencies where the surface wave fields decay many wavelengths

into the dielectric above, i.e. in-plane wavevectors close to k0, the reflection coefficient

of the termination is near-zero. Whilst at frequencies where the surface wave fields

decay rapidly away from the interface, k|| � k0, the reflection coefficient is large. Since

this change in the in-plane wavevector occurs within a narrow range of frequencies this

leads to a sharp rise in the amplitude reflection coefficient over this narrow range of

frequencies.

The asymmetric shape of the reflection coefficient peaks is explained by the disper-

sion of the surface waves. It can be seen in figure 4.3 that above the asymptotic limit

of each of the surface waves there exists a frequency band where no surface wave is ex-

perimentally measured or predicted by FEM modelling. At these frequencies the mode

exists within the light line and is therefore considered a ‘leaky mode’. These modes

originate at kx = 0 and disperse from there to the light line with increasing frequency

to become the surface waves. Since these modes are not surface waves their reflection

coefficient is undefined in this system. It can be seen that as the mode crosses the light

line and becomes a surface wave the reflection coefficient is near-zero.

This structure served as a test-bed for experimental technique development and

similar investigations can now be performed with thin, lightweight metasurfaces which

support surface waves in the microwave regime as discussed in Chapters 5, 6 and 7.

4.5 Conclusion

In conclusion the dispersion of surface waves on a square array of square cross-section

metal pillars has been fully characterised and compared to FEM modelling. The re-

sults show that a family of surface waves may be supported by pillar or crossed slit

structures. A family of TM surface modes have been shown to exist with dispersions

which asymptote to frequencies defined by the pillar heights (slit depth) and the re-

fractive index of the material filling the slits. The amplitude reflection coefficient of

surface waves incident on the termination of this metasurface to free space have also

been characterised. A series of amplitude reflection coefficient peaks are shown to exist

close to the surface wave asymptotes associated with standing waves defined by the

depth of the bi-grating structure.
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Chapter 5

Determining the Reflection

Coefficient of Microwave Surface

Waves on Metasurfaces

Terminated to Free Space

5.1 Introduction

The determination of the reflection coefficient of a surface wave incident upon a device

or a discontinuity in the surface is important in characterising the performance of de-

vices and methods used for the control of radar cross section. The reflection coefficient

and scattering from a terminated surface, represented by an impedance approximation,

has been theoretically studied [80, 81] for the two limiting cases of high and low sur-

face reactance. Experimentally, however, there has been little published work while

a theoretical study of such a system including a full analytical description including

the fields within the metasurface structure has not been done. It shall be shown that

this shortcoming of the analytical descriptions of the metasurfaces can lead to the pre-

diction of incorrect surface wave reflection coefficients. The purpose of this work is

to experimentally determine the microwave surface wave reflection coefficient for such

a system and compare the results to those obtained by finite element method (FEM)

modelling as well as analytic theory. The scattered field at the termination is also

experimentally characterised and compared with FEM modelling. It is shown that the

scattered radiation is in a lobe of power scattered at small angles with respect to the

plane of the metasurface.

Surface waves are supported on many different metasurfaces at microwave frequen-
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Figure 5.1: Schematic of a unit cell of the metasurface structures used in this study
where the orange represents metal and yellow indicates the edge of the dielectric; a)
square array of square metallic patches on a dielectric coated metallic ground plane and
b) Sievenpiper ‘mushroom’ array, which has a metal via connecting the metal patch to
the ground plane.

cies [14, 20, 41, 47, 49, 71] the dispersion of these surface waves being defined by the

nature of the metasurface structure. The dispersion of surface waves supported on sim-

ple metallic patch arrays, section 2.5.2, as well as Sievenpiper ‘mushroom’ metasurfaces,

section 2.5.3, have been well documented and are significantly different [44, 71]. The

unit cells of each of these two structures are shown in figure 5.1 and the surface wave

dispersions, predicted using the eigenmode solver in HFSS, section 3.2, for each meta-

surface studied here are shown in figure 5.2 and discussed in detail in section 2.2. The

pitch of the square array is λg = 1.6 mm, the side length of the patches is a = 1.3 mm

and the dielectric thickness t = 787 µm in both cases and the via radius vr = 150 µm

for the Sievenpiper structure. Arrays of area 60 cm by 40 cm were fabricated and

explored over the frequency range of 10 to approximately 30 GHz.

The reflection coefficient of surface waves incident upon the termination of a meta-

surface to free space has been characterised using the near-field mapping technique,

discussed in section 3.6, to characterise the surface wave with the experimental anal-

ysis method described in section 3.8. The magnitude of the reflection coefficient of

the surface waves depends strongly on the boundary conditions associated with the

local environment of the termination. The boundary conditions imposed in this case

are shown in figure 5.3. A metal boundary extends infinitely into the lower half-space

connected to the ground plane of the metasurface. Practically this has been achieved

by electrically connecting the ground plane of the metasurface to an L-shaped section

of aluminium, the electrical connection was created using a silver epoxy.
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Figure 5.2: Dispersion of the transverse magnetic surface mode for the square array of
square metallic patches on a dielectric coated metallic ground plane (black line) and
a Sievenpiper ‘mushroom’ array (red line). The dispersion of a grazing photon, the
light line, is shown (blue line) as is the Brillouin Zone boundary (green line) due to the
periodicity of the lattice.

Figure 5.3: Schematic of the termination of a metasurface to free space. The patterned
region indicates the L-shaped metal support.
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5.2 Measurements of the Scattered E-field

Measurements of the scattered E-field from the termination of a square array of square

metallic patches on a dielectric coated metallic ground plane and Sievenpiper ‘mush-

room’ array to free space is also performed using the same 3-axis translation stage,

section 3.6, and near-field stripped coaxial antennas, section 3.4. At the termination

of the metasurface scattering is the only mechanism by which power can be lost from

the reflected surface wave since there is not a second surface to support a transmitted

surface wave. The scattered radiation is predominately in a lobe of power scattered

at low angles close to the x -axis with a small angular spread both of which depend

on the frequency of the incident surface wave. A qualitative comparison of the mea-

sured Ez-field with that obtained from FEM modelling is performed and show good

agreement.

The physical size of the antenna restricts the proximity to the metasurface and the

metal boundary which can be obtained. The width of the antenna sheath restricts the

distance to the metal boundary to be no less than 1.5 mm (including a 0.5 mm gap)

and the length of the antenna restricts the measurement position, the centre of the

antenna exposed length, to no closer than 2.5 mm (including a 0.5 mm gap) from the

metasurface. This creates a region close to the metasurface and metal boundary where

the field cannot be characterised. In the field profiles presented throughout this chapter

this region is indicated in grey and the physical position of the metasurface and metal

boundary by the black rectangles.

Measurement of the scattered field from the termination of the metasurface is very

sensitive to the orientation of the coaxial line of the antenna. Measurement of the

z-component of the electric field is desired to determine the form of the scattered wave.

The metallic sheath of the coaxial line creates a significant perturbation to the electric

field in certain orientations which must be avoided in order to obtain an accurate field

map. It is clear that at the metal boundary, at z < 0 x = 0, the tangential component

of the electric field, Ez, must fall to zero. With the antenna orientated perpendicular

to the metasurface, figure 5.4a, the data shows an apparent maxima at the metal

boundary at z = −7 mm x = 0 in figure 5.5a. This is clearly unphysical and is caused

by the orientation of the antenna. In this orientation whilst the dipole antenna is in

the low field region below the interface the metallic sheath of the coaxial line is in the

large electric field of the scattered radiation. This causes significant scattering of the

electric field and allows surface currents to flow along the conducting sheath to the

dipole antenna. This leads to an incorrect measurement of the electric field strength.

Two alternative antenna orientations are possible whilst still keeping the sensitivity

of the dipole to Ez only; which often involves bending of the exposed length. The
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(a) The antenna sheath is orientated perpen-
dicular to the plane of the metasurface.
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(b) The antenna sheath is orientated in the
plane of the metasurface and perpendicular to
the termination edge.
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(c) The antenna sheath is orientated in the
plane of the metasurface and parallel to the
termination edge.

Figure 5.4: Schematic diagrams of the antenna orientation for scattered field measure-
ments. The dipole axis of the antenna is orientated perpendicular to the plane of the
metasurface to detect Ez for all orientations.

first is to orientate the sheath of the coaxial line in the plane of the metasurface but

perpendicular to the termination edge of the sample, figure 5.4b. Secondly to orientate

the sheath of the coaxial line in the plane of the metasurface and parallel to the ter-

mination edge of the sample, figure 5.4c. Orientation of the antenna perpendicular to

the termination edge measures the Ez-field near the metal boundary below the plane

of the metasurface to be near-zero, figure 5.5b z = −7 mm x = 0. This is consistent

with FEM modelled fields, figure 5.6a, and the boundary condition. However the field

in the region above the metasurface gives a significantly different distribution to that

measured in the original orientation. Since the sheath is electrically conducting and

in the near-field of the surface wave it contributes significantly to the detection of the

electric field. The sheath is orientated along the x-direction and the antenna is there-
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(a) The antenna sheath is orientated perpendicular to the
plane of the metasurface, 5.4a.

(b) The antenna sheath is orientated in the plane of the
metasurface and perpendicular to the termination edge,
5.4b.

(c) The antenna sheath is orientated in the plane of the
metasurface and parallel to the termination edge, 5.4c.

Figure 5.5: Time-averaged Ez-field measured at the termination of a metallic patch
array to free space.
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(a) Ez field (b) Ex field

Figure 5.6: Time-averaged electric field components at the termination of the metallic
patch array to free space from FEM modelling at 20 GHz.

fore sensitive, not only to Ez but also to Ex which in the standing wave pattern has

maxima at the minima position of the Ez field. This is clearly shown in figure 5.5b.

Since the antenna is found to be sensitive to the electric field components in both the

direction of the coaxial pin and the orientation of the sheath it is necessary to eliminate

the contribution from the sheath in order to measure only the Ez field. An ideal TM

surface wave has three field components, Ex, Ez and Hy. Since there is no electric field

component in the y-direction the antenna sheath can be orientated along this direction,

figure 5.5c, ensuring the antenna is once again sensitive only to the electric field in the

direction of the coaxial pin. In this orientation, figure 5.5c, the field measured above

the metasurface is comparable to that measured in the original orientation, figure 5.5a

whilst the Ez field at the metal boundary, z < 0 x = 0, is now correctly measured to

be near-zero.

