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Abstract 
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whom he is privately informed. The main result shows that for generic beliefs efficiency 
can be sustained in a sequential equilibrium in which strategies are independent of the 
players’ beliefs about the monitoring structure. Stronger results are obtained when 
players are arbitrarily patient and payoffs are evaluated according to Banach-Mazur 
limits, and when players are impatient and only acyclic monitoring structures are 
allowed. 
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1 Introduction

In many strategic environments, interaction is local and segmented. Competing neigh-

borhood stores by and large serve different yet overlapping sets of customers, the be-

havior of the residents of an apartment block affects their contiguous neighbors to a

larger extent than neighbors in a different block, a nation’s foreign or domestic policy

typically generates larger externalities for neighboring nations than for remote ones.

The objective of this paper is to study infinitely repeated two-action games with

local interaction and information, and to characterize the effi cient equilibria. Our ap-

proach is very general. The setup consists of a finite number of players who choose in

every period whether to cooperate or defect. A graph that represents the monitoring

structure is realized at the beginning of the game. Each player is privately informed of

his neighborhood, namely the subset of players with whom he will interact in bilateral

relationships for an infinite number of periods, but receives no information as to other

players’neighborhoods. A player cannot discriminate among his neighbors by choosing

different actions, that is, a player’s stage-game action applies to all bilateral relation-

ships in his neighborhood. All the players play the same game in all neighborhoods.

We will show that, for suffi ciently high discount rates and generic beliefs about

the monitoring structure, all symmetric games admit sequential equilibria in which

the effi cient stage-game outcome is played in every period. Moreover, the equilibrium

strategies are robust with respect the players’beliefs. The diffi culty in the construc-

tion of equilibrium strategies that support effi ciency when the players’discount rate

is smaller than one is the preservation of incentive compatibility after some particular

histories of play. When defections spread through a networks, two main complications

are present. The first occurs when a player expects future defection from a particular

direction. In a cycle, for example, when a player does not respond to defections, he

may expect future defections from the opposite direction caused by players who are

responding to defections. This player’s short term incentives depend on the timing and

on the number of future defections that he expects. We will circumvent this diffi culty

via the construction of consistent beliefs that attach zero probability this occurrence.

The assumption that priors are non generic will be essential for this task. The second

complication arises when a player has faced a large number of defection to which he has

failed to respond. On the one hand, matching the number of defections of the opponent

in the future may not be incentive compatible, say when this player is currently achiev-

ing effi cient payoffs with a large number of different neighbors. On the other hand, not

matching the number of defections of the opponent may give rise to the circumstances

outlined in the first type of complications, that is, this player may then expect future

defections reaching him from a different direction. The former hurdle will be circum-
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vented by bounding the length of punishments and the latter, as before, constructing

appropriate consistent beliefs.

The above diffi culties do not arise when players are patient or network cycles are

rules out. Indeed, stronger results are obtained for the case of limit discounting in which

payoffs are evaluated according to Banach-Mazur limits. We will show that effi ciency

is resilient to histories of defections. In particular, there exists a sequential equilibrium

such that, after any finite sequence of defections, paths eventually converge to an infinite

play of effi cient actions in all neighborhoods. A similar result is obtained for discount

rates below one when only acyclic monitoring structures are allowed.

Although our formal analysis is restricted to symmetric games, the above equilibria

are robust with respect to heterogeneity in payoffs and discount rates, and with respect

to uncertainty in payoffs and population size, as long as the ordinal properties of the

stage games are maintained across the players. We conclude the analysis showing that,

when payoffs and discount rates are homogeneous across players, effi ciency is obtained

in the Prisoner’s Dilemma for all possible beliefs, including degenerate ones.

This paper fits within the literature on community enforcement in repeated games

pioneered by Kandori (1992) and Ellison (1994). Several subsequent contributions have

focused on sustaining full cooperation as the players become arbitrarily patient. These

include Ahn (1997), Ali and Miller (2008), Bloch, Genicot, and Ray (2008), Deb (2009),

Fainmesser (2010), Fainmesser and Goldberg (2011), Jackson et al (2010), Kinateder

(2008), Lippert and Spagnolo (2008), Mihm, Toth and Lang (2009), Takahashi (2008),

and Vega-Redondo (2006). Most of these studies invoke strong assumptions on the

monitoring structure and the symmetry of the environment. The main comparative

advantages of our paper consist in the generality of our framework and in the formula-

tion of equilibrium strategies that are sequentially rational for generic profiles of beliefs

over the monitoring structure.

Cho (2010), (2011), Xue (2004) and Wolitzki (2011) consider monitoring environ-

ments closely related to ours but focus their analysis on Prisoner’s Dilemma payoffs.

Cho (2010) considers acyclical networks and allows neighbors to communicate. Cho

(2011) shows the existence of a sequential equilibrium in which players cooperate in

every period and cooperation eventually resumes after deviations if public randomiza-

tion is allowed. Although the monitoring structure in Cho (2011) is common knowledge,

the proof of our last result on the Prisoner’s Dilemma is extremely similar. Xue (2004)

restricts the analysis to linear networks. Wolitzki (2011) investigates the maximal level

of cooperation that can be enforced for fixed discount rates in a public good game and

assumes that players learn the global monitoring structure at the end of each period.

The next section presents the setup and defines the relevant equilibrium properties.
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Sections 3 considers games in which players are arbitrarily patient and proves the ex-

istence of cooperative equilibria. Such equilibria are proven to be independent of the

players’beliefs on the monitoring structure, and to satisfy a desirable notion of stability

and several other robustness properties. Section 4 considers games with impatient play-

ers and shows how the results extend under very mild assumptions on the admissible

beliefs over monitoring structure. Section 5 summarizes the results and concludes the

paper.

2 Setup And Equilibrium Properties

We first introduce the setup and the information structure. Then, we proceed to define

the solution concept and equilibrium properties.

2.1 The Stage Game

Consider a game, the stage game, played by a set N of n players in which any player i

interacts with a subset of players Ni of size ni, which we call the neighborhood of player

i. We assume that j ∈ Ni if and only if i ∈ Nj. This structure of interaction defines an

undirected graph (N,G) in which ij ∈ G if and only if j ∈ Ni. We shall refer to G as

to the information network. Define a path to be an m tuple of players (j1, .., , jm) such

that jk+1 ∈ Njk , k = 1, 2...,m− 1. If jm = j1, a path is a cycle. Given a neighborhood

Ni for player i, let Γ (Ni) be the information networks in which player i’s neighborhood

is Ni.

Players are privately informed about their neighborhood. In particular, the beliefs

of player i regarding the information network, conditional upon observing his neigh-

borhood, are derived from a common prior distribution f over the set of information

networks.1 We will say that a prior distribution f is admissible if, for any i ∈ N and

M ⊆ N\{i}, f (G) > 0 for some G for which Ni = M . To ensure that posterior beliefs

are well defined, we will assume that priors are admissible.

The set of actions of player i is denoted by Ai. It consists of only two actions

labeled {C,D}. Throughout, we will refer to action C as cooperation and to action

D as defection. A player must choose the same action for all his neighbors, that is,

a player cannot discriminate across neighbors and his action is played in his entire

neighborhood. Given a subsetM of players, let AM denote ×j∈MAj and aM an element

of AM . We will often use −i to denote N\{i}. The payoff of any player is separable
across neighbors’actions. Let ηij define the emphasis of player i in the relationship

1The assumption that priors are common is inessential.
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with player j. We assume that ηij > 0 for any ij, i 6= j. The stage game payoff of

player i is

vi(ai, aNi) =
∑

j∈Ni ηijuij(ai, aj)

where uij(ai, aj), the payoff of player i in the relationship ij ∈ G, is given by

i \ j C D

C 1 −l
D 1 + g 0

We adopt the convention that payoffs are equal zero when Ni is empty. For simplicity,

the above payoff matrix is common to all bilateral relationships. We will clarify along

the analysis when this assumption can be dispensed with.

We restrict attention to stage games payoffs for which mutual cooperation is effi cient.

We will also assume that defection is a best response when the opponent cooperates

to rule out the trivial case in which mutual cooperation is an equilibrium of the stage

game. Such conditions in this setup amount the following assumption.

Assumption A1: g − l < 1, g > 0.

Payoffs are common knowledge. Throughout the paper, we will discuss the extent to

which this assumption is necessary. Naturally, if l > 0, the stage game has a unique

Bayes Nash equilibrium in which all players play D. If l < 0, the stage game always

possesses a mixed strategy Bayes Nash equilibrium.2

2.2 The Repetition

The players play the infinite repetition of the stage game. The information network

is realized prior to the beginning of the game and remains constant thereafter. In

every period, a player observes only the past play of his neighbors. The set of possible

histories for player i ∈ N whose realized neighborhood is Ni is defined as

Hi,Ni = {∅} ∪ {∪∞t=1
[
×ts=1ANi∪{i}

]
}

where ∅ denotes the empty history. An interim strategy for player i with neighborhood
Ni is a function σi,Ni that assigns to each history in Hi,Ni an action in {C,D}. The
set of interim strategies of player i is Σi,Ni . A strategy σi of player i is a collection of

interim strategies {σi,M}M⊂N\{i}. The set of strategies of player i is Σi.

