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Abstract 

A flash flood routing model with artificial neural networks predictions was 

developed for stage profiles forecasting. The artificial neural networks were used to 

predict the 1-3 hour lead time river stages at gauge stations along a river. The 

preditions were taken as interior boundaries in the flash flood routing model for the 

forecast of longitudinal stage profiles, including un-gauged sites of a whole river. The 

flash flood routing model was based on the dynamic wave equations with 

discretization processes of the four-point finite difference method. Five typhoon 

events were applied to calibrate the rainfall-stage model and other three events were 

simulated to verify the model’s capability. The results revealed that the flash flood 

river routing model incorporating with artificial neural networks can provide accurate 

river stages for flood forecasting. 
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1. Introduction 

Flooding is the most frequent natural disaster that causes heavy losses to life and 

property in the world. In Taiwan, tropical storms typically result in disastrous flash 

floods in a short time because of steep terrains and intense rainfall. Experiences 

showed that the combination of structural and non-structural measures can 

significantly reduce the flood risk (Sabino et al., 1999). The flood forecasting and 

warning system based on hydrological and/or hydraulic models plays an important 

role in flood risk management. During flood emergency operations, the managers rely 

on accurate flood forecasting that is analyzed within limited time to take proper 

actions for reducing damages. Hsu et al. (2000) built a flash flood routing model, 

based on the dynamic wave theory of unsteady flow in open channels, and 

successfully forecasted the flood flows in the Tanshui River Basin. 

Incorporating observation data with a flood routing model to improve the 

accuracy of forecasting is a challenging task for hydraulic engineers. Several studies 

have discussed how to apply observed data in the works of real-time river flow 

computation. Ford (2001) established a practical flood-warning decision support 

system (FW-DSS) for Sacramento County in California. The FW-DSS includes 

various modules that can routinely measure the rainfall depths and the water levels, 

transmit the real-time observations to the operation center, execute the flood 

forecasting model, archive the data and display these information. The system can 

also automatically detect the flood threats and report to emergency managers. With 

the remarkable development of computing technology in recent years, the dynamic 

routing models have been widely utilized for flood forecasting (Saavedra et al., 2003). 

Hsu et al. (2003) used real-time observed river stages as the internal boundary 
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conditions to adjust the computed river flow conditions in a flood forecasting model, 

which adopted the least-squares method to improve the model accuracy for solving 

over-determined problems. Later, Hsu et al. (2006) further developed the technique of 

updating time-varying roughness in channels, by using a stochastic-dynamic and 

least-squares method, to obtain better predictions in flood forecasting. Littlewood et al. 

(2007) coupled with the rainfall forecasts to the input of observed raifall to improve 

the predicting accuracy of stream flow.  

The recent advances in artificial intelligence, data mining and computer 

hardware have enhanced computational power to forecast river stages. Campolo et al. 

(1999) developed a neural network model to forecast river stage by using current 

rainfall and stage information. Chang et al. (2002) implemented a real-time recurrent 

learning algorithm in artificial neural networks (ANN) that adopted time variate 

characteristics  in hydrological processes to forecast the stream flows. Rajurkar et al. 

(2004) used a simple linear black box model with ANN for daily flow forecasting 

during flood events. A multilayer feed-forward trained with a back-propagation 

algorithm has been conducted for flow prediction in Morocco (Riad et al., 2004). 

Diamantopoulou et al. (2006) developed a time delay ANN model that adopted 

Kalman’s learning rule to modify weights for forecasting daily flows. Chiang et al. 

(2007) combined gauge observations and satellite-derived precipitation in a recurrent 

neural network model to simulate the hydrologic responses from various rainfalls. 

The data-driven method like ANN restricts that the stages are predictable at the 

gauge sites only. The longitudinal river stage profiles forecasting along rivers are not 

available yet. In Taiwan, many towns situated by rivers are vulnerable to flash 

flooding but no gauge nearby is available for the data-driven forecasting. The aim of 

the study was to forecast the longitudial stage profiles along rivers by adopting the 



Please cite as: Hsu MH, Lin SH, Fu JC, Chung SF, Chen AS. (2010) Longitudinal 

stage profiles forecasting in rivers for flash floods, Journal of Hydrology, 388 (3-4), 

426-437, DOI:10.1016/j.jhydrol.2010.05.028. 

4 

data assimilation technique. We adpoted the ANN stage predictions at gauges as the 

updated interior boundary conditions for stage forecasting in the flash flood routing 

model (FFRM). With the improved internal boundary conditions, the coupled FFRM 

and ANN model (FFRM-ANN) can provide reliable forecasting of stage profiles and 

discharges of a river system, including the gauged and the unmeasured sites along the 

rivers. 

