UNIVERSITI PUTRA MALAYSIA

OPTICAL NONLINEARITIES AND THERMAL DIFFUSIVITY OF Ag
AND Au NANOFLUIDS

ESMAEIL SHAHRIARI

FS 2011 4
OPTICAL NONLINEARITIES AND THERMAL DIFFUSIVITY OF Ag AND Au NANOFLOUIDS

By

ESMAEIL SHAHRIARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

February 2011
DEDICATION

This thesis is dedicated to my immediate family, my daughter, my son and my wife who is convinced that she deserves to accept only the best challenges herself to give the best. I would like to thank my parents for their love and support.
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of requirement for degree of Doctor of Philosophy

OPTICAL NONLINEARITIES AND THERMAL DIFFUSIVITY OF Ag AND Au NANOFLUIDS

By

ESMAEIL SHAHRIARI

February 2011

Chairman: Professor Wan Mahmood Mat Yunus, PhD
Faculty: Science

In this study, nonlinear refractive index and nonlinear absorption of Ag nanometal polyvinylpyrrolidone (PVP), Au/PVP, and Au in polyvinyl alcohol (PVA) prepared by γ-radiation method were investigated using a single beam Z-scan technique. We measured the nonlinear refraction coefficient of silver nanofluid in concentrations ranging from 1.170×10⁻³ to 5.885×10⁻³ M and in sizes ranging from 17.8 to 64.1 nm. We found the nonlinear refractive index is in the range of -4.18×10⁻⁸ to -9.57×10⁻⁸ cm²/W. This nonlinear effect increases as the concentration increases. A nonlinear relationship was obtained between nonlinear refractive index and particle size. The nonlinear absorption coefficient of Ag nanofluid at concentration of 4.71×10⁻³ M and three different sizes obtained to be 5.8×10⁻³, 4.5×10⁻³ and 3.2×10⁻³ cm/W. The results show that the particle size gives a significant effect to the nonlinear absorption coefficient. Nonlinear refractive index and nonlinear absorption of Au
nanoparticle suspended in PVA solution at the range of concentration 1.471×10^{-4} to 7.063×10^{-4} M corresponding to particle size ranging from 7.0 to 58.0 nm was measured by using Z-scan technique. The Au nanofluid shows a good third-order nonlinear response. The sign of nonlinear refractive index is negative and the magnitude is in the range of -3.4×10^{-8} to -2.4×10^{-7} cm2/W. This nonlinear effect is found to increase with the increasing of particle sizes. These results show that the Au/PVA nanofluid give significant values of nonlinear refractive index, thus it could be a good candidate for optical devices. The nonlinear optical characteristic of Au nanoparticle suspended in PVP solution at the range of concentration 2.354×10^{-4} to 2.354×10^{-3} M corresponding to particle size of 4.0 to 48.2 nm was also studied by using Z-scan technique. The nonlinear refractive index value is in the range of -4.34×10^{-8} to -1.06×10^{-6} cm2/W. The nonlinear refractive index was found to increase with the increasing of concentration and particle sizes. All samples show the self-defocusing phenomenon.

A dual beam mode-mismatched thermal lens method was employed to investigate the dependence of thermal diffusivity of Ag/PVP, Au/PVA, and Au/PVP nanofluids on nanoparticles sizes and concentration. Thermal diffusivity of Ag/PVP nanofluids at concentration range of 1.170×10^{-3} to 5.885×10^{-3} M with particle size from 17.8 to 64.1 nm was found to be in the range of 1.22×10^{-3} to 2.87×10^{-3} cm2/s. We found that thermal diffusivity of Ag/PVP nonlinearly increased with the increasing particle sizes and linearly increased with increasing the concentration of nanoparticles. Thermal diffusivity of Au/PVA nanofluids in the range of concentration 1.471×10^{-4} to 5.886×10^{-4} M and particle size ranging 7.0 to 41.2 nm was also measured and the values was ranging from 1.40×10^{-3} to 3.49×10^{-3} cm2/s. The thermal diffusivity
increased systematically with concentration as increasing the doses. However, thermal diffusivity as a function of particle size increased unsystematically with increasing the irradiation dose. Thermal diffusivity of Au/PVP at two different concentrations, 4.708×10^{-4} M (particle size ranging from 13.0-40.3 nm) and 5.886×10^{-4} M (particle size ranging from 15.5-48.2 nm) has been measured and the value varied from 3.04×10^{-3} to 4.84×10^{-3} cm2/s. In this case, the results show that thermal diffusivity of Au/PVP nanofluids increases with increasing the particle size.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