2Pure strategy equilibria may also exist for some priors. In particular, if beliefs are concentrated
on graphs with cycles of even length, pure equilibria exist.
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Players discount the future with a common factor δ ≤ 1. Fix a network G. Given

a profile of strategies σN = (σ1, σ2, .., σn), let {atN}∞t=0 be the sequence of stage-game
actions generated by σN when the information network is G, and {vi(ati, atNi}

∞
t=1 be the

sequence of stage game utilities of player i. Define

wti (σN |G) =
∑t

s=1

vi(a
s
i , a

s
Ni

)

t

to be the average payoff up to period t and wi (σN |G) = {wti (σN |G)}∞t=1 to be the
sequence of average payoffs. Repeated game payoffs conditional on network G are

defined as

Ui(σN |G) =

{
(1− δ)

∑∞
t=1 δ

t−1vi(a
t
i, a

t
Ni

) if δ < 1

Λ (wi (σN |G)) if δ = 1

where Λ (·) denotes the Banach-Mazur limit of a sequence. If `∞ denotes the set of

bounded sequences of real numbers, a Banach-Mazur limit is a linear functional Λ :

`∞ → R such that: (i) Λ(e) = 1 if e = {1, 1, ...}; (ii) Λ(x1, x2, ...) = Λ(x2, x3, ...) for any

sequence {xt}∞t=0 ∈ `∞ (see [4]). It can be shown that, for any sequence {xt}∞t=0 ∈ `∞,

lim inft→∞ x
t ≤ Λ

(
{xt}∞t=1

)
≤ lim supt→∞ x

t

Remark 1 For simplicity, we will restrict players to use pure strategies. Since player
i’s beliefs assign positive probability to a finite number of paths for any history in Hi,Ni,

linearity ensures that expectation of the Banach-Mazur limit is the same as the Banach-

Mazur limit of the expectation. Our analysis can be extended to mixed strategies with

infinite supports by using special Banach-Mazur limits, called medial limits, which can

be shown to exists under the continuum hypothesis (see [1]).

Define the set of histories for the entire game to be

H = {∅} ∪ {∪∞t=1
[
×ts=1AN

]
}

Given a history h ∈ H, the realization of an information network G, and a profile of
strategies σN = (σ1, σ2, .., σn), define the profile σhN,G = (σh1,N1 , σ

h
2,N2

, .., σhn,Nn) induced

by the history h and information network G in the standard way. A pair (G, h) will

be referred to as a node. A pair (Ni, hi) of a neighborhood and an observed history, or

simply an observed history hi as the components of hi identify the neighbors of player

i, is associated uniquely with information set U (hi) and viceversa. With some abuse

of notation, we will sometimes use hi to denote U (hi).

A system of beliefs β defines at each information set U (hi) of player i a conditional

belief β (G, h|hi) of each node (G, h) ∈ U (hi). The marginal belief of a network G is
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denoted by β (G|hi) and of a history h by β (h|hi).

2.3 Equilibrium Properties

This section defines four properties of equilibria that we wish to characterize. The first

is a refinement of sequential equilibrium that requires a strategy to be optimal for any

possible beliefs on the information network.

Definition (Ex-Post Equilibrium —EP): A strategy profile is an ex-post equilibrium
if it is a sequential equilibrium for any admissible profile of beliefs.

In addition to its obvious robustness properties, this refinement simplifies the analysis

considerably. Updating beliefs on the network has no effect on behavior and incentives.

The second property is straightforward and selects equilibria in which cooperation

is played along the equilibrium path.

Definition (Collusive —C): A strategy profile is collusive if, along the equilibrium
path, all the players play C in every period for any realized information network.

The final two properties characterize the robustness of an equilibrium to occasional

defections by players. The first definition is similar to, yet marginally stronger than,

the notion of global stability defined in Kandori (1992).

Definition (Finite Time Stability —FTS): A strategy profile satisfies finite time
stability if, given any information network G and any history h ∈ H, there exist a

period T hG such that all the players play C in all periods greater than T hG.

The final property differs from FTS in that it only requires players to believe that

reversion to full cooperation will occur in a finite time.

Definition (Belief Finite Time Stability —BFTS): A strategy profile satisfies

belief finite time stability if, given any history hi ∈ Hi,Ni observed by player i ∈ N ,

player i believes with probability 1 that there exists a period T hi such that all the

players play C in all periods greater than T hi .

3 Patient Players

In this section we will show that, when δ = 1, cooperation can be achieved via a strategy

profile that satisfies FTS. To formulate the equilibrium strategies, first define a pair of

state variables, (dij, dji) ∈ N2+, for each relationship ij ∈ G. Both state variables depend
only on the history of past play within the relationship and are therefore common

knowledge for players i and j. The number dij represents the number of periods in
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which player i will have to play D as a consequence of the past play in relationship

ij. The state variables’transitions are constructed so that (i) unilateral deviations to

D are punished with an additional D by the opponent; (ii) unilateral deviations to

C are punished with an additional D both by the player and by his opponent; (iii)

simultaneous deviations to D are not punished. Thus, the transition rule for (dij, dji)

is defined as follows. In the first period, dij = 0 for any ij ∈ G. Thereafter, for any
history h ∈ H leading to state (dij, dji) in the relationship ij, if actions (ai, aj) are

chosen by players i and j, the states evolve according to the following transition rule,

where ∆dij denotes the change in the variable dij and the + sign a strictly positive

value:
dij 0 0 0 0 0 0 0 0 + + + +

dji 0 0 0 0 + + + + + + + +

ai D D C C D D C C D D C C

aj D C D C D C D C D C D C

∆dij 0 0 1 0 0 1 0 1 −1 0 1 0

∆dji 0 1 0 0 0 2 −1 1 −1 1 0 0

(1)

Let dij (hi) denote the value of dij following a history hi ∈ Hi,Ni . We will often abuse

notation and define dij (h) for a history h ∈ H, where the terms not in hi enter vacuously.
Define the interim strategy ζ i,Ni : Hi,Ni → {C,D} as

ζ i,Ni(hi) =

{
C if maxj∈Ni dij (hi) = 0

D if maxj∈Ni dij (hi) > 0

This interim strategy instructs each player i to defect if and only if at least one of

his “required”number of defections dij is positive. The strategy ζ i of player i is the

collection interim strategies {ζ i,M}M⊂N\{i}. A profile of such strategies will be denoted
by ζN .

Note that, if dij > dji, the states return to (0, 0) after dji period of (D,D) and

dij − dji periods of (D,C). Hence, dij may be interpreted as the number of defections

that players i and j require from player i in the future to return to the initial state.

The next theorem shows that such a strategy profile satisfies the three properties in

Section 2.

Theorem 1 Suppose that A1 holds and δ = 1. The strategy profile ζN satisfies EP, C,

and FTS.

The proof of Theorem 1 exploits two crucial attributes of the above strategies. First,

the strategy profile ζN satisfies FTS. For a crude intuition, consider Figures 1 and 2.
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Figure 1: The time period is denoted by t. The number next to a vertex inside the
graph denotes the player, the letter next to a vertex outside the graph denotes the
action chosen in period t (the letter is underlined if the player is deviating), and the
outside numbers on an edge denote the pair (dij, dji) at the beginning of the period.

The number next to each vertex inside the graph denotes a player, the outside letter

the actions, and the outside numbers on each edge the pair (dij, dji). Consider the

pentagon in Figure 1. A deviation of player 1 spreads along the cycle and is stopped by

the simultaneous play of D by players 3 and 4. Consider now the hexagon. Defections

stop spreading because they reach player 4 simultaneously. Note how the play of D

which originates from player 1, moves away from player 1 in both directions. That is,

player 1 is a “source”of D’s. In the pentagon, after players 2 and 5 play D, the play

of D moves way from these players as well, that is, players 2 and 3 become sources.

Our proof strategy generalizes this observation: there always exists a source player and

the set of source players expands. Figure 2 provides additional intuition about the

“annihilation”of D’s that occurs when players conform to the profile ζN . Note that

the graph has two cycles. Consider a history of length 10 in which player 1 deviates

in the first period only, player 2 does not respond and does play C for the first 10

period, and all other players always conform to the profile ζN . The first plot of Figure

2, depicts the state of play at the beginning of period 10 when player 2 will play his

final deviation to C. By period 15, d21 = d23 and no player except player 2 will play D.

Thus, defections will die out in 5 periods. Note one additional feature of ζN : when the

play reverts to cooperation in all relationships, all connected players will have played

the same number of D’s.
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Figure 2: The time period is denoted by t. The number next to a vertex inside the
graph denotes the player, the letter next to a vertex outside the graph denotes the
action chosen in period t (the letter is underlined if the player is deviating), and the
outside numbers on an edge denote the pair (dij, dji) at the beginning of the period.