A comparison of the experimentally measured field with the two orthogonal electric

field components extracted from FEM modelling, shown in figure 5.6, can be performed.

It can be seen that the field distribution for the two electric field components are

significantly different, firstly at the metasurface interface the orthogonal components

have maxima which are approximately 90o out of phase in space with one another.

Secondly the Ex component of the electric field is primarily scattered below the level of

the ground plane, figure 5.6b, satisfying the normal E-field boundary condition, whilst

the Ez electric field component is primarily forward scattered above the level of the

ground plane, figure 5.6a. The final maximum in the interference oscillations above the

metasurface, closest to the metasurface termination, is centered on the termination of

the metasurface for the Ez field component. However the final maximum for the Ex field

component is set back from the interface, at the position of the Ez field interference

minima. It can clearly be seen that data taken with the orientation of the antenna

sheath perpendicular to the termination edge, figure 5.4b, has many of the features
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(a) 10GHz (b) 15GHz

(c) 20GHz (d) 25GHz

(e) 30GHz

Figure 5.7: Comparison of the scattered Ez field of the termination of the metallic
patch array to free space obtained from experiment (colour map) and FEM modelling
(lines). Surface waves launched from the left along the surface.

associated with the Ex field profile.

Figure 5.7 shows the experimentally measured scattered radiation associated with

the termination of the patch array metasurface to free space with the FEM modelled

fields overlaid in contours. Both the freely propagating radiation scattered to free

space and the interference oscillations associated with the interference between the

incident and reflected surface wave can be seen in these field profiles. The agreement

between the experimental data and FEM modelling is good at all frequencies from

10 to 30 GHz. The angle of the lobe of scattered radiation changes rapidly in the

near-field of the termination which is most clearly seen at the lower frequencies, figure
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5.7a. However it can be seen in the higher frequency measurements that the angle of

the lobe tends towards 0o from the x-axis in the far field. It is predicted from the

analytical expressions used to determine the analytical reflection coefficient [80] that in

the far-field of the scattering point the angle of the lobe of scattered radiation is small.

However the scattered radiation propagates at high angles away from the x-axis for

low frequencies. This is due to the near-field of the scattering point which may extend

several wavelengths.

5.3 Experimentally Determined Reflection Coefficient

The reflection coefficient of a surface wave incident upon the termination of a metasur-

face to free space is related to the confinement of the surface wave in the z -direction

above the metasurface. This confinement is defined by the k-vector perpendicular to

the interface, kz, which is directly related to the k-vector of the surface wave in the

direction of propagation, kx, since the total k-vector, k0, is fixed by the frequency of

the surface wave and k2
0 = k2

x + k2
z . The dispersions of the surface waves supported

by each of the two metasurfaces used in this study are shown in figure 5.2. As the

surface wave dispersion diverges from the light line then the decay length of the mode

in the z -direction decreases, due to the increasing magnitude of ikz. This increasing

confinement of the mode increases the mismatch of the wavevector in the propagation

direction, kx, of the surface wave when compared to the k-vector of a wave propagating

in free space. However the reflection coefficient of the surface wave cannot be purely

determined by this mismatch of kx but also by the field continuity conditions. There

is no E-field below the metal ground plane at z = 0 of the metasurface, in the region

x < 0, z < 0, whilst the E-field in the free space region has non-zero E-field within the

x > 0, z < 0 region, figure 5.3. This field distribution plays an important role since even

a mode whose in-plane wavevector is equal to that of the light line in the microwave

domain, i.e. a surface wave on a flat perfect conductor, incident on such a termination

has a non-zero reflection coefficient due to this field discontinuity.

The amplitude reflection coefficient of the surface wave incident upon the termina-

tion of the metallic patch array is shown in figure 5.8 and for the Sievenpiper ‘mush-

room’ array in figure 5.9. In each of these diagrams the reflection coefficient obtained

experimentally is shown as open circles whilst the reflection coefficient obtained using

the analytical theory of Chu et. al. [80] is shown by the lines. The agreement be-

tween the analytic theory and experimentally determined reflection coefficient for the

metallic patch array is good throughout the range of the plane wave launcher (PWL),

section 3.7. However the agreement between the analytic theory and experiment for

the Sievenpiper surface is poor except at low frequencies. The FEM modelling shown
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Figure 5.8: Reflection coefficient of the surface wave on a metallic patch array incident
on the termination of the metasurface to free space, experiment (circles) and analytic
theory (line). Inset: Schematic diagram of the unit cell of the square array of square
metallic patches.

by the blue circles in figure 5.9, agrees with the analytic theory at low frequencies but

also diverges at higher frequencies while remaining in reasonable agreement with the

experiment.

The reflection coefficient for the Sievenpiper ‘mushroom’ sample tends towards 0.5

as the frequency approaches the surface wave cutoff frequency. Experimentally it is

difficult to measure the correct reflection coefficient at these frequencies for two reasons.

Firstly the confinement is increasing significantly with frequency making detection of

the surface wave more difficult since the near-field coaxial antenna must be very close

to the metasurface interface. Secondly the propagation length of the surface wave

supported on the Sievenpiper array decreases significantly as the surface wave becomes

more confined and more power flows in the dielectric.

The imaginary component of the in-plane wavevector extracted from FEM mod-

elling is plotted as a function of frequency in figure 5.10 and can be seen to increase

significantly above 22.5 GHz. This significant increase in the loss of the Sievenpiper

‘mushroom’ metasurface produces the apparent peak in the measured reflection coef-

ficient of the termination of the metasurface to free space. The reflection coefficient

analysis assumes that the loss associated with the propagation of the surface wave on
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Figure 5.9: Reflection coefficient of the surface wave on a Sievenpiper array incident
on the termination of the metasurface surface to free space, experiment (circles) and
analytic theory (line). FEM modelling is shown by the crosses. Inset: Schematic
diagram of the unit cell of the Sievenpiper ‘mushroom’ array.

Figure 5.10: The imaginary component of the in-plane wavevector, kx, of the fundamen-
tal TM surface wave supported on the Sievenpiper ‘mushroom’ metasurface extracted
from FEM modelling.
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the metasurface structures is negligible, i.e. Im(kx) ≈ 0. Once the in-plane wavevector,

kx = k′ + ik′′, becomes complex the method for determining the reflection coefficient

from the FFT is no longer trivial. This is due to the broadening of the peaks in the

FFT spectrum such that their ratio is no longer equal to the amplitude reflection coef-

ficient. As such at frequencies where the loss is significant the full measured wave must

be fitted with the analytical description of the interference between two lossy waves.

A short mathematical description shall be presented to show that this solution is im-

practical and as such the amplitude reflection coefficient is not accurately determined

for frequencies associated with high loss.

The interference of two counter-propagating waves whose amplitudes are decaying

along their propagation direction is derived below. The forward propagating wave, Ψf ,

is given by equation 5.1 and the backward propagating wave, Ψb, by equation 5.2.

Ψf = A exp(−k′′x) exp(i(k′x− ωt)) (5.1)

Ψb = Ar exp(k′′(x− 2L)) exp(i(k′(L− x)− ωt)) (5.2)

Combining these two waves gives:

Ψt = Ψf+Ψb = A exp(−k′′x) exp(i(k′x−ωt))+Ar exp(k′′(x−2L)) exp(i(k′(L−x)−ωt))
(5.3)

Separating the real and imaginary parts using exp(iθ) = cos(θ) + i sin(θ) gives

equations 5.4 and 5.5

Re(Ψt) = A exp(−k′′x) cos(k′x− ωt) +Ar exp(k′′(x− 2L)) cos(k′(L− x)− ωt) (5.4)

Im(Ψt) = A exp(−k′′x) sin(k′x− ωt) +Ar exp(k′′(x− 2L)) sin(k′(L− x)− ωt) (5.5)

The square magnitude of the total wavefunction Ψt is given by the sum of the squares

of the real and imaginary parts:
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|Ψt|2 = Re(Ψt)
2 + Im(Ψt)

2

= A2 exp(−2k′′x) +A2r2 exp(2k′′(x− 2L))+

2A2r exp(−2k′′L)
[
cos(k′x− ωt) cos(k′(L− x)− ωt) + sin(k′x− ωt) sin(k′(L− x)− ωt)

]
(5.6)

A simplification can be made using cos(A−B) = cos(A) cos(B)+sin(A) sin(B) to give:

|Ψt|2 = A2 exp(−2k′′x) +A2r2 exp(2k′′(x− 2L)) + 2A2r exp(−2k′′L)
[
cos(2k′x− k′L)

]
(5.7)

Equation 5.7 is the square of the magnitude of the interference pattern associated

with two counter-propagating waves whose amplitude is decaying. This is the form

of the interference associated with the surface waves incident upon the termination of

the Sievenpiper ‘mushroom’ metasurface. It is clear that fitting this function to the

experimentally determined spectrum is infeasible. This difficulty is further increased by

the addition of in-plane wavevectors not associated with either the incident or reflected

surface wave. These are primarily caused by the interference of the surface wave with

the freely propagating wave launched by the PWL.

Therefore, due to the difficulties associated with fitting the function and the in-

accuracy associated with the FFT method, it can be seen that the apparent peak in

the measured reflection coefficient is not a feature associated with the termination of

the Sievenpiper ‘mushroom’ metasurface. The reflection coefficient, as shown by both

the FEM modelling and the analytical theory, continues to increase as the momentum

mismatch and the confinement of the mode increases. Correct measurement of the re-

flection coefficient when the propagation of the surface wave is not lossless is currently

not possible using this method.