CIRI TAKLINEAR OPTIKAL DAN PERESAPAN HABA OLEH Ag DAN Au NANOBENDALIR

Oleh

ESMAEIL SHAHRIRI

Februari 2011

Pengerusi: Profesor Wan Mahmood Mat Yunus, PhD

Fakulti: Sains

Di dalam kajian ini, indeks pembiasan taklinear dan penyerapan taklinear bagi nano-logam Ag polyvinylpyrrolidone (PVP), Au/PVP, dan nano-logam Au dalam polyvinyl alcohol (PVA) yang disediakan melalui kaedah radiasi-γ diselidiki menggunakan teknik imbasan-Z alur tunggal. Kami mengukur pemalar pembiasan taklinear nano-bendalir perak dalam kepekatan-kepekatan berjulat antara 1.170×10^{-3} hingga 5.885×10^{-3} M dan saiz berjulat daripada 17.8 hingga 64.1 nm. Kami mendapati indeks pembiasan taklinear adalah berjulat antara -4.18×10^{-8} hingga -9.57×10^{-8} cm²/W. Kesan taklinear ini meningkat dengan peningkatan kepekatan. Hubungan taklinear ini didapati antara indeks pembiasan taklinear dan saiz zarah. Pemalar penyerapan taklinear nano-bendalir Ag pada kepekatan 4.71×10^{-3} M dan tiga saiz berlainan diperolehi adalah 5.8×10^{-3}, 4.5×10^{-3} dan 3.2×10^{-3} cm²/W.
Keputusan ini menunjukkan bahawa saiz zarah memberikan kesan signifikan terhadap pemalar penyerapan taklinear. Indeks pembiasan taklinear dan penyerapan taklinear bagi nano-zarah Au terampai di dalam larutan PVA pada julat kepekatan \(1.471 \times 10^{-4}\) hingga \(7.063 \times 10^{-4}\) Ms bergantung kepada saiz zarah berjulat daripada 7.0 hingga 58.0 nm diukur menggunakan teknik imbasan-Z. Nano-bendalir Au menunjukkan respon taklinear tertib-ketiga yang baik. Tanda indeks pembiasan taklinear adalah negatif dan magnitud adalah dalam julat antara \(-3.4 \times 10^{-8}\) hingga \(-2.4 \times 10^{-7}\) cm\(^2\)/W. Kesan taklinear dijumpai meningkat dengan pertambahan saiz zarah. Keputusan-keputusan ini menunjukkan bahawa nano-bendalir Au/PVA memberikan nilai-nilai signifikan bagi indeks pembiasan taklinear, lalu memungkinkannya sebagai calon baik untuk peranti-peranti optik. Pencirian taklinear optik bagi nano-zarah Au terampai di dalam cecair PVP pada julat kepekatan \(2.354 \times 10^{-4}\) hingga \(2.354 \times 10^{-3}\) M bergantung kepada saiz zarah daripada 4.0 hingga 48.2 nm telah diukur menggunakan teknik imbasan-Z. Nilai indeks pembiasan taklinear adalah berjulat antara \(-4.34 \times 10^{-8}\) hingga \(-1.06 \times 10^{-6}\) cm\(^2\)/W. Indeks pembiasan taklinear dijumpai meningkat dengan pertambahan kepekatan dan saiz zarah. Semua sampel menunjukkan fenomena swa-takfokusan.