Second, the “tit for tat”nature of the profile ζN ensures that, in any relationship,

a play of (D,C) is always matched by a later play of (C,D). Hence, a payoff of 1 + g

is followed by a payoff of −l. Assumption A1 and FTS thus guarantee that, after any
history, conforming to the profile ζN yields an average payoff at least as large as the

average payoff from any deviation.

We first establish that the strategy profile ζN satisfies FTS. For any history h ∈ H,
define the “excess defection” in a relationship to be eij (h) = dij (h) − dji (h). Fix an

information network G and, for any history h ∈ H and any path π = (j1, .., , jm), define

Eπ(h) =
∑m−1

k=1 ejkjk+1 (h)

to be the sum of the excess defections along the path. Let Pif be the set of paths with

initial vertex i and terminal vertex f and Pii the set of cycles with initial vertex i.

Finally, let S(h) denote the set of players such that the aggregate excess defection on

any path departing from them is non-positive, that is,

S(h) = {i ∈ N : Eπ(h) ≤ 0 for any π ∈ Pif , for any f ∈ N}
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Such players can be interpreted as the sources of D’s in the network in that defections

travel away from players in S(h). The next lemma shows that aggregate excess de-

fections along paths depend only on the initial and terminal vertices and that S(h) is

non-empty for any history h. Let the function I (·) denote the indicator function.

Lemma 2 Consider an information network G. For any history h ∈ H and any action

profile a ∈ AN :
(1) If π ∈ Pif

Eπ(h, a) = Eπ(h) + I (ai 6= af ) [I (ai = C)− I (ai = D)]

(2) If κ ∈ Pii
Eκ(h) = 0

(3) If π, π′ ∈ Pif
Eπ(h) = Eπ′(h)

(4) S(h) is non-empty.

Proof. The proof first establishes (1) and then proceeds by induction to prove (2) and
(3). Consider a history (h, a). Notice that, by definition,

eij (h, a) = eij (h) + I (ai 6= aj) [I (ai = C)− I (ai = D)]

Hence, for any path π = (j1, .., , jm) ∈ Pif :

Eπ(h, a) = Eπ(h) +
m−1∑
k=1

I
(
ajk 6= ajk+1

)
[I (ajk = C)− I (ajk = D)] =

= Eπ(h) + I (ai 6= af ) [I (ai = C)− I (ai = D)]

The last equality holds by a simple counting argument. Consider the sequence of

action pairs {
(
ajk , ajk+1

)
}m−1k=1 . First remove all the pairs of action

(
ajk , ajk+1

)
for which

ajk = ajk+1 since I
(
ajk 6= ajk+1

)
= 0. Since the stage game has only two actions, if the

actions played at the beginning and at the end of the path coincide (ai = af), we are

left an even number of alternating pairs. If actions played at the beginning and at the

end do not coincide (ai 6= af), we are left an odd number of alternating pairs. The

desired equality then follows.

Notice that (1) and a simple induction argument imply (2). When h is empty, (2) holds

trivially. If (2) holds for any history h, it will also hold for a history (h, a) since ai = af

in a cycle. A similar induction argument also establishes (3).
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Claim (4) is also proved by induction. When h is the empty history, dij (h) = 0 for any

ij ∈ G, and (4) holds trivially since S(h) = N . Suppose that (4) holds for a history h.

Consider the history h′ = (h, a) and a player i ∈ S(h). If i ∈ S(h′), the claim holds.

Suppose then that i /∈ S(h′). Since i ∈ S(h), by (1) there exists at least one path

π ∈ Pij such that Eπ(h′) = 1. We will show that this implies that j ∈ S(h′). Consider

any path π′ ∈ Pjf and any path π′′ ∈ Pif for any f ∈ N . Note that, by (1), Eπ′′(h′) ≤ 1

and, by (3):

Eπ′(h
′) = Eπ′′(h

′)− Eπ(h′) =

= Eπ′′(h
′)− 1 ≤ Eπ′′(h) ≤ 0

which establishes (4).

The next Lemma shows that the strategy profile ζN satisfies FTS. The main idea

of the proof is that the set S (h) expands when players play according to the strategy

profile ζN . The intuition follows by observing that first, when deviations “travel away”

from a player i ∈ S (h), (dij, dji), j ∈ Ni, declines, and second, if a player i is in S (h)

and has a neighbor j such that (dij (h) , dji (h)) = (0, 0), then player j is also in S (h).

Lemma 3 The strategy profile ζN satisfies FTS.

Proof. Fix an information network G. Consider any history h ∈ H of length t.

Following any history, the players’actions for the remainder of the game are determined

by ζN . Thus, in any relationship ij ∈ G, the state transitions take place according to
the following table:

dij 0 0 0 0 0 0 +

dji 0 0 0 0 + + +

ai D D C C D C D

aj D C D C D D D

∆dij 0 0 1 0 0 0 −1

∆dji 0 1 0 0 0 −1 −1

(2)

Let

T (h) = maxij∈G {min {dij(h), dji(h)}} .

and hs+ denote the history s periods longer than h that is generated by ζN after history h.

If all players play according to ζN after history h, for any z > T (h) all the relationships

ij will satisfy min
{
dij(h

z
+), dji(h

z
+)
}

= 0, that is, either dij(hz+) or dji(hz+) is equal to

zero. To show that the strategy satisfies FTS, it will be suffi cient to prove that, for any
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history h ∈ H and for any z > T (h),

(A) S(hz+) ⊆ S(hz+1+ )

(B) If S(hz+) 6= N , S(hz+) 6= S(hz+k+ ) for some k > 0

Indeed, if both statements were to hold, FTS would follow trivially as S(hz+) = N

for z suffi ciently large, and S(hz+) = N if and only if maxij∈G
{
dij(h

z
+)
}

= 0. We

establish (A) by contradiction. Consider a player i such that i ∈ S(hz+) for z > T (h)

and i /∈ S(hz+1+ ). Then, there exists a path π ∈ Pif such that

Eπ(hz+) = 0 and Eπ(hz+1+ ) = 1

Since i ∈ S(hz+), by (1) of Lemma 2, ζf
(
hz+
)

= D. For player f to choose D along the

equilibrium path it must be that dfk(hz+) > 0 for some k ∈ Nf . Since z > T (h), by

definition it must be that dkf (hz+) = 0 and thus, for π′ ∈ Pik,

Eπ′(h
z
+) = Eπ(hz+) + efk(h

z
+) = efk(h

z
+) > 0

which contradicts that i ∈ S(hz+). Hence, (A) must hold.

For the proof of (B), take j ∈ Ni such that i ∈ S(hz+) and j /∈ S(hz+) for z > T (h).

Notice that such player i must exist by (4) of Lemma 2. By (A), dij(hz+z
′

+ ) = 0 for any

z′ ≥ 0. Since

dji(h
z+z′+1
+ ) = max

{
dji(h

z+z′

+ )− 1, 0
}

for any z′ ≥ 0, it follows that dji(hz+z
′

+ ) = 0 for any z′ > dji(h
z
+). The claim follows

noting that, for any history h, if eij (h) = 0 and i ∈ S(h), then j ∈ S(h).

We will use Lemmas 2 and 3 to prove Theorem 1. The intuition for the final leg of this

result is that the profile ζN is such that, in any relationship, the number of periods

in which (D,C) is played is always matched by an equal number of periods in which

(C,D) is played.

Proof. The profile ζN trivially satisfies C. We will now show that, for any history

h ∈ H,
Ui(ζ

h
N |G) ≥ Ui(θi, ζ

h
−i|G)

for any interim strategy θi ∈ Σi,Ni , any G ∈ Γ (Ni), and any i ∈ N . One can easily

verify that EP then follows.

Consider any history h ∈ H of length z−1. Notice that by FTS, (ii) in the definition
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of Banach-Mazur limits, and linearity

Ui(ζ
h
N |G) =

∑
j∈Ni ηij

Hence, ζN is an ex post equilibrium sequential equilibrium if and only if for any player

i ∈ N and for any interim strategy θi ∈ Σi,Ni∑
j∈Ni ηij ≥ Ui(θi, ζ

h
−i|G) for any G ∈ Γ (Ni) .

Let {atN}∞t=z be the sequence of stage-game actions generated by (θi, ζ
h
−i) after history

h when the information network is G. Define h
t
, t ≥ z− 1, to be the history of length t

generated by the strategy profile (θi, ζ
h
−i) after history h, that is, h

z−1
= h and, for any

t ≥ z, h
t+1

= (h
t
, at+1N ). Consider any relationship ij ∈ G. Omitting some dependent

variables for notational convenience, define a variable which counts how many times an

action profile (ai, aj) has been played by the pair ij between periods s and s + T in

history h
s+T
, s ≥ z,

nsij(ai, aj|T ) =
∑s+T

t=s I
(
ati = ai

)
I
(
atj = aj

)
.