2 Model Descriptions 

2.1 Artificial Neural Network (ANN) 

An ANN is a computational methodology system based on human brain 

structure and functions that solves problems by applying information acquired from 

experience to new problems and case scenarios (Simon, 1999). In recent years, ANN 

provides an alternative approach for forecasting in many research fields. ANN models 

are usually classified as two broad categories, feed-forward (FF) networks and feed-

backward (FB) networks, according to the pattern of data flow of the model input 

information within the architecture. The basic structure of an ANN model consists of 

three layers: the input layer, where the data are introduced to the ANN, one or more 

hidden layers, where the data are processed, and the output layer, where the results of 

ANN are produced (Sudheer, 2002). Each layer consists of a set of nodes that are 

similar to human’s brain neuron, each node in a layer takes all the nodes in the 

previous layers as inputs, performs a calculation process, and provides its output as 

input to all nodes in the next layer. 

The signal is unidirectional without feedback cycles between nodes in a FF 

network (Campolo, 1999). A FF network with an error-back-propagation (EBP) 
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algorithm is commonly used to reduce the error against the observed data. We 

predicted, in the study, river stages at gauge stations along the river using a FF neural 

network, which was organized into three layers with a sigmoid transfer function. Fig. 

1 shows the topology of the FF network with the EBP. The initial weights, the biases, 

and the connection strengths between nodes were assigned as arbitrary small values. 

The weights and the biases gradually converged to optimum values during model 

training progresses that ensured the output values were close enough to the desired 

target outputs. The EBP training algorithm corrected the weights by minimizing the 

total error with the steepest descent. The stopping criteria for the modifying process 

are the sum of squared error and a maximum number of epochs, which implies that 

the error was minimal and the weights were optimal (Riad et al., 2004). 

2.2 Flash Flood Routing Model (FFRM) 

The FFRM is based on the dynamic wave theory using the Saint-Venant 

equations as followed 
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where A is the cross-sectional area [m
2
], H is the stage [m], Q is the discharge [m

3
/s], 

1q  is the lateral inflow per unit channel length  [m
3
/s/m], 2q  is the lateral outflow per 

unit channel length [m
3
/s/m], fS  is the friction slope [-], 

1V  is the longitudinal 

velocity component of lateral inflow [m/s], g is the gravitational acceleration [m/s
2
], t 

is the time [s], and x is the longitudinal distance along the channel [m]. The cross-

sectional area is a function of water depth such that only two flow variables, Q and H, 
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to be solved for above equations. 

Eqs. (1) and (2) are hyperbolic partial differential equations with two 

independent variables Q and H. A numerical solution can be obtained when the initial 

and the boundary conditions are appropriately prescribed. In this study, the upstream 

boundation conditions were from ANN, and the tidal stage was used as the 

downstream boundary condition. The four-point implicit finite-difference 

approximation (Amein and Fang, 1970) is employed to solve Eqs. (1) and (2). During 

the discretization process, the two adjoining cross-sections can be represented in two 

equations with four unknowns for flow variables at future time 
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where C  and M  represent the discretized continuity and momentum equations 

between the  th
 and the (  +1)

th
 cross-sections, respectively. t and (t+1) indicate the 

flow variables at the present-time and advanced-time, respectively. With N cross-

sections, a total of (2N-2) equations with 2N unknowns should be yielded. The 

deficiencies are supplemented by boundary conditions to solve the unknown variables. 

The boundary conditions include the river stages at the most upstream cross sections 

or the discharges from upstream watersheds, and the tide stages at the downstream 

river mouth. Eq. (3) is solved by the Newton-Raphson iterative procedure. 

In the process of data assimilation, the real time river stage observations from specific 

gauge stations are treated as the initial internal boundary conditions in the FFRM. 

Therefore, Eq. (3) is expanded by adding K equations for river stages at gauge stations, 

where K represents the total number of specfic gauge stations. The total number 

(2N+K) of equations is more than the unknowns of flow variables (2N). The equation 
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set becomes an over-determined system, which is solved by the least-squares method 

to find the optimum solution (Hsu et al., 2003). In the iterative procedure for solving 

the flow variables, the current increment of flow variables are expressed as 

1
T T R



           
 

(4) 

where,   is the extended matrix coefficient, R  represents the residual (Hsu et al., 

2003). In the FFRM, the real-time observed water stages are real values that may be 

different from the computed stages at the present-time. Hence, the model have to 

recalculate the flow variables at present time (t) from the previous time (t-1) by using 

the real-time observed water stages as the initial interior boundary conditions rather 

than the iterative computed stages at previous time (t-1) to improve the stage profiles 

forecasting. Fig. 2 illustrates the flood routing procedure. The results from the least-

squares method of dynamic routing provide more accurate initiation for stage 

forecasting. 

