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Thesis Summary 
 
 
 
                 Microglia are the immune cells in the central nervous system. Upon activation by 

insult or injury they secrete a variety of pro-inflammatory cytokines, chemokines and reactive 

oxygen species (ROS). Recent studies of neurodegenerative disease and animal models of 

nerve injury suggest a pathological involvement of microglia in the development of these 

diseases. Elevated sympathetic nerve activity and increased paraventricular hypothalamic 

nucleus (PVN) neuronal activity have been reported in rats with myocardial infarction (MI) as 

well as in STZ-induced diabetic rats. Elevated sympathetic nerve activity is well known as a 

contributing factor to the pathology of heart failure following MI. Cardiovascular 

complications are also common in diabetes, and include cardiomyopathy, hypertension, and 

increased risk of sudden cardiac death. Diabetes also causes pathological changes in 

peripheral nerves and blood vessels. However, there is increasing evidence that inflammation 

within the central nervous system and dysregulation of sympathetic nerves both play a role in 

diabetic complications. The PVN is involved in regulation of sympathetic nerve activity and 

excitation of the PVN can elevate sympathetic nerve activity. We therefore investigated 

whether microglia are activated in cardiovascular centres in animal models of heart failure 

and diabetes and the time course of any such activation. Then we used in vivo and in vitro 

methods to gain insight into the mechanisms and consequences of microglial activation in 

these disorders.  

 

     Following MI, inflammatory cytokines are reportedly elevated in the PVN, as well 

as in plasma, indicating that inflammation occurs in the brain in addition to the periphery. In 

the present study, we investigated whether MI in rats induces activation of microglia in the 

brain. We used immunohistochemistry to detect CD11b (clone OX-42) microglial receptors. 

We characterised microglia on the basis of their morphology and intensity of OX-42 staining. 
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Microglia with longer branches, secondary branches and small somata were considered as 

ramified (non-activated). As in previously reported studies, microglia with shorter, stubbier 

processes, swollen cell bodies and expressing relatively increased OX-42 labelling were 

considered activated. Compared to control rats that had undergone sham surgical procedures, 

there was a significant increase in the percentage of microglia that were activated in the PVN 

following MI. The increase was observed as early as 2 weeks after the MI and occurred 

predominantly within the parvocellular subdivision containing neurons involved in regulation 

of sympathetic activity. Activated microglia were not observed in the ventral hypothalamus, 

adjacent to the PVN, nor in the cortex, indicating the response was not the result of a 

generalised inflammatory reaction in the brain. Echocardiography and haemodynamic 

parameters at 2 weeks after MI indicated reduced left ventricular function, but congestive 

heart failure had not yet developed.    

 

                  As inflammation and elevated sympathetic nerve activity are also reported to occur 

in diabetes, we investigated whether microglial activation occurred within central 

cardiovascular centres in several diabetes-related rat models. In brains harvested from 

streptozotocin (STZ)-induced diabetic rats (at 2 weeks, 6 weeks, and 8−10 weeks after 

intravenous STZ administration) and from vehicle-treated normoglycaemic control rats, 

microglia were identified using specific antibody for CD11b receptors (OX-42 clone), while 

activated neurons were identified using an antibody for Fos protein. A significant increase in 

the percentage of microglia activated in the PVN, supraoptic nucleus (SON) and the nucleus 

tractus solitarius (NTS) regions was observed in STZ-induced diabetic rats at the 8−10 week 

time point. Individual rat data suggested variability in the time of onset of microglial 

activation in these regions. In the PVN, microglial activation was significantly higher in the 

parvocellular subdivision as well as in the oxytocin/vasopressin-producing magnocellular 

subdivision. Time course data in STZ-induced diabetic rats suggested that intense neuronal 
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activation immediately preceded microglial activation; excitotoxicity may therefore be 

responsible for the microglial activation observed. Neuronal and microglial activation in the 

SON and magnocellular subdivision of the PVN may be due to elevated plasma osmolarity in 

STZ-induced diabetic rats. Our results from insulin-resistant and leptin receptor deficient rats 

did not show significant microglial activation in the PVN, SON and NTS regions, indicating 

that this activation in STZ-induced diabetes is linked with overt diabetes.   

  

                   To understand the role of activated microglia in MI and STZ-induced diabetic 

rats, we injected activated microglia into the PVN in naïve rats and observed the effect on 

systolic blood pressure in conscious rats using the tail cuff method. We observed that 

activated microglial injection, but not vehicle or conditioned medium injection, increased 

systolic blood pressure, suggesting that activated microglia in the PVN itself can elevate 

sympathetic nerve activity. Therefore, targeting these activated microglia may be one way to 

reduce the pathological contribution of elevated sympathetic nervous system activity in 

diseases such as MI and diabetes. 

 

       In order to design therapies to inhibit microglial activation, it is important to 

understand the cellular mechanisms involved. Previous studies of nerve injury models have 

reported increased expression of the ATP receptor type P2X4 and elevated phosphorylated 

p38 MAPK in microglia, and have suggested their involvement in microglial activation. 

Surprisingly, we observed neither any increase in P2X4 receptor expression nor any increased 

phosphorylation of p38 MAPK in activated microglia present in STZ-induced diabetic rats. 

Further study is required to investigate the involvement of other microglial purinergic 

receptors and intracellular markers that have been shown to be associated with microglial 

activation in other disease conditions.  
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                 Many in vitro studies of microglia have suggested that intracellular calcium 

concentration ([Ca2+]i) is an important intracellular messenger in microglia, and that 

microglial activation is associated with a sustained increase in intracellular calcium. ATP and 

UDP are thought to be released from damaged neurons during excitotoxic neuronal death, but 

whether they can increase basal calcium levels in microglia has not been investigated. We 

therefore studied the mechanism of microglial activation under in vitro conditions using these 

purines as activators. Both ATP and UDP caused a sustained increase in [Ca2+]i but only ATP 

was able to induce motility in microglia. These results suggest that increased [Ca2+]i may be 

sufficient to induce some functions of activated microglia but not all.  

 

                 In conclusion, microglia are activated in the PVN but not in the adjacent 

hypothalamus following myocardial infarction. Microglia were also activated in 

cardiovascular centres of the brain, including the PVN, in STZ-induced diabetic rats. 

Activated microglia may contribute to the increased local production of pro-inflammatory 

cytokines and ROS in the PVN, resulting in increased sympathetic drive. Activated microglia 

within the PVN are capable of increasing blood pressure, and inhibition of microglial 

activation may have beneficial effects on humans suffering from diabetes and myocardial 

infarction. The processes leading to microglial activation in STZ rats remain to be determined. 

It appears, however, that this activation is associated with overt diabetes, rather than insulin 

resistance or obesity. As ATP and UDP acts on different microglia receptors, our study also 

suggests that targeting one single receptor type may have beneficial effects, but will not 

completely block activated microglial function. Thus, a better understanding of the 

mechanism of microglial activation may lead to more targeted therapies for inhibiting 

microglial activation during various pathological conditions. 
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Chapter 1: Microglia and Their Role in Neuro-inflammation 
and Cardiovascular Diseases  
 

1. Microglia as immune cells of the central nervous system  
 

                The presence of a blood-brain barrier prevents entry of immune cells from the 

periphery into the central nervous system (CNS). Hence, the CNS contains specialised cells 

known as microglia which perform the function of immune cells. In 1927, del Rio-Hortego 

first suggested, based on silver carbonate staining of neural tumors, that microglia belong to a 

glial cell type distinct from  astrocytes and oligodendrocytes (del Rio-Hortega 1927). Using 

this method, he observed differences in morphology between microglial cells, and suggested 

the existence of diverse microglial populations in the CNS. Discoveries in the early and mid-

19th century established the role of microglia as immune cells, protecting the CNS from injury 

and infection (del Rio-Hortega 1927; del Rio-Hortega 1932), but studies carried out in the last 

three decades of the 19th century have demonstrated the pathological role of microglia in 

various neurodegenerative diseases (Graeber 2010; Liu 2006; Sawada et al. 2006). The 

contrasting evidence on the role of microglia has made them one of the most controversial 

cells of the CNS. In fact, with more than 11,000 publications on the subject in last two 

decades, the study of microglia has emerged as a very active branch of neuroscience. Based 

on the current understanding of microglial function in other pathologies, I have investigated 

their role in the pathology of diabetes and heart failure (which often co-exist), since 

neurohormonal imbalance is known to play a significant role in the pathology of these 

diseases. Since the number of people with either diabetes or heart failure is increasing 

worldwide (Lloyd-Jones et al. 2010), the outcomes of this study have significant implications 

for human health. 

               It is now known that microglia constitute approximately 20% of the total glial cell 

population, and that they are distributed throughout the brain and spinal cord (Kreutzberg 
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1995). In the CNS, microglia perform a protective function by constantly moving their 

processes to analyse the CNS for damaged neurons, extracellular debris, and infectious agents 

(Gehrmann et al. 1995; Nimmerjahn et al. 2005, Boycott and Hopkins. 1981). The presence of 

a blood-brain barrier stops entry of infectious agents from the blood stream into the brain, 

which prevents most infections from reaching the vital nervous tissue. In severe disease states, 

this blood-brain barrier can become weak and leaky. In such cases where infectious agents are 

directly introduced into the brain, microglial cells react quickly in an attempt to neutralise 

them before they damage the sensitive neural tissue. Under prolonged pathological conditions, 

microglia secrete signalling molecules that facilitate T cell entry into the brain. Because of the 

unavailability of antibodies from the rest of the body (due to the blood-brain barrier; Sas et al. 

2008), microglia must be able to recognise foreign bodies during pathological conditions, and 

engulf them much like peripheral macrophages. Since brain infection is a rare but catastrophic 

event, microglia must act quickly to prevent potentially fatal damage. Therefore, microglia are 

extremely sensitive to even small pathological changes in the CNS. 

               Although microglia have similarities to peripheral macrophages in terms of their role 

as immune cells, there are important differences between them. One is that macrophages are 

always ready to act, while microglia need to be activated to perform their function as immune 

cells (Aloisi 2001). Another difference between microglia and other cells of the myeloid 

lineage is their turnover rate. Macrophages and dendritic cells are constantly being used up 

and replaced by myeloid progenitor cells, which differentiate into the required type. Due to 

the blood-brain barrier, it is difficult for the body to constantly replace microglia. That is why 

microglia remain in an inactive state under normal conditions and only proliferate rapidly to 

maintain their numbers when they become activated. However, in cases of extreme infection 

when the blood-brain barrier is damaged, microglia may be replaced with myeloid progenitor 

cells and macrophages (Flugel et al. 2001; Hickey & Kimura 1988; Ritter et al. 2006). Once 

the infection decreases, the disconnection between peripheral and central systems is 
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reestablished and only microglia are present for the recovery and re-growth period (Gehrmann 

1996).  

2. Microglial morphology, origin and distribution in the central nervous 
system 

  2.1. Microglial morphology indicates functional state      

              Microglia are highly dynamic and vigilant (Nimmerjahn et al. 2005; Parkhurst & Gan 

2010). They remain vigilant towards any infection or neuronal injury in the CNS by the 

means of various receptors present on their processes. In an adult brain, these cells have small 

somata with long and highly branched processes, and are called “ramified microglia.” In 

response to stressful stimuli, brain injury or infection, microglia become “activated.”  This 

activation is associated with drastic morphological changes, where their somata become 

enlarged and processes become shorter, thicker and stubbier (Nakajima & Kohsaka 2001; 

Stence et al. 2001b; Streit et al. 1988). Prolonged activation of microglia is thought to 

transform them into “phagocytic microglia,” which are similar in appearance and function to 

peripheral macrophages.  Fig.1.1 shows the morphological features of (A) ramified, (B) 

activated and (C) phagocytic microglia present in the adult rat brain.  

               Recent studies have reported morphological changes in microglial cells present in 

the CNS of animal models of stroke, multiple sclerosis, neuropathic pain, and in humans with 

Alzheimer’s disease, Parkinson’s disease and schizophrenia (Aloisi 2001; Aloisi et al. 1997; 

Liu 2006; Mrak et al. 1995; Sawada et al. 2006).  

2.2. Varying microglial morphology and distribution in the CNS  

               Immunohistochemistry on cerebellum obtained from dead human infants (14 weeks 

old) using anti-ferritin antibody has shown that all microglia display amoeboid morphology 

(Maslinska et al. 1998). This study also reported more ramified microglial cells than 

amoeboid cells in 20-week old human infants. This increase in the proportion of ramified 

microglia was greater in some regions of the cerebellum than others. The authors concluded 
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that the morphology and localisation of microglial cells depends on the developmental stage 

of the brain (Maslinska et al. 1998). In addition, the results of this study clearly indicate that 

transformation of amoeboid cells into ramified microglial cells starts during early gestation in 

the human brain. A study of cerebellum in mice using specific immunological markers for 

microglia has reported heterogeneous distribution and morphology of microglia throughout 

the cerebellum, but no there was no significant difference between young (25−30 days) and 

adult (3−4 months) animals (Vela et al. 1995), suggesting that ramification of microglia 

occurred before the earliest time point for this study. Moreover, the study showed the mean 

number of microglia varied in different layers of the cerebellum. The cerebellar nuclei had the 

highest microglial density, and the molecular layer had the lowest, while the granular layer 

and the white matter had intermediate densities. Using both coronal and horizontal sections 

Vela et al. (1995) demonstrated that the length of microglial processes was different in each 

layer. From analysis of two previous studies (Triarhou & Ghetti 1991; Wilson & Molliver 

1994), Vela et al. (1995) found a correlation between serotonergic innervation  between 

cerebellar layers and density of microglial cells, suggesting the possibility of microglial 

involvement in the regulation of neurotransmission. This study did not provide any 

experimental evidence for this claim, and further studies are required to investigate the 

hypothesis. 

               Quantitative analysis of microglial cells from adult rat brain sections stained using 

three different microglial markers, lipocortin 1 (LC1) (a glycoprotein), phosphotyrosine and 

lectin GSA B4, showed that LC1 labeled the highest numbers of cells and GSA B4 labeled the 

least in any particular brain region (Savchenko et al. 2000). Each of the three markers 

demonstrated different microglial density in different brain regions, eg. 123±10, 121±1 and 

98±8 cells/mm2 in the frontal lobe, hypothalamus and occipital lobe respectively using LC1. 

Thus, the study clearly demonstrated that microglial density varies between brain regions 

(Savchenko et al. 2000). It also supported the idea, first proposed in 1927 by del Rio-Hortego, 
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that different microglial phenotypes are present in the brain. Another possible cause of the 

observed variation in labelling of microglia with different methods is that microglia express a 

variety of immunological and histological markers, and that some of these markers get up-

regulated upon microglial activation. For example, ED1 antibody strongly labels amoeboid 

microglial cells, but does not label (Flaris et al. 1993) or only weakly labels ramified 

microglial cells (Milligan et al. 1991). Increased levels of microglial CD11b receptors 

(recognised by the OX-42 antibody), as seen in spinal microglia after nerve injury (Tsuda et 

al. 2003), also suggest that an increase in certain immunological markers occurs upon 

microglial activation.  

               Circumventricular organs are situated around the ventricular system of the brain. 

They possess a weak blood-brain barrier which allows macrophage infiltration in these areas.  

Perry et al. (1992) reported expression of sialoadhesin receptors in microglial cells and in 

macrophages present in circumventricular regions. This receptor type is normally present in 

macrophages, but not in ramified microglia present in brain regions with a strong blood-brain 

barrier. Based on this evidence, the authors claimed that the “phenotype of microglia is, in 

part, regulated by the presence of the blood-brain barrier.” One possibility is that plasma 

components can modulate microglial morphology (see Perry et al. [1992] for further 

discussion). Similarly, another study has reported that microglia in circumventricular organs 

express high levels of CD4 receptors, similar to macrophages, whereas ramified microglial 

cells present in other area of the brain do not (Perry & Gordon 1987). This study also reported 

the presence of cells with microglial morphology expressing high levels of CD4 in damaged 

areas following injury to the CNS and damage to the blood-brain barrier.                          

2.3. Origin of microglia  
 

               As discussed, microglia and macrophages are immune cells that perform many 

similar functions and share common features. However, they do show some differences as 
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well. One well known difference between microglia and macrophage cells is their 

morphology. Microglial cells are present in their resting ramified form in the CNS and 

undergo morphological change upon activation (Fig 1.1). The immune function of microglia 

is restricted to the CNS, while macrophages provide immunity mainly outside the CNS. It is 

now accepted that monocytes and macrophages arise from a mesodermal origin, but there is 

controversy over the origin of microglial cells. Based on experimental data, there are two 

principal views regarding microglial origin: that microglial cells are (i) of mesodermal origin, 

or that (ii) they originate from neuroepithelial cells. Compare reviews by Cuadros & 

Navascues (1998) and Kaur et al. (2001).  

               One of the main argument supporting a different origin for microglia from that of 

monocytes/macrophages is that some immunohistochemical markers present on macrophages 

are not expressed by ramified microglia (Oehmichen et al. 1979; Wood et al. 1979).  

Electrophysiological studies have reported the presence of outward K+ current in 

macrophages and the absence of outward K+ current in isolated unstimulated microglial cells 

(Kettenmann et al. 1990).  These different expression levels of surface immunohistochemical 

markers and ion channels could be due to the difference in the microenvironments of 

microglia and macrophages. These data support the idea of a different functional state in 

microglia, but do not give any direct information about microglial origin. Stronger support for 

the neuroectodermal origin of microglia came from the in vitro findings of Hao et al. (1991) 

and Richardson et al. (1993), where microglia were generated from embryonic 

neuroepithelium in culture.    

               The view that microglia are of mesodermal origin is supported by the evidence that 

microglia and monocytes/macrophages have many common immunohistochemical markers 

and functions (Chugani et al. 1991; Imamura et al. 1990). There is similarity in the type of ion 

channels expressed by activated microglia and macrophages (Brown et al. 1998). 

Experimental evidence demonstrating labelled microglia in the brain following labelling of 
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circulating white blood cells shows monocytes as a microglial precursor. However, 

macrophages/microglial cells appear within the CNS before it is vascularised (Ashwell 1991; 

Cuadros et al. 1993) and before monocytes are produced in hemopoietic tissues (Naito et al. 

1996; Sorokin et al. 1992). Therefore, not all microglial cells can originate from circulating 

monocytes during development. Strong support for this view of a microglial haematopoietic 

origin is based on results obtained by several animal studies of bone marrow chimeras 

(Hickey & Kimura 1988; Matsumoto & Fujiwara 1987). One bone marrow transplantation 

study has reported replacement of 10−20 % of microglial population by donor cells by 3−4 

months after transplantation (Krall et al. 1994).  

               Collectively, a large proportion of authors and studies have supported the view that 

microglia derive either from monocytes that leave the blood stream and colonise the nervous 

parenchyma, or directly from hemopoietic stem cells that differentiate as microglial cells. 

However, it is difficult to draw a final conclusion due to variation in experimental procedures, 

duration of experiments, the initial time point of experiments and variation in the species 

used.  

3. Microglial receptors and their involvement in microglial activation 
 

               Microglia express a variety of receptors, including purinergic receptors, toll-like 

receptors, calcium-sensing receptors, glutamate receptors, and receptors for cytokines and 

chemokines (Illes et al. 1996; Koizumi et al. 2007; Morigiwa et al. 2000; Seo et al. 2008; 

Takeuchi et al. 2006; Tsuda et al .2003; Wu et al. 2004a; Wu et al. 2004b; Eun et al. 2004; 

Noda et al. 2000). Microglial glutamate receptors include  ionotropic receptors N-methyl-D-

aspartic acid (NMDA), (S)-a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), 

kainic acid (KA) receptors and metabotropic glutamate receptors (mGluRs), mGluR1, 

mGluR2 and mGluR4. 
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               Of all microglial receptors, purinergic receptors have received the most attention, 

due their reported roles in microglial activation in various pathological conditions linked to 

inflammation (Abbracchio & Verderio 2006; Inoue 2008; Koles et al. 2005; Tsuda et al. 

2003). Purinergic receptors can be divided into two main categories: ionotropic (P2X) and 

metabotropic (P2Y) receptors. Ionotropic P2X receptors are a family of cation-permeable 

ligand gated ion channels that open in response to the binding of extracellular purines such as 

ATP. ATP is thought to be released from damaged tissue/neurons. In microglial cells, 

activation of these receptors results in entry of Ca2+, which can activate various Ca2+ sensitive 

intracellular processes. Metabotropic P2Y receptors are G protein coupled receptors, and act 

via secondary intracellular messengers to induce cellular responses. There is discrepancy in 

the literature in terms of which of these receptors is most important for microglial activation 

and pathological functions. Some studies have suggested a vital role for microglial P2X 

receptors (Ferrari et al. 1997a; Tsuda et al. 2003), while others have linked microglial P2Y 

receptors (Honda et al. 2001; Inoue et al. 2009) with activation and the pathological role of 

ATP in neuropathic pain. Some reports have suggested a role for P2X receptors in microglial 

cytokine release and P2Y receptors in microglial chemotaxis (Honda & Kohsaka 2001; James 

& Butt 2002).  

               Microglial receptors may respond to microglial secretions acting in an autocrine 

manner to further activate microglia. For instance, neurotransmitters can induce microglial 

cytokine release which can then act back on microglia to induce more neurotransmitter 

release. Similarly, cytokines produced by neurons or glial cells can act on microglia to induce 

neurotransmitter release which then further increases microglial cytokine release. This type of 

autocrine action of microglial secretions has been reported by various in vitro studies on 

microglia (Jantaratnotai et al. 2009; Liu et al. 2006; Seo et al. 2008; Takeuchi et al. 2006). 

Thus, microglia express a wide range of receptors on their surfaces whose actions interact in 

complex ways. However, the possibility that microglia do not express all these receptors in 
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their resting condition and express some of them only upon their activation cannot be 

eliminated. Activation of those receptors may be linked with pathological or beneficial effects 

of microglia.   

4. Microglial secretions: their pathological and beneficial roles  
 

                Upon activation by various mechanisms, microglia secrete various proinflammatory 

or anti-inflammatory cytokines, chemokines, growth factors, reactive oxygen species, 

glutamate and nitric oxide. Microglial can sense even small changes in their surrounding 

environment and can exert neuroprotective or neuroinflammatory effects on surrounding 

neurons via their diverse variety of secretions. Some of the major microglial secretions and 

their functional roles are described below.                     