Kaedah kanta terma mod-ketakserasian dua alur digunakan untuk menyiasat kebergantungan resapan terma bagi nano-bendalir Ag/PVP, Au/PVA, dan Au/PVP ke atas pelbagai saiz nano-zarah dan kepekatan. Resapan terma bagi nano-bendalir Ag/PVP pada julat kepekatan antara \(1.170 \times 10^{-3}\) hingga \(5.885 \times 10^{-3}\) M dengan saiz zarah dari 17.8 hingga 64.1 nm ditemui berada dalam julat \(1.22 \times 10^{-3}\) hingga \(2.87 \times 10^{-3}\) cm\(^2\)/s. Kami mendapati bahawa resapan terma bagi Ag/PVP meningkat secara tidak linear dengan pertambahan saiz zarah dan meningkat secara linear
dengan pertambahan kepekatan nano-zarah. Resapan terma untuk nano-bendalir Au/PVA dalam julat kepekatan antara 1.471×10⁻⁴ hingga 5.886×10⁻⁴ M dengan saiz zarah berjulat 7.0 hingga 41.2 nm juga diukur dan nilai-nilai berada dalam julat dari 1.40×10⁻³ hingga 3.49×10⁻³ cm²/s. Resapan terma meningkat secara sistematik dengan kepekatan apabila dos meningkat. Akan tetapi, resapan terma sebagai fungsi pada saiz zarah meningkat secara tidak sistematik dengan peningkatan dos radiasi. Resapan terma bagi Au/PVP pada dua kepekatan berbeza, 4.708×10⁻⁴ M (saiz zarah berjulat antara 3.0-40.3 nm) dan 5.886×10⁻⁴ M (saiz zarah berjulat antara 15.5-48.2 nm) telah pun diukur dan nilainya pelbagai dari 3.04×10⁻³ hingga 4.84×10⁻³ cm²/s. Dalam kes ini, keputusan-keputusan menunjukkan bahawa resapan terma nano-bendalir Au/PVP meningkat dengan pertambahan saiz zarah.
ACKNOWLEDGEMENTS

I would truly like to thank my supervisor, Professor Dr. W. Mahmood, for providing a great environment in which to complete my graduate research. Despite his very busy schedule, he made every effort possible to provide me with all the guidance I may have needed.

The whole of the work presented in this thesis was the result of a truly collaborative effort. I would like to thank members my committee, Professor Dr. Mohd Maarof Moksin and Associate Professor Dr. Zainal Abidin Talib for their assistance in duration of my research.

I would like to express my sincere thanks to the Malaysia Government and for providing me with the financial support through GRA scheme during my study, which enable me to undertake the work.

I also wish to express my appreciation towards Professor Dr. Elias Saion for providing the samples that were used in my research and for the much helpful information.

Finally, there are no words to express my appreciation for the love and support of my family throughout my graduate school experience.
This thesis was submitted to the senate of Universiti Putra Malyasia and has been acceptance fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the supervisory Committee were as follows:

Wan Mahmood Mat Yunus, PhD
Professor
Faculty of Science
Universiti of Putra Malaysia
(Chairman)

Zainal Abidin Talib, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Cosupervisor)

Mohd Maarof Moksin H.A., PhD
Professor
Malaysian Nuclear Agency (MNA)
(Cosupervisor)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 11 April 2011
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

ESMAEIL SHAHRIARI
Date: 17 February 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 Nonlinear optics
 1.1.1 Nonlinear Refraction
 1.1.2 Nonlinear Absorption
 1.2 Z-scan Method
 1.3 Thermal Lens Technique Photothermal Spectroscopy
 1.4 Gold and Silver Nanoparticles
 1.5 Problem Statement
 1.6 Objective of the Present Study
 1.7 Outline of the Thesis
 1

2. **LITERATURE REVIEW**
 2.1 Nonlinear Materials
 2.2 Metal Nanoparticles
 2.3 Synthesis of Nanoparticles
 2.4 Synthetic Methods for Preparation of Colloidal Transition Metals
 2.5 Z-scans Measurement on Materials
 2.6 Thermal Lens Measurement on Materials
 13