5.4 Conclusions

The spatial field mapping technique discussed in section 3.6 has been utilised to measure

the near-field of a surface wave incident upon the termination of a metasurface to

free space. The scattered field from the termination has also been characterised and

compared to FEM modelling. Various different antenna orientations have been used

to determine the scattered radiation associated with a surface wave incident upon the

termination. It has been shown that the sheath of the near-field antenna plays a crucial

role in the accurate measurement of a single component of the electric field and must
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be orientated along the direction of the magnetic field for characterising TM surface

waves. The scattered radiation is strongly forward scattered with the intensity lobe

at an angle to the x-axis that depends on the frequency. The surface wave reflection

coefficient at the termination of a metasurface to free space for both an array of metallic

patches on a dielectric coated ground plane and a Sievenpiper ‘mushroom’ array has

been determined. For the patch array metasurface an analytical model agrees well

with the experimental data. However for the Sievenpiper ‘mushroom’ metasurface the

analytical model and experimental data strongly diverge at higher frequencies. This

divergence is caused by the surface wave properties of the Sievenpiper ‘metasurface’,

most notably the decrease in the surface wave propagation length at frequencies close

to the asymptote of the fundamental TM mode. The reflection coefficient is shown to

increase significantly with the confinement of the surface mode which is significantly

different for the two metasurfaces considered due to the surface wave dispersions. This

increase in the reflection coefficient is caused by both the momentum mismatch of

the surface wave compared to the freely propagating modes and the different field

distributions of the two modes.
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Chapter 6

Surface Wave Reflection and

Scattering from Dielectric

Overlayers on Metasurfaces

6.1 Introduction

Surface wave absorbing materials are often realised in the form of lossy magnetic or

dielectric coatings on top of metal or metasurface substrates. It is therefore desirable

to determine the reflection coefficient of a surface wave incident upon such a finite

thickness dielectric or magnetic overlayer. In this chapter the reflection coefficient of a

surface wave supported on a metasurface and incident upon the boundary of a region

of the same metasurface coated with a finite thickness dielectric overlayer, figure 6.1,

is experimentally characterised. This reflection coefficient has been determined for a

range of dielectric overlayer thicknesses and for both the metallic patch metasurface

and the Sievenpiper ‘mushroom’ metasurface, section 2.2. The addition of a thin,

significantly subwavelength, dielectric overlayer onto the metasurfaces markedly alters

the dispersion of the fundamental TM surface mode supported on both metasurfaces.

𝑘 

Metasurface 

Dielectric Coating 
𝑬 

Figure 6.1: Schematic of a surface wave supported on a metasurface incident upon a
region of the metasurface coated with a thin dielectric overlayer.
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Figure 6.2: Schematics of the metasurface structures used in this study where the orange
represents metal and yellow represents the dielectric; a) square array of square metal
patches on a dielectric coated metallic ground plane and b) Sievenpiper ‘mushroom’
array.

This then leads to reflection of the surface wave as well as scattering to free space

radiation at the interface between the coated and uncoated metasurface regions.

The reflection coefficient of the surface wave incident upon these boundaries has

been experimentally characterised using the PWL, section 3.7, as a source of microwave

surface waves and the reflection coefficient measurement technique described in section

3.8. The behaviour of the reflection coefficient as a function of frequency is determined

by both the dispersion of the surface waves supported on the metasurface both with

and without a dielectric overlayer. The reflection coefficient of a surface wave incident

upon a finite thickness overlayer on the metallic patch metasurface has been fully

characterised for a range of dielectric thicknesses and compared to FEM modelling. For

the surface wave supported on the Sievenpiper ‘mushroom’ metasurface the effect of the

dielectric overlayer on the surface wave stop band and subsequently on the reflection

coefficient has been considered. It will be shown that the surface wave stop band is

significantly reduced in frequency by the presence of a dielectric overlayer and as such

there exists a frequency band in which transmission of a surface wave is completely

forbidden. The radiation scattered to free space is experimentally quantified for this

frequency regime.

6.2 Surface Wave Dispersions

The surface wave dispersions for the two metasurfaces studied in this chapter, whose

unit cells are shown in figure 6.2, have been discussed in detail in section 2.2. The high

field at the metasurface associated with the confined surface wave means that even a

thin (i.e. subwavelength) dielectric overlayer perturbs the dispersion of the surface mode
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significantly. This can be seen clearly in figure 6.3 since the addition of a thin dielectric

overlayer to the metal patch array provides a much larger change to the surface wave

dispersion than subsequent thickening of the dielectric overlayer. The dispersion of the

surface mode is strongly perturbed by the presence of the dielectric overlayer when the

decay length of the surface wave perpendicular to the metasurface is comparable to the

dielectric overlayer thickness. It has been shown in section 2.5.2 that the decay length

of the surface wave decreases with increasing frequency. However the perturbation of

the dispersion of the surface wave is also lessened as the frequency increases due to the

increasing strength of the electric field within the core of the metasurface, as discussed

in section 2.5.2. The maximum perturbation of the surface wave dispersion therefore

occurs at frequencies defined by the convolution of these two effects and therefore where

the surface mode is both confined on the order of the dielectric overlayer thickness and

the power is mostly flowing in the upper half space. At low frequencies the dispersions

converge since the field is less tightly confined to the metasurface and the thickness of

the dielectric overlayer is small by comparison to the decay length of the surface wave

perpendicular to the interface. Furthermore at high frequencies the perturbation to the

surface wave dispersion also lessens since most of the field is now confined within the

core of the metasurface.

A similar discussion regarding the surface waves supported on the Sievenpiper

‘mushroom’ array shows they are also significantly perturbed even for a small overlayer

thickness, figure 6.4. This is because the surface wave supported by the Sievenpiper

‘mushroom’ metasurface has high fields at the interface between the metasurface and

the dielectric half-space above. Additionally for all frequencies except those close to

the asymptotic frequency of the fundamental TM surface wave the power flow is pri-

marily within the dielectric half-space above the metasurface, see section 2.5.3. These

properties of the surface wave mean that for all frequencies within ∼ 15 GHz of the

asymptotic frequency the dispersion of the surface wave is significantly perturbed by

the presence of the dielectric overlayer. This perturbation reduces the frequency of

the surface wave stop band, see section 2.5.3, by approximately 7 GHz for a 1.5 mm

dielectric overlayer with εd = 2.6. It is also noted that due to slight curvature of the

Perspex overlayer there is a 50 µm gap between the dielectric and the metasurface, this

has been included in the modelling. The reduction of the asymptotic frequency of the

fundamental TM surface wave supported on the Sievenpiper metasurface coated with

a Perspex overlayer creates a frequency range in which the Sievenpiper metasurface

with an overlayer supports no TM surface mode whilst, at the same frequencies, a TM

surface mode is supported on the uncovered Sievenpiper metasurface. This frequency

range is from approximately 21.5 GHz to 25 GHz and can be seen in figure 6.4. Later

in this chapter an investigation of the reflection and scattering to free space of the
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Figure 6.3: Disperision of the TM surface wave supported on the metal patch array
(black line) compared with the same metasurface coated with 1 mm (red line), 2 mm
(green line) and 10 mm (pink line) thick dielectric overlayers with εd = 3.15 + 0.09i.
The light line is shown in blue and the x-axis limit indicates the BZ boundary.

surface wave incident upon a dielectric overlayer discontinuity in this frequency regime

is provided.

6.3 Experimental Setup

A schematic of the experimental setup used to characterise the surface wave reflec-

tion coefficient is shown in figure 6.5. The surface waves are excited using the PWL,

discussed in section 3.7, and are normally incident upon a dielectric overlayer coating

the metasurface, of height h and permittivity εd. The permittivity of the dielectric

has been measured using the material characterisation technique presented in section

3.3. It is found to be εd = 3.15 + 0.09i. At this interface the surface wave undergoes

reflection of amplitude, r, transmission of amplitude, t, and scattering to free space of

amplitude, s. The amount of energy contained in each of these channels is dictated by

the frequency of the radiation, the geometry of the metasurface and the thickness of the

dielectric overlayer. The near-field of the surface wave is measured above the uncoated

metasurface using the spatial field mapping technique described in section 3.6. From

the measurement of this near-field, the interference of the incident and reflected surface

waves is quantified and the reflection coefficient determined, see section 3.8.
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Figure 6.4: Dispersion of the TM surface wave supported on a Sievenpiper ‘mushroom’
metasurface (black line) compared to the same metasurface coated with a 1.5 mm
dielectric overlayer (red line) with εd = 2.6. The light line is shown in blue and the
x-axis limit indicates the BZ boundary.

PWL Incident  

Surface Wave 
𝑟 𝑡 

𝑠 

Metal Ground Plane 

Dielectric Overlayer 

Metasurface 

ℎ 𝜀𝑑 

To VNA 

Coaxial Probe 

Figure 6.5: Schematic of the experimental setup for characterising the surface wave
reflection coefficient for a surface wave, supported on a metasurface, incident upon a
finite thickness dielectric overlayer.

6.4 Experimental Results

The reflection coefficient of surface waves propagating on a metasurface that are inci-

dent upon a region of the metasurface coated with a dielectric overlayer has been exper-

imentally characterised for both the metal patch array metasurface and the Sievenpiper

‘mushroom’ metasurface. The reflection coefficient is shown to depend on a variety of

different factors, primarily the thickness of the dielectric overlayer and the form of the

dispersion of the surface wave supported by the metasurface. The distribution of the
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power flow above the metasurface (air) and within the dielectric core of the metasurface

structure has also been shown to be a determining factor in the variation of the re-

flection coefficient of surface waves incident upon the interface between the coated and

uncoated metsurface as a function of frequency. Figure 6.6 shows the reflection coeffi-

cient as a function of frequency for various thicknesses of dielectric overlayer. Figure 6.7

shows the amplitude of the reflection coefficient of the surface waves incident upon the

interface between the coated and uncoated metasurface as a function of the overlayer

thickness. This is presented with both the experimental values and the predictions

from FEM modelling.

6.4.1 General Form of the Reflection Coefficient as a Function of Fre-

quency

For all dielectric overlayer thicknesses studied the measured reflection coefficient in-

creases with increasing frequency for low frequencies and then begins to decrease with

increasing frequency at higher frequencies. The frequency at which the gradient of

the reflection coefficient spectrum becomes negative varies with overlayer thickness, as

does the maximum reflection coefficient measured. The two parameters that determine

the form of this curve are the ratio of the overlayer thickness to the decay length of

the surface wave in the direction normal to the surface, and secondly the ratio of the

power flow in the core of the patch array and the half space above. The increasing

reflection coefficient seen at low frequencies is dictated by the increasing confinement

of the surface mode as the frequency increases, see section 2.5.2. This increasing con-

finement, in the uncoated region, increases the ratio of the thickness of the dielectric

overlayer to the decay length of the surface wave normal to the metasurface. This

ratio provides an indication of the amount of power flowing above the height of the

overlayer and therefore the surface wave reflection coefficient. At higher frequencies

Sample No. Thickness (mm) Error (µm)

1 0.825 ±50

2 0.91 ±35

3 1.375 ±50

4 1.73 ±60

5 2.86 ±15

6 4.90 ±25

7 6.85 ±50

Table 6.1: A comparison of the thicknesses of the dielectric overlayers, εd = 3.15 +
0.09i, and associated errors used to modify the dispersion of the metal patch array
metasurface.