 4.1. Tumor necrotic factor alpha (TNF-α)             

                Tumor Necrotic Factor alpha (TNF-α) is involved in the pathogenesis of many 

neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease and multiple 

sclerosis (Brosnan et al. 1988; Fillit et al. 1991).  It is one of the best-documented cytokines 

produced by microglia upon activation. The study of Hide et al. (2000) on cultured rat 

microglia reported an ATP-induced dose-dependent increase in microglial TNF-α secretion, 

suggesting that ATP secreted from dead or damaged neurons can trigger microglial TNF-α 

secretion. Takeuchi et al. (2006) used microglial-neuronal co-culture to demonstrate that 

TNF-α acts on microglia to induce glutamate secretion, which can then act on neurons to 

induce neurotoxicity. The possibility of a further increase in TNF-α secretion from microglia 

due to an autocrine action of this cytokine was also suggested.  Interestingly, an in vivo study 

by Gullilam et al. (2007) demonstrated that inhibition of TNF-α protein expression in the 

paraventricular hypothalamus (an area responsible for cardiovascular control of blood 

pressure) using a pentoxifylline (PTX) had beneficial effects on the heart in animals with left 

coronary artery ligation. This study raised the possibility of a pathological role of brain TNF-
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α in the consequences of myocardial infarction. On the other hand, mice lacking the receptor 

for TNF-α (p55 receptor-1) showed increased neurotoxicity under excitatory and ischemic 

conditions, suggesting a neuroprotective action for this cytokine (Bruce et al. 1996; Gary et al. 

1998). TNF-α has also been reported to be neuroprotective by various other studies (Barger et 

al. 1995; Cheng et al. 1994). Thus, TNF-α can be either neuroprotective or neurodegenerative, 

but the factors that determine its protective or pathological role are not known.   

4.2. Interleukin-1β (IL-1β) 
 

                Interleukin-1β (IL-1β) is an inflammatory cytokine secreted by activated microglia 

and macrophages. In microglia, IL-1β is synthesised in an inactive form which undergoes 

proteolytic cleavage to produce the mature form which is then released. Many in vitro studies 

of microglia have suggested a role for ATP and the purinergic P2X7 receptor type in the 

process of maturation and secretion of IL-1β (Ferrari et al. 1997b; Sanz & Di Virgilio 2000; 

Solle et al. 2001), but none of them have reported ATP mediated IL-1β release from microglia 

that are not LPS pre-treated. An in vitro study has reported that LPS alone can stimulate 

microglial IL-1β release, but an ATP application to LPS pre-treated (for 2 hours) microglia 

produced IL-1β release several fold greater (Sanz & Di Virgilio 2000). The study suggested 

that ATP stimulates production as well as release of IL-1β.  

                Increased IL-1β cytokine has been reported in brains after insult or injury and in 

humans with Alzheimer’s disease (Griffin & Mrak 2002; Rothwell 2003). IL-1β released 

from cultured activated microglia can directly increase acetlycholinesterase production and 

activity in primary neuronal cultures (Li et al. 2000). These findings suggest that the increased 

concentration of IL-1β in an Alzheimer’s affected brain may contribute to the observed 

decreases in the tissue acetylcholine levels by increasing synthesis and activity of neuronal 

acetlycholinesterase. IL-1β is involved in hypothalamic regulation of corticotrophin-releasing 

hormone secretion and autonomic activation (Hsieh et al. 2010; Shi et al. 2010a). The action 
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of IL-1β on the hypothalamus also results in fever, anorexia and analgesia, and this may be 

due to an IL-1β mediated increase in norepinephrine (NE) levels in the PVN and the median 

eminence (ME) regions of the hypothalamus (MohanKumar & MohanKumar 2005).   

4.3. Interleukin-10 (IL-10) 
 

                Interleukin 10 (IL-10) is an anti-inflammatory cytokine (Levin & Godukhin 2007; 

Moore et al. 1993; Opal et al. 1998; Pajkrt et al. 1997; Sawada et al. 1999). Studies have 

reported IL-10 secretion from human, rat and mouse microglia (Chabot et al. 1999; Correa et 

al. 2010; Kim et al. 2002; Zhang et al.). IL-10 exerts an inhibitory effect on microglial 

production of proinflammatory cytokines TNF-α, IL-1β, chemokines and ROS and their 

secretion (Aloisi et al. 1997; Sawada et al. 1999).  Every type of glial cell, as well as neurons 

in the CNS, express receptors for IL-10. Apart from brain cells, monocytes, macrophages, and 

B and T lymphocytes also synthesise IL-10. Studies have demonstrated an association 

between increased IL-10 levels and reduced clinical symptoms of stroke, multiple sclerosis, 

Alzheimer's disease, meningitis, and the behavioural changes in experimental animals that 

occur during bacterial infections (Frenkel et al. 2005; Levin & Godukhin 2007; Paris et al. 

1997; Strle et al. 2001).  Another study has reported reduced ability of immune cells to 

produce IL-10 in human patients suffering from type-2 diabetes (van Exel et al. 2002). The 

cellular mechanisms leading to the anti-inflammatory effects of IL-10 are not completely 

known.  

4.4. Reactive oxygen species (ROS) 
 

                Reactive Oxygen Species (ROS) are reactive molecules that contain the oxygen 

atom. Phagocytic cells such as microglia have the capability to produce ROS in large 

quantities, and they use the lethal effect of oxidants to kill phagocytosed pathogens.  ROS are 

continuously being produced in all cells as a byproduct of various biochemical reactions, but 

are largely neutralised by cellular antioxidant defense mechanisms to prevent cellular damage.  
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However, excessive production of reactive oxygen species or inhibition of cellular defense 

enzymes can result in lipid peroxidation, protein denaturation and DNA damage which leads 

to oxidative stress mediated cell death (Bennett 2001; Rana & Shivanandappa 2010; 

Srivastava & Shivanandappa 2006). One major cellular source of ROS is mitochondria, which 

generate ROS during oxidative phosphorylation. In activated microglia, the NADPH oxidase 

enzyme is the major source of excessive superoxide production (Barger et al. 2007; Li et al. 

2005). Cellular defense mechanisms against ROS include the enzymes glutathione 

peroxidase, glutathione reductase, superoxide dismutase (catalyze superoxide conversion to 

H2O2), and catalase (converts H2O2 to water and oxygen).  Oxidative stress and increased 

levels of ROS in the brain have been suggested to be involved in the pathology of various 

neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease and 

myocardial infarction (Halliwell 2001; Lindley et al. 2004).  

                Interestingly, activated microglia are capable of production of ROS as well as of 

nitric oxide. Nitric oxide has a dual role, as it can act as a signalling molecule in the brain and 

can also participate in reactions leading to production of toxic oxidative molecules.  Nitric 

oxide signalling in the paraventricular nucleus plays a major part in the regulation of renal 

sympathetic nerve activity (Zheng et al. 2006).  Nitric Oxide can also act as a chemoattractant 

signalling molecule, causing microglial migration to a site of injury in the CNS (Chen et al. 

2000). On the other hand, nitric oxide combines with superoxide to form the much 

stronger and more toxic oxidant peroxynitrite (ONOO ) (Beckman 1999) which could be the 

reason for reported apoptosis in motor neurons by application of both nitric oxide and 

superoxides (Estevez et al. 1995). The study of Li et al. (2005) showed that LPS 

(lipopolysaccharides) treatment increases protein expression of the inducible nitric oxide 

synthase enzyme and activates NADPH oxidase which contributes to highly toxic 

peroxynitrite generation from microglia (Li et al. 2005). Activation of microglia also results in 

production of hydrogen peroxide (H2O2), which can again act back on the cell of origin or on 
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nearby microglial cells to activate them. H2O2 is also suggested to act as a signalling 

molecule that attracts microglia to the site of injury. Apart from acting as a chemokine, H2O2 

also induces microglial proliferation (Mander et al. 2006).  Proinflamatory cytokines TNF-α 

or IL-1β caused an increase in microglial proliferation which was inhibited by catalase, 

indicating that the proliferative effect of these cytokines is mediated by H2O2 (Mander et al. 

2006). Using an inhibitor of NADPH oxidase, this study also suggested that increased 

production of reactive oxygen molecules by activation of this enzyme provides more substrate 

for the enzyme superoxide dismutase (SOD), which increases production of  H2O2 . 

Therefore, H2O2 might be responsible for localised increases in the number of microglia 

observed during various pathological conditions. 

4.5. Glutamate 
 

                  Glutamate is required for normal synaptic functioning, but excessive release from 

synaptic terminals overexcites neurons and results in excitoxicity. Excessive glutamate 

induces a very high cellular calcium level by increasing calcium influx and triggering calcium 

release from intracellular stores, which results in deregulation of cellular calcium homeostasis 

(Arundine & Tymianski 2003). Neuronal over-excitation by glutamate can result in 

neuroinflammation and neurodegeneration and occurs in ischemia, epilepsy and Alzheimer’s 

disease (Hynd et al. 2004; Sattler & Tymianski 2000; 2001).   

                Upon activation by LPS, microglia release glutamate (Barger et al. 2007), 

suggesting that microglia could be a potential source of glutamate inducing neurotoxicity in 

various neurodegenerative diseases. Barger et al. (2007) also demonstrated that LPS mediated 

microglial glutamate release can be inhibited by boosting cellular antioxidant machinery 

(inducing cellular level reduced glutathione) by using antioxidant vitamin E or by using 

inhibitors of NADPH oxidase. These results indicate that glutamate release from activated 

microglia requires an oxidative burst. Interestingly, several studies on microglia have reported 
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that glutamate induces microglial proliferation and the release of cytokines and nitric oxide 

(Noda et al. 2000; Tikka et al. 2001; Tikka & Koistinaho 2001).               

4.6. Brain-derived neurotrophic factor (BDNF) 
 

                Brain-Derived Neurotrophic Factor (BDNF) is a member of the “neurotrophin” 

family of proteins. It acts as a neuronal growth factor and is produced by activated microglia 

as well as by neurons in the adult brain. BDNF acts via binding to tyrosine kinase receptors of 

which TrkB is  preferred receptor. BDNF is expressed by neurons under normal physiological 

conditions and expression increases with increased neuronal activity in the brain (Gorba et al. 

1999). In contrast, microglia require activation or stimulation to produce and secrete BDNF. 

BDNF plays a vital role in cell survival, gene expression, neutrite outgrowth, regulating 

cellular morphology, neurotransmitter release, synaptic plasticity and memory functions in the 

CNS (Lu & Chow 1999; Lu & Figurov 1997; Lu & Martinowich 2008; Mizoguchi et al. 

2003a; Mizoguchi et al. 2003b; Mizoguchi et al. 2006; Mizoguchi et al. 2009; Phillips et al. 

1991; Poo 2001). BDNF is reported to be involved in microglial proliferation and survival 

(Elkabes et al. 1996; Zheng et al. 1995).  Although, BDNF is widely distributed throughout 

the brain, a high level of BDNF is observed in hippocampal granule neurons. Decreased 

BDNF mRNA  levels have been reported in these  neurons by RNAase protection assay 

performed on samples  from humans with Alzheimer’s disease, leading to the suggestion of a 

neuroprotective role for BDNF (Phillips et al. 1991).  

                Microglial BDNF is reportedly elevated in the spinal cord for several days after 

spinal injury (Cho et al. 1998) and may be responsible for enhancing neuronal excitation and 

injury by attenuating the inhibitory effect of GABA (γ-aminobutyric acid) (Coull et al. 2005; 

Prescott et al. 2006). Another study of spinal cord slices has reported an inhibitory effect of 

BDNF on GABAergic neurons (Lu et al. 2009a). The pathway for BDNF release in microglia 

is not known, but a study of cultured neurons has demonstrated that activation of neuronal 
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AMPA receptors (glutamate receptors) induces neuronal BDNF secretion via 

phosphatidylinositol 3-kinase (PI3-K) mediated activation of a mitogen activated protein 

kinase (MAPK) pathway. The study also reported that the activation of this pathway confers 

neuroprotection against excitotoxicity (Wu et al. 2004a). An in vitro study has demonstrated 

that the phagocytic activity of macrophages depends on BDNF synthesis and TrkB expression  

(Asami et al. 2006). However, the involvement of BNDF in microglial phagocytic function 

has not been investigated.  

5. Studies of the mechanisms of microglial activation  
 

5.1. Increased intracellular calcium is associated with microglial activation and 
secretion                     

                Microglial proliferation, secretion of cytokines and reactive oxygen species, 

migration and morphological changes are usually associated with an increase in microglial 

intracellular Ca+2 concentration ([Ca+2]i)(Eder 2005; Farber & Kettenmann 2006).                  

                ATP (which is thought to be released from damaged neurons) and  

lipopolysaccharide (LPS, present in the bacterial cell wall) are both capable of activating 

microglia during in vitro as well as in vivo conditions (Buttini et al. 1996; Hide et al. 2000; Li 

et al. 2005; Montero-Menei et al. 1996; Zheng et al. 2008). LPS is reported to cause a 

sustained increase in basal [Ca+2]i in microglia (Hoffmann et al. 2003). An intracellular 

calcium chelator prevented the LPS-stimulated increase in microglial NO, cytokines and 

chemokine release, suggesting a requirement of elevated intracellular calcium for microglial 

secretion (Hoffmann et al. 2003). On the other hand, calcium ionophore (ionomycin) 

mediated elevation of microglial [Ca+2]i was not sufficient to induce microglial nitric oxide, 

cytokine and chemokine release, suggesting that another intracellular messenger may also 

have a vital role to play in the secretion function of microglia (Hoffmann et al. 2003).  
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                Calcium imaging experiments on microglia have reported that ATP induces a 

transient increase in [Ca+2]i  in a dose dependent manner (Moller et al. 2000).  The highest 

calcium level was caused by 300 µM ATP, which was not changed further at higher 

concentrations. The observed increase in calcium with 100 µM ATP treatment was transient 

and biphasic. However, cells treated with 100 µM ATP in the absence of extracellular calcium 

showed a monophasic increase in cellular calcium level (Fig. 1.2). Moreover, a smaller 

proportion of cells responded to the ATP treatment as compared to cells tested in presence of 

extracellular calcium. These results clearly indicate that ATP triggers calcium release from 

intracellular stores in microglia as well as calcium entry from the extracellular medium.   

                Interestingly, a 5-minute treatment with thapsigargin (a specific blocker of the 

endoplasmic reticulum calcium pump), increased basal calcium levels in 53 % of microglia 

(Fig 1.3). After this 5-minute treatment, cells with elevated basal calcium levels did not 

respond to ATP, while the population of cells with no increase in basal calcium level did 

respond, although the strength of this response was lower than that prior to the thapsigargin 

treatment (Moller et al. 2000). These results support the involvement of ionotropic as well as 

metabotropic receptors in ATP mediated calcium response, but do not explain why there are 

two different responses to thapsigargin treatment in microglia. Selective P2X receptor 

agonists 2-methylthio ATP and αβ-methylene ATP activate all P2X receptor types, but their 

power to do so is variable between receptor types (North & Surprenant 2000). Interestingly, 

2-methylthio ATP but not αβ-methylene ATP effectively increased [Ca2+]i  in microglia 

(Inoue 2006c). This could be because the P2X receptor agonist αβ-methylene ATP is a weak 

activator of P2X4 and P2X7 receptor types as compared to 2-methylthio ATP (North & 

Surprenant 2000; Volonte et al .2006). Treatment with suramin (100 µM, a broad antagonist 

of P2 receptors) was not effective enough to inhibit the ATP-evoked increase in [Ca2+]i (20 

out of 20 cells) (Inoue 2006c). Suramin inhibits P2X4 and P2X7 receptor types only at higher 

concentration (North & Surprenant 2000). Selective P2X7 receptor agonist 2’- and 3’-O-(4-
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benzoylbenzoyl) adenosine 5’-triphosphate (BzATP) evoked a long-lasting increase in 

[Ca2+]i even at 1 µM concentration, but at this concentration ATP does not cause any change 

in [Ca2+]i, suggesting that BzATP is the more potent activator of P2X7 receptors.  One hour 

pretreatment with oxidized ATP (oATP; 100 µM), a selective antagonist of P2X7 receptors, 

was able to block the increase in [Ca2+]i induced by ATP (Inoue 2006c).  

                Mizoguchi et al. (2009) have demonstrated that BDNF induces sustained elevation 

of intracellular Ca2+ through binding to the TrkB receptors on microglia (Fig 1.4). The use of 

either a calcium-free medium or thapsigargin (200nM) was able to prevent the BDNF-induced 

microglial [Ca+2]i  increase completely,  indicating that both extracellular calcium and calcium 

released from internal stores are equally required for achieving the increase in [Ca2+]i. In 

contrast, this study also demonstrated that pretreatment with BDNF suppresses IFN-γ induced  

calcium influx. This inhibitory effect of BDNF on [Ca+2]i in activated microglia is 

accompanied by inhibition of nitric oxide release  (Mizoguchi et al 2009; Nakajima et al 

1998), which may be due to BDNF mediated inhibition of iNOS expression (Mizoguchi et al. 

2009). These results suggest a complex role of BDNF in regulation of the microglial 

inflammatory response.  This study did not provide any evidence demonstrating a mechanism 

for the suppression of IFN- γ responses in BDNF pretreated cells.  However, one hypothesis is 

that elevated basal intracellular [Ca2+]i due to BDNF pretreatment is responsible for 

suppression of calcium response. In vitro studies of microglia have demonstrated that 

elevation of microglial basal calcium level leads to reduced ability to respond to other 

external stimuli (Hoffmann et al. 2003; Moller et al. 2000).  The reason for this reduced 

ability to respond is not well understood. 

                As discussed earlier, microglia have been reported expressing glutamate receptors 

in vitro and in vivo (Eun et al 2004; Noda et al 2000). The in vitro study of Yong Eun et al. 

(2003) also reported that activation of microglial glutamate receptors induces microglial c-Fos 

gene expression. The study demonstrated involvement of both Ca2+ ions entered from the 
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extracellular medium and Ca2+ released from the intracellular stores in induction of c-Fos 

expression in microglia. Even treatment with ionomycin was sufficient to induce microglial c-

Fos expression (Eun et al 2004) suggesting that microglial c-Fos expression is a completely 

calcium dependant event.                   

                One study of cultured microglia has demonstrated ATP release from glutamate 

activated microglia (Liu et al. 2006). This study also reported that inhibition of this ATP 

release can be achieved by specific AMPA receptor antagonists (GYKI 52466), but not by 

NMDA or any metabotropic glutamate receptor antagonist. Moreover, the study demonstrated 

that glutamate induced microglial ATP release was inhibited either by inhibiting calcium 

release from intracellular stores or by applying the protein kinase C inhibitor chelerythrine 

(Liu et al. 2006).  As use of Ca2+ free buffer did not inhibit ATP release, the results suggest 

that calcium release from intracellular stores and activation of protein kinase C are necessary 

events for glutamate induced ATP release from microglia.  

                Thus, Ca2+ is an important intracellular messenger for microglial function (Fig. 1.5).  

Detailed downstream mechanisms activated by Ca2+ in microglia are perhaps less well 

characterised but may involve activation of protein kinases.             

5.2. Protein kinase (p38 MAPK) phosphorylation associated with microglial 
activation  

                 Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) is required 

for cell growth, cell differentiation and cell cycle in a variety of cell types.  It can be activated 

by many stimuli, including inflammatory molecules, UV light, LPS and withdrawal of trophic 

factors. In vivo as well as in vitro studies have reported increased phosphorylation of p38 

MAPK with microglial activation and cytokine production (Ji et al. 2009; Ji & Suter 2007; 

Wen et al. 2009). MKK3 (mitogen-activated protein kinase kinase 3) and MKK4 are possible 

intracellular up-stream kinases that lead to p38 MAPK activation in microglia (Brancho et al. 

2003; Uesugi et al. 2006). A study of microglia has reported that protein kinase C (PKC) is 
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also an upstream regulator of p38 MAPK (Nakajima et al. 2004).  Activation of p38 MAPK in 

turn regulates NF-κB, COX-2 and iNOS in microglia, all of which play important roles in 

cytokine as well as ROS production (Ji & Suter 2007). Studies using drugs that inhibit 

microglial activation further bear out the above evidence that phosphorylation of p38 MAPK 

is important for microglial activation and cytokine production (Fordyce et al. 2005; Tikka & 

Koistinaho 2001).  

5.3. Role of protein kinase C in microglial activation 
 

                Earlier studies of microglia have shown they express protein kinase C (PKC) in 

many different isoforms, e.g., α, δ and Є (Nakai et al. 2001). PKC has been reported to 

activate NADPH oxidase through phosphorylation of p47phox (McNamara et al. 1993; Turgeon 

et al. 1998). A study by Ryu et al. (2000) has reported that thrombin, a well known protease 

involved in blood coagulation and wound healing, induces nitric oxide release from microglia 

in a dose dependent manner. Thrombin activates protein kinase C, mitogen-activated protein 

kinases and NF-kB, which leads to up-regulation of iNOS expression in microglia and 

induces NO production (Ji & Suter 2007; Ryu et al. 2000). Interestingly, Uesugi et al. (2006) 

reported that NF-kB inhibitor ammonium pyrrolidinedithiocarbamate (APDC) could not 

inhibit LPS- induced TNF-α production in microglia. The study also provided evidence to 

support previous observations that MKK3/6-p38 MAPK and MKK4-JNK take part in an 

intracellular signalling cascade that induces TNF-α production in LPS-stimulated microglia. 

Another study has reported involvement of the α (alpha) isoform of protein kinase C (PKC) 

and p38 MAPK in TNF-α production from LPS-stimulated microglia (Nakajima et al. 2004). 

Moreover, this study also demonstrated, using specific pharmacological blockers, that PKC-α 

is necessary for p38 MAPK activation, suggesting a higher order of PKC-α in the intracellular 

cascade that stimulates TNF- α production (Fig 1.6).  