Then, from Table (1) and the definition of eij(·), for any s ≥ z,

nsij(D,C|0)− nsij(C,D|0) = eij(h
s−1

)− eij
(
h
s
)

which trivially implies that

nzij(D,C|T )− nzij(C,D|T ) =
∑T+z

t=z

(
ntij(D,C|0)− ntij(C,D|0)

)
=

= eij(h
z−1

)− eij
(
h
T+z
)
≡ ∆z(T )

Notice that eij
(
h
t
)
< 0 implies that dji

(
h
t
)
> 0, which implies that at+1j = D, which

finally implies that eij
(
h
t+1
)
≥ eij

(
h
t
)
. Thus, when player j plays according to ζj

after history h, it must be the case that, for any T , eij
(
h
T+z
)
≥ −1, if eij(h

z−1
) > 0;

and eij
(
h
T+z
)
≥ eij(h

z−1
), if eij(h

z−1
) < 0. Hence, for some M z > 0, ∆z(T ) ≤M z for

every T . It follows that the payoff of player i in relationship ij must satisfy

∑T+z
t=z uij(a

t
i, a

t
j) = nzij(C,C|T ) + (1 + g)nzij(D,C|T )− lnzij(C,D|T ) =

= nzij(C,C|T ) +
1 + g − l

2
2nzij(C,D|T ) + (1 + g)∆z(T )

14



Note that

nzij(C,C|T ) + 2nzij(C,D|T ) + nzij(D,D|T ) + ∆z(T ) = T + 1

and that, by A1, 1 + g − l < 2. Then, since ∆z(T ) ≤MZ for every T ,

lim supT→∞

∑T+z
t=z uij(a

t
i, a

t
j)

T + 1
≤ 1

Therefore, the Banach-Mazur limit

Λ

({∑T+z
t=z uij(a

t
i, a

t
j)

T + 1

}∞
T=0

)
≤ 1

The claim follows as Banach Mazur limits are linear.

Comments

Theorem 1 applies to several extensions of the baseline model. First, it is trivially

robust to uncertainty on the number of players. Second, payoffs can be heterogeneous

and allowed to depend on each relationship as long as A1 holds in all relationships.

Indeed, Theorem 1 works even if payoffs are private information as long as they satisfy

A1 in all possible realizations.

We allow a pair (dij, dji) to grow unbounded to prevent D’s from cycling around

the graph. Intuitively, suppose that ij is a relationship on a cycle. If player i fails to

respond once to a play of (C,D) in relationship ij, D propagates only in one direction

and enter a cycle. To “extinguish” this D, player i must play D so that D travels

in the opposite direction as well. Although the network is finite, local information

prevents the players from finding the smallest number of “counterbalancing”D’s that

prevent periodicity of punishments. As strategies only rely on local information, all D’s

propagating in one direction must be offset by the same number of D’s in the opposite

direction.

Since the pair (dij, dji) can grow unbounded, players must arbitrarily patient, as

histories exist for which it is not incentive compatible to comply with the the profile

ζN unless δ = 1. For instance, consider a large star network and a history of length T

in which one pheripheral player has always played D and the remaining players always

C. It straightforward to check that, the longer T , the larger δ must be for the central

player to comply with ζN and that no lower bound smaller than one exists for such δ.
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4 Impatient Players

This section develops results for games with impatient players. The first subsection

introduces strategies and proves preliminary results. The second subsection proves

that an equilibrium exists satisfying C, EP and FTS when only acyclic networks are

admissible. The following subsection proves that a similar result holds if the prior

distribution on the admissible networks has full support. The last subsection shows

that specific trigger strategies suffi ce to find equilibria satisfying C and EP in Prisoner’s

Dilemma type games.

4.1 Strategies and Preliminary Results

This subsection introduces a strategy that differs from the strategy in Section 3 in that

the maximal number of defections expected from any player is bounded. As before, two

state variables (dij, dji) characterize the state of each relationship ij ∈ G and require

each player i to defect if and only if at least one of his “required”number of defections

dij is positive. Thus, for hi ∈ Hi,Ni ,

ξi,Ni(hi) =

{
C if maxj∈Ni dij (hi) = 0

D if maxj∈Ni dij (hi) > 0

where dij (hi) is the value of dij after history hi.

The transitions for the state variables (dij, dji) differ from Section 3 and depend on

the sign of the parameter l which, to simplify the notation, we will systematically omit

to denote explicitly.

Case l > 0 : In the first period, dij = 0 for any ij ∈ G. Given a state (dij, dji) and

actions (ai, aj) for the relationship ij, the state in the next period is determined

by the following transition rule

dij 0 0 0 0 0 0 0 0 + + + +

dji 0 0 0 0 + + + + + + + +

ai D D C C D D C C D D C C

aj D C D C D C D C D C D C

∆dij 0 0 2 0 0 dji 0 dji −1 0 0 0

∆dji 0 2 0 0 0 0 −1 0 −1 0 0 0

where ∆dij, as before, denotes the change in variable dij and the + sign a strictly

positive value.
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Case l < 0 : In the first period, dij = 0 for any ij ∈ G. Given a state (dij, dji) and

actions (ai, aj) for the relationship ij, the state in the next period is determined

by the transition rule

dij 0 0 0 0 0 0 0 0 + + + +

dji 0 0 0 0 + + + + + + + +

ai D D C C D D C C D D C C

aj D C D C D C D C D C D C

∆dij 0 0 1 0 0 0 0 2 −1 2− dij 2− dij 2− dij
∆dji 0 1 0 0 −1 −1 −1 2− dji −1 2− dji 2− dji 2− dji

where ∆dij, again, denotes the change in variable dij and the + sign a strictly

positive value.

Case l = 0 : Choose either transition rule.

We denote such strategy profile by ξN .
3 Note that for any history, (dij, dji) is

bounded by (2, 2) in all cases. These modification are made to ensure that the payoff

of each player remains incentive compatible at any information set for discount rates

below one.

The following result is instrumental for the proof of the main theorems of this section.

It provides suffi cient conditions under which player i never expects his neighbors to play

D because of the past play in relationships to which the player i does not belong. These

conditions are: (i) all deviations have occured in player i’s neighborhood; (ii) no two

neighbors of player i are linked by a path.

Given a history h ∈ H of length T and a network G, let D (G, h, t) denote the set

of players who deviate from the strategy profile ξN in period t ≤ T . Further define,

D (G, h) =
T⋃
t=1

D (G, h, t) .

Recall that dij (h) is the value of dij following history h. A component of an undirected

graph is a maximal subgraph in which any two vertices are connected to each other by

a path. A relationship ij ∈ G is a bridge in G if the deletion of the link ij from G

increases the number of components.

Lemma 4 Consider a network G, a player i ∈ N , and a history h ∈ H such that:

(i) D (G, h) ⊆ Ni ∪ {i};
3Recall that we are omitting to denote the dependence on l.
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(ii) If j ∈ D (G, h) \{i}, link ij is a bridge in G.

Then, djk (h) = 0 for any j ∈ Ni and k ∈ Nj\{i}.

Proof. First consider any player j ∈ D (G, h) such that j 6= i. Let (N(Gj), Gj) denote

the component of the graph G\ {ij} to which player j belongs. By condition (ii), such
component cannot include player i and players in Ni\ {j}, or else link ij would not be a
bridge. We want to establish that djk(h) = 0 for k ∈ Nj, where k 6= i. Partition players

in the N(Gj) based on their distance from j. In particular, let N z
j denote the set of

players in N(Gj) whose shortest path to player j contains z links and let N0
j = {j}.

Clearly, N1
j = Nj\ {i}.

By induction on the history length, we will first prove that, ifD (G, h)∩N(Gj) = {j},
then for any distance z ≥ 0, any player r ∈ N z

j , and any link rk ∈ Gj:

drk(h) =

{
0 if k ∈ Nr\N z−1

j

bz(h) if k ∈ N z−1
j

(3)

where the second condition holds only for z > 0 and bz(h) depends only on z and h,

and is independent of the identity of the two players. Observe that the claim holds the

empty history, as drk(∅) = 0 for any rk ∈ Gj. Further observe that for m ∈ N z
j and

z > 0, Nm ⊂ N z−1
j ∪N z

j ∪N z+1
j and Nm ∩N z−1

j 6= ∅. Now assume that the claim holds
for any history of length up to T . We will show that it holds for length T + 1. Let