2.3 FFRM with interior boundaries from stage predictions of ANN (FFRM-

ANN) 

The above-mentioned FFRM provides a better initiation for data assimilaion. 

But the improvement gradually diminished when forecasting far ahead in time due to 

lack of the predicted stages at gauge stations (Hsu et al. 2003, 2006). The ANN 

algorithms are capable to solve problems by applying information acquired from 

experience to new problems and case scenarios (Haykin, 1999). We developed the 

flash flood routing model with the interior boundaries from stage predictions of ANN 

(FFRM-ANN) that integrates stages prediction with ANN at gauge stations and flash 

flood routing model for river stage profiles forecasting. 
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The FFRM-ANN predicted future river stages at gauge locations by ANN model 

based on current rainfalls and river stages, i.e., the rainfall forecasting over the lead-

time was not considered. The stage predictions from ANN were regarded as the real 

stages at the advance time for adjusting model variables. The flood routing 

recalculated the flow variables at advance time (t+1) from the flow of present-time (t) 

to fit the internal boundary condition during the recalculation procedure. The least-

squares method was used again to find the optimum forecasting of stage profiles. The 

routing proceeded with step by step to the advance time (t+2) and (t+3) in the similar 

way. The FFRM-ANN integrated the FFRM and the ANN algorithm to improve the 

accuracy of stage profile forecastings, which included the flood stages not only at the 

gauge stations but also for the unmeasured sites of the river.   

3. Description of Study Site 

The Tanshui River basin (Fig. 4), located in northern Taiwan, consists of three 

major tributaries: the Dahan River, the Sindian River and the Keelung River. The 

Metropolitan Taipei, with approximate 6 million populations, situates at the 

downstream floodplain of the Tanshui River. The main river channel is 328 km long 

with a catchment area 2,726 km
2
 and the basin-averaged annual precipitation is 3,001 

mm. The short river length and the steep bed slope, ranging from 0.15% to 27%, 

result in short concentration time from the upstream watersheds to the downstream 

floodplains as quick as 3 to 6 hours. 

The damage caused by flooding in Taiwan is US $500 million/year (Yen et al., 

1998). Inundations in the Metropolitan Taipei frequently occur and generate heavy 

losses when typhoons or severe rainstorms strike. The Taipei Flood Mitigation Project 

was initiated in 1982 to build a flood defense system to protect the Metropolitan 
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Taipei to against flooding up to 200-year return period. The major components in the 

project were engineering structures, including levees, a flood diversion channel (the 

Erchong Floodway, Fig. 4), pumping stations, flood control gates, drainage systems, 

and channel improvement. In addition to the hardware constructions, the Water 

Resources Agency (WRA) of the Ministry of Economic Affairs (MOEA) established 

the Tanshui River Flood Forecasting System to mitigate flood damage in 1977. An 

enhanced system that consisted of rainfall forecasting and rainfall-runoff forecasting 

models was developed for real-time river stage forecasting in December 1998 (Yen et 

al., 1998). 

In this study, the computational transects of the FFRM were established by the 

surveyed cross-sectional profiles with 0.5 km intervals along the river. Fig. 4 presents 

the locations of the 235 computational transects. The upstream boundaries were 

Hsinhai Bridge for the Dahan River, Xiulang Bridge for the Sindian River, Bao 

Bridge for the Jingmei River (a tributary of the Sindian River), and Jieshou Bridge for 

the Keelung River. The downstream boundary was the river mouth. Fifteen river 

gauges that measure the river stages and transmit the observations hourly exist in the 

system. The measured river stages were applied to correct the current calculated flow 

conditions in the numerical model. 

4. Training of ANN 

We calibrated and verified the model parameters with the field data collected by 

the WRA. The root mean square error (RMSE) of differences between observed and 

computed stages was utilized for evaluating the model performance.  
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where cH  is the computed water stage [m], 0H  is the observed water stage [m], and n 

is the total number of observed water stage [-]. 