6. Ion channels on microglia and their role in microglial function 
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6.1. Microglia express a variety of ion channels 

              An earlier article has extensively reviewed the literature treating ion channels 

present on microglia (Eder 1998). There is evidence for the presence of H+ channels, Na+ 

channels, voltage-gated Ca2+ channels, Ca2+ release-activated Ca2+ channels, voltage-

dependent and voltage-independent Cl  channels and at least six different types of K+ 

channels on microglia (Eder 1998). The latter include inward rectifier, delayed rectifier, 

HERG-like, G protein-activated, as well as voltage-dependent and voltage-independent Ca2+-

activated K+ channels. Some of these channels are species specific, while others are 

commonly expressed between species. Rat microglia express inward rectifier K+ channels, 

HERG-like K+ channels, delayed rectifier K+ channels, Na+ channels, H+ channels, voltage 

activated Ca2+ channels, Ca2+ release-activated Ca2+ channels and voltage-independent 

stretch- activated Cl- channels  (Eder 1998). In addition to the types of ion channel expressed 

in rats, mouse microglia have been shown to express G protein-activated K+ channels and 

voltage independent Ca2+ activated K+ channels (Eder 1998). Human microglia express 

similar ion channels to mice, except that voltage-dependent Ca2+ activated K+ channels and 

voltage-dependant Cl- channels are expressed only by  human microglia (Eder 1998). Ion 

channels in microglia are involved in maintaining the membrane potential and may also be 

involved in regulation of proliferation, activation, and the respiratory burst (Khanna et al. 

2001; Kotecha & Schlichter 1999). The expression level of most of these ion channels on 

microglia depends on their functional state.  

6.2. Role of K+ channels in microglial function  

                Resting microglia express only inward rectifying K+ channels (Norenberg et al. 

1992). In vitro studies on purine-, LPS-, gamma interferon-, or granulocyte macrophage 

colony-stimulating factor-stimulated microglia have demonstrated that an outward K+ 

conductance (Fischer et al. 1995; Langosch et al. 1994; Norenberg et al. 1993; Norenberg et 

al. 1992) is expressed only in response to activating stimuli. Using patch clamp, Norenberg et 
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al. (1992) demonstrated that expression of K+ channels depends on the exposure time to 

inflammatory stimuli. In this study there was a gradual increase in the number of cells 

showing outward K+ conductance up to 3 hours after LPS exposure, which then gradually 

decreased after 1 day and become negligible after 5 days despite the continued presence of 

LPS (Norenberg et al 1992). The study did not investigate the reason for the decreased 

expression at later time points. A later report demonstrated suppression of the outward current 

by cyclohexamide (an inhibitor of protein synthesis), suggesting that LPS  induced production 

of new membrane channels (Norenberg et al 1993). The presence of outward K+ channels 

only on activated microglia suggests that they are involved in the process of microglial 

activation.  

6.2.1 Kv 1.5 channels are involved in regulation of microglial proliferation and nitric 
oxide release but not in chemokine release function  

                Khanna et al. (2001) reported the presence of both Kv1.5 and Kv1.3 channels in 

unstimulated microglial cell lysate by isolating proteins. Surprisingly, microglia did not show 

a  Kv1.5-like current, but did show Kv1.3 current as demonstrated by the complete blockade 

of the voltage-dependent current by the Kv1.3 blocker agitoxin-2 (Khanna et al. 2001). 

Immunohistochemical analysis using the OX-42 antibody as a marker of microglia, along 

with antibodies for Kv1.3 and Kv1.5 channels, demonstrated that Kv1.3 is found on the 

microglial cell membrane while Kv1.5 is present mainly intracellularly. Another in vitro study 

investigated the role of Kv1.5 and Kv1.3 channels in the function of microglia (Pannasch et 

al. 2006). This study compared the effect of LPS (100ng/ml) on microglia isolated from wild 

type 129SVEV mouse brains to that on microglia isolated from Kv1.5-/- knockout mice. 

Unlike in wild type microglia, LPS treatment did not trigger nitric oxide release from Kv1.5-/- 

microglia, but did cause chemokine release as in wild type microglia. The study also used 

microglial cells pre-treated with antisense oligonucleotide (AO) for Kv1.5 and for Kv1.3 

followed by the LPS treatment as another approach to investigating the role of these channels.  
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This showed inhibition of NO release by AO Kv1.5 but not by AO Kv1.3, suggesting that 

Kv1.3 is not involved in the microglial NO release function. The study also reported that 

decreasing expression of either Kv1.5 or Kv1.3 channels can prevent the LPS mediated 

decrease in microglial proliferation. These results suggest that LPS mediated inhibition of the 

microglial cell cycle is via increased expression of these two channels. Moreover, Pannasch et 

al. (2006) also reported increased microglial proliferation in Kv1.5-/- mice after facial nerve 

injury in vivo. Collectively, these studies suggest that LPS treatment increases expression of 

microglial Kv1.5 channels, which is responsible for inhibition of microglial cell cycle and 

increased NO release but not LPS-induced chemokine release.  

6.2.2 Microglia Kv1.3 channels are required for morphological changes and ROS 
production via a p38 MAPK independent pathway  

                Interestingly, an in vitro study has reported involvement of microglial Kv1.3 

channels in their proliferation (Kotecha & Schlichter 1999) and the respiratory burst (Khanna 

et al. 2001). Khanna et al. (2001) demonstrated that the phorbol ester PMA (a protein kinase 

C activator) stimulates respiratory burst that can be inhibited up to 66±8% by a specific 

blocker of Kv1.3 channels, agatoxin 2. The study also used diphenylene iodonium as a 

blocker of NADPH oxidase to demonstrate that the PMA-induced respiratory burst was 

mainly mediated by the activation of NADPH oxidase. Blocking Kv1.3 channels was 

sufficient to inhibit PMA-mediated microglial morphological changes. The study also 

demonstrated that not only Kv1.3 but also a blockade of Ca2+/calmodulin gated channels SK2, 

SK3 and SK4 was able to inhibit the PMA-induced microglial respiratory burst, but not the 

morphological changes (Khanna et al. 2001). Fordyce et al. (2005) also demonstrated 

inhibition of the respiratory bust by pharmacological blockers of Kv1.3 channels but not by 

Kv1.2, Kv1.5 and Kv1.6 channel blockade. Interestingly, blocking Kv1.3 type channels was 

sufficient to prevent microglial superoxide production, but did not change microglial nitric 

oxide release. Moreover, the study reported that microglia previously activated with LPS 
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could induce apoptosis of neurons when co-cultured. Neither non-activated microglial cells 

nor direct action of LPS alone was able to induce such neuronal apoptosis (Fordyce et al. 

2005). The authors suggested that the action of peroxynitrite (a product of reaction between 

superoxide and nitric oxide) from activated microglia induced neuronal apoptosis via caspase-

3 activation. The study also reported that Kv1.3 plays a vital role in this superoxide and ROS 

production in microglia. To demonstrate the cellular mechanism being affected by Kv1.3 

blockade, the authors showed that minocycline inhibited neuronal killing and also inhibited 

activation of p38 MAPK, but that none of the Kv1.3 blockers affected p38 MAPK activation 

(Fordyce et al. 2005). These results suggest that the Kv1.3 blocker has neuroprotective effect 

which via inhibiting a pathway other than p38 MAPK activation in microglia unless that p38 

MAPK is an upstream regulator of the Kv1.3 channel.   

                Integrins are transmembrane glycoproteins responsible for regulation of adhesion 

and the ability of immune cells to migrate. Microglia express several different integrins 

including α4, α5, α6, β1, lymphocyte function associated antigen-1 and Mac 1 β2-integrin. 

Interestingly, the pharmacological inhibition of Kv1.3 channels or of β-integrin also inhibits 

microglial migration towards various chemo attractants, although this cited study did not test 

the effect of ATP (Nutile-McMenemy et al. 2007). These results clearly indicate that Kv1.3 

channels are also involved with microglial migration.  

6.2.3. Microglial Kv1.1 and Kv1.2 channels are involved in cytokine, nitric oxide and 
ROS production  

                 Apart from Kv1.3 and Kv1.5 channels, Kv1.1 and Kv1.2 have also been reported to 

be involved in the microglial activation process. Kv1.1 and Kv1.2 are shaker-like voltage 

gated K+ channels. These channels are present in early postnatal microglia but disappear in 

ramified microglia present in adult rat brains. In vitro studies have reported induced 

expression (mRNA as well as protein) of Kv1.1 and Kv1.2 channels in microglia upon 

activation with LPS or hypoxia (Li et al. 2008; Wu et al. 2009). Li et al. (2008) also reported 
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that microglial activation via ATP increases microglial Kv1.2 expression. Interestingly, a 

recent study by Wu et al. (2009) of BV-2 cells demonstrated that neutralising microglial 

Kv1.1 using an antibody results in reduction of microglial cytokine (TNF-α, IL-1β) and nitric 

oxide production upon exposure to LPS or hypoxia.  However, the authors did not suggest any 

mechanism for this Kv1.1 dependant cytokine and nitric oxide release. Interestingly, Kv1.1 

channels are also expressed by neurons in the paraventricular hypothalamus, where they have 

been reported to be involved in nitric oxide signalling (Yang et al. 2007). Li et al. (2008) also 

showed, using microglia and BV-2 cells, that Kv1.2 channels are required for microglial 

secretion. An inhibitor of Kv1.2 channel successfully reduced microglial cytokine mRNA 

production (TNF-α and IL1-β) and completely prevented ROS production in microglia 

exposed to LPS or hypoxia (Li et al. 2008). Notably, none of the studies of Kv1.1 and Kv1.2  

channels have reported complete inhibition of cytokine production, suggesting the 

involvement of other pathways or ion channels.   

6.3. Role of H+ channels in the functioning of microglia 
 

                 H+ channels in neutrophils are involved in superoxide anion production 

demonstrated by blocking this channel with Zn2+ or Cd2+ (Henderson et al. 1988). This study 

also suggested involvement of these channels in maintaining pH in neutrophils. H+ channels 

are present on microglia but little information is available on their functional role.  

6.4. Role of sodium channels in microglial function 
 

                 Cultured rat microglia  express sodium channels Nav1.1,  Nav1.6 and Nav1.5, but 

do not express detectable levels of Nav1.2, Nav1.3, Nav1.7, Nav1.8, or Nav1.9 (Black et al. 

2009). Sodium channel blockading with phenytoin (40 μM) and TTX (0.3 μM) significantly 

reduced phagocytic activity of LPS-activated microglia and migration in ATP-activated 

microglia, which is consistent with a role for  Nav1.6 in microglial function. Inhibition of 

these channels using phenytoin significantly inhibited IL-1α, IL-1β, and TNF-α release from 
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LPS-stimulated microglia (Black et al. 2009). Microglia from mice which lacked Nav1.6 

channels showed an approximately 65% reduction in phagocytic capacity compared to 

microglia from wild type mice (Craner et al. 2005).  No study has investigated the role of 

sodium channels in microglial proliferation. 

6.5. Role of calcium channels in microglial function 
 

                 As discussed earlier, rat, mice and human microglia express a variety of Ca2+ 

channels, including voltage-gated Ca2+ channels and Ca2+ release-activated Ca2+ channels   

(Eder 1998; Tokuhara et al. 2010). A recent study by Tokuhara et al. (2010) demonstrated 

involvement of N-type calcium channels in monocyte chemoattractant protein-1 (MCP-1) 

production from microglia. MCP-1 released from glial cells acts as chemokine and attracts a 

variety of cells including monocytes, T lymphocytes and dendritic cells (Simpson et al. 1998). 

Store operated Ca2+ entry (SOCE) is one of the mechanisms that supply Ca2+ for intracellular 

processes in microglia (Ohana et al. 2009). This study also demonstrated that Ca2+ release-

activated Ca2+ channels are responsible for SOCE in cultured microglia. Entry of Ca2+ through 

SOCE then triggers activation functions in microglia, although Ca2+ entry through ligand 

gated channels also plays a role (as discussed earlier). Despite the rapid pace of discovery of 

novel Ca2+ permeable channels on microglia, knowledge about the involvement of individual 

Ca2+ channels in microglial function is limited and requires further investigation.                           

7. Minocycline as an inhibitor of microglial activation  
 

              Minocycline is an antibiotic of the tetracycline class. Recent studies of microglia 

and animals have demonstrated an inhibitory action of minocycline on microglial activation 

(Fan et al. 2005b; Fordyce et al. 2005; Krady et al. 2005; Tikka et al. 2001). A study of 

cultured microglia has reported minocycline mediated inhibition of microglial migration 

towards brain homogenate, LPS, glutamate, and ADP, but not towards ATP (Nutile-
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McMenemy et al. 2007). The study also reported that the inhibitory action of minocycline on 

microglial activation is time- and concentration-dependent. The greatest inhibitory effect of 

minocycline was observed at 120 minutes and 60µM but not at 1µM concentration (Nutile-

McMenemy et al. 2007). Minocycline also inhibits proliferation, release of inflammatory 

cytokines and nitric oxide production from LPS-activated microglia (Henry et al. 2008; Tikka 

et al. 2001; Tikka & Koistinaho 2001). 

                 Details of the exact mechanism by which minocycline inhibits microglial activation 

are not known, but it has been reported to inhibit certain cellular machinery that is 

characteristic of microglial activation. For example, the in vitro study of Fordyce et al. (2005) 

has reported inhibition of LPS-induced p38 MAPK activation in microglia. Minocycline 

appears to be able to inhibit multiple intracellular pathways and intracellular signalling 

molecules causing inhibition of various functions of activated microglia. The inhibitory effect 

of minocyline on microglial activation can be characterised as inhibition of matrix 

metalloproteinases, impairment of microglial cytokine production, inhibition of microglia 

iNOS expression, inhibiting phorphorylation of p38 MAPK and COX-2 expression in 

microglia (Giuliani et al. 2005; Henry et al. 2008; Krady et al. 2005; Tikka & Koistinaho 

2001). Minocycline pre-treatment can inhibit induction in microglial COX-2 expression in 

TNF-α treated microglia, but not in IL-1β or IL-6 treated microglia (Krady et al. 2005).  

These results suggest that minocycline inhibits microglial activation but not in response to all 

the activating stimuli. As discussed above, all the microglial activators lead to increased 

intracellular calcium in microglia, but the direct effect of minocycline on intracellular calcium 

has not been investigated.  

                 Recently, it has been shown that minocycline inhibits phosphorylation of 

microglial PKC-α and PKC-βII in IFN-γ stimulated microglia (Nikodemova et al. 2007). This 

study also demonstrated that via inhibiting PKC α / βII, minocycline reduced microglial 

MHCII expression (Fig 1.5). The ability to express MHCII makes microglial cells antigen 
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presenting cells, which can in turn activate T cells. Therefore, reduced MHCII expression 

may reduce intervention of T cells at the site of brain injury. As discussed previously, the 

pharmacological inhibition of Kv1.3 channels or of β-integrin inhibits microglial migration.  

Interestingly, minocycline reduced expression of both Kv1.3 and β -integrin in microglia 

(Nutile-McMenemy et al. 2007).  

                 Both in vitro and in vivo studies indicate that minocyline can exert neuroprotection 

via a direct action on neurons (Gonzalez et al. 2007; Pi et al. 2004). Minocyline has been 

shown to inhibit neuronal apoptosis by inhibiting neuronal caspase 1 and caspase 3 activation 

and by inhibiting cytochrome c release (Chen et al. 2000; Lee et al. 2004; Tikka et al. 2001; 

Tikka & Koistinaho 2001; Zhu et al. 2002). Thus, the reported neuroprotection by 

minocycline treatment in various animal models of neuropathic pain and neurodegenerative 

disease may be due to a direct action of minocycline on neurons in addition to inhibition of 

microglial activation.  

8. Cardiovascular centres in the brain     

                Inflammation in the CNS is reported during various pathological conditions 

including diabetes and heart failure (Lindley et al. 2004; Tsuda et al. 2008; Yu-Ming Kang 

2009), although the involvement of microglia in these conditions has not been addressed.  

Various animal studies on diabetic rats as well on rats with myocardial infarction have 

reported abnormally increased neuronal activity and inflammation in specific cardiovascular 

centres of the brain (Lindley et al. 2004; Zheng et al. 2002). 

                Blood pressure and heart rate are regulated in a narrow range by the combined 

function of sympathetic and parasympathetic nerve activity. Both sympathetic and 

parasympathetic nerves are controlled by the various brain centres also known as 

cardiovascular centres. A detailed description of the anatomy, location and function of some 

of the most important cardiovascular centres is given below.     
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8.1. Paraventricular hypothalamic nucleus (PVN) 

                 The paraventricular hypothalamic nucleus (PVN) is located adjacent to the third 

ventricle and projects to diverse brain regions, including the brain stem, other hypothalamic 

regions and the spinal cord. The rostroventral medulla (RVLM), caudal ventrolateral medulla 

(CVLM) and nucleus tractus solitarius (NTS) are major brain stem sites that receive 

projections from the PVN, while the acuate nucleus, ventromedial hypothalamus and median 

eminence are hypothalamic areas that receive substantial projections from the PVN. The PVN 

is also a site for biosynthesis of a variety of neuropeptides, including arginine vasopressin, 

oxytocin, and corticotropin releasing hormones, and endogenous opiate peptides (Kawashima 

et al. 2004; Millan et al. 1984; Vandesande et al. 1974; Vandesande & Dierickx 1975; 

Vandesande et al. 1975) as well as neurotransmitters including norepinephrine (NA), 

epinephrine, dopamine, acetylcholine and y-aminobutyric acid (Flak et al. 2009; Liposits & 

Paull 1989; Panksepp et al. 1973; Peinado & Myers 1987).                      

                 Functionally and anatomically, there are two major categories of PVN neuron: 

magnocellular and parvocellular. The majority of parvocellular neurons are located close to 

the wall of the third ventricle, while the magnocellular neurons are located in parts of the 

PVN that are relatively distant from ventricle edge. Parvocellular neurons are mainly involved 

in regulating activity of the sympathetic nervous system, while magnocellular neurons are 

responsible for neurohormone (arginine vasopressin and oxytocin) secretion in the posterior 

pituitary gland. Hyperthermia and hemorrhage, but not hypotension, increase the activity of 

non-RVLM projecting PVN neurons, suggesting they have a role in blood volume and 

temperature control (Badoer & Merolli 1998). Activation of spinally projecting PVN neurons 

upon heat exposure has been reported in a rat model (Cham et al. 2006). The PVN also 

represents a major site for nitric oxide-producing neurons in the brain. Some of these neurons 

project to the spinal cord and are responsive to heat exposure (Cham et al. 2006).  Nitric oxide 

signalling in the PVN plays an important role in blood pressure regulation via its effects on 
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renal sympathetic nerve activity. A nitric oxide donor injected into the PVN reduced arterial 

blood pressure, heart rate, and renal sympathetic nerve activity via activating the 

GABAnergic system (Zhang & Patel 1998). Altered nitric oxide signalling in the PVN has 

been reported in an animal model of type-1 diabetes, suggesting its possible role in 

cardiovascular complications of diabetes (Zheng et al. 2006). Interestingly, resident microglia 

can also serve as a source of nitric oxide (Choi et al. 2003) in these cardiovascular centres.  

Nitric oxide modulates the secretion of AVP (Cao et al. 1996; Chiodera et al. 1994; Kadowaki 

et al. 1994; Ota et al. 1992). Electrical stimulation of PVN induces an analgesic effect via 

enhanced arginine vasopressin (AVP) release into the brain stem. This analgesic effect is at 

least partially mediated by AVP action on NTS neurons (Jiang et al. 1991).  Collectively, 

these studies suggest that the PVN, by means of its diverse projections to other CNS regions 

and secretions of neuropeptides and neurotransmitters, plays a major role in controlling 

cardiovascular activity, maintaining fluid homeostasis, controlling temperature, controlling 

hunger and thirst as well as in modulating pain (Badoer 1998; Badoer & Merolli 1998; Badoer 

et al. 2002; 2003; Cham & Badoer 2008b; Cham et al. 2006; Yang et al. 2009a; Yang et al. 

2009b; Zhang & Patel 1998; Zhang et al. 1998; Zheng et al. 2006).  

8.2. Supraoptic nucleus (SON) 

                 The supraoptic nucleus (SON) is a region of the hypothalamus situated at the base 

of the brain, adjacent to the optic chiasm. The SON also plays a vital role in blood volume 

and blood pressure homeostasis. The nucleus contains a large population of arginine 

vasopressin (AVP) and oxytocin (Oxy) producing neurons (Doi et al. 1998; Moos et al. 1984). 

The SON has projections to the pituitary gland, where it delivers these neurohormones which 

are then released and enter the blood stream when required.  Apart from its role as a hormone 

acting peripherally on the kidneys and arteries, vasopressin also acts as neurotransmitter in the 

brain. Central administration of AVP (intracerebroventricular injection) in pentobarbital 

anesthetised rats reduces blood pressure, while the same concentration in conscious rats 
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increases mean arterial blood pressure and heart rate (Zerbe & Feuerstein 1985). Therefore, 

there is clear evidence for the different effects of vasopressin in the presence and absence of 

anesthesia (pentobarbital). Intracerebroventricular injection of AVP is also reported to 

increase plasma norepinephrine and epinephrine levels in conscious rats, suggesting a 

contribution from elevated sympathetic nerve activity in the increased mean arterial pressure 

(King et al. 1985).  

8.3. Nucleus tractus solitarius (NTS) 

                 The nucleus tractus solitarius (NTS) is an important area of brain stem involved in 

cardiovascular regulation. The NTS receives projections from and has projections to other 

areas involved with cardiovascular regulation, including the PVN and rostroventral medulla. 

This allows the NTS to mount a coordinated response to regulate blood pressure changes.  

The NTS also contains nitric oxide producing neurons (Yang et al. 1999). Microinjection of 

L-arginine (a substrate for enzymes producing nitric oxide) into the NTS reduces renal 

sympathetic nerve activity (Tseng et al. 1996).  

                  The NTS receives and processes afferent signals from a variety of visceral regions 

and organs. The NTS receives afferent projections from the carotid chemoreceptors, arterial 

baroreceptors, and cardiopulmonary receptors, and as a function of this information, produces 

autonomic adjustments in order to maintain arterial blood pressure within a narrow range of 

variation (Machado et al. 1997; van Giersbergen et al. 1992). The baroreceptor reflex or 

baroreflex is one of the mechanisms by which the body maintains blood pressure. The 

baroreceptor reflex provides a negative feedback loop in which reduced blood pressure 

suppresses the baroreflex, causing increase in heart rate and then a rise in blood pressure. 