(hT , a) denote a history of length T + 1, where a denotes the profile of actions chosen

in period T + 1. Observe that, for any distance z > 0 and any player r ∈ N z
j ,

ar = D ⇔ drk(h
T ) > 0 for k ∈ N z−1

j (4)

since r /∈ D
(
G, hT

)
and since, by the induction hypothesis, drk(hT ) = 0 for any k ∈

Nr\N z−1
j . Thus, for any z > 0, all players in N z

j must choose the same action since

drk(h
T ) = bz(h

T ) for any r ∈ N z
i and k ∈ N z−1

j ∩ Nr, and since N z−1
j ∩ Nr 6= ∅ given

that a path exists connecting player r to player j (r belongs to component Gj). Thus,

for any distance z > 0, any player r ∈ N z
j , and any link rk ∈ Gj,

drk(h
T , a) = 0 if k ∈ N z

i

since drk(hT ) = dkr(h
T ) = 0, and since ar = ak. Similarly, observe that for any distance

z ≥ 0, any player r ∈ N z
j , and any link rk ∈ G,

drk(h
T , a) = 0 if k ∈ N z+1

j
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since drk(hT ) = 0 if k ∈ N z+1
j , and because (4) immediately implies that drk(hT , a) = 0,

by the transition rules. Finally note that for any distance z > 0, any player r ∈ N z
j ,

and any link rk ∈ G,
drk(h

T , a) = bz(h
T , a) if k ∈ N z−1

j

since drk(hT ) = bz(h
T ) if k ∈ N z−1

j , and because al = am for any two players l,m ∈ N s
j

for any s ≥ 0. Thus, condition (3), must hold for a history of arbitrary length in which

only players in j has deviated in component Gj. This establishes that for any history

h ∈ H, if conditions (i) and (ii) in the lemma hold, djk (h) = 0, for any j ∈ D (G, h) \{i}
and any one of his neighbors k ∈ Nj\{i}.
To conclude the proof consider the neighbors of player i in Ni\D (G, h). In par-

ticular, consider the component of the network G to which player i belongs when all

the links between player i and players in D (G, h) have been removed from the net-

work G. Label such network (N(Gi), Gi). Clearly, Ni\D (G, h) ⊂ N(Gi). Furthermore,

N(Gi) ∩ D (G, h) = {i} by construction. Hence, since by condition (ii) in the lemma
N(Gi)∩Gj = ∅ for any j ∈ D (G, h) \{i}, the previous induction argument can still be
used to establish that for any distance z ≥ 0, any player r ∈ N z

i , and any link rk ∈ Gi,

drk(h) =

{
0 if k ∈ Nr\N z−1

i

bz(h) if k ∈ N z−1
i

where N z
i denotes the set of player at distance z ≥ 0 from i in Gi, as in the previous

part of the proof. Therefore, djk (h) = 0, for any j ∈ Ni\D (G, h) and any one of his

neighbors k ∈ Nj\{i}, which with the previous part of the argument establishes the
result.

4.2 Acyclic Networks and FTS

In this subsection, we circumvent the problem of (dij, dji) growing unbounded by re-

stricting the class of admissible information networks. In particular, we show that

acyclic and individually rational punishment can be constructed when only acyclic in-

formation networks are allowed and players are suffi ciently patient. Assume that

Assumption A2: If f(G) > 0, then G is acyclic.

The strategy profile ξN is such that the states (dij, dji) are bounded by (2, 2) for any

history. This ensures that ξN remains incentive compatible and individually rational at

any information set for suffi ciently high discount factors. In addition, as the analysis is

restricted to trees, one need not worry about the occurrence of cycles of defections.

The next theorem shows that a profile of such strategies satisfies the desired prop-
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erties.

Theorem 5 If A1 and A2 hold, and if δ is suffi ciently close to one, the strategy profile
ξN satisfies C, EP, and FTS.

We first establish that the equilibrium strategy satisfies FTS and then we prove the

general theorem.

Lemma 6 The strategy profile ξN satisfies FTS.

Proof. Suppose that G is a tree and consider any history. For notational simplicity,

assume that G is connected. If the players play according to the profile ξN , the possible

transitions are given by

if l ≥ 0

dij 0 0 0 0 0 0 +

dji 0 0 0 0 + + +

ai D D C C D C D

aj D C D C D D D

∆dij 0 0 2 0 0 0 −1

∆dji 0 2 0 0 0 −1 −1

if l ≤ 0

dij 0 0 0 0 0 0 +

dji 0 0 0 0 + + +

ai D D C C D C D

aj D C D C D D D

∆dij 0 0 1 0 0 0 −1

∆dji 0 1 0 0 −1 −1 −1

We will prove the claim by induction on the number of players. It is easily verified that

FTS holds for n = 2. Suppose that n > 2. Consider a relationship ij such that player

i is the unique neighbor of player j (player j is a terminal vertex). First note that, if

dij = 0, it will remains so for the remainder of the game. Consequently, if dij = 0, the

relationship ij is superfluous for the play of player i as player i plays D if and only if

dik > 0 for some neighbor k 6= j. Hence, by induction, there exists a period t such that

the play of all the players in the network in which the relationship ij is removed is C

in all periods greater than t. Obviously, the same will hold for player j for some period

t′ ≥ t. Conversely, if dij > 0, since player j’s only neighbor is player i, dij will become

zero after a finite number of periods and the above argument applies again.

We now conclude the proof of theorem 5. The first part constructs consistent beliefs

such that players believe that deviations occur only in their neighborhood. This is

achieved by definining trembles for which more recent deviations to D are infinitely

more likely than less recent deviations. Such beliefs imply that any player i believes

that the action of a neighbor j ∈ Ni at any history h is determined exclusively by dji(h).

The second part is a exceedingly tedious verification that sequential rationality holds.

Proof. Property C is obvious. Tables are added to the appendix to clarify the evolution
of payoffs within a neighborhood after a defection. To prove EP, set off-equilibrium
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beliefs so that player i at each observed history hi ∈ Hi,Ni attributes any observed

deviation only to his neighbors in Ni. Such beliefs can be derived by assuming that

the most recent deviations to D are, as trembles vanish, infinitely more likely than any

earlier deviation. For example, consider trembles such that (i) a deviation to D by

player i in period t when maxj dij = 0 occurs with probability εα
t
, where 1 > n α

1−α ; and

a deviation to C by player i in period t when maxj dij > 0 occurs with probability ε2.

As ε → 0, any finite number of deviations to D is infinitely more likely than a single

deviation to C and any finite number of recent deviations to D is infinitely more likely

than one earlier deviation to D.

Consider the system of beliefs β obtained taking limits as the above trembles vanish.

Then, for any history hi ∈ Hi,Ni observed a player i ∈ N , if β(G, h|hi) > 0 for some

(G, h) ∈ U(hi), then D (G, h) ⊆ Ni ∪ {i} (see Lemma 11 in appendix). Thus, since by
A2 any link ij ∈ G is a bridge, the conditions of Lemma 4 hold. Hence, for j ∈ Ni

and k ∈ Nj\{i}, djk(h′) = 0 for any history h′ which has h as a subhistory and

D (G, h′) \D (G, h) ⊆ {i}. Thus, any player i believes that for any neighbor j ∈ Ni,

djk(h
′) = 0 for any k ∈ Nj\{i}. Consequently, player i believes that the action of a

neighbor j ∈ Ni at any history h′ is solely determined dji(h′).

In order to check sequential rationality, we need to consider two separate cases. First

assume that l ≥ 0. Given any history, seven values of (dij, dji) are possible, namely

(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (2, 0), and (2, 2). First consider the case in which

maxj∈Ni dij(hi) = 0 and thus ξi (hi) = C. If player i is suffi ciently patient, he prefers

to comply with the equilibrium strategy since the payoff differences between complying

and a one shot deviation to D with any neighbor j ∈ Ni are

(1 + l)
(
δ + δ2

)
− g if (dij, dji) = (0, 0)

−l + δ(1 + l) if (dij, dji) = (0, 1)

−l + δ2(1 + l) if (dij, dji) = (0, 2)

which are positive by A1 and l ≥ 0 when δ is suffi ciently close to one.

If maxj∈Ni dij(hi) = 1, then ξi (hi) = D. A one shot deviation to C causes the

maximum dij to remain equal to 1 in the next period for some j ∈ Ni. The payoff

differences are

(1 + g) (1− δ) + δ3 − 1 + l
(
δ3 − δ

)
if (dij, dji) = (0, 0)

l +
(
δ2 + δ3

)
(1 + l)− δ (1 + g + l) if (dij, dji) = (0, 1)

g + δ if (dij, dji) = (1, 0)

l + δ if (dij, dji) = (1, 1)

l (1− δ) if (dij, dji) = (0, 2)
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As δ → 1, the first and the last expression converge to zero, while the remaining three

expressions become strictly positive. Since maxj∈Ni dij(hi) = 1, a neighbor exists with

whom player i strictly loses by deviating to C when δ is close to 1. Since ηij > 0 for

any j ∈ Ni, a deviation to C strictly decreases payoffs for δ close to 1.