86



6. Surface Wave Reflection and Scattering from Dielectric Overlayers on
Metasurfaces

Figure 6.6: Measured amplitude reflection coefficients for surface waves incident upon
the interface between the coated and uncoated metal patch array metasurface as a
function of frequency for various overlayer thicknesses (points). The running average
of the reflection coefficient is shown as the lines. The thicknesses of the dielectric
overlayers are as follows: 0.83 mm (black), 0.91 mm (red), 1.38 mm (light blue), 1.73
mm (dark blue), 2.86 mm (green), 4.90 mm (pink) and 6.85 mm (yellow).

the variation in the reflection coefficient as a function of frequency is characterised by

the increasing power flow within the dielectric core of the patch array metasurface. As

the frequency increases the power flow within the core increases thereby reducing the

amount of power contained in the upper half space which interacts more strongly with

the dielectric overlayer. The balancing of these two processes determines the variation

of the reflection coefficient with frequency.

Figure 6.8 shows the relative power flow in the core of the patch array and the half

space above. In the low frequency regime, where the mode is close to the light line,

the surface wave is relatively unconfined and the power transmitted in the upper half

space is large. However as the confinement of the surface wave increases the fields,

and consequently the power flow, in the dielectric core increases. It can be seen that

the frequency for which the power flow in the dielectric core is equal to that in the

half space above is approximately 35 GHz. The power flowing in the dielectric core

of the metasurface begins to increase rapidly at approximately 20 GHz. The relative

power flow in above the metasurface (in the air) and within the dielectric core of the

metasurface in part determines the variation of the amplitude reflection coefficient with

increasing frequency, this will be shown later.
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Figure 6.7: Amplitude reflection coefficient as a function of dielectric overlayer thickness
for frequencies of 15 GHz (black), 20 GHz (red), 25 GHz (green), and 30 GHz (blue),
experiment (points) and FEM model (lines). The error in the measured reflection
coefficient is indicated but the error in the overlayer thickness is too small to be seen
on this scale, see table 6.1.

Figure 6.8: Power flow of the fundamental TM surface wave supported on a square
array of square metallic patches on a dielectric coated ground plane. The amount of
power confined within the dielectric layer is shown in the black circles and the amount
of power in the upper half space in red triangles, values taken from FEM modelling.
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In figure 6.6 it can be seen that below 20 GHz all of the reflection spectra increase

as a function of frequency. This is partially due to the decreasing decay length of the

surface wave normal to the metasurface which increases the effective thickness of the

overlayer. The other contribution is from the momentum mismatch, ∆k, between the

dispersion of the surface wave supported on the coated and uncoated metasurface which

is also increasing with increasing frequency. Whilst above 25 GHz, the dependence of

the reflection coefficient on frequency for the larger thickness overlayers is beginning to

be affected by the increasing power flow within the dielectric core of the metasurface.

At these frequencies the ∆k between the dispersion of the surface wave supported on

the coated and uncoated metasurface is still increasing, figure 6.3, but the field of the

mode is mostly confined within the dielectric core of the metasurface. This increase in

confinement reduces the amplitude reflection coefficient due to the increase in modal

overlap of the fields associated with the surface wave supported on the coated and

uncoated metasurface.

To confirm this modal overlap understanding, a quantitative comparison of the time-

averaged electric field profile for the uncoated and coated patch metasurface has been

performed. The frequencies of the field plotted for the coated and uncoated patches

are only approximately equal to each other due to the FEM dispersion modelling which

fixes the in-plane wavevector, kx. The time-averaged electric field profiles, extracted

from FEM modelling, for three of these frequencies (∼ 5.13 GHz, ∼ 20.25 GHz and

∼49.37 GHz) are shown in figure 6.9, where the surface wave is propagating along the

x-axis.

The modal overlap of these fields can be quantified by calculating the sum, over an

array of points in the yz-plane, of the magnitude of the difference between the time-

averaged field for the coated and uncoated metasurface. This value is then subtracted

from 1 to give an overlap coefficient. This analysis gives an overlap coefficient between

0 and 1 where 1 indicates perfect field matching and 0 indicates no field overlap. Figure

6.10 shows the variation of the overlap coefficient with frequency for the electric field

of the surface wave supported on the uncoated and coated patch array metasurface.

It can be seen that the highest modal overlap occurs at the lowest frequency, where

both modes are very close the light line and the field confinement is low. As the

confinement increases the modal overlap decreases, since the increase in confinement

occurs at different rates for the two surface waves. However at the higher frequencies,

where the majority of the field is confined within the dielectric core of the metasurface,

the modal overlap is greater than that at 25 GHz. This increase in the modal overlap

at higher frequencies is due to the increasing field strength within the dielectric core of

the metasurface in both the coated and uncoated case.

The reduction of the reflection coefficient amplitude at higher frequencies due to
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Figure 6.9: Time-averaged electric field profiles for the surface wave supported on the
patch array metasurface at ∼5.13 GHz (left), ∼20.25 GHz (middle) and ∼49.37 GHz
(right). The top row shows the field for the patch metasurface with a 1 mm thick
dielectric coating (εd = 3.16) and the bottom row for the uncoated metasurface. Here
red indicates high field, blue indicates low field and black indicates metal.
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Figure 6.10: Plot of the overlap coefficient between the electric field of the TM surface
mode supported on an uncoated patch array metasurface and the same metasurface
coated with a 1 mm thick dielectric overlayer (εd = 3.15).

increased confinement can also be understood by considering the reflection coefficient

of the interface between the uncovered patch array and the patch array covered by an

infinitely thick dielectric overlayer. Obtaining the reflection coefficient experimentally

for such a system is difficult unless the dielectric is lossy due to the reflections from

the termination of the sample, discussed in section 3.8.2.2. This is different than the

thin overlayer case since, for thin overlayers, a taper is used to reduce the reflection

from the sample termination. This tapering method becomes increasingly difficult for

increasing overlayer thickness since the required taper length increases.

The modelled reflection coefficient for a surface wave incident on the patch meta-

surface coated with an infinite thickness dielectric decreases with increasing frequency

due to the increasing power flow within the dielectric of the metasurface. This can be

understood by considering the case where the surface wave is entirely confined within

the dielectric of the metasurface, although this condition is never physically reached. In

this case the addition of an overlayer would have no effect on the surface wave and the

reflection coefficient would be zero. Therefore as the power flowing within the dielectric

core of the metasurface increases there is a smaller perturbation of the surface wave

caused by the dielectric overlayer and the reflection coefficient decreases.

In figure 6.7 the reflection coefficient of surface waves incident upon the interface

between the coated and uncoated regions is plotted as a function of overlayer thickness.
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With increasing overlayer thickness the surface wave reflection coefficient at the higher

frequencies reaches its maximum value (asymptote) at smaller overlayer thicknesses

than the lower frequencies. The reflection coefficient of the surface wave incident upon

a region with a finite thickness coating will be the nearly the same as that for an

infinite thickness coating if the surface wave field can be considered to be negligible

above the coating. This condition is reached at thinner overlayer thicknesses for higher

frequencies than for lower frequencies since the decay length away from the surface is

shorter at higher frequencies. It can be seen that the reflection coefficient for surface

waves at 30 GHz has reached its maximum value at overlayer thicknesses of less than

10 mm. The maximum value of this reflection is defined by the infinite thickness case,

which decreases with increasing frequency. In contrast the reflection coefficient for 15

GHz surface waves is still increasing, in a near-linear fashion, throughout this range of

overlayer thicknesses.

6.5 Perspex Overlayer on a Sievenpiper ‘Mushroom’ Meta-

surface

The dispersion of the Sievenpiper ‘mushroom’ structure presents a significantly different

variation of the reflection coefficient with frequency than that of the metallic patch

array. The Sievenpiper ‘mushroom’ structure has a frequency band where no surface

wave is supported above the asymptotic frequency of the fundamental TM mode. This

asymptote is significantly reduced in frequency by the introduction of a thin dielectric

overlayer and with it, the surface wave stop band. This leads to a frequency regime

where, for a surface wave incident upon the interface between the uncoated and coated

metasurface, there is no possible transmission as a surface wave into the coated region.

Therefore almost all of the surface wave is reflected. However the reflection coefficient

at these frequencies is not necessarily equal to 1 since there still exists the scattering

to free space radiation.

6.5.1 Scattered Fields

The scattered radiation associated with the surface waves incident upon the interface

between the coated and uncoated Sievenpiper ‘mushroom’ metasurface has been ex-

perimentally characterised using the techniques presented in section 3.6. The radiation

scattered to free space associated with the interface is clearly seen in figure 6.11. Its

direction is primarily forward at an angle above the dielectric overlayer at the lower

frequencies. The decay length of the surface wave incident upon the overlayer and

the standing wave associated with the reflected surface wave can clearly be seen on
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Figure 6.11: Experimentally characterised Ez-field associated with a surface wave sup-
ported on the Sievenpiper ‘mushroom’ metasurface incident upon a region of the meta-
surface coated with 1.5 mm thick Perspex overlayer (black rectangle) at 18 GHz (top
left), 19 GHz (top right), 20 GHz (middle left), 21 GHz (middle right), 22 GHz (bottom
left) and 23 GHz (bottom right). The surface wave is incident from the left and red
indicates high field and blue low field.

the uncovered Sievenpiper ‘mushroom’ metasurface. As the frequency of the surface

wave incident upon the overlayer increases it can clearly be seen that the decay length

of the surface wave on the uncovered metasurface decreases significantly, such that at

approximately 23 GHz the decay length is comparable to the thickness of the dielectric

overlayer. The standing wave associated with the surface wave reflection coefficient can

also be seen to increase in strength with increasing frequency, with the greatest change

occurring between 20 and 21 GHz. This increase in the strength of the standing wave

coincides with the rapid increase in the reflection coefficient also seen in this frequency

range, see figure 6.12.
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Figure 6.12: Amplitude reflection coefficient as a function of frequency for a surface
wave incident on the boundary between an uncoated ‘mushroom’ structure to a coated
‘mushroom’ structure.