Alternatively, elevated blood pressure induces baroreflex, which then reduces heart rate and 

blood pressure. Direct injection of the amino acid L-glutamate and its excitatory analogues 

into the NTS produce dose-dependent hypotension and bradycardia, a baroreceptor reflex-like 

response (Talman et al. 1984). This study also demonstrated that neurotransmitters, 
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acetylcholine and serotonin, produce similar responses upon direct microinjection into the 

NTS. NTS lesion-induced hypertension is also reported by many studies on rats (Doba & Reis 

1973; 1974; Sved et al. 1985). Bilateral electrolytic NTS lesion resulted in elevated plasma 

levels of vasopressin, norepinephrine and epinephrine, but not in plasma rennin activity (Sved 

1986). Based on these results, the authors suggested that NTS lesion-induced hypertension is 

due to increased sympathoadrenal activity and increased vasopressin release into blood. 

Increased release of vasopressin is one of the major contributors to hypertension in NTS 

lesioned rats (Kubo & Kihara 1986; Sved 1986; Sved et al. 1985) but elevated sympathetic 

drive also contributes (Doba & Reis 1974). The later study demonstrated that intracisternally 

administered 6-hydroxydopamine (6-OH-DA) (which destroys dopaminergic and 

noradrenergic neurons) lowered the concentration of norepinephrine only in the spinal cord 

and blocked the development of hypertension following NTS lesion. Moreover, intravenous 

injection of the β-receptor blocker propranolol (1mg/kg) partially reversed the elevated blood 

pressure in these rats. The authors suggested that the fall in blood pressure was due to reduced 

heart rate in these rats via a direct effect on the heart. By performing adrenalectomy in 6-

hydroxydopamine (6-OH-DA) treated NTS-lesioned rats, Doha et al. (1974) demonstrated a 

complete abolition of the hypertension. They also showed that without adrenalectomoy, 6-

hydroxydopamine (6-OH-DA) was unable to fully abolish hypertension. Based on this 

evidence, the authors suggested that following the destruction of most peripheral sympathetic 

terminals by 6-OHDA, blood pressure may be partially maintained by increased secretion of 

catecholamines from the adrenal medulla.                        

8.4. Rostroventral medulla (RVLM) 

                 The rostroventral medulla (RVLM) is an important autonomic area responsible for 

controlling blood pressure, blood volume, breathing and many other autonomic functions 

(Kanbar et al. 2010).  The RVLM receives a variety of inputs via its connections with the 

PVN, NTS and other cardiovascular centres (Accorsi-Mendonca et al. 2009; Badoer 2001; 
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Cham & Badoer 2008a; Suzuki et al. 1997). RVLM neurons contain nitric oxide synthase 

(Chan et al. 2001) and unilateral microinjection of L-arginine into the RVLM produced 

bradycardic effects, hypotension, and reduced renal sympathetic nerve activity (Tseng et al. 

1996). Another study of conscious rats demonstrated that increased NO production caused by 

the over-expression of endothelial nitric oxide synthase (eNOS) bilaterally in the RVLM 

decreases blood pressure, heart rate, and sympathetic nerve activity in conscious rats (Kishi et 

al. 2001). Thus, nitric oxide signalling plays an important role in controlling RVLM activity.  

                The PVN, SON, NTS and RVLM play an important role in cardiovascular 

regulation. Direct injection of cytokines or nitric oxide in any of these regions causes increase 

or decrease in blood pressure, heart rate and/or sympathetic nerve activity. Therefore, 

activation of local microglia present in these regions could also serve as a potential source of 

these cytokines as well as of nitric oxide. Hence, microglial activation in these cardiovascular 

regions needs to be investigated in diabetes rats as well as in diseases where cardiovascular 

disturbances occur and brain inflammation is implicated. Another possibility is that elevated 

peripheral cytokines serve as a trigger for microglial activation in cardiovascular centres.                          

9. Studies reporting the role of elevated peripheral cytokines in activating 
cardiovascular centres in the brain  

                 Plasma cytokines are reported to be up-regulated in humans with a failing heart. 

Studies have shown a correlation between the severity of heart disease and plasma cytokine 

levels. Interestingly, even in diabetic patients plasma cytokines are reportedly elevated. Zheng 

et al. (2003) showed that a single i.v. injection of TNF-α (one of the cytokines reported to be 

up-regulated in humans or animal models of hypertension) increased neuronal activity in the 

PVN and RVLM. Interestingly, i.c.v. injection of a COX-2 inhibitor reduced the effect of 

peripherally injected TNF-alpha on blood pressure, heart rate and sympathetic nerve activity 

in rats (Zhang et al. 2003) .  The authors hypothesised that peripheral injection of TNF-alpha 

acts on perivascular macrophages present in the blood-brain barrier that release PGE2 via 
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increased COX-2 expression. This PGE2 then acts on PVN neurons to increase blood pressure 

through an increase in renal sympathetic nerve activity. In support of this, injection of PGE2 

(50 ng) into the PVN increased PVN and RVLM activity and sympathetic drive (Zhang et al. 

2003). Results of a recent study by Yu et al. (2010) also supported this hypothesis, as the 

authors reported increased COX-2 activity, particularly in the PVN, and increased PGE2 in 

the cerebrospinal fluid in myocardially infarcted animals, but the cellular location was not 

known (Yu et al. 2010). A similar role for PGE2 as a secondary messenger in the brain has 

also been suggested by other studies (Fabricio et al. 2006; Watanobe & Takebe 1994). 

However, the possibility of microglia as a central source of PGE2 has not been investigated 

by any of these studies. 

                 It is evident from the study of Rivest et al. (1992) that i.c.v. injection of IL-1β 

increases neuronal activity in the PVN and arcuate nucleus. A recent study demonstrated that 

hypertension is induced by cytokines specifically acting on PVN neurons by injecting IL-1β 

in the PVN of naïve rats (Shi et al. 2010a). Another study has reported that IL1β administered 

intravenously increases mean arterial blood pressure, heart rate and plasma AVP levels 

(Yamamoto et al. 1994). Three doses, 1.73 (low dose, LD), 8.63 (medium dose, MD), and 

43.16 pmol/100 grams body weight (high dose, HD) of human recombinant IL-1R were given 

intravenously (i.v) in conscious rats, and all the doses increased serum levels of AVP. The 

lowest dose increased mean arterial blood pressure but not heart rate, while the other two 

doses caused initial  decreases (at 30 minutes) followed by increased blood pressure as well as 

heart rate, which lasted at least 120 minutes. Interestingly, the lowest dose of IL1β increased 

rectal temperate while the other two doses decreased rectal temperature (Yamamoto et al. 

1994). This result clearly indicates that IL1β has different effects on blood pressure, heart 

rate, and thermoregulation at low and high doses. The authors hypothesised that these effects 

of IL1β are mediated via PGE2, but no convincing evidence was given for this hypothesis. 

The study of Veening et al. (1993) used Fos-immunohistochemisty to demonstrate that IL-1β 
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injected intravenously can activate neurons in the hypothalamus. They reported the highest 

density of Fos positive neurons in the paraventricular hypothalamus. These Fos positive 

neurons were mainly in the parvocellular part of the PVN. Double label 

immunohistochemistry revealed that they were corticotropin-releasing hormone positive, 

suggesting that intravenous IL-1β treatment activates the hypothalamic pituitary-adrenal axis 

(Veening et al. 1993). A recent study by Shi et al. (2010) demonstrated activated microglia 

specifically in the PVN region of the hypothalamus in the chronic (Angiotensin II) Ang II 

infusion rat model of hypertension. Increased levels of proinflammatory cytokines and 

reduced levels of anti-inflammatory cytokines in the PVNs of hypertensive rats were reported. 

The authors also demonstrated that increasing expression of IL-10 in the PVN by 

administering IL10 genes via viral vectors can attenuate Ang II-induced hypertension in rats. 

The study demonstrated that minocycline treatment inhibited microglial activation in the PVN 

and attenuated hypertension, suggesting microglia as a source of proinflammatory cytokines 

in the PVN at least in part responsible for Ang II-induced hypertension.                 

10. Leptin action on the hypothalamus involves microglia  
 

                 Peripheral leptin may also serve as activator of microglia in the hypothalamus and 

other cardiovascular centres. Leptin is a hormone produced by adipocytes involved in 

regulation of food intake, blood pressure, and body weight (Campfield et al. 1995; Hopkins et 

al. 1996; Schwartz et al. 1999). Leptin performs all these functions by acting primarily in the 

hypothalamic region of the brain. Initially, it was thought that obese humans may have less 

leptin, which might be responsible for their obesity, but now it is well known that such 

individuals are hyperleptinemic, implying they are leptin-resistant. Halaas et al. (1997) 

reported that i.c.v. infusion of leptin reduced body fat mass by reducing food intake, but not 

by increasing energy expenditure in lean mice. The study also reported that i.c.v. infusion of 

the same amount of leptin was 100 times less effective in terms of reducing body fat mass and 



54 

food intake in diet-induced obese mice. Moreover, the effects of  subcutaneous leptin 

injection at higher doses were comparable to the results of i.c.v. leptin, suggesting that obesity 

leads to leptin resistance and that this resistance is probably due to defective leptin responses 

in the hypothalamus (Halaas et al. 1997).  

                 The hypothalamic arcuate nucleus (Arc) is a major site of leptin action (Nagamori 

et al. 2003). Proopiomelanocortin (POMC) neurons and neuropeptide-Y producing neurons in 

the arcuate nucleus express a high density of leptin receptors and serve as a principle source 

of neuropeptide modulators and melanocortins (Cone 1999; Cowley et al. 2001; Hakansson et 

al. 1998; Kalra et al. 1999). The Arc has strong connections with the PVN, and disruption of 

activity in either of these two nuclei can induce obesity, as demonstrated by experiments on 

animals (Baker & Herkenham 1995; Sawchenko & Swanson 1983). Neuropeptide Y (NPY) is 

synthesised by neurons in the Arc. When injected into the PVN, it stimulates food intake and 

causes obesity upon cerebroventricular infusion (Stanley et al. 1992).  

                 There is mounting recent evidence that leptin action in the brain is at least partially 

mediated by the cytokine IL-1β. Mice lacking the gene for the endogenous IL-1R (receptor 

for interleukin-1) antagonist (IL-1ra) are more resistant to diet-induced obesity as compared 

to wild type controls (Garcia et al. 2006; Irikura et al. 2002; Matsuki et al. 2003; Somm et al. 

2005). Interestingly, several studies have reported that  IL-1R1  knockout mice are resistant to 

the appetite suppressing effect of leptin, suggesting that the anti-appetite effect of leptin may 

involve the cytokine IL-1β (Garcia et al. 2006; Luheshi et al. 1999). A recent in vitro study by 

Pinteaux et al. (2007) showed that microglia express receptors for leptin, and that stimulation 

with leptin induces IL-1β release from microglia (Pinteaux et al. 2007). The POMC neuron in 

the Arc express receptor for IL-1β and i.c.v. injection of IL-1 β can activate these neurons 

(Scarlett et al. 2007), suggesting that the action of leptin in Arc is mediated via IL-1β from 

microglia.   
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11. Summary and Hypothesis 
 

                In summary,  microglia perform a protective function by removing damaged 

neurons, extracellular debris, and infectious agents from the central nervous system. A variety 

of stimuli, including LPS, purines, cytokines, thrombin and leptin (Badoer 2010a; Fan et al. 

2005b; Pinteaux et al. 2007; Wang et al. 2005b) can activate these microglia. Upon activation, 

they can serve as source of inflammatory cytokines, glutamate, nitric oxide and ROS in the 

CNS (Krady et al. 2005; Li et al. 2008; Mander et al. 2006; Mizoguchi et al. 2009; Sawada et 

al. 1999; Zheng et al. 2008). Various studies of humans and animal models of 

neurodegenerative diseases and neuropathic pain have demonstrated microglial activation and 

inflammation in the CNS (Tsuda et al.,2007; Aloisi et al.,2001; Swada et al.,2006). Recent 

studies have demonstrated the neuromodulatory role of activated microglia (Lu et al.,2009), 

and suggested this could be the cause of excitotoxicity mediated neuronal death. Various 

animal studies of diabetic rats as well of rats with myocardial infarction have reported 

abnormally increased neuronal activity and inflammation in specific cardiovascular centres of 

the brain  (Lindley et al.,2004;  Gullilam et al.,2007). Despite this, the involvement of 

activated microglia in this increased neuronal activity has never been investigated. Various 

animal studies of diabetic models and models of hypertension have reported that elevated 

peripheral cytokines and/or leptin may be a trigger for the central inflammation (Gullilam et 

al.,2007; Mayers MG Jr., 2004) but it is not clear if microglia are involved in this process. 

Hence, I am hypothesising that microglia are activated in cardiovascular centres in rat models 

of diabetes and myocardial infarction, and that these activated microglia contribute to the 

pathology and reported cardiovascular complication in both diseases.  
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Figures:  
 

          Fig. 1.1 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
  
 

 

 

Fig. 1.1 : Morphological features of OX-42 stained rat microglia.  Figure shows (A) ramified          

(B) activated and (C) phagocytic microglia in adult rat brain (Scale bar = 10µm).   
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Fig. 1.2 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 1.2 : ATP-triggered [Ca2+]i signals in microglia are modified by changes in extracellular 

Ca2+. Change in fluorescence ratio (F/F0) in response to ATP (100 μM) application for 30 

seconds indicating change in intracellular calcium in presence [left] and in absence [right] of  

Ca2+ in the extracellular medium [Source: Moller et al. (2000)]. 
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Fig. 1.3 

 

 

 
 
 

Fig. 1.3: ATP-triggered [Ca2+]i signals in microglia are modified by thapsigargin.  A 5-min 

incubation with thapsigargin (500nM) triggered an increase in F/F0 fluorescence ratio and 

abolished the ATP-induced change fluorescence ratio (F/F0) in a cultured microglial cell 

(Panel A).  In a second population thapsigargin (500nM) application did not increase the 

fluorescence signal, but ATP still was able to produce a response after 5 min of incubation 

with thapsigargin (Panel B) [Source: Moller et al. (2000)].  
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Fig. 1.4 

 

 

 

 

                      

 
 

Fig. 1.4 : BDNF (20ng/ml for 3 minutes) induced a sustained increase in [Ca2+]i in primary rat 

microglia. The inset shows that ATP (100 µM for 2 minutes) induced a transient increase in 

[Ca2+]i [ Source: Mizoguchi et al.(2009)].       
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Fig. 1.5   

 

 

 

 
 
 
 

Fig. 1.5 : A schematic representation of the mechanisms of microglial activation showing the 

central role of [Ca2+]i. (Red arrows indicate pathways, receptors and release due to LPS 

stimulation, Green arrows indicate pathways, receptors and release due to ATP stimulation. 

Brown arrows indicate pathways, receptors and release due to glutamate stimulation of 

microglia).  
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Fig. 1.6 

 

 

 

 

 

 
 
 
 

Fig. 1.6 : A schematic representation of the mechanism by which minocycline inhibits MHCII 

expression in microglia stimulated with IFN-γ [Source: Nikodemova et al. (2007)].      
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Chapter 2: Microglia are Activated in the Paraventricular 
Hypothalamic Nucleus Following Myocardial Infarction 
 
 

Introduction 
 

Heart failure is the inability of the heart to pump sufficient blood adequately 

through the body and a common cause is myocardial infarction (Hunt et al 2005).  In the 

elderly population the incidence of heart failure is increasing and is associated with a poor 

prognosis and a severely reduced quality of life (Hunt et al 2005; Kaye et al 1995).  Heart 

failure is characterized by neurohumoral activation, which contributes to salt and fluid 

retention (via activation of the renin angiotensin system), and an elevation in sympathetic 

nerve activity to the heart and kidneys (Mann 1999b; Packer 1988).  Although an elevated 

sympathetic nerve activity to the heart, as measured by noradrenaline spillover, correlates 

with the severity of heart failure and its prognosis in humans (Kaye et al 1995), the cause of 

the abnormal activation of sympathetic nerve activity in heart failure is not well understood.  

Pathophysiological changes in the brain are undoubtedly critical to the elevated 

sympathetic nerve activity seen in heart failure (Felder et al 2003; Francis et al 2004a).  A key 

site within the brain that contributes to sympathetic nerve regulation is the hypothalamic 

paraventricular nucleus (PVN) (Felder et al 2003; Francis et al 2004a; Guggilam et al 2007; 

Patel 2000).  In animal models of heart failure there is increased neuronal activity within the 

PVN which contributes to the abnormally elevated sympathetic nerve activity (Lindley et al 

2004; Patel et al 1993). Neurons in the PVN can influence sympathetic nerve activity by; (i) 

direct connections to sympathetic preganglionic motor neurons located in the 

intermediolateral cell column of the thoracolumbar spinal cord (Sawchenko & Swanson 1983; 

Shafton et al 1998), or (ii) indirect connections such as via the pressor region of the rostral 

ventrolateral medulla (Shafton et al 1998), which projects directly to the sympathetic 
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preganglionic motor neurons.   

A common cause of heart failure and left ventricular dysfunction is myocardial 

infarction.  Following a myocardial infarct there is activation of the immune system, and pro-

inflammatory cytokines such as TNF-α, IL-6 and IL-1β are increased in the heart (Levine et al 

1990).  Circulating levels of the pro-inflammatory cytokines are increased in plasma 

following damage to the heart and the plasma levels have been shown to correlate with the 

degree of heart failure and increased mortality in this condition (Maeda et al 2000; Orus et al 

2000; Rauchhaus et al 2000; Torre-Amione et al 1996a; Torre-Amione et al 1996b; 

Tsutamoto et al 1998).  Evidence is now emerging to suggest that in addition to the elevation 

of pro-inflammatory cytokines in the periphery, they are also increased in the hypothalamic 

PVN (Felder et al 2003; Francis et al 2004a; Francis et al 2004b).  The increased level of 

cytokines in the brain may result from peripherally produced cytokines transported across the 

blood brain barrier; however, local production also contributes as mRNA levels of pro-

inflammatory cytokines are elevated within the hypothalamus (Francis et al 2004a; Francis et 

al 2004b). The mechanisms responsible for the local production of cytokines are not clarified.     

Microglia are the primary immune cells in the brain and during normal 

physiological conditions, they constantly sample the extracellular environment (Nimmerjahn 

et al 2005).  In response to stressful stimuli, brain injury or infection, microglia become 

activated and undergo a dramatic morphological change from their ‘normal’ ramified 

appearance to a morphology where the soma becomes enlarged and their processes become 

shorter and ultimately can retract entirely (Nakajima & Kohsaka 2001; Stence et al 2001a; 

Streit et al 1988; Streit & Kreutzberg 1988).  Activated microglia increase their production of 

various neurochemicals includings CD11b, a protein that is expressed on the surface of 

microglia and is involved in immune processes.  When microglia are activated they also 

secrete cytokines and thereby contribute to the local elevation of pro-inflammatory cytokines 

reported in conditions like Alzheimer’s, Parkinson’s, and chronic neuropathic pain (Liu 2006; 



64 

Mrak et al 1995; Sawada et al 2006).  Whether this occurs in following a myocardial 

infarction is unknown.  Thus, the aim of the present study was; firstly, to investigate whether 

microglia are activated in the PVN following a myocardial infarction in the rat, and secondly 

to determine whether the activation was generalized by investigating whether microglia in the 

ventral hypothalamus adjacent to the PVN were activated. We also examined areas of the 

cortex.   

Methods 
 

Animals  

                 Adult male Sprague Dawley rats were obtained from the Animal Resource Centre 

(ARC, Western Australia). All experimental protocols used in this study were performed in 

accordance with the Prevention of Cruelty to Animals Act, Australia 1986, conformed to the 

guidelines set out by the National Health and Medical Research Council of Australia (2007) 

and were approved by the St Vincent’s Hospital animal ethics committee. Under general 

anesthesia (3% isoflurane in oxygen), a myocardial infarction was induced by ligation of the 

left anterior descending coronary artery (N = 8 survived) as previously described (Kompa et 

al 2008). To minimise the variation in infarct size, the ligation was aimed about 2mm below 

the apex of the left atrium left of the pulmonary arch.   The survival rate was 75%.  Sham 

animals underwent the same procedure except the coronary artery was not tied (N = 5). All 

animals were monitored daily and allowed free access to food and water. At 2 weeks (N = 3) 

or 5 weeks (N = 5) after the myocardial infarction or the sham procedure, the rats were 

anaesthetized with ketamine and xylazine (80 mg/kg and 10 mg/kg respectively i.p.) and 

echocardiography was performed using a Vivid 7 echocardiography machine with a 10-MHz 

phased array probe (GE Vingmed, Horten, Norway).  Echocardiographic images in the first 

instance were obtained from a 2 dimensional parasternal short axis view of the left ventricle at 

the mid-papillary muscle level. From this view one dimensional m-mode images were taken 
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for the determination of percentage fractional shortening (Phrommintikul et al 2008). A 2-

dimensional parasternal long axis view was obtained for the determination of ejection fraction 

using single plain area-length method. ECG data was acquired simultaneously. All parameters 

were assessed using an average of 3 consecutive cycles, and calculations were made in 

accordance with the American Society of Echocardiography guidelines (Schiller et al 1989). 

All data were acquired and analysed by a single blinded observer using EchoPAC (GE 

Vingmed, Horten, Norway) offline processing.  Immediately after the echocardiography 

procedure, a Millar catheter was introduced into the left ventricle via the right carotid artery to 

measure left ventricular end diastolic pressure and obtain dP/dtmax (a measure of left 

ventricular contractility). Technical difficulties prevented haemodynamic measurements in 

one sham animal and in one rat at 5 weeks after the myocardial infarction.    

Tissue collection  

On completion of the hemodynamic measurements, the animals were decapitated. The brains 

were removed and immediately immersed in freshly prepared, ice cold 4% paraformaldehyde 

in phosphate buffered saline (PBS) (0.1M, pH 7.2) and stored for 4 hours at 4oC. The brains 

were then transferred to a solution containing 30% sucrose in PBS and left for approximately 

48 hours at 4oC. The hearts and lungs were also removed, blotted dry and weight measured.    

Immunohistochemistry 
 

Microglia were detected immunohistochemically by the presence of the protein 

CD11b (clone OX-42). This protein is expressed on the surface of microglia and forms part of 

complement receptor 3 and its levels increase markedly upon activation of microglia. (Kim et 

al 2000; Tsuda et al 2003).  Serial coronal sections (20 µm thick) of the brain were cut using a 

cryostat (Leica, CM1900). One in five sections was collected, placed onto gelatin coated 

slides, dried for 2 hours at room temperature and then processed immunohistochemically.  