4.1 Input Data and Structure of the Model 

Based on the hourly rainfalls (P) and the river stages (H), this study predicted 

future river statges at gague locations by an ANN-based algorithm. The input vector 

includes rainfalls and river stages at the present time and previous three hours (i.e., t, 

t-1, t-2 and t-3). The output vector represents the river stage predictions for 1-3 hour 

lead time (i.e., t+1, t+2 and t+3). The small catchment area of the case study results in 

short concentration time from upstream watersheds to downstream floodplain such 

that only the rainfalls and the river stages within previous three hours were used to 

construct the ANN model. The ANN algorithm can be represented by the following 

compact form: 

 ANNH X

 

(6) 

Where  1 2 3, ,
T

t t tH H H  H is the output vector of stage predictions at time 

t+1, t+2 and t+3; X  is the input vector with elements 

 , , 1, , ; 0, , ( 1)t k

jX P H j s k r     , which represents the rainfall or stage of 

the predicting station and its upstream station j at time t-k, r is the input time 

dimension (r = 4 used in this study), s is the total number of the upstream rainfall and 

gauge stations. Eq. (6) indicates that the predicted river stages depend on the rainfalls 

and river stages of the predicting sites and its upstream stations of previous three 

hours and current time. 

A trial-and-error procedure was applied to determine the optimum structure, 

including the dimention of input vector and the number of hidden nodes, of each 
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station for the ANN model. 

4.2 ANN calibration and verification 

Eight typhoon events that hit Taiwan between 2004 and 2005, accounting for 

270 hours of rainfall and river stage pairs, were selected for model training. Five of 

these events that included the highest and the lowest of maximun rainfall intensities 

were used to calibrate the ANN model (Table 1). Fig. 3 shows the locations of the 

Tahshui River Basin with 19 rainfall and 15 stage gauges. We analyzed the 

correlation and determined the lag time between the rainfall at rain gauge stations and 

the river stages at hydrologic gauge stations. Taking gauge station B1 as an example, 

the rain gauge stations R1, R2, and R3 are located in the upstream of B1, therefore the 

initial setting of input vector included the  hydologic informations at R1, R2, R3 and 

B1 between present time and three hours before, which was expressed as a vector with 

16 components [(R1)
t-3

, (R1)
t-2

, (R1)
t-1

, (R1)
t
, (R2)

t-3
, (R2)

t-2
, (R2)

t-1
, (R2)

t
, (R3)

t-3
, 

(R3)
t-2

, (R3)
t-1

, (R3)
t
, (B1)

t-3
, (B1)

t-2
, (B1)

t-1
, (B1)

t
]. A trial-and-error procedure was 

applied to determine the optimum structure, including the dimention of input vector 

and the number of hidden nodes, for each station in the ANN model.  The optimized 

structures of ANN model for all stations are listed in Table 2. The dimension of input 

vector, the number of hidden nodes, and the dimension of ouput vector for B1 station 

were 11, 5, and 3, respectively. Out of the 16 components, 11 were selected as the 

input vector and 5 were considered as hidden nodes. The outputs were the stage 

forecasting in next three hours, which can be shown as [(B1)
t+1

, (B1)
t+2

, (B1)
t+3

]. 

Table 3 lists the calibration results of the ANN at the boundary and the interior 

stations of the FFRM. The interior boundary stations, which the input dimension 

included the the rainfall and the observed upstream stages, had better performance 
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than the boundary ones, which used the rainfall only. We further applied the 

calibrated model to three typhoon events for model verification. Table 4 lists the 

verification results that the model performed constitenly for the interior stations, but 

the accuracy dropped for the boundary stations. The predictions for the Bao Bridge 

were the worst among all stations due to the small upstream catchment area, which 

resulted in short concentration time that was less than one hour. 

5. Model Application and Analysis 

The Manning’s roughness coefficient was an important parameter that 

significantly affected the computed river stages in the FFRM. A traditional trial-and-

error method was used to calibrate the coefficient using the field data of four 

historical events of the Tanshui River basin collected by the WRA in four typhoon 

events. Table 5 lists the calibrated Manning’s roughness values for the segments of 

the Tanshui River System. 

The FFRM and ANN models were coupled to forecast the river stages of three 

typhoons, i.e., Aere (2004), Haima (2004) and Haitang (2005). Since the Tanshui 

River is a tidal river, the present-time observed tide stage at the river mouth can be 

taken as the downstream boundary condition. In addition, the summation of the 

astronomical tide and the meteorological tide at the river mouth was specified as the 

3 hours leading downstream boundary condition (Hsu et al., 2000). For the FFRM, 

the boundary conditions were the observed river stages. For the FFRM-ANN, the 

boundary conditions included the current river stages obtained from real-time 

observations and the advance river stages predicted by the ANN algorithm. The 

difference between the results of the FFRM and the FFRM-ANN were also 

compared. 