Finally, suppose that max dij(hi) = 2. A one shot deviation to C causes the maxi-

mum dij to remain equal to 2 in the next period for some j ∈ Ni. The payoffdifferences

are
(1 + g) (1− δ)−

(
1− δ4

)
− l
(
δ2 − δ4

)
if (dij, dji) = (0, 0)

−δ(1 + g) + δ3 + δ4 + (1− δ2 + δ3 + δ4)l if (dij, dji) = (0, 1)

(1 + g)
(
1 + δ − δ2

)
−
(
1− δ4

)
− l
(
δ2 − δ4

)
if (dij, dji) = (1, 0)

(1 + g)
(
δ − δ2

)
+ δ4 + (1− δ2 + δ4)l if (dij, dji) = (1, 1)

l(1− δ2) if (dij, dji) = (0, 2)

(1 + δ) (1 + g) + δ2 − 1 if (dij, dji) = (2, 0)

l + δ2 if (dij, dji) = (2, 2)

As δ → 1 the first and the fifth expression converge to zero, while the remaining

expressions become strictly positive. Since maxj∈Ni dij(hi) = 2, a neighbor exists with

whom player i strictly loses by deviating to C when δ is close to 1. Since ηij > 0 for

any j ∈ Ni, a deviation to C strictly decreases payoffs for δ close to 1.

Next assume that l ≤ 0. Given any history, five values of (dij, dji) are possi-

ble, namely (0, 0), (1, 0), (0, 1), (1, 1), and (2, 2). First consider the case in which

maxj∈Ni dij(hi) = 0 and thus ξi (hi) = C. If player i is suffi ciently patient, he prefers

to comply with the equilibrium strategy since the payoff differences between complying

and a one shot deviation to D with any neighbor j ∈ Ni are

−g + (1 + l) δ if (dij, dji) = (0, 0)

−l if (dij, dji) = (0, 1)

As δ → 1, the first expression is strictly positive and the second weakly positive by A1

and l ≤ 0.

If maxj∈Ni dij(hi) = 1, then ξi (hi) = D. A one shot deviation to C causes the

maximum dij to increase to 2 in the next period for some j ∈ Ni. The payoffdifferences

are
g − (1 + g + l) δ + δ2 if (dij, dji) = (0, 0)

l − δg + δ2 if (dij, dji) = (0, 1)

g + δ + δ2 if (dij, dji) = (1, 0)

l + δ + δ2 if (dij, dji) = (1, 1)

As δ → 1, the first expression is weakly positive and the remaining expressions become

strictly positive, since 1 > g − l by A1. Since maxj∈Ni dij(hi) = 1, a neighbor exists
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with whom player i strictly loses by deviating to C when δ is close to 1. Since ηij > 0

for any j ∈ Ni, a deviation to C strictly decreases payoffs for δ close to 1.

Finally, suppose that max dij(hi) = 2. A one shot deviation to C causes the maxi-

mum dij to remain equal to 2 in the next period for some j ∈ Ni. The payoffdifferences

are
g − (1 + g) δ + δ2 if (dij, dji) = (0, 0)

l(1− δ2) if (dij, dji) = (0, 1)

g + (1 + g) δ − lδ2 if (dij, dji) = (1, 0)

l(1− δ2) + (1 + g) δ if (dij, dji) = (1, 1)

l + δ2 if (dij, dji) = (2, 2)

As δ → 1, the first and the second expression converge to zero, while the remaining

expressions become strictly positive. Since maxj∈Ni dij(hi) = 2, a neighbor exists with

whom player i strictly loses by deviating to C when δ is close to 1. Since ηij > 0 for

any j ∈ Ni, a deviation to C strictly decreases payoffs for δ close to 1.

Note that the strategy profile the strategy profile ξN trivially satisfies EP, since the

incentives to conform are not affected by the beliefs about the graph.

Comments

The acyclicity of admissible graphs allows us to bound punishments since deviations

do not cycle even if the number of defections played two different neighbors are not bal-

anced. Thus, we are able to obtain FTS for impatient players. Furthermore, at any

history cooperation is restored after no more than 3n periods. All the robustness prop-

erties of the equilibrium strategy of Section 3 are satisfied by the equilibrium strategy

of this section provided that the ordinal properties of the games are the same across all

relationships. Uncertainty about the number of player, heterogeneity in payoffs, and

uncertainty about payoffs consistent with A1 can be allowed for without compromising

the results. The equilibrium in this section is also robust to heterogeneity in discount

rates.

4.3 Full Support and BFTS

This section shows how to generalize the results derived for acyclic networks to any

prior distribution with full support. We replace A2 with

Assumption A3: f(G) > 0 for any G.

Fix a player i with a neighborhood Ni. Let G∗i denote the network in which Nj = {i}
for any player j ∈ Ni, and Nj = N\{Ni ∪ {i, j}} for any j /∈ Ni ∪ {i}. That is, G∗i
consists of an incomplete star network, in which player i is the center and the players

in Ni are the periphery, and a disjoint, totally connected component.
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Consider the strategy ξN . Given a history hi observed by player i when i’s neighbor-

hood is Ni, let h∗ (hi) be the history such that (G∗i , h
∗ (hi)) ∈ U (hi) and every player

j /∈ Ni ∪ {i} plays according to ξN (i.e. plays C) in every period. We say that player
j ∈ Ni i-deviates from ξN at the observed history hi if

j ∈ D (G∗i , h
∗ (hi))

that is, if player j does not play according to ξN on the path to hi when the network

is G∗i .

For any history h ∈ H, let again ht denote the sub-history of length t < T .

The next lemma presents a preliminary result relating the sets of defecting players

D (G∗i , h
∗ (hi) , t) and D (G, h, t) for two nodes (G∗i , h

∗ (hi)) , (G, h) ∈ U (hi).

Lemma 7 Consider a node (G, h) ∈ U (hi) where history h is of length T . If

(i) D (G∗i , h
∗ (hi) , t) = D (G, h, t) for any t < T , and

(ii) Nj = {i} for any j ∈ D
(
G, hT−1

)
\{i},

then D (G∗i , h
∗ (hi) , T ) ⊆ D (G, h, T ).

Proof. Suppose that the (i) and (ii) hold. Observe that by definition of h∗ (hi),

D (G∗i , h
∗ (hi) , t) ⊆ Ni ∪ {i}.

Moreover, note that Lemma 4 can be applied to establish that for any sub-history ht

of length t < T and for any player j ∈ Ni,

djk
(
ht
)

= 0 for k ∈ Nj\{i}.

Now observe that, since (G∗i , h
∗ (hi)) , (G, h) ∈ U (hi), we must have that for any sub-

history ht of length t < T and for any player j ∈ Ni,

dji
(
ht
)

= dji
(
h∗ (hi)

t) and dij (ht) = dij
(
h∗ (hi)

t) .
The latter observation immediately implies that if i ∈ D (G∗i , h

∗ (hi) , T ), then i ∈
D (G, h, T ). Now consider a player j ∈ D (G∗i , h

∗ (hi) , T ) \{i}. If player j plays C at

T , then dji
(
h∗ (hi)

T−1
)
> 0, and thus j ∈ D (G, h, T ) since dji

(
hT−1

)
> 0 as well.

If player j plays D at T , then dji
(
h∗ (hi)

T−1
)

= 0, and thus j ∈ D (G, h, T ) since

djk
(
hT−1

)
= 0 for k ∈ Nj.
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The next lemma shows that it is possible to construct a consistent belief system such

that: (i) whenever a player j i-deviates, player i believes that player j’s neighborhood

contains only player i; (ii) all deviations are local. This is achieved by assuming that

trembles are such that a deviation by a player with a singleton neighborhood is infinitely

more likely than a deviation by a player with a larger neighborhood, and such that, as

in the proof of Theorem 5, more recent deviations are infinitely more likely than less

recent ones.

Lemma 8 If A3 holds, there exists a system of beliefs β consistent with strategy profile
ξN such that, for any player i ∈ N and observed history hi of length T ,

(a) if player j ∈ Ni i-deviates, then β (G, h|hi) = 0 for any (G, h) ∈ U (hi) for which

G is such that Nj 6= {i};

(b) if (G, h) ∈ U (hi) and for some t ≤ T ,

D (G, h, t) 6= D (G∗i , h
∗ (hi) , t) ,

then β (G, h|hi) = 0.

Proof. For any player i, consider trembles such that:

(i) If ni = 1, a deviation in period t from profile ξN occurs with probability ε
αt, where

α
1−αn < 1

(ii) If ni > 1, a deviation in period t from profile ξN occurs with probability ε
2.

Note that, for any t > 1, such trembles imply that, as ε vanishes, a single deviation

of type (i) at time t < T is infinitely less likely than deviations of type (i) by all the

players in periods t + 1, t + 2, ..., T since αt > n
∑∞

s=t+1 α
s. Given the sequence of

completely mixed behavior strategy profiles ξεN obtained by adding the above trembles

to the profile ξN , let θ
ε(G, h) be the probability of node (G, h). The strategy ξεN is

such that, for every information set U (hi) of player i, the conditional belief of node

(G, h) ∈ U (hi)

βε (G, h|hi) =
θε(G, h)∑

(G′,h′)∈U(hi) θ
ε(G′, h′)

converges as ε→ 0, since each θε(G, h) is a polynomial of the form

x
∏W

k=1 (1− εyk)
∏V

k=1 ε
zk , (5)

for some parameters W,V ≤ nT , x ∈ (0, 1), and yk, zk ∈ R+ for k in the appropriate
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range. For any node (G, h) ∈ U (hi) define

β (G, h|hi) = lim
ε→0

βε (G, h|hi) .