Standard immunohistochemical procedures were performed in which endogenous peroxidase 
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activity was blocked by 0.5% H2O2 for 30 minutes.  The sections were incubated in 10% 

normal horse serum (NHS) for 60 minutes prior to 0.5% Triton X-100 for 10 minutes to 

facilitate antibody penetration.  Subsequently, the sections were incubated for 72 hours with a 

mouse monoclonal primary antibody directed against CD11b (clone OX-42) (1:100, 

Chemicon, Temecula, USA) in 2% NHS and 0.2% Triton X-100 in PBS.  This was followed 

by incubations in a biotinylated antimouse secondary antibody raised in horse (1:100, rat 

adsorbed), (Vector Laboratories, Burlingame, USA), and Extravidin (1:400, Sigma-Aldrich, 

St Louis, USA), for 2 hours each. All washes and solutions were made using phosphate 

buffered saline (pH=7.2).  3,3’ Diaminobenzidine hydrochloride (0.05%) (Sigma-Aldrich, St 

Louis, USA) was used as the chromogen.  Sections from the respective time point sham 

control rats and from rats with myocardial infarctions were processed simultaneously. 

Morphological analysis and quantification 
 

Heart 

The atria and right ventricle of the heart were removed.  The left ventricle 

(including the interventricular septum) was cross-sectioned into 2 halves at the mid-papillary 

level, and fixed in 10% neutral buffer formalin for 24 hours. The tissue was paraffin 

embedded and sliced into 4 µm-thick sections using a rotary microtome (Leica, Wetzlar, 

Germany).  The sections were placed on silanated slides and dried at 37oC overnight before 

staining with hematoxylin and eosin.  Subsequently, the stained sections were scanned into 

digital format using a color scanner (Epson) at 1200dpi, and saved as a TIFF file.  The 

circumference of the epicardial and luminal surfaces of the left ventricle were measured using 

Analytic Imaging Station software (AIS, Version 6, Imaging Research Inc; St Catherine’s, 

ON, Canada).  The length of the perimeter of the infarct was measured on both the epicardial 

and luminal surfaces and expressed as a percentage of the circumference for each surface. The 

resultant values in each rat were averaged to obtain a measure of the infarct size.  Only 
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animals with a transmural infarction were used in this study.  

Microglia 

Morphological analysis and quantification of microglia was performed with a light 

microscope using 400 times magnification. Within the PVN, ventral hypothalamus (ventral of 

the PVN), and the cortex (at the same anterior-posterior level as the PVN), the number of 

microglia were counted in several squares, each 0.2 x 0.2 mm in size. To avoid experimenter 

bias the squares were placed using systematic rules.  In the PVN the medial-lateral 

distribution of microglia was determined by counting the number of microglia in four adjacent 

squares that covered the region from 0.0 - 1.0 mm lateral to the edge of the third ventricle. 

This was performed at the level of the PVN shown in Fig. 2.1 and encompassed the dorsal 

aspect of the parvocellular and magnocellular regions of the PVN. Within these same regions, 

the number of activated microglia were also counted and expressed as a percentage of the 

total number of microglia (activated + non-activated). In the ventral hypothalamus and cortex 

the number of normal and activated microglia were counted in two squares and the average 

was calculated.  

Immunohistochemistry for the marker CD11b (clone OX-42) detected the microglia 

present.  Non-activated microglia were identified by their small soma from which there 

emanated extensive, highly branched, long, thin processes, a morphology termed ramified. 

Activated microglia were defined by three main criteria; (1) stronger immunohistochemical 

staining for the marker CD11b (clone OX-42), (McNamara et al) the presence of a clearly 

enlarged soma, and (Lessard et al) marked changes in the appearance of the processes which 

were now reduced in number, but considerably thicker and shorter giving a stubby 

appearance.  Thus, activated microglia no longer showed the extensive ramified appearance 

typical of non-activated microglia but had fewer, shorter and thicker processes and an 

enlarged soma. Only microglia in which these changes were present were defined as 

activated, as described previously (Nakajima & Kohsaka 2001; Stence et al 2001a; Streit & 
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Kreutzberg 1988).  Changes in the morphology of microglial processes were quantified by 

measuring the longest process of 10 randomly selected microglia in each animal in each brain 

region examined. These microglia were located within the areas that were used for counting 

microglia; in the PVN the most medial sampling square (0.2 x 0.2 mm) was used for this 

analysis.  In the ventral hypothalamus and the cortex,  ten microglia were selected from within 

a single square in each region. Thus, since 15-25 microglia were found in each square in each 

region, approximately half the microglia in a square in each region were selected for analysis 

of their process length.  

Statistical analysis  

In each brain region examined, the data were compared using one-way ANOVA to 

determine overall significant differences between groups. If a statistical difference was 

obtained, subsequent comparisons between individual groups were made using Student’s 

unpaired t-test with the P-value modified using the Bonferroni correction for multiple 

comparisons.  
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Results 
 

1) Activation of microglia in the hypothalamic PVN  
 

In sham rats there were few microglia with an activated morphology in any of the 

areas examined (Fig. 2.1), hence data from sham rats tested at different time point pooled  

together and presented as microglial activation in sham rats (2.2 and 2.3). In contrast, at 2 and 

5 weeks following myocardial infarction, activated microglia were clearly observed in the 

PVN. Within the PVN, the proportion of activated microglia in the infarcted animals was 

greatest medially, within 0.5 mm of the third ventricle, and decreased more laterally (Fig. 2.1 

and 2.2). The average proportion of activated microglia in those medial regions of the PVN 

was significantly greater at both time points after myocardial infarction compared to the sham 

group (F(2,12) = 87.2, P<0.001, Fig. 2.2). In contrast, there was no significant difference in 

the proportion of activated microglia in the ventral hypothalamus or in the cortex at either 

time point following myocardial infarction compared to shams (Fig. 2.3). In our preliminary 

observations, none of the brain regions other than the PVN showed marked microglial 

activation following MI, hence we did not quantify microglial activation from all 

cardiovascular centres. 

2) Decreased length of microglial processes in PVN 

When microglia are activated, their processes reduce in size and become thicker 

and stubby in appearance (Marco et al 1997; Nakajima & Kohsaka 2001). We therefore, 

measured the length of processes in microglia in the three brain regions investigated. We 

found that, compared to shams, the length of microglial processes were significantly reduced 

by over 50% in the medial region of the PVN at 2 and 5 weeks following myocardial 

infarction (F (2,10)=46.89, P<0.001) (Fig. 2.4).  In the ventral hypothalamus and cortex of the 

animals that had undergone myocardial infarction, the average lengths of the microglial 

processes were not different from that observed in the sham group (Fig. 2.4).  
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3) Increased density of microglial cells in PVN 
 

The number of microglia detected in the PVN after myocardial infarction was 

significantly greater in animals 5 weeks after the myocardial infarction (P<0.01 compared to 

sham group) (Fig. 2.5).  This was observed primarily within 0.25 mm of the edge of the third 

ventricle (Fig. 2.5).  At 2 weeks following the myocardial infarction the number of microglia 

detected in the PVN did not attain a statistically significant difference compared to the sham 

group.  

4) Infarct size and lung weight 

After ligation of the coronary artery, the myocardial infarct size averaged 29.0 + 

2.8% and 30.8 + 4.3% of the ventricular circumference 2 weeks and 5 weeks after myocardial 

infarction respectively.  All of the 8 MI rats had a transmural infarct, varying from 26-45%. 

The average weight of the lungs in sham rats (1.41 + 0.08g) was not significantly 

different to that observed in rats following myocardial infarction (1.44 + 0.11g, 1.48 + 0.07g;  

2 and 5  weeks after myocardial infarction respectively (F(2,10) = 0.232).  

5) Ventricular function 

i) Echocardiography 

Compared to sham animals, percent fractional shortening was significantly reduced 

by over 50% at 2 and 5 weeks following myocardial infarction (F(2,10) = 15.61, P<0.01) (Fig. 

2.6).  Similarly, ejection fractions were significantly lower at 2 and 5 weeks following 

myocardial infarction compared to that observed in the sham group (F(2,10) = 31.44, 

P<0.001) (Fig. 2.6).  Table 1 shows the left ventricular internal diameter and posterior wall 

thickness and also the interventricular septal thickness in systole and diastole in shams and at 

2 and 5 weeks following myocardial infarction. At 5 weeks following myocardial infarction 

all parameters, except the increase in left ventricular posterior wall thickness in systole, were 

significantly different compared to shams (Fig. 2.8).  At 2 weeks following myocardial 
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infarction all parameters except the increases in left ventricular internal diameter in diastole, 

and the left ventricular posterior wall thickness were significantly different compared to 

shams (Fig. 2.8). 

ii) Haemodynamic measures 

Left ventricular end diastolic pressure was significantly elevated at 2 and 5 weeks 

following myocardial infarction compared to the level observed in the sham group (F(2,8) = 

5.963, P<0.05) (Fig.2.7).  Left ventricular contractility (dP/dt max) was significantly reduced 

by approximately 20% at both time points after the ligation of the coronary artery compared 

to shams (F(2,8) = 8.133, P<0.05) (Fig.2.7).  
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Figures  
 

 
Fig. 2.1 :  
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Fig. 2.1 : Photomicrographs of the hypothalamic area of rat  brain encompassing the 

paraventricular hypothalamic nucleus showing microglia stained using antibody to CD11b 

(OX-42 clone).  Parvocellular (P), magnocellular (M) and dorsal cap (dc) regions of the 

paraventricular nucleus are delineated. Panels A-C are low power photomicrographs.  The 

areas in the solid line rectangles are shown in higher power in panels D-F.  The areas in the 

dashed line rectangles are shown in higher power in panels G-I.  Panels A, D and G are from a 

sham animal in which normal ramified microglia are observed.  Note the long processes, 

many secondary branches, and very small soma.  Panels B, E and H are from a rat 2 weeks 

after myocardial infarction. Panels C, F and I are from a rat 5 weeks after myocardial 

infarction.   Note the dramatic increase in CD11b - positive staining and the morphological 

changes including enlarged soma and shorter, stubbier processes observed following 

myocardial infarction predominantly in the parvocellular region of the PVN. Abbreviations; 

III – third ventricle, Calibration bar = 150 µm in A - C, and 50 µm in D - I. 
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Fig. 2.2  :  
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Fig. 2.2 : Microglial activation expressed as a percent of total microglia in the hypothalamic 

paraventricular nucleus in the region between the third ventricle and 1 mm lateral to it.  The 

area encompassed the dorsal aspect of the paraventricular nucleus (both parvocellular and 

magnocellular) at the level shown in figure 2.1.  Data were obtained from sham animals (N = 

5) and in rats at 2 weeks (N = 3) and 5 weeks (N = 5) after myocardial infarction. Values are 

expressed as the mean ± SEM. *** P<0.001 compared to sham.  
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Fig. 2.3 :  
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Fig. 2.3 : Microglia activation expressed as a percent of total microglia observed in the 

paraventricular hypothalamic nucleus (PVN), the ventral hypothalamus (VH) and cortex in 

sham rats (N=5) and in rats at 2 weeks (N = 3) and 5 weeks (N = 5) after myocardial 

infarction. Values are expressed as the mean ± SEM.   *** P< 0.001 compared to sham. 
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Fig. 2.4 :  
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Fig. 2.4 : Average length of microglia processes in the hypothalamic paraventricular 

hypothalamic nucleus (PVN) (medially), ventral hypothalamus (VH) and cortex in sham rats 

(N=5) and in rats at 2 weeks (N = 3) and 5 weeks (N = 5) after myocardial infarction.  Values 

are expressed as the mean ± SEM.  *** P< 0.001 compared to sham. 
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Fig. 2.5 :   
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Fig. 2.5 : Density of microglia (activated and non-activated) in the paraventricular 

hypothalamic nucleus in the region between the third ventricle and 1 mm lateral to it.  The 

area encompassed the dorsal aspect of the paraventricular hypothalamic nucleus (both 

parvocellular and magnocellular) at the level shown in figure 1.  Data were obtained from 

sham animals (N = 5) and in rats at 2 weeks (N = 3) and 5 weeks (N = 5) after myocardial 

infarction. Values are expressed as the mean ± SEM. * P<0.05 as compared to sham. 
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Fig. 2.6 : 
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Fig. 2.6 : Percent fractional shortening and ejection fraction determined from 

echocardiography analysis in sham rats (N=5) and in rats at 2 weeks (N = 3) and 5 weeks (N 

= 5) after myocardial infarction.  *** P<0.001, **P<0.01 compared to sham.  

(Data courtesy of  Dr Andrew Kompa, Department of Epidemiology and Preventative 

Medicine, Monash University, Melbourne, Australia)  
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Fig. 2.7: 
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Fig. 2.7 : Left ventricular end diastolic pressure and left ventricular contractility (dP/dt max) 

in sham rats (N=4) and in rats at 2 weeks (N = 3) and 5 weeks (N = 4) after myocardial 

infarction.  * P<0.05 compared to sham. 

(Data courtesy of  Dr Andrew Kompa, Department of Epidemiology and Preventative 

Medicine, Monash University, Melbourne, Australia)  
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Fig. 2.8 :  
 
 
 
 
 
 
 
 
 
 
 
 
 

 Sham 
(N=5) 

MI – 2 weeks  
(N=3) 

MI – 5 weeks 
(N=5) 

Left Ventricular Internal Diameter 
in diastole – LVIDd (mm) 7.51 ± 0.43 9.89 ± 0.21 10.26 ± 0.67 ** 

Left Ventricular Internal Diameter 
in systole – LVIDs (mm) 4.08 ± 0.51 7.77 ± 0.23 ** 8.44 ± 0.54 *** 

Interventricular Septal Thickness 
in diastole – IVSd (mm) 1.62 ± 0.11 1.03 ± 0.06 ** 0.99 ± 0.09 ** 

Interventricular Septal Thickness 
– in systole - IVSs (mm) 2.89 ± 0.12 1.06 ± 0.09 *** 1.00 ± 0.10 *** 

LV Posterior  Wall Thickness in 
diastole 
– LVPWd (mm)) 

2.05 ±0.15 2.28 ± 0.07 2.55 ± 0.12 * 

LV Posterior  Wall Thickness in 
systole 
– LVPWs (mm) 

2.76 ± 0.22 3.19 ± 0.12 3.27 ±0.15 
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Fig. 2.8 :  Echocardiography parameters from sham animals and in animals 2 weeks and 5 

weeks following myocardial infarction (MI), describing left ventricular internal diameter in 

systole and diastole, interventricular septal thickness and left ventricular posterior wall 

thickness in both diastole and systole. * P<0.01, ** P<0.01, *** P<0.001 compared to Sham. 

(Data courtesy of  Dr Andrew Kompa, Department of Epidemiology and Preventative 

Medicine, Monash University, Melbourne, Australia)  
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Discussion  
 

    The present study provides neuroanatomical evidence for an inflammatory 

response in the PVN following myocardial infarction.  The key findings of the work show that 

after myocardial infarction; (i) microglia are activated in the PVN but not in adjacent 

hypothalamus or in the cortex, indicating there is not a generalized activation of microglia in 

the brain, and (ii) activation of microglia occurred without the presence of congestive heart 

failure.  The results indicate that the activation of microglia occurs after myocardial infarction 

and reduced left ventricular function.  

   In the present study, we defined activated microglia only if they satisfied several 

criteria such that they showed stronger staining for CD11b (clone OX-42), an enlarged soma, 

fewer processes, and the processes present were shorter, thicker and had a stubby appearance.  

It was observed that some microglia showed stronger staining with CD11b (clone OX-42) but 

without the clear morphological changes.  Thus, only when all the criteria were satisfied then 

only we defined microglia as activated.  These clear morphological changes in the microglia 

were observed predominantly in the medial regions of the PVN. In the more lateral regions of 

the PVN, the proportion of activated microglia decreased, and was no longer significantly 

different from the control group. Our quantitative analyses of the length of the microglial 

processes support this mediolateral distribution.  It is possible, of course, that a more 

widespread activation of microglia in the PVN may be observed as time increases following a 

myocardial infarct, but this will need investigations beyond the 5 weeks observation period 

that was performed in the present study.  

      The marked activation of microglia observed in the PVN following myocardial 

infarction did not occur in the ventral hypothalamus adjacent to the PVN, nor in the cortical 

regions examined.  This suggests that activation of microglia is not generalized throughout the 

brain following myocardial infarction.  This would indicate there was not a wholesale 
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breakdown of the blood brain barrier that could account for the activation of microglia, which 

differs from other peripheral inflammatory conditions where inflammation in the brain occurs 

such as inflammatory bowel disease (Natah et al 2005; Riazi et al 2008).  The present findings 

do not exclude the possibility that activation of microglia may occur in brain regions other 

than the PVN, and that are involved in cardiovascular regulation.  

      There is always a possibility that a cell could have been cut by the cryostat 

blade during sectioning and hence counted as active during quantification. However, this error 

will not bias the interpretation of our results because sectioning will affect all the animal 

groups roughly equally. Moreover, the probability of cutting microglia present in a section is 

equal for all the regions of that section. My quantification shows microglial activation only in 

in the MI rats which is not possible to achieve due to sectioning.  I also performed 

quantification from the cortex from the same sections that were used for counting activated 

microglia  in the PVN. This quantification, presented in figure 2.3, indicates microglial 

activation only in the PVN which cannot be caused by sectioning.  

     It is well documented that over time after a myocardial infarct, cardiac 

remodelling in the non-infarcted myocardium occurs.  This is characterized by hypertrophy 

initiated by neurohormonal activation and autocrine and paracrine mediators, including 

inflammatory cytokines. Although initially compensatory, these changes impart detrimental 

biological effects resulting in left ventricular chamber dilatation, eccentric hypertrophy, and 

reactive fibrosis contributing to systolic dysfunction (Mann 1999b; Pfeffer et al 1985; Prabhu 

2005; Remme 2003; Swynghedauw 1999).  In the present study, we observed activation of 

microglia at 2 weeks and 5 weeks after myocardial infarction.  We acknowledge that with 

only three animals in the 2 weeks group, the sample is small; however, the results at 2 weeks 

following myocardial infarction were very similar to the observations made at 5 weeks 

following myocardial infarction.  In our study, at 2 and 5 weeks after myocardial infarction, 

the echocardiography and hemodynamic parameters indicated reduced left ventricular 
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function and substantial remodeling of the heart but the rats were not technically in heart 

failure.  Thus, our results suggest that following myocardial infarction the reduced left 

ventricular function is sufficient to induce activation of microglia in the PVN.  In the present 

study, we have not investigated time points earlier than 2 weeks post myocardial infarction; 

however, cytokines are elevated within 24 hours following an infarct ((Francis et al 2004a)) 

and it would be of interest to investigate time points shorter than 2 weeks.   

 Activated microglia can become mobile and proliferate (Giordana et al 1994; 

Schiefer et al 1999), therefore microglia may have migrated to the PVN or proliferated in 

response to an inflammatory stimulus.  This may account for the significant increase in the 

number of microglia observed in the PVN 5 weeks following myocardial infarction.  

Microglial proliferation and an increase in their mobility have been observed following 

peripheral nerve damage (Schiefer et al 1999).  It may be possible that the increased 

expression of CD11b (clone OX-42) by microglia following myocardial infarction may mean 

that microglia are more easily detected; however, CD11b (OX-42) staining has been reported 

to show all resting microglia and there are no reports in the literature to suggest otherwise.   

 The present findings provide neuroanatomical evidence supporting an 

inflammatory response occurring in the PVN. Furthermore, since activated microglia secrete 

cytokines such as TNF-α and IL-1 β (Colton & Gilbert 1987; Frucht et al 2001; Mizuno et al 

2003; Mizuno et al 1994; Sawada et al 1989; Suzumura et al 1996), our results support the 

possibility that activation of microglia in the PVN may contribute to local production of 

cytokines in this brain nucleus following myocardial infarction (Francis et al 2004a; 

Guggilam et al 2007; Helwig et al 2007), 

  The mechanisms that initiate the inflammatory process in the PVN following 

myocardial infarction are unknown; some authors have suggested a critical role of the pro-

inflammatory cytokines which are released into the bloodstream by the damaged heart and 
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induce PGE2 production in endothelial cells in the cerebral blood vessels (Felder et al 2003; 

Francis et al 2004a; Francis et al 2004b; Kang et al 2008).  PGE2 is known to increase 

cytokine production.  Other mechanisms may include the activation of the renin-angiotensin-

aldosterone system, which occurs following myocardial infarction, and increased production 

of reactive oxygen species (Guggilam et al 2007; Lindley et al 2004; Yu et al 2008).  Finally, 

changes in the neurochemical and ionic milieu elicited by the increase in the neuronal activity 

in the PVN that occurs following a myocardial infarction (Lindley et al 2004; Patel et al 2000; 

Patel et al 1993), could stimulate microglia, possibly via glutamatergic or purinergic receptor 

activation (Bianco et al 2005; Davalos et al 2005; Hagino et al 2004; Hide et al 2000; Taylor 

et al 2002; Taylor et al 2005).  The activated microglia can increase neuronal activity by 

releasing neurochemicals such as cytokines and growth factors (eg BDNF) (Lu et al 2009b), 

thus contributing to a detrimental feed-forward cycle.   
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Conclusion  
                 We have found that microglia are activated in the PVN but not in the adjacent 

hypothalamus following myocardial infarction.  The activated microglia may contribute to the 

increased local production of pro-inflammatory cytokines observed in the PVN after 

myocardial infarction and resulting reduced left ventricular function.  
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Chapter 3: Microglial Activation in Cardiovascular Centres 
of STZ-Induced Diabetic Rat Brain 
 
 

Introduction 
 

      Diabetes mellitus is a major risk factor for developing cardiovascular disease in 

humans (Baliga & Weinberger 2006; Grundy et al 1999). Major cardiovascular complications 

associated with diabetes in humans include hypertension, cardiomyopathy, atherosclerosis, 

increased vascular resistance and sudden cardiac death (Wajchenberg et al 2008). Adult 

patients with diabetes mellitus show ultra-structural and functional deterioration of the 

myocardium (Di Bello et al 1995; Fraser et al 1995). These cardiovascular complications are 

considered as the cause of death in approximately 65% of persons with diabetes (Geiss LS 

1995). Diabetes not only increases the chance of developing cardiovascular disease but also 

increases the probability of poor cardiovascular disease outcome and mortality (Luchsinger et 

al 2001; Stevens et al 2004; Tuomilehto et al 1996). STZ (Streptozotocin) is a chemical 

commonly used to induce hyperglycemia and then some symptoms of human type-1 diabetes 

in rodents (Leo et al 2010; Zheng et al 2006). Cardiomyopathy and increased vascular 

resistance have been reported in this animal model of diabetes (Akula et al 2003; Mihm et al 

2001).  Many studies investigating diabetic cardiovascular complications have suggested 

endothelial dysfunction as a mechanism but growing evidence also suggests a role for 

dysregulation of autonomic control and sympathetic nerve activity (Ross 1993; Vita et al 

1990; Zheng et al 2006).  There are conflicting reports on blood pressure changes in the STZ-

induced diabetic rats; some have reported increased or decreased or no change in blood 

pressure. In one study, despite reduced resting systolic blood pressure, the ganglionic blocker 

pentolinium produced significantly greater reduction in heart rate in STZ-induced diabetic rats 

as compared to saline treated controls (Hebden et al 1987). Moreover, a recently published 

study has demonstrated significantly elevated basal renal sympathetic nerve activity in STZ-
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induced diabetic rats (Patel et al 2011). Thus, sympathetic nerve activity to the heart and 

kidney appears to be enhanced in STZ-induced rats.  