Please cite as: Hsu MH, Lin SH, Fu JC, Chung SF, Chen AS. (2010) Longitudinal 

stage profiles forecasting in rivers for flash floods, Journal of Hydrology, 388 (3-4), 

426-437, DOI:10.1016/j.jhydrol.2010.05.028. 

13 

Fig. 5 plots the river stage forecasting and observed hydrographs of Typhoon 

Aere at Chungcheng Bridge, Taipei Bridge and Dazhi Bridge. Despite the good 

fitness for the predictions at the Chungcheng Bridge, the FFRM over-estimated the 

stages at the Taipei Bridge and under-estimated the stages at the Dazhi Bridge. The 

RMSEs were more than 1 m for the 3-hr forecasting for the two sites. With the 

improved interior boundary condition using the ANN, the FFRM-ANN predictions 

were much closer to the observed data. Fig. 5 shows the modeling results for 

Typhoon Haima event of the FFRM and the FFRM-ANN predictions at the same 

sites as in Fig. 5. Both models performed better than Typhoon Aere event at Taipei 

Bridge, obviously, due to the tidal cycle dominated the stage variation at Taipei 

Bridge during the event. The FFRM predictions at Dazhi Bridge remained poor with 

more than five times of RMSE as that of the FFRM-ANN, as shown in Fig. 6-(c). 

Fig. 7 illustrates the predictions of the FFRM and the FFRM-ANN at the same sites 

as in Fig. 5 for Typhoon Haitang event. Again, the FFRM-ANN had consistent 

performance for all sites and the FFRM model failed to forecast the stages at Taipei 

Bridge and Dazhi Bridge. 

The results of the above three events also indicated that the FFRM-ANN 

predictions of peak stages and timings matched the observations with less than one 

hour of time lag. The FFRM failed to capture these critical features of the events, 

which are crucial for decision makings to mitigate flood disasters. 

Fig. 8 summarizes the RMSE for the forecast with various lead times of the 

three typhoon events at Dazhi Bridge. For the FFRM, the improvement with real-

time stage correction method gradually diminished when the lead time increased. 

The greater RMSE values for 2-hr and 3-hr ahead of time predictions represented 

that the errors grew as the lead time went far. Besides, the RMSE for the FFRM-
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ANN were close to the ANN model predictions at river gauge stations. Obviously, 

the RMSE of the flood routing by the FFRM-ANN were always lower than the 

predictions calculated by the FFRM. Fig. 9 compares the averaged RMSE of the 

three typhoon events for various lead times at Chungcheng Bridge, Taipei Bridge, 

and Dazhi Bridge. The RMSE apparently dropped in the FFRM-ANN with the ANN 

correction of interior boundary conditions, especially for Taipei Bridge and Dazhi 

Bridge. 

Both the FFRM and the FFRM-ANN can provide the longitudinal stage profiles 

forecasting, not only at gauged sites but also for the un-gauged sites of a whole river 

system. Fig. 10 shows the observed and forecasted longitudinal spatial variations of 

river peak stage along the Tanshui River for Typhoon Aere. The predictions from 

both models at Shizitou and Rukou Weir were close to the observations. 

Nevertheless, the FFRM considerably over-predicted the peak stages at Tudigonbi 

and Taipei Bridge, The forecasting errors at Taipei Bridge were more than 1.5m in 

the FFRM. With the improved interior stage predictions from the ANN, the errors 

declined to less than 0.3m in the FFRM-ANN.  

For Typhoon Haima event, shown as Fig. 11, the FFRM under-estimated the 

stages for the downstream segments and over-predicted for the upstream segments. 

The FFRM-ANN had similar behavior, however, the RMSE were only about 30% of 

the FFRM ones. The peak stage observation and prediction profiles for Typhoon 

Haitang event are compared in Fig. 12. The FFRM-ANN performed superior than 

the FFRM for all gauges. The enhanced predictions at river gauges in the FFRM-

ANN provided more reliable profile forecasting along the rivers. 