We first establish (a). Consider (G, h) ∈ U (hi). Recall that the history h∗ (hi) is such

that (G∗i , h
∗ (hi)) ∈ U (hi) and every player j /∈ Ni ∪ {i}, plays C in every period.

Obviously, for any j ∈ Ni,

hi (j) = h∗ (hi, j) = h (j)

where hi (j), h∗ (hi, j), and h (j) denote player j’s play in histories hi, h∗ (hi), and h.

Now consider a player j ∈ Ni that i-deviates from ξN at the observed history hi.

That is, j ∈ D (G∗i , h
∗ (hi)). Since at node (G∗i , h

∗ (hi)) all deviations are of type (i),

θε (G∗i , h
∗ (hi)) ≥ f (G∗i ) (1− ε)nT ε,

where the lower bound is obtained by setting W to be equal to nT , yk = 1 in (5) and

noting that ∑V
k=1 zk ≤

∑T
t=1 nα

t < 1

since α
1−αn < 1. Thus, for ε suffi ciently close to zero, there exists a constant q > 0 such

that

θε (G∗i , h
∗ (hi)) ≥ qε.

The constant q is positive since, by hypothesis, f (G∗i ) > 0.

Now consider a node (G′, h′) ∈ U (hi) such that N ′j 6= {i}, where N ′j is neighborhood
of player j in G′. Consider two separate cases:

1. First suppose that j ∈ D (G′, h′). As the deviation of player j at period t is of

type (ii), θε (G′, h′) ≤ ε2. Thus,

βε (G′, h′|hi) ≤
θε(G′, h′)

θε(G∗i , h
∗ (hi))

≤ ε

q

which implies that β (G′, h′|hi) = 0. Thus, the claim holds.

2. Then suppose that j /∈ D (G′, h′). Let t∗ denote the earliest period t in which

D (G∗i , h
∗ (hi) , t) 6= D (G′, h′, t) .

By the previous argument, we can assume that if r ∈ D (G′, h′) ∩Ni, then N ′r =
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{i}, as otherwise the node would have a null probability. Lemma 7 then yields

D (G∗i , h
∗ (hi) , t

∗) ⊆ D (G′, h′, t∗) ,

which implies that

D (G∗i , h
∗ (hi) , t

∗) ⊂ D (G′, h′, t∗) .

For any t ≤ T , let K (t) denote the number of player in D (G′, h′, t). Then

θε (G′, h′) ≤ ε
∑t∗
t=1K(t)α

t

θε (G∗i , h
∗ (hi)) ≥ f (G∗i ) (1− ε)nT ε−(1−n α

1−α)αt
∗
+
∑t∗
t=1K(t)α

t

where the upper-bound in the first inequality is obtained setting yk = ∞, k =

1, ...,W , and x = 1 in (5), and the lower-bound in the second inequality is obtained

by setting W = nT and yk = 1 in (5), and noting that

∑V
k=1 zk ≤

∑t∗−1
t=1 K (t)αt + (K (t∗)− 1)αt

∗
+
∑∞

t=t∗+1 nα
t

Hence, for some constant q′ > 0, when ε is close to zero,

θε (G∗i , h
∗ (hi)) ≥ q′ε−(1−n α

1−α)αt
∗
+
∑t∗−1
t=1 K(t)αt

Then

βε (G′, h′|hi) ≤
θε(G′, h′)

θε(G∗i , h
∗ (hi))

≤ ε(1−n
α

1−α)αt
∗

q′

and thus, β (G′, h′|hi) = 0 since α
1−αn < 1.

This establishes part (a) and implies that, if β (G, h|hi) > 0, player i believes that

D (G, h) ⊆ Ni ∪ {i}.
To prove (b), observe that (a) implies that we can restrict attention to networks G

such that Nj = {i} for any
j ∈ D (G∗i , h

∗ (hi)) \{i}.

We prove the claim by contradiction. Let t∗ be the earliest period t such that

D (G∗i , h
∗ (hi) , t) 6= D (G, h, t) .

Observe that the same argument as in (a) shows that

D (G∗i , h
∗ (hi) , t

∗) ⊂ D (G, h, t∗)
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and the claim is proved analogously.

The proof of the main result of this subsection follows from the preceding lemmas and

Lemma 4.

Theorem 9 If A1 and A3 hold, and if δ is suffi ciently close to one, the strategy profile
ξN satisfies C, EP, and BFTS.

Proof. The strategy profiles clearly satisfy C. We now establish EP. In particular it
will be shown that given the system of beliefs β of Lemma 8, it is sequentially rational

to comply with the equilibrium strategy for any profile of prior beliefs satisfying A3.

Fix: a player i ∈ N ; a history hi of length T observed by player i; and node (G, h)

such that β(G, h|hi) > 0. By Lemmas 4 and 11, for j ∈ Ni and k ∈ Nj\{i}, djk(h′) = 0

for any history h′ which has h as a subhistory and D (G, h′) \D (G, h) ⊆ {i}. As in
Theorem 5, any player i believes that for any neighbor j ∈ Ni, djk(h′) = 0 for any

k ∈ Nj\{i}. Consequently, player i believes that the action of a neighbor j ∈ Ni at any

history h′ is solely determined dji(h′). Verification of sequential rationality is identical

to Theorem 5.

EP holds given A3 as the strategies are independent of the prior. Also, BFTS follows

immediately from the previous observations since player i never expects defections to

cycle and since the number of D’s expected from a player in any of his relationships is

bounded by 2.

Comments

Provided that the ordinal properties of the games are the same across all relation-

ships, the robustness properties discussed in Section 3 are obviously satisfied by the

equilibrium strategy. Again, we can allow for uncertainty in the number of player, het-

erogeneity in payoffs, uncertainty in payoffs consistent with A1, and heterogeneity in

discount rates.

4.4 Arbitrary Graphs and l > 0

In this section, we study the Prisoner’s Dilemma with δ < 1. We will show that there

exists a strategy profile that satisfies EP and C. The proof is an adaptation of an

argument first used by Ellison (1994). First note that a simple grim trigger strategy

sustains cooperation for values of δ in some interval
(
δ, δ
)
. Then, cooperation can be

extended to any δ ∈
(
δ/δ, 1

)
by partitioning the game into T − 1 independent games

played every T periods and by playing according to grim trigger strategies in each of

the independent games. The number T is chosen so that implied discount rate δT is in(
δ, δ
)
.
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Theorem 10 Suppose that δ < 1 and A1 holds. If δ is suffi ciently close to one, a

strategy profile that satisfies EP and C exists.

Proof. Consider a profile of grim trigger strategies such that:

(I) player i plays C if every player j ∈ Ni played C in every previous period;

(II) player i plays D otherwise.

Consider the sets Ci ⊂ Ni, Di = Ni\Ci, and δ such that

1 > (1− δ) (1 + g)∑
j∈Ci ηij (1 + g) > (1 + δ (1 + g))

∑
j∈Ci ηij − l

∑
j∈Di ηij

The first inequality implies that if all the players adhere the aforementioned strategy,

no player has an incentive to deviate from state (I). The second inequality implies that

if a player believes that players in Ci are in state (I) and players in Di and himself are
in state (II), he has no incentive to deviate from state (II). The two inequalities reduce

to:
g

g + 1
< δ <

g

g + 1
+

l
∑

j∈Di ηij

(g + 1)
∑

j∈Ci ηij

Note that the upper-bound is decreasing in
∑

j∈Ci ηij and increasing in
∑

j∈Di ηij. Recall

that, ηij > 0 for any ij, i 6= j. Let

η =
min
ij, i 6=j

ηij

(n− 1) max
ij, i 6=j

ηij

and suppose that

δ ∈
(

g

g + 1
,

g

g + 1
+

lη

(g + 1)

)
(6)

Then, if a player believes that at least one of his opponent has switched to state (II),

playing D is strictly optimal; otherwise, playing C is strictly optimal. Thus, the above

strategy is a sequential equilibrium, since consistent beliefs are such that:

(i) if every player j ∈ Ni played C in every previous period, player i believes that all

players in the entire graph are in state (I) with probability equal to one;

(ii) if a player j ∈ Ni played D in a previous period, player i believes that at least one

of his opponent has switched to state (II).

Moreover, the strategy is an EP equilibrium, it is optimal for any belief about the

underlying information network.

If the upper bound of the interval in (6) is greater or equal to one, the theorem is proved.
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Otherwise, consider an open interval (a, b) ⊂ (0, 1). If δ ∈
(a
b
, 1
)
, then δT ∈ (a, b) for

some positive integer T . Hence, if a =
g

g + 1
and b =

g

g + 1
+

lη

(g + 1)
, partitioning the

game into T −1 independent games played every T periods (as in Ellison (1994)) yields

a discount rate:

δT ∈
(

g

g + 1
,

g

g + 1
+

lη

(g + 1)

)
Thus, this modified strategy is an EP equilibrium for arbitrarily high patience.