 

Regulation of the sympathetic nervous system is achieved by changing neuronal 

activity in various brain centres eg. the paraventricular hypothalamus (PVN), rostoventral 

medulla (RVLM), vental hypothalamus (VH) and nucleus tractus solitarius (NTS).  

Interestingly, markers of neuronal activity are reportedly up-regulated in cardiovascular 

centres of the brain involved in sympathetic regulation in STZ-induced diabetic animals 

(Krukoff & Patel 1990; Lincoln et al 1989; Zheng et al 2002).  

 

It is now well known that increased sympathetic drive contributes to the pathology 

of heart failure following myocardial infarction. Studies on animals have also reported 

activation of neurons in cardiovascular centres of the brain involved in sympathetic regulation 

following myocardial infarction (Lindley et al 2004; Patel et al 2000).  We have recently 

reported activation of microglia in the PVN of rats with myocardial infarction (chapter 2). 

Microglia are the immune cells of the central nervous system and recently published studies 

on microglia demonstrated their potential to exaggerate pathological processes (Tsuda et al 

2003).  A recent study by Lu et al. (2009) demonstrated that secretions from microglia can 

modulate neuronal activity. Moreover, a study has reported microglial activation in STZ-

induced diabetic rat spinal cord and suggested involvement of these activated in causing 

hyperalgesia and neuropathic pain via excitatory effects of their secretions on spinal neurons 

(Tsuda et al 2008).  Hence, we hypothesize that there is neuronal and microglial activation in 

STZ-induced diabetic rats in brain nuclei involved with cardiovascular regulation.  
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Therefore, we investigated: (i) if microglial are activated in CNS cardiovascular 

centres of STZ-induced diabetic rats (ii) time course of microglial activation and its 

correlation with neuronal activation observed in these STZ-induced diabetic rats (iii) 

correlation of neuronal and microglial activation with other physiological changes seen in 

these STZ-induced diabetic rats.  

 

Methods  
 

Animals  
 

  Male Sprague Dawley rats obtained from ARC (Animal Resource Centre, Perth) 

were given streptozotocin (STZ 48mg/kg body weight) in citrate buffer via the tail vein to 

induce diabetes. Rats were tested for elevated blood glucose one week after the injection 

using a one touch glucometer (Accu-Check Performa) and used at 2-4, 6 and 8-10 weeks after 

the injection. Control rats received citrate buffer injection and underwent all other procedures 

as for STZ treated rats.  

Tissue collection  
 

All the rats used for this study were euthanized by an overdose of pentobarbital 

sodium (180mg/kg body weight), after which they were decapitated and had their brains 

removed. The brains were cut into 3 pieces to separate  forebrain and brain stem area from the 

hypothalamus, then immediately immersed in freshly prepared, ice cold 4% 

paraformaldehyde in phosphate buffered saline (PBS) (0.1 M, pH 7.2) for 4 hours at     4°C. 

The brains were then transferred to a solution containing 30% sucrose in PBS and left for 

approximately 48 h at 4°C before they were used for histological analysis.  

Osmolarity measurements  
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                 Blood samples were collected from STZ-induced diabetic and  control rats 

immediately after euthanasia. The samples were immediately mixed with heparin 

(anticoagulant) and centrifuged at 1500 rpm for 10 minutes. Cell free plasma samples were 

stored at -800 until used. Plasma osmolarity was measured by using an osmometer.  

Immunohistochemistry  
 

As described previously (chapter 2) serial coronal sections (20µM thick) of the 

brain were cut using a cryostat (Leica, CM 1900). One in five sections were collected starting 

from the rostral PVN to the caudal PVN identified by referring to a rat atlas (Paxinos 2008) 

and using the morphology of the optic chiasm / optic tract and location of the fornix as land 

marks. All selected sections were placed onto gelatine coated slides and dried for 2 hours at 

room temperature. Standard Immunohistochemical procedures were performed in which 

endogenous peroxidase activity was blocked by 15 minutes incubation with 0.5% H2O2 in 

PBS. This was followed incubation in 10% normal horse serum (NHS) for 60 minutes prior to 

0.5 % Triton X-100 for 10 min to facilitate antibody penetration. Subsequently, the sections 

were incubated for 72 hours with a mouse monoclonal primary antibody directed against 

CD11b (clone OX-42) (1: 100, Chemicon, Temecula, USA) in 2% NHS and 0.2% Triton X-

100 in PBS. This was followed by incubation in horse biotinylated antimouse secondary 

antibody raised (1: 100, rat adsorbed, Vector Laboratories, Burlingame, USA), and 

Extravidin-HRP (1:400, Sigma-Aldrich, St Louis, USA), DAB (2,4-Diaminobutyric acid, 

Sigma-Aldrich, St Louis, USA) was used as the chromogen. Sections from the respective time 

point sham rats and sections from STZ-induced diabetic rats were processed simultaneously.  

Similar procedures using rabbit polyclonal anti-c-Fos  (1:400, SantaCruz Biotechnology) and 

goat anti-rabbit secondary antibody (1:400, Sigma-Aldrich, St Louis, USA) were performed 

to detect Fos and Fos related antigens, except that the primary antibody was incubated 

overnight instead of 72 hour.   
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Quantification and morphological analysis of microglia 
 
 

Morphological analysis and quantification of microglia was performed with a light 

microscope using 400 times magnification. Within the PVN, NTS, ventral hypothalamus 

(ventral of the PVN), and the cortex (at the same anterior-posterior level as the PVN), the 

number of microglia were counted in several squares, each 0.2 x 0.2 mm in size. To avoid 

experimenter bias the squares were placed by systematic rules. In the PVN, the medial-lateral 

distribution of microglia was determined by counting the number of microglia in four adjacent 

squares that covered the region from 0.0 - 1.0 mm lateral to the edge of the third ventricle.  

This was performed at the level of the PVN encompassing the parvocellular and 

magnocellular regions.  The percentage of activated microglia was determined by counting 

activated microglia and total microglia present in the same field. In the ventral hypothalamus, 

NTS and cortex the number of normal and activated microglia were counted in two squares 

and the average was calculated. The region of the NTS analysis is shown in Fig. 3.7   

Statistical analysis  
 
 

Statistical analysis was performed using Graph Pad Prism version 5 software. In 

each brain region examined, the data were compared using one-way ANOVA to determine if 

there were overall significant effects between groups. If a statistical difference was obtained, 

subsequent comparisons at each time point were made using student’s unpaired t-test with the 

α-value modified using the Bonferroni correction for multiple comparisons.  
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Results  
 

1) Body weight and blood glucose measurements  
      

              When rats were tested 1 week after STZ or vehicle injection, average 

blood glucose levels were 11.1 ± 0.7 mg/dL in control rats (N=25). Blood glucose levels in 

STZ-induced diabetic rats (N=25) were greater than 25 mg/dL indicating extreme 

hyperglycaemia within a week of STZ injection. Ten weeks after treatment with STZ or 

vehicle, both groups of rats gained weight; however, the weight gained in normal rats was 

significantly greater than in diabetic rats (Fig. 3.9).                             

 

2) Microglial activation in PVN in STZ-induced diabetic rats 
 

 We observed microglia with long branched processes, secondary processes, and 

small cell bodies throughout the PVN region in control rats as shown in Fig.1.1 of chapter 1. 

This was the case in all the control rats tested at different time points after vehicle injection 

hence data obtained from different time point control rats combined as presented as activation 

in sham rats.  Many microglia in the PVN region in STZ-induced diabetic rats at the 8-10 

weeks time point had swollen cell bodies with relatively thicker, shorter, and stubbier 

processes.  Based on morphology, the vast majority of microglia visualized using the OX42 

immunohistochemistry were parenchymal. I have attached a 3D reconstruction of a PVN 

section showing OX-42 stained microglia in an appendix (fig.1) which shows no staining 

present within any blood vessels confirming the parenchymal location of microglia. This 

microglia activation was observed throughout the PVN region (Fig. 3.1). 

It appeared that the intensity of OX-42 immunolabelling was increased in the PVN 

of STZ rats, but this was difficult to quantify due to the inherent variability in the 

immunohistochemical technique. However, higher intensity of immunolabelling is expected 

to cause fine microglial processes to appear more clearly visible while I observed reduced 

microglial process length in STZ rats.  
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Quantitative analysis showed no significant difference in the percentage of 

microglia that were activated at 2-4 and 6 weeks time points when controls and STZ-induced 

diabetic rats were compared. We observed a significant increase in the percentage of activated 

microglia at 8-10 weeks following STZ injections when compared to control (P<0.001) (Fig. 

3.2 (A)). Interestingly, individual rat data showed that some rats had a much higher 

percentage of microglial activation as compared to the highest level of activation seen in 

controls even at earlier time points (Fig. 3.2 (B)). No significant microglial activation was 

observed in areas of the ventral hypothalamus and cortex region (Fig. 3.3).  

 

3) Microglial activation in SON  
 

Quantitative analysis of microglia activation in the SON region of STZ-induced 

diabetic rats did not show a significant difference as compared to the control rats until 8-10 

weeks (P<0.05 at 8-10 weeks) as shown in Fig. 3.6 (A). However, when the graph of 

percentage activated microglia in PVN from individual rats was plotted some STZ-induced 

diabetic rats had higher percentage of activated microglia even at earlier time points (Fig. 3.6 

(B)). Therefore, it appears that the onset of microglial activation was different in each rat.   

4) Microglial activation in NTS 
 
 

We observed that microglia in the NTS of control rats had relatively higher OX-42 

labeling, shorter processes and smaller cell bodies as compared to the surrounding areas (Fig. 

3.7). These results suggest that microglia express different levels of surface receptors in 

different regions of the brain. Despite this, in STZ-induced diabetic rats, NTS microglia 

showed a relatively activated morphology with shorter, thicker, stubbier processes as 

compared to microglial morphology in NTS region of control rats at later time points (Fig. 

3.7). Also the levels of OX-42 immunolabeling were further up regulated in STZ-induced 

diabetic rats compared to controls.  
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Quantification clearly showed  a significantly higher percentage of activated 

microglia at the 8-10 weeks time point after STZ injection as compared to control rats ( 

P<0.05 at 8-10 weeks) (Fig. 3.8 (A)).  However, like the PVN and SON data on NTS 

microglia from some individual rat data showed a higher % activation of microglia as 

compared to the controls even at earlier time points (Fig. 3.8 (B)).   

 

5) Fos positive cells in PVN, SON and NTS of STZ-induced diabetic rats  
 
 

In this study, we used an antibody that recognises Fos-related antigens  which have 

been shown to have a higher long half life and are useful in recognising neurons activated 

chronically (Davern & Head 2007). We observed a small number of labelled neurons in the 

PVN of control rats at all the time points tested as shown in Fig. 3.9. There was a marked 

increase in the number of Fos-immunoreactive (Fos-IR) nuclei in the PVN of STZ-induced 

diabetic rats as compared to controls (Fig. 3.9 & 3.10) at later time points.  Counts of Fos 

positive nuclei in the PVN showed a significant increase at 6 weeks after STZ injection as 

compared to control rats. This increase in Fos immunoreactive nuclei was also evident at 8-10 

weeks post STZ injection (Fig. 3.10 (A)). However, when data from individual rats was 

examined, a small number of STZ-induced diabetic rats showed an increased number of Fos-

IR neuclei at earlier time points as compared to the highest number of Fos-IR nuclei observed 

in control rats (Fig. 3.10 (B)). The majority of Fos-IR nuclei in the PVN on the basis their 

location showed that majority of Fos-IR nuclei were located within approximately 0.5-1.0 mm 

from the edge of the third ventricle consistent with the location of PVN magnocellular 

neurons. Despite this there were still significantly more Fos labeled nuclei observed in the 

parvocellular PVN in STZ-induced diabetic rats at 6 weeks compared to control rats (Fig. 

3.11 (A)). Interestingly, this significant increase in number of Fos-IR nuclei was present in the 
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parvocellular as well as the magnocellular part of the PVN at 6 weeks but it was restricted to 

only the magnocellular region at later time points.  

 

In the SON, there was significantly increased Fos-IR nuclei seen at 6 weeks post 

STZ injection (Fig. 3.12 (A); P<0.05 as compared to control). Again a plot showing data from 

individual rats indicates that some rats had high numbers of Fos-IR nuclei even at the earlier 

time points (2-4 weeks) (Fig. 3.12 (B)). In contrast to PVN and SON, there was significant 

change in the number of Fos-IR nuclei in the NTS region of STZ-induced diabetic rats 

compared to control rats.   

 

6) Correlation between neuronal and microglial activation in PVN and 
SON  
 

When the time course of microglial activation and Fos-IR were compared, it 

appeared that increased neuronal activation (as determined by presence of Fos-IR) preceded 

microglial activation. Therefore, to investigate whether there was a relationship between 

neuronal activation and microglial activation, we plotted graphs of microglial activation vs 

neuronal activation. We found that there was no significant correlation between neuronal 

activation and microglial activation in SON (Fig. 3.14 (B); P=0.3206, N=15 all time points 

together) but a trend towards a positive correlation observed in PVN (Fig. 3.14 (A); 

P=0.0605, N=14 all time points together).  

 

One possible cause for the neuronal activation in STZ-induced diabetic rats is 

increased plasma osmolarity. Therefore, we measured plasma osmolarity at various time 

points after STZ treatment.  We observed increased plasma osmolarity in STZ-induced 

diabetic rats as compared to control rats (Fig. 3.16).    
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Figures  
 
Fig. 3.1 :  
 
 
 
 
 

              
 

              
 

              
          
 

 

 

 

STZ Control 
B A 

E 

D 

F 

C 

 
 150 µm 

 
 50 µm  

 
 50 µm  

III 

III III 

III 
PVN 



103 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 : Photomicrographs of the hypothalamic area of rat brain encompassing the 

paraventricular hypothalamic nucleus (PVN) showing microglia stained using antibody to 

CD11b (OX-42 clone). Dotted line in low power images A & B outlines the PVN and III 

indicates third ventricle. High power images C & D show morphology of microglia in the 

parvocellular region and images E & F show the magnocellular part of the PVN. Note the 

normal ramified microglia showing long processes, many secondary branches, and very small 

somata in control and activated microglia showing higher immunolabelling, enlarged somata 

and shorter, stubbier processes in STZ- induced diabetic rat at 8-10 weeks time point.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



104 

Fig. 3.2 :  
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Fig. 3.2 : Activated microglia expressed as a percentage of total microglia in the 

paraventricular hypothalamic nucleus in the region between the third ventricle and 1.0 mm 

lateral to it. The area encompassed both parvocellular and magnocellular regions at the level 

shown in Fig 3.1. Data were obtained from control (N = 10) and STZ-induced diabetic rats at 

2 weeks (N = 8), 6 weeks (N = 9) and 8-10 weeks (N=10) after STZ injection. Panel A shows 

the average percentage of activated microglia (mean ± SEM) at the different time point. Panel 

B shows data from individual rats. ***P < 0.001 compared to control. 
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Fig. 3.3 :  
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Fig. 3.3 : Activated microglia expressed as a percentage of total microglia observed in the 

paraventricular hypothalamic nucleus (PVN), ventral hypothalamus (VH) and the cortex in 

control rats (N = 5) and in STZ-induced diabetic rats (N = 7) (8-10 weeks after STZ 

injection). Values are expressed as the mean ± SEM. ***P < 0.001 compared to controls.  
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Fig. 3.4 :   
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Fig. 3.4 : Average length of microglial processes in the paraventricular hypothalamic nucleus 

(PVN), ventral hypothalamus (VH) and cortex in control rats (N = 6) and in STZ-induced 

diabetic rats at 8-10 weeks after STZ injection (N = 6). Values are expressed as the 

mean ± SEM. ***P < 0.001 compared to controls.  
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Fig. 3.5 :  
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Fig. 3.5 : Photomicrographs of the hypothalamic area of rat brain encompassing the 

supraoptic nucleus (SON) showing microglia stained using antibody to CD11b (OX-42 

clone). Note the normal ramified microglia showing long processes, many secondary branches 

and small somata in control and activated microglia showing higher immunolabelling, 

enlarged somata, shorter and stubbier processes in STZ-induced diabetic rat at 8-10 weeks 

time point.  OT indicates optic tract .  
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Fig. 3.6:  
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Fig. 3.6 : Activated microglia expressed as a percentage of total microglia in the supraoptic 

nucleus. Data were obtained from control animals (N = 10) and STZ-induced diabetic rats at 

2 weeks (N = 8), 6 weeks (N = 8) and 8-10 weeks (N=10) after STZ injection. Panel A shows 

the average percentage of activated microglia (mean ± SEM). Panel B shows data from individual 

rats. * P < 0.05 compared to control. 



114 

Fig. 3.7:  
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Fig. 3.7 : Photomicrographs show microglia stained using antibody to CD11b (OX-42 clone) 

in the nuclear tractus solitarius (NTS) region. Note the normal ramified microglia showing 

long processes, many secondary branches and very small somata in control and activated 

microglial showing comparatively higher immunolabelling, enlarged somata and shorter, 

stubbier processes in STZ treated diabetic rat at 8-10 weeks time point. CC indicates central 

canal. NTS is adjacent to the central canal, roughly outlined by dotted lines.  
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Fig. 3.8 :  
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Fig. 3.8 : Activated microglia expressed as a percentage of total microglia in the nuclear tractus 

solitarius (NTS). Data were obtained from control animals (N = 5) and rats at 2 weeks (N = 6), 

6 weeks (N = 6) and 8-10 weeks (N=6) after STZ injection. Panel A shows the average percentage 

of activated microglia (mean ± SEM).  Panel B shows data from individual rats. * P < 0.05 

compared to control. 
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Fig. 3.9 :  
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Fig. 3.9 : Photomicrographs of the hypothalamic area of rat brain encompassing the 

paraventricular hypothalamic nucleus showing neuronal nuclei stained with anti-Fos antibody 

in control (Panel A) and in STZ-induced diabetic rat at 8-10 weeks time point (Panel B). III 

indicates third ventricle.  
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Fig. 3.10 :  
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Fig. 3.10 : Quantification of number of Fos-IR nuclei within the paraventricular hypothalamic 

nucleus. Data obtained from control (N = 10) and STZ-induced diabetic rats at 2 weeks (N = 

8), 6 weeks (N = 5) and 8-10 weeks (N=5) after STZ injection. Panel A shows the average 

number of Fos-IR nuclei per section (mean ± SEM). Panel B shows data from individual rats. ** 

P < 0.01 & *** P < 0.001 compared to control.  
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Fig. 3.11 :   
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Fig. 3.11 : Neuronal and microglial activation in the parvocellular subdivision and 

magnocellular subdivision of the paraventricular hypothalamic nucleus. Panel A shows 

quantification of  number of Fos-IR nuclei per section. Data were obtained from control 

(N = 9) and STZ-induced diabetic rats at 2 weeks (N = 8), 6 weeks (N = 5) and 8-10 weeks 

(N=5) after STZ injection. Panel B shows the average percentage of activated microglia 

(mean ± SEM). Data were obtained from control (N = 10) and STZ-induced diabetic rats at 

2 weeks (N = 8), 6 weeks (N = 9) and 8-10 weeks (N=10) after STZ injection. Values are 

expressed as the mean ± SEM. ** P < 0.01 & *** P < 0.001 compared to control.  
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Fig. 3.12 :  
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Fig. 3.12 : Quantification of the  number of  Fos-IR nuclei in the supraoptic nucleus. Data 

were obtained from controls (N = 10) and STZ-induced diabetic rats at 2 weeks (N = 8), 

6 weeks (N = 5) and 8-10 weeks (N=6) after STZ injection. Panel A shows average Fos-IR 

nuclei  per section  in the supraoptic nucleus (mean ± SEM).  Panel B shows data from 

individual rats.* P < 0.05 compared to control. 
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Fig. 3.13 :  
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Fig. 3.13 : Quantification of the number of  Fos-IR nuclei per section in the nuclear tractus 

solitarius. Data were obtained from control (N = 8) and STZ-induced diabetic rats at 2 weeks 

(N = 8), 6 weeks (N = 5) and 8-10 weeks (N=4) after STZ injection. Panel A shows the 

average number of Fos-IR nuclei (mean ± SEM). Panel B shows data from individual rats. 
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Fig. 3.14 :  
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Fig. 3.14 : Graphs showing the relationship between the Fos-IR nuclei and percentage 

activated microglia present in (A) PVN (P=0605; r=0.51) and (B) SON (P=0.3276; r=0.27), in 

STZ-induced diabetic rats. Two tailed pearson’s correlation test was performed using Graph 

Pad Prism Version 5.  
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Fig. 3.15 :   
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Fig. 3.15 : Body weight of control and STZ-induced diabetic rats measured at weekly 

intervals. Values are expressed as the mean ± SEM 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



132 

Fig. 3.16 :   
 
 
 
 
 
 
 
 
 
 
 
 

Control 6w STZ 6w Control 10w STZ 10w
0.250

0.275

0.300

0.325

0.350

* *

O
sm

ol
/li

tre

 
 
 

 

 

 

 

 

 

 

 

 



133 

 

 

 

 

 

 

 

 

 

Fig. 3.16 : Plasma osmolarity in control and STZ-induced diabetic rats. Values are expressed 

as the mean ± SEM. * indicates significantly different than control P<0.05.  
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Discussion            
 
                      

  In this study, we observed microglial activation in STZ-induced diabetic rats in 

specific brain regions associated with the cardiovascular system. We have previously reported 

microglial activation in the PVN of rats with myocardial infarction, a condition associated 

with elevated sympathetic nerve activity to the heart and kidney (chapter 2).  The novel 

findings of the present study are that (i) microglial activation occurs in the PVN, SON and 

NTS regions of STZ-induced diabetic rats but this activation is not seen until 6-8 weeks after 

STZ injection, (ii) although the time of onset of neuronal and microglial activation in PVN 

was variable in individual rats, neuronal activation appeared to proceed microglial activation, 

and (iii) neuronal and microglial activation in the PVN were present in parvocellular as well 

as magnocellular subdivisions.  