6.5.2 Experimentally Determined Reflection Coefficient

The reflection coefficient is of most interest in the frequency regime where a surface wave

is supported on the uncoated but not on the coated metasurface. At these frequencies

the surface wave supported on the uncovered Sievenpiper ‘mushroom’ metasurface has

a decay length into the dielectric half-space above the metasurface which is comparable

to the dielectric overlayer thickness. In this case the amplitude of the scattering of the

surface mode to free space is relatively small, and since no transmission mechanism is

present the reflection coefficient must be close to 1. The amplitude reflection coefficient

increases significantly from near-zero, where the dispersions of the surface waves sup-

ported on the Sievenpiper ‘mushroom’ metasurface with and without and overlayer are

nearly identical, to greater than 0.8 over a frequency range of approximately 5 GHz.

This sharp feature is directly related to the shape of the dispersion of the surface wave

which also diverges quickly from the light line at these frequencies, figure 6.4.

In the frequency regime where there is no transmission mechanism, above∼21.5 GHz,

scattering is the only channel, other than in the reflected surface wave, by which energy

propagates away from the interface. The primary scatter direction for the radiation is

forward in the half-space above the dielectric overlayer when the decay length of the

surface wave is much larger than the overlayer thickness. However as the decay length
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decreases the magnitude of the scattering into the half-space above is now significantly

reduced due to the limited power flowing above the height of the dielectric and the

primary scatter direction is in the negative x-direction. Once again, as in chapter 5,

the significant decrease in the propagation length of the surface wave supported on the

Sievenpiper ‘mushroom’ metasurface leads to an incorrectly determined reflection co-

efficient above 22.5 GHz. This introduces an apparent peak in the reflection coefficient

as in the previous measurement. The near linear reduction with increasing frequency

of the surface wave reflection coefficient at these frequencies is very similar to that

shown by the reflection coefficient of surface waves incident upon the termination of

the Sievenpiper metasurface to free space, seen in Chapter 5. The reflection coefficient

predicted from FEM modelling remains large at these frequencies.

6.6 Conclusion

In this chapter the reflection coefficient of surface waves supported on a metasurface in-

cident upon a dielectric overlayer has been experimentally characterised for the metallic

patch array and Sievenpiper ‘mushroom’ metasurfaces. It has been shown that the ad-

dition of a thin, significantly subwavelength, dielectric overlayer onto the metal patch

array metasurface perturbs the surface wave dispersion. The reflection coefficient of

the surface waves supported on the metallic patch array metasurface incident upon

the dielectric coated metasurface has been shown to vary significantly with both the

frequency of the radiation and the thickness of the dielectric overlayer. The variation

of the reflection coefficient with frequency is primarily dictated by the confinement of

the surface wave by comparison to the overlayer thickness and the power flow within

the metasurface structure. This leads to two different regions within the reflection co-

efficient spectrum where initially the reflection coefficient is increasing with frequency

due to the increasing confinement of the surface wave whilst at higher frequencies the

reflection coefficient decreases due to the increasing relative power flow within the meta-

surface structure. It has been shown that the reflection coefficient, measured at a single

frequency, as a function of overlayer thickness has an asymptotic limit. This maximum

reflection coefficient value is larger for lower frequencies due to the reduced power flow

within the metasurface by comparison to higher frequencies. The reflection coefficient

of a surface wave incident upon a coated Sievenpiper ‘mushroom’ metasurface is signif-

icantly different since the surface wave stop band of the Sievenpiper ‘mushroom’ meta-

surface leads to a near complete reflection of the surface waves when their transmission

is forbidden. The scattered radiation associated with the reflection of the surface waves

supported on the Sievenpiper ‘mushroom’ structure has also been mapped. The reduc-

tion of the reflection coefficient for surface waves incident on dielectric overlayer coated
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Metasurfaces

metasurfaces has applications in the design of efficient surface wave absorbing materials

for the reduction of radar cross section. This technique for determining the reflection

coefficient of such overlayers may also be useful in characterising the performance of

such absorbers.
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Chapter 7

Surface Wave Reflection from an

Impedance Discontinuity

7.1 Introduction

In this chapter the reflection coefficient and associated scattering to free space of a

surface wave incident upon an impedance discontinuity in a metasurface will be fully

experimentally characterised. The impedance discontinuity in the metasurface is en-

gineered by a change of the unit cell of the metasurface such that the surface waves

supported by the two regions have different dispersion relations and field profiles. The

reflection coefficient and associated scattering will be considered in frequency regimes

where the surface wave dispersions are similar and also in frequency regimes where

they are distinctly different. The experimentally measured reflection coefficient is com-

pared to both FEM modelling results and analytically obtained reflection coefficients

using the impedance approximation. The reflection coefficient of the surface wave ob-

tained analytically, using the impedance approximation, is shown to not match the

experimentally measured reflection coefficient. A discussion of the validity of such an

approximation is presented.

7.2 Surface Wave Dispersions

The metasurfaces that have been used in this experiment are derived from the metal

patch array and the Sievenpiper ‘mushroom’ array metasurfaces used within the pre-

vious parts of this study, Chapters 5 and 6. One metasurface is an array of metal

strips on a dielectric coated ground plane, the surface wave supported on this meta-

surface is similar to that supported on the metal patch array metasurface. The second

metasurface is a square array of metal pins connected to a metallic ground plane and
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Figure 7.1: Photograph of the discontinuity in the metasurface structure showing the
metal slit array and the metal post array with the incident surface wave momentum
indicated by kx. Here λgs = 3 mm, Ws = 2.7 mm, Wg = 0.3 mm, λgp = 2 mm,
vr = 150 µm and the thickness of the dielectric core of the metamaterial is 1.6 mm.

surrounded by a dielectric; this metasurface can be considered the same as that formed

by removing the metallic patch from the Sievenpiper ‘mushroom’ array. The interface,

i.e. the impedance discontinuity, between the two metasurfaces used within this chap-

ter is shown in figure 7.1, where λgs = 3 mm, Ws = 2.7 mm and Wg = 0.3 mm for the

strip array and λgp = 2 mm and vr = 150 µm for the post array and the thickness of

the dielectric core of the metamaterial is 1.6 mm.

The surface wave supported on the metal strips metasurface is effectively a guided

wave in the dielectric similar to the patch array with the strips acting as a frequency

selective surface as discussed in section 2.2. The dispersion of the fundamental TM

surface wave supported on the metal strips metasurface is shown in figure 7.2a. How-

ever, unlike the metal patch array, the surface wave dispersion on the strip array is

highly-dependent on the azimuthal angle, φ, of the incident wavevector with respect

to the x-axis. This is due to the absence of the square symmetry present in the metal

patch array. When the surface wave is propagating along the strips the electric field is
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7. Surface Wave Reflection from an Impedance Discontinuity

(a) (b)

Figure 7.2: Dispersion diagrams for a) the fundamental TM surface wave supported
on the metal strip array from FEM modelling (black line) and experiment (red circles)
and b) the fundamental TM surface wave supported on the metal post array from FEM
modelling (black line) and experiment (red circles). The light line and BZ boundary is
shown in blue and green respectively.

unable to penetrate into the dielectric core of the metasurface since the metallic strip

acts as a polarising filter [137–139]. In this case the dispersion of the surface wave

is essentially that of a grazing photon. In contrast, for the surface wave propagating

along the axis perpendicular to the direction of the strips the surface wave dispersion is

largely determined by the Brillioun Zone (BZ) boundary at which the group velocity of

the surface wave must fall to zero, section 2.5.1. The metal strips array has been used

in this study rather than the metal patch array due to FEM modelling constraints.

The dispersion of the surface wave supported on the square array of metal posts,

figure 7.2b, is similar to that supported on the Sievenpiper ‘mushroom’ metasurface.

The patch layer in the Sievenpiper ‘mushroom’ metasurface acted as an effective high

index layer, see section 2.5.2.1, and its removal increases the asymptotic frequency of

the fundamental TM surface wave supported by the structure. Once again the metal

posts, in the post array metasurface, act as polarisable elements dispersed within the

dielectric of the metasurface core. The TM surface wave is supported below the the

resonance of these polarisable elements, defined primarily by their length, and above

the resonance there exists a surface wave stop band within which neither TM nor TE

surface waves are supported. By comparison to the dispersion of the surface wave

supported by the Sievenpiper ‘mushroom’ metasurface discussed earlier, the dispersion

of the fundamental TM surface wave on the metal post metasurface diverges from the

light line at a lower frequency and the frequency of the lower edge of the surface wave

stop band is increased, see figure 7.3. This leads to a dispersion whose rate of change

of the gradient with respect to frequency is generally much slower than that of the

original Sievenpiper ‘mushroom’ metasurface. The surface wave dispersions for both

99



7. Surface Wave Reflection from an Impedance Discontinuity

Figure 7.3: Comparison of the dispersion of the TM surface waves supported on the
Sievepiper ‘mushroom’ structure (red line), discussed in section 2.5.3, and the metal
post array (black line) extracted from FEM modelling. The light line is shown in blue
and the BZ boundaries associated with each of the metasurfaces is shown in green, BZ
1 for the post array metasurface and BZ 2 for the ‘mushroom’ metasurface.

the strip array and the post array metasurfaces is shown in figure 7.2.