Naturally, in the above result, cooperation is sustained at the expense of FTS and

BFTS. Indeed, a player who defects in one of the T games never returns to cooperation

in that game, which eventually settles on constant defection in the component of the

network in which the player resides.

Comments

An immediate corollary of Theorem 10 is that the result is robust to uncertainty

about the number of players as long as the support of the latter is finite. This observa-

tion is trivial. Since the size of the component to which a player belongs is uncertain,

allowing for additional uncertainty about the total number of players does not alter the

argument.

As in Ellison (1994), the strategy in the proof of Theorem 10 is not robust to

heterogeneity in discount rates, since all players must partition the repeated game

into independent games of identical length. Moreover, the strategy is not robust to

heterogeneity in payoffs. In particular, even though l can be allowed to vary across

relationships, g must be common to all relationships for the proposed strategy to be an

equilibrium. Similarly, one can allow for the values of l and ηij to be private information.

Although the equilibrium strategies violate FTS, since no player ever reverts to full

cooperation after observing a deviation, a different notion of stability (proposed by

Ellison (1994)) is satisfied. In particular, let the game be perturbed so that, in every

period, players play according to their strategy with probability (1− ε) and choose D
with probability ε. It is easy to show that the strategy in the proof of Theorem 10 is

a sequential equilibrium in this perturbed game for all values of δ suffi ciently close to

one and for ε suffi ciently close to zero. Naturally, the equilibrium payoffs converge to

one as ε goes to zero. Cho (2011) shows that with public randomization cooperation

can eventually return to cooperation after any history.
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5 Conclusions

The results in this paper show that, under weak conditions, in games with local moni-

toring effi ciency can be sustained by a sequential equilibrium that is independent of the

players’beliefs on the monitoring structure. The stability of these equilibria and their

robustness with respect to heterogeneity and uncertainty in payoffs and population size

was also discussed.
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6 Appendix

The appendix clarifies some of the results used in the proof of theorem 5.

Lemma 11 If A2 holds, there exists consistent beliefs β such that, for any history
hi ∈ Hi,Ni observed a player i ∈ N , if β(G, h|hi) > 0 for some (G, h) ∈ U(hi), then

D (G, h) ⊆ Ni ∪ {i}.

Proof. Consider the trembles in the proof of Theorem 5. Given the sequence of

completely mixed behavior strategy profiles ξεN obtained by adding these to the profile

ξN , let θ
ε(G, h) be the probability of node (G, h). The strategy ξεN is such that, for

every information set U (hi) of player i, the conditional belief of node (G, h) ∈ U (hi)

βε (G, h|hi) =
θε(G, h)∑

(G′,h′)∈U(hi) θ
ε(G′, h′)

converges as ε→ 0, since each θε(G, h) is a polynomial.

Consider an acyclic network G for which f (G) > 0 and a player i and a neighbor

j ∈ Ni. Consider any history hi ∈ Hi.Ni and let h
+(hi) ∈ H denote the unique history

of play (G, h+(hi)) ∈ U(hi) in which all players, but for players in Ni∪{i} comply with
the equilibrium strategy, that is, all the deviations observed by player i are attributed

to j’s behavior. Let hsi denote the subhistory of hi of length s, a
s
j the action of player

in period s, and define

Tj =
{
s|dji(hsi ) = 0 and asj = D

}
The probability of history h+(hi) then satisfies

θε(G, h+(hi)) = x(ε)y (ε)
∏

j∈Ni
∏

s∈Tj ε
αs

= x(ε)y (ε) ε

∑
j∈Ni

∑
s∈Tj

αs

since Lemma 4 applies, for j ∈ Ni, djk(h+(hi)) = 0 for any k ∈ Nj\{i}. The term x(ε)

is a product that includes the prior and probabilities of “non-deviations”, and y (ε) a

product of the probabilities of deviations to C by players in Ni directly observed by

player i (dji(hsi ) > 0 and asj = C). Obviously,

lim
ε→0

x (ε) = f (G)

Now consider any other history such that (G, h) ∈ U(hi). Suppose that such a his-

tory displays a deviation to C which is not directly observed by player i. Then, by
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construction

θε(G, h) ≤ y(ε)ε2

Thus, n α
1−α < 1 implies that

lim
ε→0

θε(G, h)

θε(G, h+(hi))
≤ lim

ε→0

1

x (ε)
ε
2−
∑

j∈Ni

∑
s∈Tj

αs

= 0

since ∑
s∈Tj α

s <
∑∞

s=0 α
s < 2.

Consider now a history h′ in which all deviations to C have been directly observed by

player i. Let t denote the first period in which djk(h′t) > 0 for some k ∈ Nj\i. Then,

θε(G, h′) ≤ y(ε)εα
t∏

j∈Ni
∏

s∈Tj |s≤t ε
αs

Now, n α
1−α < 1 implies that

lim
ε→0

θε(G, h′)

θε(G, h+(hi))
≤ lim

ε→0

1

x (ε)
ε
αt−
∑

j∈Ni

∑
s∈Tj |s>t

αs

= 0

since

n
∑

s∈Tj |s>t α
s < n

∑∞
s=t+1 α

s < αt.

Since there are only finitely many histories in U(hi), it must be that limε→0 β
ε (G, h|hi) >

0 only if h = h+(hi). Therefore player i believes that D (G, h) ⊆ Ni ∪ {i}.

The following tables clarify the incentive constraints in the proof of theorem 5.

Each entry shows the payoff in periods following either no deviation or a one shot

deviation by player i from the strategy ξi when the relationship with player j was in

state (dij, dji). Payoffs are omitted after a relationship returns to the state (0, 0). If

l ≥ 0 and maxj∈Ni dij(hi) = 0:

Equilibrium: C Deviation: D

(dij, dji)

(0, 0)

(0, 1)

(0, 2)

t t+ 1 t+ 2

1 1 1

−l 1 1

−l −l 1

t t+ 1 t+ 2

1 + g −l −l
0 −l 1

0 −l −l
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If l ≥ 0 and maxj∈Ni dij(hi) = 1:

Equilibrium: D Deviation: C

(dij, dji)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(0, 2)

t t+ 1 t+ 2 t+ 3

1 + g −l −l 1

0 −l 1 1

1 + g 1 1 1

0 1 1 1

0 −l −l 1

t t+ 1 t+ 2 t+ 3

1 1 + g −l −l
−l 1 + g −l −l
1 0 1 1

−l 0 1 1

−l 0 −l 1

If l ≥ 0 and maxj∈Ni dij(hi) = 2:

Equilibrium: D Deviation: C

(dij, dji)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(0, 2)

(2, 0)

(2, 2)

t t+ 1 t+ 2 t+ 3 t+ 4

1 + g 0 −l −l 1

0 0 −l 1 1

1 + g 1 + g −l −l 1

0 1 + g −l −l 1

0 0 −l −l 1

1 + g 1 + g 1 1 1

0 0 1 1 1

t t+ 1 t+ 2 t+ 3 t+ 4

1 1 + g 0 −l −l
−l 1 + g 0 −l −l
1 0 1 + g −l −l
−l 0 1 + g −l −l
−l 0 0 −l 1

1 0 0 1 1

−l 0 0 1 1

If l ≤ 0 and maxj∈Ni dij(hi) = 0:

Equilibrium: C Deviation: D

(dij, dji)

(0, 0)

(0, 1)

t t+ 1 t+ 2

1 1 1

−l 1 1

t t+ 1 t+ 2

1 + g −l 1

0 1 1

If l ≤ 0 and maxj∈Ni dij(hi) = 1:

Equilibrium: D Deviation: C

(dij, dji)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

t t+ 1 t+ 2 t+ 3

1 + g −l 1 1

0 1 1 1

1 + g 1 1 1

0 1 1 1

t t+ 1 t+ 2 t+ 3

1 1 + g 0 1

−l 1 + g 0 1

1 0 0 1

−l 0 0 1
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If l ≤ 0 and maxj∈Ni dij(hi) = 2:

Equilibrium: D Deviation: C

(dij, dji)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(2, 2)

t t+ 1 t+ 2 t+ 3

1 + g 0 1 1

0 1 + g −l 1

1 + g 1 + g −l 1

0 1 + g −l 1

0 0 1 1

t t+ 1 t+ 2 t+ 3

1 1 + g 0 1

−l 1 + g 0 1

1 0 0 1

−l 0 0 1

−l 0 0 1
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Abstract 
 
 
The paper discusses community enforcement in infinitely repeated two-action games with 
local monitoring. Each player interacts with and observes only a fixed set of partners, of 
whom he is privately informed. The main result shows that for generic beliefs efficiency 
can be sustained in a sequential equilibrium in which strategies are independent of the 
players’ beliefs about the monitoring structure. Stronger results are obtained when 
players are arbitrarily patient and payoffs are evaluated according to Banach-Mazur 
limits, and when players are impatient and only acyclic monitoring structures are 
allowed. 
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