 

Our results suggest that in STZ-induced diabetic rats there may be substantial 

changes in the function of the PVN, SON and NTS, all of which have well known 

cardiovascular functions. Increased serum levels of both adrenaline and noradrenaline along 

with increased cardiac peak ejection and cardiac peak filling rate, suggests elevated 

sympathetic nerve activity in humans with developed type 1 diabetes (Ferraro et al 1990). 

Studies on diabetic human patients and STZ-induced diabetic rats have  reported abnormal 

autonomic control of sympathetic and parasympathetic nervous systems (Makimattila et al 

2000; Reynolds et al 1996; Zheng et al 2006) which may be linked to the cardiovascular 

complications of diabetes.  Abnormal autonomic control has been suggested to be responsible 

for other complications of diabetes in humans eg.  diabetic nephropathy (Spallone et al 1994).   

 

Our results showing increased Fos-IR neurons in the PVN and SON regions of STZ 

-induced diabetic rats (Fig. 3.9, 3.10 (A) & 3.12 (A)) are consistent with a previous study by 

Zheng et al. (2002), although they did not investigate the time course of neuronal activation. 
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We also observed that increased fos labeling was present in the parvocellular as well as in the 

magnocellular part of the PVN, although there were more Fos-IR neurons in the 

magnocellular subdivision (Fig. 3.11 (A)). The parvocellular neurons of the PVN are involved 

in controlling autonomic functions including blood pressure, heart rate and the cardiovascular 

responses contributing to homeostatic functions like temperature regulation (Badoer 2001; 

van den Pol 1982; Wotjak et al 2001). Thus, increased activation of these the PVN autonomic 

neurons could be a possible reason for the reported increased sympathetic nerve activity in 

STZ -induced diabetic rats.  

                  

The magnocellular part of the PVN contains oxytocin and vasopressin hormone 

producing neurons as does the SON. The role of these neurohormones in blood volume and 

blood pressure regulation have been demonstrated by many previous animal studies (Badoer 

& Merolli 1998; Zheng et al 2002). Vasopressin acts peripherally on arteries causing 

vasoconstriction and on the kidney to decrease urine formation by increasing water 

reabsorption. These peripheral actions of vasopressin lead to increases in blood volume to 

maintain cardiac output and arterial pressure.  Studies on STZ-induced diabetic rats have 

reported elevated levels of plasma vasopressin (Brooks et al 1989; Charlton et al 1988) and 

demonstrated a possible role of cardiovascular changes and hyperosmolarity in triggering 

neuronal activity and vasopressin production from magnocellular neurosecretory cells 

(Brooks et al 1989; Charlton et al 1988).  Thus, the abnormally increased neuronal activity 

that we see in PVN and SON (Fig. 3.9, 3.10 (A) & 3.11 (A)) may be due to the increased 

plasma osmolarity observed in these rats (Fig. 3.16).  

 

Interestingly, we observed marked variation in number of Fos-IR neurons between 

individual rats at any time point (Fig. 3.9 (B), 3.10 (A) & 3.8 (B)) suggesting variability in 

onset. Even in humans, some develop cardiovascular complications earlier than others who 
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have suffered from the diabetes for the same period of time, suggesting a role of the genetic 

background of individuals. However, the detailed mechanism responsible for this variability is 

not clear. Interestingly, we also observed that the time point of the onset of neuronal 

activation was delayed (up to 6-8 weeks after STZ treatment) despite the fact that the blood 

glucose levels were raised several fold within the first week.  The reason for this delayed 

activation is not known and requires further investigation, but is consistent with delayed onset 

of cardiovascular complications in humans.  

 

                    Our study is the first to investigate the time course of microglial activation in the 

PVN and SON in STZ-induced diabetic rats. As mentioned earlier in the result section, the 

intensity of the OX-42 staining appeared increased in microglia present in these regions in 

STZ-induced diabetic rats but this was difficult to quantify due to the inherent variability in 

the immunohistochemical technique. However, the variability in staining intensity cannot 

explain the differences seen in microglial morphology, since the increased intensity of 

staining would be expected to cause fine microglial processes to appear more prominent. 

Interestingly, while the time of onset of both microglial activation and neuronal activation 

was delayed in the PVN as well as in the SON (Fig. 3.6 (A), 3.2 (A) & 3.10 (A), 3.12 (A)), it 

appears that neuronal activation preceded microglial activation. Under certain circumstances 

neuronal activation is sufficient to directly cause microglial activation (Hathway et al 2009). 

In addition, a study on STZ-induced diabetic rats has shown apoptotic cell death in SON 

neurons and suggested chronic over activation of SON neurons as a mechanism responsible 

for neuronal death (Klein et al 2004). The study also reported activation of microglia in SON 

by showing reduced microglial process length. The authors hypothesised that neuronal over 

activation and apoptotic cell death is responsible for the microglial activation. Our results 

showing significant neuronal activation earlier than microglia activation in PVN and SON 

(compare Fig. 3.6 (A) with Fig. 3.12 (A) and Fig.3.10 (A) with Fig. 3.2 (A)) supports this 
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hypothesis. Interestingly, we did not see a correlation between microglial and neuronal 

activation (Fig. 3.14 (A) & 3.14 (B)), although there was a trend towards correlation in the 

PVN. There are however, several possible reasons why the relationship between neuronal and 

microglial activation may be complex. Firstly, neuronal death due to over- excitation may 

lead to a decreased number of Fos-IR cells at later time points (Fig. 3.11 (A)) but would be 

expected to cause more activation of microglia. Secondly, neuronal activation may be 

responsible for the initiating but not for maintaining microglial activation. Our results do not 

eliminate the possibility of involvement of mechanisms other than neuronal over-excitation 

responsible for microglial activation (Refer to Chapter 1).     

     

   Our study is the first to show activation of microglia in the NTS region of STZ- 

induced diabetic rats. The NTS contains terminals from peripheral autonomic sensory 

neuronal axons. The NTS also receives projections from the PVN that play an important role 

in regulation of blood pressure (Krukoff et al 1997). Their study also demonstrated increased 

Fos-IR in NTS neurons upon change in blood pressure and blood volume suggesting that at 

least some NTS neurons that are involved in cardiovascular regulation can express Fos 

protein.  We observed significant activation of microglial cells but did not observe any change 

in the number of Fos labeled neurons in this region at 8-10 weeks after STZ injection (Fig. 

3.13 (A) and Fig. 3.8 (A)). A study on STZ-induced diabetic rats has also reported no change 

in baseline NTS expression of fos at 8 weeks and 16 weeks after STZ injection (Gouty et al 

2001) which agrees with our results. Therefore, it is possible that microglial activation in the 

NTS may be via different mechanism to that in PVN and SON.  

     

    A recent study on NTS neurons using multi electrode electrophysiology has 

demonstrated barosensitive NTS impairment in the baseline condition for STZ-induced 

diabetic rats (Chen et al 2008b). Compared to controls, diabetic rats showed similar pressor 
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responses to PE but the number of Fos-IR neurons in the NTS of diabetic rats were 

significantly lower (Gouty et al 2001). The authors claimed that this  reduced afferent 

baroreceptor input to the NTS in STZ-induced diabetic rats may be the result of diabetes-

induced damage to baroreceptive afferent nerves. These studies collectively suggest an 

impaired cardiovascular regulation function of the NTS.  A recent study on STZ-induced 

diabetic rats has shown increased microglial activation dorsal horn of spinal cord (Tsuda et al 

2008). The study suggested that damage to peripheral sensory neurons that terminate in the 

dorsal horn are responsible for the microglial activation. It is therefore possible that 

degeneration of axon terminals of autonomic sensory neurons terminating in NTS are 

responsible for the microglial activation there.  In contrast to the study of Tsuda et al. (2008), 

which has reported microglial activation in spinal cord within two weeks after STZ injection, 

we saw consistent microglial activation in NTS at the 8-10 weeks time point. This is 

consistent with the delayed nature of diabetic autonomic neuropathy as compared to sensory 

neuropathy (Verrotti et al 2009).    

  

  If excitotoxicity mediated neuronal death is responsible for the microglial 

activation in cardiovascular centres, then activated microglia can then further damage or 

modulate neuronal activity by releasing toxic substances.  Previous in vitro and in vivo studies 

on microglia have demonstrated that microglial activation results in a change in their 

morphology, proliferation, migration to the site of injury and secretion of variety of cytokines, 

chemokines, nitric oxide, superoxides, and growth factors (Hide et al 2000; Ifuku et al 2007; 

Li et al 2005; Lu et al 2009a; Perregaux & Gabel 1994; Tsuda et al 2003). Interestingly, a 

recent study on angiotensin II (Ang II) induced hypertension in rats has reported activation of 

microglia in the PVN (Shi et al 2010b). Based on their results showing increased sympathetic 

nerve activity and the PVN neuronal activity upon direct injection of IL-1β into the the PVN, 

they suggested that secretion of IL-1β from activated microglia activates the PVN neurons to 
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increase sympathetic nerve activity. Thus, activated microglia in cardiovascular centres of the 

brain in STZ-induced diabetic rats may contribute to further neuronal over-excitation in the 

PVN and SON. Neuronal over-excitation in the PVN may leads to elevated sympathetic drive.  

In the NTS, microglial activation may be responsible for the impaired cardiovascular neuronal 

function. 
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Conclusion 
 

We have found increased neuronal and microglial activation in the cardiovascular 

centres of the brain in STZ-induced diabetic rats. Over-excitation of neurons due to increased 

plasma osmolarity in STZ-induced diabetic rats may be responsible for the microglial 

activation in PVN and SON.  Microglial activation in NTS may be due to the damage to 

autonomic sensory neurons. These activated microglia may contribute to the increased local 

production of pro-inflammatory cytokines to modulate neuronal activity in those 

cardiovascular centres which may contributes to the elevated sympathetic nerve activity and 

reduced baroreceptor sensitivity in STZ-induced diabetic rats.   
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Chapter 4: Microglia are not Activated in Hypothalamic 
Cardiovascular Centres of Fat Fed and Zucker Obese Rats  

 

Introduction  
 

  Elevated sympathetic nerve activity contributes to the pathology of heart failure 

(Refer Chapter 2). Sympathetic nerve activity is also elevated in diabetic humans and may 

contribute to the cardiovascular complications of diabetes. Indeed, the rate of sudden cardiac 

death in diabetic patients (Jouven et al 2005) may be in part due to this elevated sympathetic 

nerve activity, therefore it is important to determine the cause and mechanism responsible for 

elevated sympathetic nerve activity.  

 Sympathetic nerve activity is controlled by neuronal activity in various autonomic 

nuclei in the brain. We have reported microglial activation in the paraventricular 

hypothalamic nucleus (PVN) and suparaoptic nucleus (SON) in STZ-induced diabetic rats 

(Refer Chapter 3). As described before (in chapter 3), the PVN is one of the cardiovascular 

centers in the brain while the SON outputs are solely directed to the posterior pituitary gland 

and have an impact on hemodynamic outcomes via the kidney and vasopressin release. 

Activated microglia can secrete a variety of cytokines, chemokines, reactive oxygen species, 

neurotramitters, neurotrophins and nitric oxide (Refer Literature review). There are growing 

numbers of studies indicating that secretions from activated microglia can  modulate neuronal 

activity (Biggs et al 2010; Lu et al 2009a; Shi et al 2010b; Tsuda et al 2003). Collectively 

these data suggest that activated microglia in STZ-induced diabetic rats contributes to the 

reported increase in the neuronal activity in cardiovascular centres (Zheng et al 2002). 

However, the mechanisms responsible for the microglial activation seen in STZ-induced 

diabetic rats are not clear. It is also not known whether microglial are activated in other forms 

of diabetes. Hence, to understand the mechanism, we investigated microglial activation in 
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cardiovascular centres other models of diabetes eg. High Fat Fed, Zucker Obese and Low 

Capacitant Runner (LCR) rats.    

                 The STZ-induced diabetic rat model resembles to human type 1 diabetes. In this model 

rats develops extreme hyperglycemia. The most common form of diabetes in humans is type 2 

diabetes where they exhibits some similar and some dissimilar symptoms to type 1 diabetes.  It is 

generally agreed that individual genetic background, diet and lifestyle contribute to the 

pathogenesis of diabetes type 2. One of the major contributing factors is high fat western diet. 

Chronic feeding of a high fat diet is known to cause hyperglycemia in rodents primarily by 

inducing insulin resistance and obesity (Oakes et al 1997; Pedersen et al 1991; Srinivasan et al 

2004). Various studies have linked obesity and insulin resistance with the pathology of 

cardiovascular diseases and hypertension (Aronne et al 2007; Chapman & Sposito 2008; Hintz et 

al 2003; Lamounier-Zepter et al 2006; Sowers 2003). Therefore we investigated whether 

microglia were activated in cardiovascular centres in rats fed a high fat diet for 8 weeks and in 

leptin receptor deficient Zucker Obese rats (24-26 weeks old). Zucker Obese rats are widely used 

animal model of obesity and hypertension  

 We also used Low (LCR) - capacity runners as an model of insulin resistance 

against their control High (HCR)- capacity runner rats. This rodent model of metabolic 

syndrome was developed via selective breeding for intrinsic running capacity. This selection 

strategy resulted in animals with high or low intrinsic running capacity, referred to as high 

capacity runners (HCR) and low capacity runners (LCR), respectively (Koch & Britton 2001). 

Previous study on these rats have reported that Insulin-stimulated glucose transport, insulin 

signal transduction, and rates of palmitate oxidation are lower in LCR vs. HCR (Lessard et al 

2011).  

Therefore, we investigated microglial activation in hypothalamic cardiovascular 

centre in high fat fed rats, Zucker Obese and LCR rats in this study. These diabetic models 

share some common complications with STZ-induced diabetic rats as well as they have some 
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unique symptoms that is not present in STZ-induced diabetic rats.  Therefore, we compared 

the results obtained in this study with those in STZ-induced diabetic rats to understand 

mechanism of microglial activation.   

Methods  

Animals  

                 Sprague Dawley (SD) 8 weeks high fat fed rats (Animal Resource Centre, Perth, 

Western Australia) were obtained from Prof. John Hawley’s laboratory at RMIT University.  

The rats were fat fed high fat diet (SF03-002) or normal chow diet.  Composition of the diet 

by mass was as follows:  

Table 4.1:  

  SF03-002 (Fat Containing Diet) Normal Chow Diet 

Protein 19.5 % 19.6% 

Fat 36% 4.6% 

Carbohydrates 35.7% 56.8% 

                  Zucker Obese and Zucker Lean rats were obtain from Prof. Julianne Reid’s 

research laboratory at RMIT University. All the Zucker rats used for experiments were 

between 24 weeks to 26 weeks old.  LCR and HCR rats were obtained from Britton, S.L 

laboratory, University of Michigon, USA. These rats were obtained following 22 generations 

of artificial selection. They were phenotyped for intrinsic running capacity at 11 wk of age 

using an incremental treadmill running test, and their average running capacity (in meters) 

was recorded as described previously (Koch & Britton 2001). All these rats were housed two 

per cage in a temperature controlled animal room (210C) maintained on a 12 : 12 hrs reverse 

light-dark cycle and provided with standard chow diets and water ad libitum. 
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                 For STZ experiments, as described previously (chapter 3), Sprague Dawley rats 

obtained from ARC (Animal Resource Centre) were given streptozotocin (STZ) in citrate 

buffer 48mg/kg body weight via tail vein to induce diabetes. Rats were tested for diabetes 

after one week of injection and used after 2-4, 6 and 8-10 weeks of injection. Control rats had 

received only vehicle injection and underwent all the other procedure in a same way as STZ 

treated rats.  

Tissue processing  
 
                 All the rats used for this study were euthanized by an over dose of pentobarb 

(180mg/kg body weight). After which they were decapitated and the brains were removed. 

Forebrain and bran stem area was separated from hypothalamus by cutting brain into three 

pieces, then immediately immersed in freshly prepared, ice cold 4% paraformaldehyde in 

phosphate buffered saline (PBS) (0.1 M, pH 7.2) and stored for 4 h at 4 °C. The brains were 

then transferred to a solution containing 30% sucrose in PBS and left for approximately 48 h 

at 4 °C before they were used for immunohistochemistry.  

Immunohistochemistry  
 

                 Sectioning and Immunohistochemistry was performed as described previously 

(chapter 2). In brief, transverse 20 µm-thick cryostat sections were cut from a region of 

hypothalamus encompassing the PVN and arcuate nuclei.  These sections were processed 

immunohistochemically to detect microglial cells using an antibody to Cd11b (clone OX-42). 

Sections were incubated with this OX-42 (Anti-mouse primary antibody) for 72 hrs at 40 C. 

Then sections were washed, incubated 2 hrs with secondary biotinaylated- antimouse 

antibody followed by 2 hrs incubation with peroxidate labeled Extravidin-HRP. At the end 

DAB chromogen was used to visualise microglia.  

Morphological analysis and quantification 
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                 As described previously (chapter 2 and chapter 3) the number of microglia and 

their morphological characteristics were examined within multiple square areas (0.2 X 0.2 

mm) with a light microscope using 400x magnification. To find the % Activated microglia, 

the total and activated microglia were manually counted from the approximately same region 

of interest in all rats.  
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Results  

1) Fasting blood glucose and body weights in fat fed vs chow fed rats 
and LCR vs HCR 
 

 Rats fed a high fat diet for 8 weeks did not gain significantly high body weight 

(N=6; 437 ± 9 g) as compared to chow fed rats (429 ± 16 g; N=6) (P=0.6810). However, they 

had significantly higher fasting blood glucose levels as compared to the chow fed rats (5.650 

± 0.1254 μM (N=8) vs 6.613 ± 0.3159 μM (N=8); P= 0.0133).  Overt obesity, 

hypercholesterolemia, hyperlipidemia, and hyperglycemia are characteristic features of 

Zucker Obese rat model reported in literature.  We observed significantly higher body weight 

and fasting blood glucose levels in Obese Zucker rats (N=23) as compared to control Lean 

Zucker rats (N=21) (P<0.001). 

The LCR rats used for this study had initial running capacity of 282 ± 12 meters 

while HCR rats had running capacity of 1927 ± 57 meter. These LRC rats had significantly 

high body weight (497 ± 19 g vs 331 ± 8 g; N=10; P<0.05) and fasting blood glucose as 

compared to HCR rats (6.2 ± 0.1 μM vs 5.3 ± 0.1μM; N=10; P<0.05).  

2) Microglial morphological observations and quantification of microglial 
activation in PVN and SON  
 

                  In normal adult rat brain, microglia have small soma, long and highly branched 

processes and are called “ramified microglia”. Microglial cells in the PVN of both high fat fed 

rats (N=5) and chow fed rats (N=5) showed long, thin and branched processes and small 

nuclei, similar to symptoms of ramified microglia (Fig. 4.1 (C)). Moreover, there was no 

difference in intensity of OX-42 staining between high fat fed and Chow fed rats. 

Quantification of % activated microglia from the PVN of chow fed Vs high fat fed rats 

showed no significant difference ( 8.2±1.3 vs 11.1±1.12; P= 0.1019) (Fig. 4.2 (C)).. Similarly, 

we did not observe difference in microglial morphology in the SON region of fat fed rats as 

compared to chow fed control rats (Data not shown).   
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                  As seen in high fat fed and chow fed rats, we observed no difference in microglia 

morphology and OX-42 intensity in Obese Zucker vs Lean Zucker rats and HCR Vs LCR rats 

(Fig. 4.1 (A) & 4.1 (B)).  Quantification of % microglial activation in the PVN of Obese 

Zucker vs Lean Zucker as well as HCR vs LCR rats showed no significant difference 

(P=0.1169 and P=0.4670 respectively) suggesting there was no activation of microglia in the 

PVN in those rats (Fig. 4.2 (A) & 4.2 (B)). Similar to the PVN microglia in the SON region 

also exhibited ramified morphology in HCR, LCR, Obese Zucker and Lean Zucker rats (Data 

not shown).   

3) Activation of microglia in VMH/Arcuate region in Fat fed rats 
 

                  Microglia in some high fat fed rats showed markedly shortened, thicker, and 

stubbier processes and stronger staining for OX-42 in VMH/Arcuate region as compared to 

the microglia in same region of chow fed rats (Fig. 4.3).  When % activated microglia in these 

two sets of animals was compared using a t test, no significant difference was observed (Fig. 

4.4 (A); P=0.0551) despite the fact that average of % activated microglia was markedly high 

in high in some fat fed rats. 

                 Interestingly, the number of % activated microglia in PVN and VMH/Arcuate area 

in chow fed rats was never higher than 15% activation. Therefore, all the rats showing less 

than 20% activated microglia were defined as showing no activation while all the rats 

showing more than 20% activation were defined as showing activation. 3 out of 5 high fat fed 

rats but none of the control rats fell into the categories of activation (Fig. 4.4 (B). Chi-Square 

test comparing the proportion of rats with and without activation performed on chow fed and 

high fat fed rats did show a significant difference between two groups (P=0.0384).      

4) Microglia were not activated in VMH/Arcuate region of Zucker Obese 
rats and LCR rats 
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                 In contrast to fat fed rats, none of the Zucker obese rats and LCR rats used for this 

study showed microglial activation in VMH/Arcuate region as demonstrated in Fig. 4.5 (A), 

4.5 (B) & 4.5 (C).  
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Figures 

 Fig. 4.1 :  
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Fig. 4.1 : Photomicrographs of the hypothalamic area encompassing the paraventricular 

hypothalamic nucleus showing OX-42 immunolabeled microglia in (A) Zucker Lean and 

Zucker Obese rats (B) HCR and LCR rats (C) chow fed and high fat fed rats.  
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Fig. 4.2 :  
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Fig. 4.2 : Activated microglia  expressed as a percentage of total microglia in the hypothalamic 

paraventricular nucleus. Figure shows data from the PVN of (A) Zucker Lean (N=4) and Zucker 

Obese rats (N=4). (B) HCR (N=4) and LCR (N=4) rats (C) chow fed  (N=5) and high fat fed rats 

(N=5).   
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Fig. 4.3 :   
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Fig. 4.3 : Photograph of the hypothalamic region encompassing the ventromedial 

hypothalamus / arcuate nucleus area (VMH/Arcuate) showing OX-42 immunolabeled 

microglia.  In chow fed rats normal ramified microglia were observed in VMH/Arcuate 

region. (Panel A) Note the long processes, many secondary branches and very small somata. 