The relative power flow, extracted from FEM modelling, within the dielectric core

of the two metasurfaces as a function of frequency is shown in figure 7.4. It can be seen

that the relative power flow within the dielectric core of the strip array metasurface

(black circles) is greater than that in the metal post array core (green crosses) at all

frequencies, although they are very similar at low frequencies where the surface modes

are almost on the light line for both surfaces. The relative power flow within the

dielectric core of the metal strip array (black circles) quickly increases above 10 GHz

and is greater than that flowing above the metasurface at ∼15 GHz. Conversely for the

metal post array the relative power flow within the metasurface dielectric core (green

crosses) is never greater than 30%. This shows that the two modes supported on these

metasurfaces have significantly different field distributions with the metal strip array

having significantly larger relative power flow within the metasurface than the surface

mode at the same frequency for the metal post array.
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Figure 7.4: Comparison of the relative power flow above and below the metasurface
interface for the metal strip array metasurface (below - black circles, above - red tri-
angles) and the metal post array metasurface (below - green cross, above - blue x)
extracted from FEM modelling.

7.2.1 Impedance Matched Condition

The surface impedance approximation, often used to describe the behaviour of surface

waves on metasurface structures and discussed in section 2.4, is derived from the dis-

persions of the surface waves, equation 7.1 (reproduced from section 2.4). In the limit

that the surface impedance is assumed to be purely reactive (no Joule heating), i.e. the

surface waves propagation length is infinite, the surface impedance of the metasurfaces

are identical at the crossing points of the dispersion. At these ‘impedance matched’

crossing points the surface impedance description predicts that a surface wave incident

upon the interface between the two metasurfaces will undergo no reflection or scattering

to free space. Naively one may expect this however, as discussed in section 7.3.1, it will

be shown that this is not the case and that the impedance description is inadequate

for the metasurfaces studied here. It can be seen from figure 7.5 that the dispersion

of the surface waves supported on the two metasurface used in this study have two

such ‘impedance matched’ crossing points, one at ∼ 13.45 GHz (A) and another at

∼20.12 GHz (B).

kx =
ω

c

√
1 + χ2

s (7.1)
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Figure 7.5: Predicted (FEM) dispersion diagram for the fundamental TM surface wave
supported on the metal strip array, red, and the fundamental TM surface wave sup-
ported on the metal post array, black. The crossings of the mode dispersions, and
hence the surface impedance matched condition, are shown to occur at approximately
13.45 GHz (A) and 20.12 GHz (B).

Where kx is the in-plane wavevector of the surface wave, ω is the angular frequency of

the surface wave, c is the speed of light and χs is the surface reactance in the impedance

approximation.

7.3 Reflection of Surface Waves

The reflection coefficient of the surface waves incident upon the discontinuity in the

metasurface has been measured using the technique described in section 3.8. It will

be shown that the traditional surface impedance description used to determine the

reflection coefficient is insufficient for surface waves supported on metasurfaces. Rather

than the surface impedances it is shown that the reflection coefficient is dictated largely

by the modal overlap of the fields at any given frequency. For both of the surfaces

investigated in this study the confinement of the mode, determined by the magnitude of

the normal wavevector, kz, is increasing as the frequency increases. This confinement is

different for each of the metasurfaces and is derived from the dispersion of the surface

wave, since k2
0 = k2

x + k2
y + k2

z . At low frequencies most of the power within these

structures is flowing above the interface and the modal overlap of the associated mode
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7. Surface Wave Reflection from an Impedance Discontinuity

Figure 7.6: The surface wave reflection coefficient for a TM surface wave normally
incident on the interface between the metal strip array and the metal post array. The
experimental results are shown by the black circles and the FEM modelled reflection
coefficient values are shown by the red points. The two ‘impedance matched’ frequencies
are indicated by the vertical lines and labelled A and B respectively.

on each metasurface is high due to the relatively unconfined fields, i.e. the dispersion

of the surface modes have gradients close to that of the light line. This in turn leads

to a low reflection coefficient of a surface wave incident on the discontinuity between

the two structures. However as the confinement of the mode increases, the fraction

of the power flow below the surface of the metasurface within the dielectric core of

the metallic strip array and the via layer of the post array, is also increasing. This

increase occurs at different rates for the two structures, leading to an increasing modal

mismatch.

The experimentally determined reflection coefficient (black circles), along with that

predicted from FEM modelling (red points), is presented in figure 7.6 and contains

several features of interest. The general form of the reflection coefficient is increasing

approximately linearly above ∼12 GHz. At ∼27 GHz there is a sudden increase in the

reflection coefficient which remains high, until ∼33 GHz at which point the reflection

coefficient rapidly reduces to a minimum at ∼ 35 GHz. It can also be seen that there

are no notable features associated with the ‘impedance matched’ conditions A and B,

labelled by the vertical red lines.

The features in the reflection coefficient spectra are associated with points of inter-
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7. Surface Wave Reflection from an Impedance Discontinuity

Figure 7.7: Analytically determined, using the impedance approximation, amplitude
reflection coefficient of surface waves, black line, normally incident upon an impedance
discontinuity equivalent to that for the metal strip metasurface to the post array meta-
surface. The amplitude reflection coefficient is shown to be equal to zero at the two
‘impedance matched’ conditions A and B indicated by the red lines.

est on the dispersions of the surface waves supported on the two metasurfaces. The

increasing reflection coefficient at lower frequencies is associated with the increasing

mismatch of the modal fields. Primarily this can be seen by the significant increase

in the field strength within the dielectric core of the strip metasurface by comparison

to that within the post metasurface. The sharp increase in the reflection coefficient at

∼ 27 GHz is associated with the asymptotic frequency of the surface wave supported

on the post metasurface. At frequencies close to the asymptote of the surface wave

supported on the post array, the confinement of this mode increases significantly. Con-

sidering a surface wave incident from the strip array the rapidly increasing confinement

also produces a rapidly increasing modal mismatch and therefore an increasing reflec-

tion coefficient at the interface of the metasurfaces. This increasing modal mismatch

continues until the asymptotic frequency of the surface wave supported on the post

metasurface (∼ 27 GHz) is reached, beyond which surface waves are forbidden on the

post metasurface. Finally the sudden decrease in the reflection coefficient at ∼33 GHz

is associated with the limit frequency of the fundamental TM surface wave on the strip

metasurface. The reflection coefficient ceases to have any true meaning above this limit

frequency (∼ 33 GHz) since at these frequencies the radiation is effectively a grazing
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photon. It can be seen that the agreement between the measured reflection coefficient

and that predicted from FEM modelling is good throughout each of these features.

7.3.1 Impedance Matched Condition

The impedance approximation, described in section 2.4, has been utilised earlier in

this study to predict the reflection coefficient of a metal patch array terminated to free

space, Chapter 5. However it was shown that the approximation was only valid for low

frequencies (less than ∼17.5 GHz) for the Sievenpiper ‘mushroom’ array. This approx-

imation has been widely used when considering surface waves in the microwave regime

[78–81, 140–142], but for metasurfaces this approximation is not accurate because it

does not calculate any field below the interface. Clearly the reflection coefficient for the

interface between two metasurfaces depends strongly on the field matching both above

and below the surface, so this lack of treatment of the modal fields in the impedance

approximation is seriously flawed.

It has been shown that the dispersions of the two surface modes cross at two fre-

quencies at which the impedance of these surfaces will be equal. In the impedance

approximation a surface wave incident upon the interface between two surfaces with

the same impedance will undergo no reflection. However observation of the modelled

fields (obtained using FEM modelling) of the eigenmode of each of these structures at

the crossing points indicates that the modes themselves have significantly different field

profiles, figure 7.8. The field within the slit array metasurface at the frequencies of the

impedance matched conditions, ∼13.45 GHz (A) figure 7.8a and ∼20.12 GHz (B) figure

7.8c is primarily confined within the dielectric core of the metasurface. By contrast the

field within the metallic post array, figures 7.8b and 7.8d, is mostly confined at the

interface of the metasurface and the half-space above. It is clear that the field within

the dielectric core of both metasurfaces is significantly different, and that the field is

also different in the half space above the interface. In the impedance approximation the

field below the interface is not calculated and the the fields above the interface must

be identical at the impedance matched condition. In reality whilst the metasurfaces

have the same surface impedance they do not have the same fields above or below the

interface and therefore a non-zero reflection coefficient is inevitable.

It is also clear from figure 7.6 that the reflection coefficient at the ‘impedance

matched’ conditions, ∼13.45 (A) and ∼20.12 (B) GHz, shows not only a non-zero re-

flection coefficient but no reduction in the reflection coefficient from the surrounding

non-impedance matched frequencies. The reflection coefficient for the impedance ap-

proximation is presented in figure 7.7 and clear minima are indicated at the impedance

matched frequencies. Thus use of an impedance surface to treat even this simple case
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(a) Strip array at kx = 302.8 (m−1). (b) Post array at kx = 302.8
(m−1).

(c) Strip array at kx = 516.2 (m−1). (d) Post array at kx = 516.2
(m−1).

Figure 7.8: Time averaged electric field profiles associated with the TM surface waves
supported on the metal strip metasurface and the metal post metasurface at the two
‘impedance matched’ conditions plotted across 1 unit cell. a) and b) (the strip and post
array respectively) are associated with crossing point A and c) and d) (the strip and
post array respectively) are associated with crossing point B. The fields are extracted
from FEM modelling where red indicates high field strength and blue indicates low field
strength and black represents metal.
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of normal incidence reflection is totally inadequate.

7.4 Scattered Radiation

The scattered radiation resulting from the impedance discontinuity in the metasurface

propagates primarily in the negative x-direction, figure 7.9. There is also a lower

intensity scattered field in the forward x-direction above the post array metasurface

(x > 0 mm). Isolating the backward scattered radiation from the surface wave incident

upon the discontinuity from the radiation propagating in the forward direction from

the source of the microwave surface waves is difficult. The interference of these waves

can clearly be seen in the experimentally measured field plots, figure 7.9 x < 0 mm

in the half space above. In these experimentally measured time-averaged electric field

distributions the impedance discontinuity is at x = 0 mm. The direction of this scatter

is interesting since the primary direction of scatter for the other planar discontinuities

that have been studied in this thesis has always been in the forward direction of the

incident surface wave.