The accuracy of the river stage profiles can provide flood warning information 
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along the river other than gauge stations. For example, The Keelung River channel 

width suddenly reduces from  about 350m to 100m at the Chungshan Bridge, where 

has no river gauge at this critical section, as shown in Fig. 3. The FFRM itself was 

not capable of forecasting, but the coupled FFRM-ANN successfully forecasted the 

river stages at locations in between gauge stations. Fig. 13 is the hourly predictions 

of stages with 1, 2 and 3-hr lead time from the FFRM-ANN at Chungshan Bridge for 

Typhoon Aere event. The information successfully helped the water authority to 

predict the flood conditions for emergency operations during typhoons. 

6. Conclusions 

The FFRM-ANN was developed and applied to the Tanshui River System for 

forecasting the longitudinal flood stage profiles. In the FFRM-ANN, the real-time 

stage observations and the ANN predictions at river gauge stations were used as the 

interior boundary conditions for data assimilation. The model parameters were 

calibrated and verified against field measurements of historical typhoon events. The 

agreement between the model predictions and the measurement demonstrated that 

the model had improved the accuracy of subsequent forecasting to provide reliable 

real-time warning information. The modeling results showed that FFRM-ANN 

performed better river stage forecasting at gauge stations than the FFRM, due to the 

interior boundary conditions imposed for the dynamic routing model.  
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Figure captions 

Figure 1. Topology of the feed-forward neural network with the error back-

propagation. 

Figure 2. The procedures for flood routing and forecasting calculations. 

Figure 3. Locations of rain gauges, stage gauges and boundary stations of the Tanshui 

River system. 

Figure 4. Layout of the Tanshui River system. 

Figure 5. The forecasted river stage hydrographs at the Chungcheng, Taipei, and 

Dazhi Bridge for Typhoon Aere event. 

Figure 6. The forecasted river stage hydrographs at the Chungcheng, Taipei, and 

Dazhi Bridge for Typhoon Haima event. 

Figure 7. The forecasted river stage hydrographs at the Chungcheng, Taipei, and 

Dazhi Bridge for Typhoon Haitang event. 

Figure 8. Model evaluation results for Typhoon Aere, Haima and Haitang events at 

Dazhi Bridge. 

Figure 9. The mean RMSE at Chungcheng, Taipei and Dazhi Bridges for Typhoon 

Aere, Haima and Haitang evetns. 

Figure 10. The forecasted peak stage profiles during Typhoon Aere event in the 

Tanshui River. 

Figure 11. The forecasted peak stage profiles during Typhoon Haima event in the 

Tanshui River. 

Figure 12. The forecasted peak stage profiles during Typhoon Haitang event in the 

Tanshui River. 

Figure 13. The forecasted stages at the Chungshan Bridge during Typhoon Aere event. 
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Table 1. Typhoon events information for ANN model training 

Training Typhoon Event 
Time of start 

(LTC) 

Time of end 

(LTC) 

Maximum  rainfall 

intensity (mm/hr) 

Number of 

hours 

Calibration 

Nockten 2004/10/24 9:00 2004/10/25 21:00 70.0 36 

Matsa 2005/08/04 10:00 2005/08/05 21:00 32.0 35 

Talim 2005/08/31 9:00 2005/09/01 10:00 59.0 25 

Khanun 2005/09/10 15:00 2005/09/11 05:00 36.0 14 

Longwang 2005/10/01 12:00 2005/10/02 13:00 53.0 25 

Verification 

Aere 2004/08/23 9:00 2004/08/25 11:00 53.0 50 

Haima 2004/09/11 02:00 2004/09/12 20:00 69.0 42 

Haitang 2005/07/17 02:00 2005/07/18 21:00 44.0 43 

Total hourly values of rainfall and river stage pairs 270 
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Table 2. The input data of the ANN algorithm 

Type Output gauge station Input gauge station and time dimension 
Structure of 

ANN  

Boundary 

station 

(B1)
t+1

, (B1)
t+2

, (B1)
t+3

 

(B1:Hsinhai Bridge) 

(R1)
t-2

, (R1)
t-1

, (R1)
t
, (R2)

t-2
, (R2)

t-1
, (R2)

t
, 

(R3)
t-2

, (R3)
t-1

, (R3)
t
, (B1)

t-1
, (B1)

t
, 11-5-3 

(B2)
t+1

, (B2)
t+2

, (B2)
t+3

 

(B2:Xiulang Bridge) 

(R7)
t-2

, (R7)
t-1

, (R7)
t
, (R8)

t-2
, (R8)

t-1
, (R8)

t
, 

(R9)
t-2

, (R9)
t-1

, (R9)
t
, (R10)

t-1
, (R10)

t
, (B2)

t-1
, (B2)

t
, 13-6-3 

(B3)
t+1

, (B3)
t+2

, (B3)
t+3

 