3. **THEORY**
 3.1 Induced Polarization
 3.2 Interaction of Light with Matter
 3.3 Theoretical Analysis of Z-scan Method
 3.4 Gaussian Decomposition Method
 3.5 Z-Scan Characteristic
 3.6 Relation between Z-scan Signal and Induced Phase Change
 3.7 Nonlinear Absorption
 3.8 Thermal Lens Theory
 28
3.8.1 Theory of Thermal Lens
3.8.2 Temperature Gradient
3.8.3 Refractive Index Gradient and Phase Shift of the Probe Beam
3.8.4 Propagation of the Probe Beam

4 METHODOLOGY
4.1 Introduction
4.2 Z-scan Experimental Set up
 4.2.1 Z-scan Data Acquisition Systems
 4.2.2 Nonlinear Refraction and Absorption Coefficient Measurements
4.3 Thermal Lens Experimental Set up
 4.3.1 The Thermal Lens Experimental Procedure
 4.3.2 The Thermal Diffusivity Measurement
4.4 Ag Nanoparticles Samples
4.5 Au Nanoparticles Samples
4.6 Sample Characterizations

5 RESULTS AND DISCUSSION
5.1 Introductions
5.2 Preliminary Measurement of Nonlinear optical properties of Au and Ag Nanofluid
5.3 Thermal Induced Nonlinear Refraction Coefficient
5.4 The Effect of Dose on Nonlinear Refraction Coefficient of Ag Nanofluids Measured for Five Different Concentrations
5.5 Nonlinear Refraction Coefficient of Ag/PVP Nanofluids Measured Using Z-scan Technique for Particle Size Ranging from 17.8 to 25.0 nm
5.6 Nonlinear Refraction Coefficient of Ag/PVP Nanofluids Measured Using Z-scan Technique for Particle size Ranging from 19.6 to 64.1 nm
5.7 Z-Scan Determination of Two-Photon Absorption in Ag/PVP Nanofluids
 5.7.1 Nonlinear Absorption Measurements
 5.7.2 Optical Limiting Measurements
5.8 Effect of Particle Size on Nonlinear Refraction and Absorption of Ag/PVP Nanofluids
5.9 Z-scan measurement of Au nanofluids
5.10 The Effect of Dose on nanoparticle size of Au Nanofluids in PVA
5.11 The Effect of Dose on Particle Size of Au Nanofluids in PVP
5.12 Effect of Au Nanoparticles Concentration in PVA and PVP
5.13	Effect of Concentration of Particle Size on Nonlinear Refraction of Au/PVP Samples Prepared at 40 kGy Radiation	116
5.14	Size Dependent on Nonlinear Refractive Index in Au/PVA Nanofluids	124
5.15	Size Effect of Au Nanofluid in PVP Solution on Nonlinear Refractive Index	127
5.16	Size Effect of Au/PVA Nanofluid at Concentration of 1.471×10^{-4} M	128
5.17	Thermal Lens Measurements	136
5.18	The Concentration Dependence of the Thermal Diffusivity for Ag/PVP Nanofluids	138
5.19	The Size Dependence of the Thermal Diffusivity for Ag/PVP Nanofluids	140
5.20	Size Dependence of Thermal Diffusivity of Ag/PVP Nanofluid at Concentration of 3.352×10^{-3} M	141
5.21	Size Dependence of Thermal Diffusivity and Nonlinear Refractive Index of Ag/PVP Nanofluid at Concentration of 5.885×10^{-3} M	148
5.22	The Concentration Dependence of the Thermal Diffusivity for Au/PVA Nanofluids	153
5.23	The effect of Nanoparticle Size on Thermal Diffusivity of Au/PVA nanofluids at Concentration of 2.943×10^{-4} M	155
5.24	The effect of Nanoparticle Size on Thermal Diffusivity of Au/PVA nanofluids at Concentration of 1.471×10^{-4} M	159
5.25	The effect of Nanoparticle Size on Thermal Diffusivity of Au/PVA nanofluids at Concentrations of 4.414×10^{-4} M and 5.886×10^{-4} M	163
5.26	The effect of Nanoparticle Size on Thermal Diffusivity of Au/PVP nanofluids	165

6 Conclusion

REFERENCES

LIST OF PUBLICATIONS

SUBMITTED PAPERS

BIODATA OF STUDENT