The direction of this scatter has similarities to that obtained from FEM modelling,

figure 7.10, and can be understood by consideration of the field profiles of the two TM

surface waves. The mode supported by the metallic strips metasurface has a significant

proportion of the power flowing within the dielectric core of the metasurface, figure

7.4. This is also evidenced by the field in below the strips (z < 1.6 mm) in figure 7.8.

However for the array of metal posts metasurface the relative power flow within the

dielectric core of the metasurface is much smaller and most of the power is above the

metasurface interface. Therefore when the surface mode of the metal strips metasurface

is incident upon the metal posts surface, where the electric field in the core is minimal,

the mode can be considered to be incident upon a highly reflecting boundary. This can

be seen by the consideration that the primary scatter direction (negative x-direction)

present for the impedance mismatch between the two metasurfaces is similar in form to

that for an infinitely high PEC termination of the metasurface. The modal mismatch

of the fields is significant for these metasurfaces, indicated by the relative power flow,

and as such boundary condition at the interface induces both backward and forward

scatter in order to match the fields of the two modes.

7.5 Conclusion

In this chapter the impedance approximation, often used to describe metasurfaces, is

investigated and shown to be an inadequate description of the surface waves supported

on the metasurfaces used within this study. The amplitude reflection coefficient of a
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(a) 20 GHz

(b) 25 GHz

(c) 30 GHz

Figure 7.9: Experimentally characterised Ez-field above the discontinuity (at x = 0
mm) between the metal strip metasurface (x < 0 mm) and the metal post array meta-
surface (x > 0 mm) showing the scattered radiation at a) 20 GHz, b) 25 GHz and c) 30
GHz. Red indicates high field and blue indicates low field and black represents metal.
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(a) 20 GHz

(b) 25 GHz

(c) 30 GHz

Figure 7.10: Ez-field extracted from FEM modelling of the ‘impedance matched’ meta-
surface both within the structures and above the metasurface interface (at x = 0 mm)
at a) 20 GHz, b) 25 GHz and c) 30 GHz showing the scattered radiation in the −x-
direction and the zero transmission due to the surface wave cutoff frequency of the
metal post metasurface. Red indicates high field and blue indicates low field and black
represents metal.
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surface wave incident on the boundary between metasurfaces regions derived from the

metal patch array and the Sievenpiper ‘mushroom’ metasurfaces is investigated. The

metasurfaces used are an array of metal strips on a dielectric coated ground plane and

an array of metal posts whose fundamental TM surface wave dispersions are shown

to cross at two points. In the impedance approximation these surfaces are said to

be ‘impedance matched’ at these frequencies and therefore no reflection is expected.

However the reflection coefficient is in fact shown to be non-zero at these points. Not

only is the reflection coefficient non-zero at these points, but there is also no observable

reduction in the reflection coefficient at the frequencies associated with the crossings of

the surface wave dispersions.

The inadequacy of the impedance description arises from the behaviour of the elec-

tric field within the metasurfaces which is not analytically described using the surface

impedance approximation. The scattered radiation from the discontinuity is also shown

to be similar in form to that from an infinitely high PEC termination of the metasur-

face. This is explained by the behaviour of the surface wave within the dielectric core

of the two metasurfaces investigated, the vastly different field distributions leads to a

near unity reflecting interface within the metasurfaces.
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Chapter 8

Conclusions and Future Work

8.1 Summary of Thesis

This thesis describes the experimental investigation of the surface waves supported on

metasurfaces, with a particular focus on the reflection of these surface waves from pla-

nar discontinuities. Various experimental techniques have been developed throughout

this work to characterise surface-wave-supporting metasurfaces. A new technique for

measuring the dispersion of metasurfaces is presented in section 3.5, involving the use of

near-field coaxial probes as both sources and detectors of microwave surface waves, and

a collimating mirror system. The near-field associated with the surface waves has also

been characterised by combining the near-field coaxial probes with a 3-axis translation

stage described in section 3.6. A device for launching planar phase front surface waves

has been developed using a parallel plate waveguide and a dielectric lens presented in

section 3.7 and finally a technique for measuring the surface wave reflection coefficient

has been developed and discussed in section 3.8.

In Chapter 4 the dispersion of surface waves on a square array of square cross-

section metal pillars has been fully characterised and compared to FEM modelling.

The results show that a family of surface waves may be supported by pillar or crossed

slit structures rather than just holes even though there is now no lowest cut-off fre-

quency. A family of TM surface modes have been shown to exist with dispersions

with asymptotic frequencies defined by the pillar heights (slit depth) and the refractive

index of the material filling the slits. The concept of ‘designer’ surface plasmons at

microwave frequencies has thereby been extended experimentally to a whole new class

of structured metasurfaces. This work has subsequently been extended by Kim et. al.

[143] to show that this class of metasurface can be designed to include self collimation

and beam splitting of the surface waves supported by such a structure. The investiga-

tion of this structure focussed on the amplitude reflection coefficient of surface waves
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incident on the termination of this metasurface to free space. A series of amplitude

reflection coefficient peaks are shown to exist close to the surface wave asymptotes as-

sociated with standing waves defined by the depth of the slits. This structure served

as a test-bed for experimental technique development and similar investigations were

then performed with thin, lightweight metasurfaces which support surface waves in the

microwave regime.

Chapters 5, 6 and 7 focussed on the surface wave properties associated with a square

array of square metal patches on a dielectric coated ground plane and a Sievenpiper

‘mushroom’ metasurface. In Chapter 5 the amplitude reflection coefficient of surface

waves incident upon the termination of these metasurfaces to free space has been de-

termined. The electric field associated with both the surface waves and the scattered

radiation has also been fully characterised using the field mapping techniques devel-

oped in this thesis and results show good agreement to FEM modelling. An analytical

model for the amplitude reflection coefficient for the patch array metasurface agrees

well with the experimental data. However for the Sievenpiper ‘mushroom’ metasurface

the analytical model and experimental data strongly diverge at higher frequencies. This

divergence is caused by the surface wave properties of the Sievenpiper ‘metasurface’,

most notably the decrease in the surface wave propagation length at frequencies close

to the asymptote of the fundamental TM mode. The reflection coefficient is shown

to increase significantly with the confinement of the surface mode. The variation of

this confinement with frequency is different for the two metasurfaces considered due

to their dispersions. This increase in the reflection coefficient is caused by both the

momentum mismatch of the surface wave compared to the freely propagating modes

and the different field distributions of the two modes.

In Chapter 6 the reflection coefficient of surface waves supported on a metasur-

face incident upon a dielectric overlayer on that metasurface has been experimentally

characterised for the metal patch array and Sievenpiper ‘mushroom’ metasurfaces. It

is shown that the addition of a thin, significantly subwavelength, dielectric overlayer

onto the metal patch array metasurface vastly perturbs the surface wave dispersion.

The reflection coefficient of the surface waves, supported on the metal patch array

metasurface, incident upon the dielectric coated metasurface are shown to vary sig-

nificantly with both the frequency of the radiation and the thickness of the dielectric

overlayer. The variation of the reflection coefficient with frequency is determined by

the confinement of the surface wave with respect to the overlayer thickness and the

power flow within the metasurface structure. This leads to two different regions within

the reflection coefficient spectrum where initially the reflection coefficient is increasing

with increasing frequency due to the increasing confinement of the surface wave whilst

at higher frequencies the reflection coefficient decreases due to the increasing power
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flow within the metasurface structure. It has been shown that the reflection coefficient,

measured at a single frequency, as a function of overlayer thickness has an asymptotic

limit. This maximum reflection coefficient value is larger for lower frequencies due to

the reduced power flow within the metasurface by comparison to higher frequencies.

The reflection coefficient of a surface wave incident upon a coated Sievenpiper

‘mushroom’ metasurface is significantly different since the surface wave stop band of

the Sievenpiper ‘mushroom’ metasurface leads to near complete reflection of the surface

waves when their transmission is forbidden. The scattered radiation associated with

the reflection coefficient of the surface waves supported on the Sievenpiper ‘mushroom’

structure has also been mapped. The reduction of the reflection coefficient for surface

waves incident upon the interface between a coated and uncoated metasurface has ap-

plications in the design of efficient surface wave absorbing materials for the reduction

of radar cross section. This technique for measuring the reflection coefficient of such

overlayers can be implemented to characterise the performance of such absorbers.

Finally in Chapter 7 the impedance approximation, often used to describe metasur-

faces, is investigated and shown to be an incomplete description for the surface waves

supported on the metasurfaces used within this study. The amplitude reflection coef-

ficient of a surface wave incident on the boundary between two metasurfaces derived

from the metal patch array metasurface and the Sievenpiper ‘mushroom’ metasurface is

investigated. The metasurfaces used are an array of metal strips on a dielectric coated

ground plane and an array of metal posts whose fundamental TM surface wave disper-

sions are shown to cross at two points. In the impedance approximation these surfaces

are said to be ‘impedance matched‘ at these frequencies and therefore no reflection is

expected however the reflection coefficient is shown to be non-zero at these points. Not

only is the reflection coefficient non-zero at these points but there is also no observable

reduction in the reflection coefficient at the frequencies associated with the crossings of

the surface wave dispersions.

The inadequacy of the impedance description arises from the behaviour of the elec-

tric field within the metasurfaces which is not analytically described using the surface

impedance approximation. The scattered radiation from the discontinuity is also shown

to be similar in form to that from an infinitely high PEC termination of the metasur-

face. This is explained by the behaviour of the surface wave within the dielectric core

of the two metasurfaces investigated; the vastly different field distributions lead to a

near unity reflecting interface within the metasurfaces.
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8.2 Future Work

Throughout this thesis the reflection coefficient of surface waves incident upon various

planar discontinuities has been investigated from which a wealth of future research can

be performed.

Techniques for suppressing the reflection of surface waves at planar discontinuities

are of great interest for improving the efficiency of surface wave devices. It is expected

that the simplest technique for reducing the reflection coefficient of surface waves inci-

dent upon discontinuities is to ‘grade’ the discontinuity. For the types of discontinuities

presented in this thesis it is expected that this can be achieved for both the dielectric

overlayer and the impedance discontinuity. For the dielectric overlayer the reflection

coefficient can be significantly reduced by introducing a linear increase in the thickness

of the overlayer over a distance greater than the wavelength of the surface wave. A

full investigation of the form of the taper required to eliminate the reflection of such a

system would be of use for designing surface wave absorbing overlayers. These surface

wave absorbers would be useful in preventing the reflection of surface waves from the

edges of the surface-wave-supporting metasurface characterised within this thesis and

Figure 8.1: Experimentally measured amplitude reflection coefficient of a surface wave,
supported on the metal patch array metasurface, incident upon a 2.85 mm thickness
dielectric coating (ε ≈ 3.15) (black points). The addition of a linear taper, of length
40 mm, reduces the amplitude reflection coefficient of a surface wave incident upon the
dielectric coating (red points).
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in other industrial applications. Initial experimental results showing the reduction of

the reflection coefficient when a linear taper is added to a dielectric overlayer are shown

in figure 8.1. The experimentally investigated system explores the reflection coefficient

of a surface wave incident upon the 2.85 mm thick dielectric overlayer (ε ≈ 3.15) on

the metal patch metasurface investigated in Chapter 6. The addition of a linear taper

in the thickness of the coating over 40 mm reduces the amplitude reflection coefficient

at all investigated frequencies to less than 0.03.