(B3:Bao Bridge) 

(R4)
t-2

, (R4)
t-1

, (R4)
t
, (R5)

t-2
, (R5)

t-1
, (R5)

t
, 

(R6)
t-2

, (R6)
t-1

, (R6)
t
, (B3)

t-1
, (B3)

t
, 11-7-3 

(B4)
t+1

, (B4)
t+2

, (B4)
t+3

 

(B4:Jieshou Bridge) 

(R11)
t-2

, (R11)
t-1

, (R11)
t
, (R12)

t-2
, (R12)

t-1
, (R12)

t
, 

(B4)
t-1

, (B4)
t
, 8-7-3 

Interior 

station 

(H1)
t+1

, (H1)
t+2

, (H1)
t+3

 

(H1:Chungcheng Bridge) 
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t
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t
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t
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t
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t
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t
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t
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t-1
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t
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t-1
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t
, 
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t-1
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t
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t+2
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t
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t
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t
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t-1
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t
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, (H1)
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t
, (H2)

t-1
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t
, 
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, (H3)
t
, (H4)

t-1
, (H4)

t
, (H5)

t-1
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t
, 

22-18-3 

(H6)
t+1

, (H6)
t+2

, (H6)
t+3

 

(H6:Wudu) 

(R11)
t-2

, (R11)
t-1

, (R11)
t
, (R12)

t-1
, (R12)

t
, (R18)

t
, 

(B4)
t-1

, (B4)
t
, (H6)

t-1
, (H6)

t
, 10-8-3 

(H7)
t+1

, (H7)
t+2
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t+3

 

(H7:Zhang-an Bridge) 
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(H8:Shehou Bridge) 

(R11)
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t
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t
, 
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t
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t
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t
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t
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t-1
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t
,   13-10-3 

(H9)
t+1
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t+2

, (H9)
t+3

 

(H9:Da-zhi Bridge) 

(R11)
t-3

, (R11)
t-2

, (R11)
t-1
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t
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t-2
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t-1
, (H9)

t
, 

18-14-3 

(H10)
t+1
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t+2

,(H10)
t+3

 

(H10:Bailing Bridge) 
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t
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t-1
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t
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(H9)
t
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t-1
, (H10)

t
,  
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R5－Rainfall of rain-gauge station 5;  H6－River stage of hydrologic gauge station number 6; 

B3－River stage of boundary number 3;   

superscript-(t)－ real-time;  superscript-(t-1)－ previous one hour, and so on. 

11-5-3－means the dimension of input vector - the number of hidden nodes- the dimension of 

output vector. 
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Table 3. Statistical accuracy measures of ANN (calibration) 

Type Station 
RMSE (m) 

1-hr forecast 2-hr forecast 3-hr forecast 

Boundary station 

 of the FFRM 

Hsinhai Bridge 0.173 0.274 0.411 

Xiulang Bridge 0.106 0.143 0.212 

Bao Bridge 0.156 0.223 0.375 

Jieshou Bridge 0.133 0.188 0.262 

Mean 0.142 0.207 0.315 

Interior station 

 of the FFRM 

Chungcheng Bridge 0.106 0.192 0.251 

Rukou Weir 0.087 0.150 0.215 

Taipei Bridge 0.110 0.176 0.223 

Shizitou 0.068 0.094 0.125 

Tudigonbi 0.092 0.115 0.120 

Wudu 0.138 0.214 0.367 

Zhangan Bridge 0.098 0.150 0.253 

Shehou Bridge 0.159 0.220 0.310 

Dazhi Bridge 0.115 0.174 0.211 

Bailing Bridge 0.095 0.122 0.142 

Mean 0.107 0.161 0.222 
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Table 4. Statistical accuracy measures of ANN (verification) 

Type Station 
RMSE (m) 

1-hr forecast 2-hr forecast 3-hr forecast 

Boundary station  

of the FFRM 

Hsinhai Bridge 0.231  0.313  0.447  

Xiulang Bridge 0.227  0.318  0.459  

Bao Bridge 0.380  0.722  0.975  

Jieshou Bridge 0.200  0.316  0.422  

Mean 0.259 0.417 0.576 

Interior station 

 of the FFRM 

Chungcheng Bridge 0.094  0.160  0.208  

Rukou Weir 0.087  0.162  0.225  

Taipei Bridge 0.088  0.143  0.183  

Shizitou 0.068  0.086  0.113  

Tudigonbi 0.075  0.087  0.094  

Wudu 0.157  0.261  0.437  

Zhangan Bridge 0.108  0.190  0.334  

Shehou Bridge 0.175  0.243  0.361  

Dazhi Bridge 0.113  0.164  0.194  

Bailing Bridge 0.092  0.106  0.120  

Mean 0.106 0.160 0.227 
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Table 5. Roughness values calibrated by the four typhoon events 