Using this technique, combined with an engineered metasurface dispersion, it may

be possible to create surface wave lenses to control the propagation of surface waves

using dielectric coatings. In this application the reduction of the reflection of a surface

wave incident on the lens would be a crucial factor in the performance of such a system.

The reduction of the reflection for the impedance discontinuity is a significantly more

challenging prospect. For such a system it is required that the dispersion of the surface

wave supported on the metasurface changes smoothly over a distance greater than a

wavelength. Once again it is expected that the metasurface structure can be ‘graded’ to

reduce the reflection coefficient of the interface. The height of the metal pillars can be

slowly increased at the same time as the metal strip width can be gradually reduced.

In this manner the surface wave dispersion is expected to vary much more slowly

between the two meatusrfaces thereby reducing the reflection coefficient. Similarly the

grading of the metasurface structure could be used to reduce the group velocity of the

surface wave such that the surface wave may be absorbed without significant reflection.

This technique could be utilised to produce surface wave absorbing structures that are

lightweight and have significantly subwavelength thicknesses.

Finally the surface waves studied within this thesis are TM polarised, this study

could be subsequently extended to study the reflection coefficients of TE surface waves

supported on metasurface structures. The boundary conditions for such surface waves

at the planar discontinuities discussed in this thesis will be significantly different than

those for TM surface waves. As such the reflection coefficient for TE surface waves may

be expected to have vastly different forms than those of TM surface waves.
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Appendix A

Nicolson Ross Wier Derivation

Determining the complex permittivity and permeability of an unknown material is

important in the design of both metamaterials and the absorbing and non-absorbing

overlayers. The Nicolson-Ross-Weir (NRW) equations derive these material parameters

from the complex reflection and transmission S-parameters for a slab of material com-

pletely filling the cross-section of a reflectionless waveguide. The derivation of these

material parameters from the S-parameters is presented here for the particular case

of a standard rectangular waveguide. Considering the sum of single interface Fresnel

equations for both the interfaces of the material, figure A.1, the total reflection can be

written as follows:

r13 = r12 + t12r23t21exp(2iα) + t12r
2
23r21t21exp(4iα) + ... (A.1)

Equation A.1 can be written as the following sum:

r13 = r12 + t12t21r23exp(2iα)
∞∑
n=0

rn21r
n
23exp(2niα) (A.2)

Using the identity A.3 we can simplify equation A.2:

∞∑
n=0

xn =
1

1− x
(A.3)

r13 = r12 +
t12t21r23exp(2iα)

1− r21r23exp(2iα)
(A.4)

A substitution can be made for the single interface Fresnel reflection coefficients and

the phase factor, exp(2iα), in order to express the Fresnel reflection coefficient of the

slab, r13, in terms of the single interface Fresnel reflection coefficient for an infinitely

thick slab of the material and a complex exponential related to the propagation constant
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Region 2 Region 1 Region 3 

𝑡12  Incident 

𝑟12  

𝑡12𝑡23 exp 𝑖𝛼  

𝑡12𝑟23 exp 𝑖𝛼  

𝑡12𝑟23𝑟21 exp 2𝑖𝛼  
𝑡12𝑟23 t21exp 2𝑖𝛼  

𝑡12𝑟23𝑟21𝑡23 exp 3𝑖𝛼  
𝑡12𝑟23

2 𝑟21 exp 3𝑖𝛼  

𝑡12𝑟23
2 𝑟21𝑡21 exp 4𝑖𝛼  

𝑡12𝑟23
2 𝑟21

2 exp 4𝑖𝛼  

𝑡12𝑟23
2 𝑟21

2 𝑡23 exp 5𝑖𝛼  
𝑡12𝑟23

3 𝑟21
2 exp 5𝑖𝛼  

Figure A.1: Schematic diagram of the multiple reflections in a slab of material where
rxy and txy are the single interface Fresnel amplitude reflection coefficients where x is
the index for the region of the incident and reflected wave and y is the index for the
region of the transmitted wave.

within the material. The total Fresnel reflection coefficient, r13, is equivalent to the

reflected S-parameter, S11, measured in experiment and the substitutions are shown in

equations A.5 to A.9.

r21 = r23 = −r12 where r12 =
Z − 1

Z + 1
(A.5)

β2 = exp(−2iα) where α = 2πγd (A.6)

t12 = 1 + r21 (A.7)

t21 = 1 + r12 (A.8)

S11 =
r12(1− β2)

1− r2
12β

2
(A.9)

Transmission through the slab of material within the waveguide can also be deter-

mined through another infinite sum of single interface Fresnel reflection coefficients.

Another identical procedure can be used to determine the transmission S-parameter,
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S21, in terms of the single interface Fresnel reflection coefficient, r12, and the complex

exponential defined in equation A.6, β, as shown below:

t13 =
t12t23exp(iα)

1− r21r23exp(2iα)
(A.10)

where t23 = 1 + r23 (A.11)

S21 =
β(1− r2

12)

1− r2
12β

2
(A.12)

The two experimentally obtainable parameters S11 and S21 have been expressed in

terms of the single interface Fresenel reflection coefficient r12 and a complex exponential

term β. These two terms r12 and β are determined by the complex permittivity and

permeability of the unknown material within the waveguide. Expressions for the two

unknowns are obtained by a combination of the sum and difference of the S-parameters

as shown below:

V1 = S21 + S11 (A.13)

V2 = S21 − S11 (A.14)

V1V2 = S2
21 − S2

11 =
β2 − r2

12

1− r2
12β

2
(A.15)

V1 − V2 = 2S11 =
2r12(1− β2)

1− r2
12β

2
(A.16)

X =
1− V1V2

V1 − V2
(A.17)√

X2 − 1 =
r2

12 − 1

2r12
(A.18)

r12 = X ±
√
X2 − 1 (A.19)

The choice of sign in equation A.19 is determined by the physical constraint that

|r12| ≤ 1 since the amplitude of the reflection can never be greater than the incident

amplitude. The characteristic impedance of the filled section of waveguide can now be

calculated by rearranging equation A.5 to make the impedance Z the subject. r12 is

now used along with S11 and S21 to determine β, the complex eponential:
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V1 − r12 =
(1− r2

12)(β − β2r2
12)

1− r2
12β

2
(A.20)

1− V1r12 =
1− βr12 + βr3

12 − r2
12

1− r2
12β

2
(A.21)

V1 − r12

1− V1r12
=

(
(1− r2

12)(β − β2r2
12)

1− r2
12β

2

)(
1− r2

12β
2

1− βr12 + βr3
12 − r2

12

)
(A.22)

V1 − r12

1− V1r12
=
β(1− βr12)

1− βr12
= β (A.23)

The complex exponential term is related to the propagation constant of the material

within the waveguide, as shown in equation A.6. A simple rearrangement is performed

to determine the propagation constant of the material. The addition of the integer m

is used to take account of samples whose phase change is greater than 2π since the

natural log has multiple roots the value m is used to differentiate between them. m

is zero for all samples whose optical thickness is smaller than the wavelength of the

radiation.

β2 = exp(−i4π(γd+m)) where m is an integer (A.24)

ln(β) = −i(2πγd+ 2πm) (A.25)

γ =
i ln(β)− 2πm

2πd
(A.26)

The material’s complex permittivity and permeability are determined from the sam-

ple thickness, d, propagation constant, γ, and the normalised characteristic impedance

of the filled section of the waveguide, Z. Corrections must be made to the expres-

sions which vary depending on the geometry of the waveguide and the field of the

fundamental mode since the normalised characteristic impedance, Z, is compared to

the impedance of the unfilled waveguide section. Below we present the equations to

determine the material parameters for the rectangular waveguide system used in this

study.

The wavelength inside a rectangular waveguide, λg, is different from the free space

wavelength, λ0, due to the quantisation of the fundamental waveguide mode across

the guide cross-section. The quantisation, seen in figure 3.4, adds momentum in the

y-direction such that the momentum of the mode in the direction of propagation is

reduced.
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kx =
√
k2

0 − k2
y (A.27)(

2π

λg

)
=

√(
2π

λ0

)2

−
(

2π

λc

)2

(A.28)

λg =
λ0√

1−
(
λ0
λc

)2
(A.29)

Here λc is the wavelength of the low frequency cutoff of the TE10 mode within the

rectangular waveguide which is equivalent to twice the length of the long side of the

rectangle. The propagation constant of the material is related to the refractive index of

the material filling the waveguide, N , and the wavelength of the TE10 mode propagating

within the waveguide, λg.

γ =
N

λg
(A.30)

Therefore it is possible to determine the refractive index of the material within the

waveguide and by combining the refractive index of the material with its characteristic

impedance the permittivity and permeability may be obtained.

µ = N × Z (A.31)

ε =
N

Z
(A.32)

The weakness in the derivation of the material parameters of the material filling

the waveguide via this method is the knowledge of integer m. If the approximate

values of the material parameters are not known then the value of m will be difficult to

predict. This difficulty can be overcome by measurement of the time taken for a wave

to be transmitted through the unknown material to estimate the refractive index and

therefore the value of m required. These equations have been used to determine the

material properties of various dielectric and magnetic composite materials used within

this thesis, the method for which has been described in section 3.3.
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[60] Garćıa de Abajo, F. and Sáenz, J. Electromagnetic Surface Modes in Struc-

tured Perfect-Conductor Surfaces. Physical Review Letters, 95, 233901 (2005).

7

[61] Maier, S., Andrews, S., Mart́ın-Moreno, L., and Garćıa-Vidal, F. Ter-
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