River segment 

Manning’s 

roughness 

coefficient 

River segment 

Manning’s 

roughness 

coefficient 

Hsinhai Bridge – 

Rukou weir 
0.033 

Jieshou Bridge – 

Wudu 
0.045 

Xiulang – 

Chungcheng Bridge 
0.033 

Wudu – 

Zhangan Bridge 
0.045 

Bao – Chungcheng 

Bridge 
0.035 

Zhangan – 

Shehou Bridge 
0.040 

Chungcheng 

Bridge – Rukou weir 
0.019 

Shehou – Dazhi 

Bridge 
0.035 

Erchong Floodway 0.033 
Dazhi – Bailing 

Bridge 
0.035 

Rukou weir – Taipei 

Bridge 
0.030 

Bailing Bridge – 

Shizitou 
0.025 

Taipei Bridge – 

Shizitou 
0.029 

Shizitou – river 

mouth 
0.025 
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Figure 1. Topology of the feed-forward neural network with the error back-propagation.
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Figure 2. The procedures for flood routing and forecasting calculations. 
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Figure 3. Locations of rain gauges, stage gauges and boundary stations of the Tanshui River system. 
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Figure 4. Layout of the Tanshui River system. 
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Figure 5. The forecasted river stage hydrographs at the Chungcheng, Taipei, and Dazhi Bridge for 

Typhoon Aere event. 
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Figure 6. The forecasted river stage hydrographs at the Chungcheng, Taipei, and Dazhi Bridge for 

Typhoon Haima event. 

◇ RMSE = 0.125 m

× RMSE = 0.065 m              

◇ RMSE = 0.287 m

× RMSE = 0.124 m              

◇ RMSE = 0.237 m

× RMSE = 0.083 m              

◇ RMSE = 0.185 m

× RMSE = 0.179 m             

◇ RMSE = 0.333 m

× RMSE = 0.056 m              

◇ RMSE = 0.612 m

× RMSE = 0.121 m              



Please cite as: Hsu MH, Lin SH, Fu JC, Chung SF, Chen AS. (2010) Longitudinal stage profiles 

forecasting in rivers for flash floods, Journal of Hydrology, 388 (3-4), 426-437, 

DOI:10.1016/j.jhydrol.2010.05.028. 

30 

0

2

4

6

0 5 10 15 20

1-hr forecast

Time (hr)

S
ta

g
e 

(m
)

 

0

2

4

6

0 5 10 15 20

3-hr forecast

Time (hr)

S
ta

g
e 

(m
)

 

(a) Chungcheng Bridge 

-2

0

2

4

0 5 10 15 20

1-hr forecast

Time (hr)

S
ta

g
e 

(m
)

 

-2

0

2

4

0 5 10 15 20

3-hr forecast

Time (hr)

S
ta

g
e 

(m
)

 

(b) Taipei Bridge 

-1

1

3

0 5 10 15 20

1-hr forecast

Time (hr)

S
ta

g
e 

(m
)

 

-1

1

3

0 5 10 15 20

3-hr forecast

Time (hr)

S
ta

g
e 

(m
)

 

(c ) Dazhi Bridge 

 

Observed            ◇ FFRM          × FFRM-ANN                    Observed            ◇ FFRM          × FFRM-ANN                    
 

Figure 7. The forecasted river stage hydrographs at the Chungcheng, Taipei, and Dazhi Bridge for 

Typhoon Haitang event.
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Figure 8.Model evaluation results for Typhoon Aere, Haima and Haitang events at Dazhi Bridge. 
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Figure 9. The mean RMSE at Chungcheng, Taipei and Dazhi Bridges for Typhoon Aere, Haima and Haitang evetns. 
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Figure 10. The forecasted peak stage profiles during Typhoon Aere event in the Tanshui River. 
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Figure 11. The forecasted peak stage profiles during Typhoon Haima event in the Tanshui River. 
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Figure 12. The forecasted peak stage profiles during Typhoon Haitang event in the Tanshui River. 
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Figure 13.The forecasted stages at the Chungshan Bridge during  typhoon Aere event. 

 

 