Activated microglia were present specifically in VMH/Arcuate region of high fat fed rats. 

(Panel B) Note the drastic increase in OX-42 staining and the morphological changes 

including enlarged somata and shorter, stubbier processes. 
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Fig. 4.4 : 
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Fig. 4.4 : Activated microglia expressed as a percentage of total microglia in the 

hypothalamic arcuate nucleus and ventromedial hypothalamus. Panel A shows the average 

percentage of activated microglia (mean ± SEM). Panel B shows data from individual rats where 

horizontal line indicates mean percent activated microglia. Student t-test showed no significant 

difference (P=0.055) but Chi-Square test comparing the proportion of rats with and without 

activation in chow fed and high fat fed rats did show a significant difference between the two 

groups (P=0.038). 
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Fig. 4.5 :   
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Fig. 4.5 : Phtomicrographs showing OX-42 immunolabeled microglia in the ventromedial 

hypothalamus/ arcuate nucleus region showing ramified microglia  in  (A) STZ (B) LCR (C) 

Zucker Obese rats. Microglial in these animals showed long and thin processes and small 

somata indicating their ramified morphology.  
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Discussion  
 

                 We have previously reported microglial activation in the PVN and SON regions of 

the hypothalamus in STZ-induced diabetic rats (chapter 3). The key findings of the present 

work show that (i) microglia are not activated in hypothalamic cardiovascular centres in rats 

fed a high fat diet for 8 weeks.  Even leptin receptor deficient Zucker Obese rats and a genetic 

model of insulin resistance (LCR) rats did not show microglial activation in the PVN or SON 

(ii) microglia are activated in VMH/Arcuate nucleus in high fat fed rats but not in obese 

Zucker rats suggesting involvement of leptin signalling in this activation.                   

                 The microglial activation observed in the VMH/Arcuate region was present in only 

3 out of 5 high fat fed rats tested but all the rats that showed activation had more than 50% 

activated cells (Fig. 4.4 (B)).  This is a level of activation never observed in any of the control 

rats in any of our studies so far.  A Chi-Square test showed a significantly higher proportion 

of rats with activated microglia in high fat fed rats (P=0.0384). Although the mechanism of 

microglia activation is not clear, a high fat diet will cause increase in physiological levels of 

plasma leptin (Ahren & Scheurink 1998; Friedman & Halaas 1998) that is a prime candidate 

for causing microglial activation. Leptin is an anti-obesity hormone produced by adipose 

tissue. Halaas et al. (1997) reported that i.c.v. infusion of leptin reduces body fat mass by 

reducing food intake but not by increasing energy expenditure in lean mice (Halaas et al 

1997). The study also demonstrated that chronic i.c.v. infusions of a very low dose of leptin 

replicate the weight–reducing effects of leptin administered peripherally at much higher 

doses. These results suggest those leptin receptors located in brain are more important than 

peripheral receptors in controlling body weight and food intake. Indeed, the selective deletion 

of neuronal leptin receptors causes obesity (Cohen et al 2001) and amelioration of obesity 

occurs upon selective expression of leptin receptors on neurons in leptin receptor deficient 

mice (Kowalski et al 2001).  Various animal studies have reported that the hypothalamus is 
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the main site of leptin action in central nervous system (Lee et al 1996; Maffei et al 1995; 

Vaisse et al 1996). (Kurtz et al 1989).   Decreased immune function was observed in leptin 

deficient mice. It appears from the literature that leptin increases immune responsiveness by direct 

effects upon the immune system and regulates feeding and neuroendocrine function by activating 

the long (LRb) (Mayers MG Jr. 2004), most notably in the hypothalamus but the cellular location 

of the immune stimulating effect of leptin is not clear.   Interestingly ,  direct microinjection of 

leptin into the arcuate nucleus and ventromedial hypothalamus decreases food intake, reduces 

body weight gain and modulates sympathetic nerve activity suggesting that central action of 

leptin is mainly mediated via these two hypothalamic nuclei (Elmquist & Flier 2004; Satoh et 

al 1997; Satoh et al 1999).  

                 Studies on diet induced obese rodents have demonstrated reduced central leptin 

signalling which our results suggest may be at least in part due to activated microglia. A study 

on mice had reported that i.c.v. infusion of the same amount of leptin was less effective in 

terms of reducing body fat mass and food intake in diet induced obese mice as compared to 

normal chow fed rats (Halaas et al 1997). Moreover, reduced central leptin sensitivity was 

also demonstrated by a study on rats showing reduced suppressive effect of i.c.v. infused 

leptin on NPY expression in arcuate neurons in diet induced obese rats (Levin & Dunn-

Meynell 2002). These i.c.v. infusion studies suggest that obesity causes defective leptin 

signaling in hypothalamus. A recently published animal study by moraes et al. (2009) has 

demonstrated that high fat diet induces apoptosis of neurons in the arcuate region. The study 

also demonstrated elevated inflammatory cytokines in the hypothalamus and suggested a role 

for inflammatory cytokines in neuronal apoptosis. However, the study homogenised 

hypothalamic tissue which would have included cells outside the blood brain barrier as well, 

hence the cellular source of the elevated cytokines is unclear. Our results on fat feed rats 

showing microglia activation suggests that these activated microglia could be a source of 

inflammatory cytokines in hypothalamus which may then contribute to neuronal apoptosis. 



161 

Thus, by performing immunohistochemistry, instead of homogenizing tissue (like some of the 

previous other studies) we could interpret our results in greater detail than others. 

                 Leptin is a likely candidate responsible for microglia activation. It appears from the 

literature that leptin sensitivity is reduced for the metabolic actions but not for the effects on 

sympathetic nerve activity. The action of leptin on microglia could be direct or indirect via 

neuronal activation. Apart from neurons, microglia also expresses receptors for leptin and the 

direct action of leptin on cultured microglia has been shown to induce IL-1β release (Pinteaux 

et al 2007). However, this in vitro study does not provide the reason for selective activation of 

microglia in VMH/Arcuate region.  In the absence of in vivo evidence showing a direct leptin 

action on microglial activation in selective brain nuclei, it appears that leptin mediated over- 

excitation and damage to VMH / Arcuate neurons are responsible for reported microglia 

activation. It seems more likely that leptin mediated neuronal over activation precedes 

microglial activation but other causes must be considered. However, once activated these 

microglia secrete variety of inflammatory cytokines and superoxides that can exaggerate the 

neuronal damage in VMH/ Arcuate region and then may contributes to the reduced leptin 

sensing in these regions.          

                 Microglial activation may also be involved in disruption of glucose homeostasis in 

high fat fed rats. Apart from leptin receptors, VMH / Arcuate region also contains glucose 

sensing POMC neurons.  These POMC neurons have recently been shown to be excited 

directly by glucose (Ibrahim et al 2003). Interestingly, glucose sensing by POMC neurons 

becomes defective in high-fat diet mice (Parton et al 2007). A recent animal study has 

demonstrated that restoration of leptin signalling in the arcuate nucleus in leptin receptor 

deficient obese mice was sufficient to normalise blood glucose levels and markedly improved 

hypoinsulinaemia (Coppari et al 2005). It is possible that activated microglia may also have 

role to play in causing damage to glucose sensing machinery in VMH / Arcuate region by 

interrupting leptin sensing. Hence, microglial activation in high fat fed rats may be caused by 
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high leptin levels and these activated microglia may be involved in generating leptin 

insensitivity and insulin resistance in those rats. 

                 Interestingly, we did not observe microglial activation in VMH/Arcuate nucleus 

either of Zucker Obeser rats or in STZ-induced diabetic rats (Fig. 4.5 (A), 4.5 (B) & 4.5 (C)).  

Zucker Obese rats are deficient in leptin receptors and unlike high fat fed rats used in this 

study, had significantly higher body weights as compared to their respective control rats. On 

the other hand, similar to fat fed rats, Zucker Obese rats had slightly but significantly elevated 

fasting blood glucose levels suggesting that both were developing diabetes. Moreover, STZ -

diabetic rats that showing extreme hyperglycemia have been reported to have reduced levels 

of plasma leptin (Havel et al 1998). Thus, the lack of VMH/Arcuate microglial activation in 

Zucker Obese rats and STZ-induced diabetic rats support the hypothesis that leptin signaling 

and not hyperglycemia is responsible for activation of microglia in VMH/ Arcuate in high fat 

fed rats.      

                 We did not observe microglial activation in VMH/ Arcuate region in LCR rats 

despite their high fasting blood glucose levels and higher body weights as compared to HCR 

rats. LCR rats provide a genetic model to study the effect of insulin resistance.  The molecular 

defect(s) that result in aberrant fuel metabolism in LCR is not known. However, recent studies 

on this model reported that LCR rats have impaired skeletal muscle glucose and lipid 

metabolism (Lessard et al 2009; Lessard et al 2011).  A study on 13th generation LCR and 

HCR rats has shown approx. 50% higher levels of leptin in LCR rats as compared to HCR 

(463± 49.9 vs 312.6± 34.1) (Noland et al 2007). The study also demonstrated that high fat fed 

HCR rats showed approx. 80% higher plasma leptin levels compared tho chow fed HCR’s but 

no significant difference was found between chow fed and high fat fed LCR rats. Although, 

their study used a lower percentage fat than the one used here, it provides clear evidence that 

high fat feeding causes a higher increase in plasma leptin levels than  seen in LCR rats. 

Interestingly, our rats fed high fat diet did not become obese which is consistent with a 
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previous study by Chen et al. (2010) that used a similar dietary regime (Chen et al 2010). But 

their study also demonstrated that even though high fat fed rats were not obese, they had 80% 

higher epididymal fat mass compared to controls suggesting they had high leptin levels before 

developing obesity (Chen et al 2010). This was confirmed by a later unpublished study from 

our lab on rats fed high fat diet for 12 weeks showing significantly higher plasma leptin levels 

as compared to controls, in the absence of obesity. We also observed that in those high fat fed 

rats, leptin levels were variable where some rats had leptin levels just above highest value 

obtained in controls while others had more than double (Unpublished data from our lab). 

Thus, these results suggest that only some rats had a high leptin level which is consistent with 

our microglial results on microglial activation.  However, this hypothesis requires further 

investigation where plasma levels of leptin and microglial activation needs to be correlated.  

                 In contrast to our previous findings that activation of microglia occurs in the PVN 

of STZ-induced diabetic rats (chapter 3), we did not observe microglial activation in this brain 

nucleus in the other three models used in this study. A major difference between all these 

models is that STZ-induced diabetic rats are a model of  type 1 diabetes in humans and 

develop extreme hyperglycemia while all the other models develop mild hyperglycemia, and 

may more closely resemble a pre-diabetic stage in development of type 2 diabetes. Apart from 

that, STZ-induced diabetic rats do not show weight gain (chapter 3) while Zucker Obese rats 

and LCR rats gained significantly more weight as compared to their respective controls. Our 

results on body weight gain in Zucker Obese rats are consistent with previous reports on this 

rat model (Campfield et al 1995; Friedman & Halaas 1998; Halaas et al 1995; Pelleymounter 

et al 1995; Zhang et al 1994). Similarly, LCR rats gained more body weight as compared to 

control rats which is consistent with previous reports with this model (Lessard et al 2011; 

Noland et al 2007). Collectively, the data from both Zucker Obese and LCR rats suggests 

obesity is not directly responsible for microglial activation in the PVN in STZ-induced 
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diabetic rats. Thus, extreme hyperglycaemia but not obesity may be responsible for microglial 

activation in the PVN in STZ-induced diabetic rats.  

                 Interestingly, all of these models do share some common pathological 

complications. Blood pressure measurement from unrestrained Zucker rats shows 

hypertension in Obese rats but not in pair fed control Zucker lean rats (Kurtz et al 1989). 

Zucker diabetic fatty rats or Zucker Obese rats also develops cardiomyopathy and 

cardiovascular dysfunction (Marsh et al 2007; Oltman et al 2006; van den Brom et al 2010).  

As discussed before large numbers of studies on obese humans and animal models of obesity 

have demonstrated elevated sympathetic nerve activity to kidney, heart, and skeletal muscle 

and its pathological role in development of obesity associated cardiovascular complications 

(Alvarez et al 2002; Barnes et al 2003; Esler et al 2006; Huggett et al 2004; Vaz et al 1997). 

Elevated levels of renal sympathetic nerve activity are seen in Zucker Obese rats  (Morgan et 

al 1995) and may be a contributing factor to reported cardiovascular complications in this 

model. Elevated sympathetic nerve activity and blood pressure is also been reported in rats 

fed high fat diet for 12 weeks (Barnes et al 2003).  Just like high fat fed rats and Zucker Obese 

rats, cardiovascular complications and elevated sympathetic drive is also been reported in 

STZ-induced diabetic rats (chapter 3). Unfortunately, Sympathetic nerve activity is not well 

studied in LCR rats. Collectively, all these results indicate the following two possibilities: (i) 

Elevated sympathetic drive in Obese Zucker and high fat fed rats may contribute to the 

pathology of reported cardiovascular complications but the mechanism responsible for 

sympathetic activation might be different from STZ-induced diabetic rats. (ii) Microglia are 

not responsible for reported cardiovascular complications in STZ-induced diabetic rats.  

However, further investigation is required to test both possibilities.                        

                 High fat fed rats, Low Capacitance Runner (LCR) and Zucker Obese rats can 

develop obesity, hypoinsulinaemia, mild hyperglycaemia, hyperleptinemia and insulin 

resistance (Lessard et al 2009; Lessard et al 2011; Luo et al 1998; Srinivasan et al 2004; 
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Srinivasan et al 2005; Storlien et al 1986; van den Brom et al 2010) but not extreme 

hyperglycaemia / overt diabetes as seen in STZ-induced diabetic rats (model of type 1 

diabetes) (chapter 3).  Despite having similar cardiovascular complication and elevated 

sympathetic drive as STZ-induced diabetic rats, animal models used in this study did not 

showed activation of microglia in PVN and SON suggesting extreme hyperglycaemia is 

responsible for microglial activation in PVN and SON of STZ-induced diabetic rats. 

Collectively, results obtained from STZ-induced diabetic rats, Zucker Obese rats, high fat fed 

rats and LCR rats suggest that extreme hyperleptinemia in  high fat fed rats may be 

responsible for microglial activation in VMH/ Arcuate region. Targeting those activated 

microglia in VMH/ Arcuate region in high fat fed rats could reduce neuronal damage and 

leptin resistance in this region.  Our results suggest that high intake of high fat containing 

western diet can cause inflammation in hypothalamus in humans. Inhibition of this 

inflammation could be the key to prevent growing cases of type-2 diabetes in humans.   



166 

Chapter 5:  Effect of Activated Microglial Injection in the 
Paraventricular Hypothalamic Nucleus on Blood Pressure                            
 

Introduction 
 

 Until the last decade, it was believed that, just like other immune cells in periphery 

microglia  perform protective immunological functions in the CNS. Recently, however, there 

is increasing evidence suggesting a pathological role of microglia in various neurological 

diseases (Badoer 2010a; Inoue & Tsuda 2009; Tozaki-Saitoh et al 2008)  indicating there are 

two facets of microglial function. It appears that microglia can be “protective” or “injurious” 

to neurons depending on the prevailing conditions but the molecular switch that transforms 

them from their protective  to their harmful state is not known. Microglia provide neuro-

protection by secreting various neurotrophic factors and anti-inflammatory cytokines while 

their injurious role is attributed to their ability to release inflammatory cytokines, chemokines, 

reactivity oxygen species, and superoxide (chapter 1).  These discoveries on their conflicting 

roles made microglia perhaps the most controversial cells of the central nervous system.  

 We have reported microglial activation in the paraventricular hypothalamic nucleus 

(PVN) in rats with heart failure as well as in STZ-induced diabetic rats (chapter 3 and chapter 

4).  However, it is still not clear if this microglial activation is a consequence of these diseases 

or whether microglial activation plays a role in the pathological consequences these 

conditions.  The PVN plays important role in cardiovascular regulation (Badoer 2001; Coote 

2005; Dampney et al 2005). Chemical stimulation of the PVN by unilateral microinjections of 

N-methyl-D-aspartic acid (NMDA) or L-glutamate elicits an increase in mean arterial 

pressure (MAP) in rats (Kannan et al 1989; Kawabe et al 2008). Activation of PVN neurons 

causes increased  sympathetic outflow which mediates this pressor response (Kannan et al 

1989; Martin & Haywood 1992). Previous studies on STZ-induced diabetic rats and rats with 

myocardial infarction have reported elevated sympathetic drive (Mann 1999a; Packer 1988; 
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Patel et al 2010; Zheng et al 2002; Zheng et al 2006) and this elevated sympathetic activity is 

a well known contributing factor to the pathology of heart failure (Brunner-La Rocca et al 

2001; Hasking et al 1986). STZ-induced diabetic rats show increased PVN neuronal activity 

(Lindley et al 2004; Zheng et al 2002). Previous studies on rats with myocardial infarction 

also show this activation and in addition they have shown elevated cytokines levels in the 

PVN and suggested their involvement in pathology of heart failure (Guggilam et al 2007; Shi 

et al 2010a).  Based on these data, we hypothesised that the secretion of a variety of 

cytokines, chemokines, neurotrophins and reactive oxygen species from activated microglia 

may cause neuronal excitation in the PVN which in turn activates sympathetic drive and 

contributes to cardiovascular complications.  

Studies on various neurodegenerative models have suggested a role of microglia in 

causing neuronal damage (Badoer 2010a; Graeber 2010). Interestingly, recent studies on 

animal models of neuropathic pain have reported microglial activation following nerve injury 

and suggested they have a neuromodulatory role (Tozaki-Saitoh et al 2008; Tsuda et al 2003) 

since inhibition of microglial activation with the drug minocycline is able to prevents 

development of pain behaviors (Fan et al 2005a; Raghavendra et al 2003b). Tsuda et al. 

(2003) also demonstrated a decrease in paw withdrawal threshold in naïve rats injected with 

ATP activated microglia into the spinal cord indicating sensitization of pain pathways similar 

to that seen following nerve injuries.  Hence, this study provides a useful tool to study the 

effects of activated microglia on neurons in vivo.  Therefore, to test our hypotheses, we 

performed the following experiments: (i) Activated microglia were injected into the PVN of 

naïve rats and effect on blood pressure compared to that in rats that had received either 

phosphate buffer saline (PBS) or microglial conditioned medium injections (ii) We 

investigated the effects of inhibiting microglial activation with minocycline on blood pressure 

in STZ-induced diabetic rats.   
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Methods  

Animals  
 

                Male Sprague-Dawley rats were obtained from Animal Resource Centre (ARC), 

Perth, Western Australia and housed in the local animal facility (RMIT University, 

Melbourne, Australia). Rats weighing 150 ± 10 g were used for minocycline injections 

experiments while 3-4 weeks old, age and weight matched rats were used for stereotaxic 

injections of activated microglia and control solutions.   

Induction of diabetes and minocycline treatment  
 

 As described previously (chapter 3) diabetes was induced by streptozotocin (STZ) 

(48mg/kg body weight) injection into the tail vein (N=9) using citrate buffer (pH 4.5, 0.1M) 

as a vehicle. Control rats received only vehicle injection and underwent all other procedure in 

a same way as STZ rats (N=6).  One week after injections fasting blood glucose levels were 

measured using a one touch glucose meter (Accu-Check Performa).  Rats showing fasting 

blood glucose levels higher than 18mmol/litre were considered diabetic. All the rats receiving 

minocycline injections were given minocycline (45mg/Kg in 0.1M PBS ,pH 7.2) via i.p. 

injection every second day for 5 consecutive weeks. Out of the 9 rats injected with STZ that 

showed hyperglycaemia, 3 were subjected to minocycline injections. The rest (N=6) STZ-

induced diabetic rats did not receive any drug treatment.  Out of 9 vehicle treated confirmed 

non diabetic rats, one rat was given minocycline injections.   

Blood pressure measurement via tail cuff   
 

                 Systolic blood pressure was measured via the tail cuff method from all STZ-

induced diabetic and vehicle treated rats.  Prior to blood pressure recordings, all rats were first 

allowed to acclimatise to the new animal house for two to three days then subjected to 

handling for 3-4 days. After the one week of acclimatisation and handling period, they were 
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placed in restrainers for 15-20 minutes and systolic blood pressure measured using a tail cuff 

blood pressure measurement system (ML125 NIBP Controller and MLT125/R Pulse 

Transducer / Pressure Cuff for NIBP - Rat) but not recorded. This protocol was followed 

every day for at least 3 days to reduce stress levels in the rats during subsequent blood 

pressure measurements. Blood pressure was then measured from the rats in all treatment 

groups at approximately the same time of the day. Thus, approximately 10 days after 

receiving the animals, the blood pressure was recorded from each rat for 3 consecutive days 

or longer until three concordant measurements were obtained.  At this time surgery was 

performed and blood pressure recorded again for 3 days after surgery. 

                  Blood pressure measurements were also taken from STZ-induced diabetic and 

control rats used for minocycline treatment experiments in similar manner as described above. 

In this case, the blood pressure was measured before STZ/vehicle injection and then 2 weeks 

and 5-6 weeks after the injection.  

Culturing, isolation and activation of microglia for PVN injection  
 

  Microglia were isolated as described previously (Nakajima 1989; Pooler et al 2004) 

with some modifications. Three day old rats were decapitated and the brains removed, then 

minced by passage through a stainless steel mesh (40 mesh) and incubated with 0.25% trypsin 

and 0.01 % DNase in phosphate buffered saline (PBS) for 10 min at 370 C.  Horse serum was 

then added to terminate the digestion and the cells were passed through a second stainless 

steel mesh (100 mesh).  Cells were centrifuged at 1500rpm for 5 minutes and the pellet 

washed twice by dissolving into the DMEM medium (containing 4.5g/l glucose). The final 

cell suspension was plated in poly D-lysine coated flasks (75 cm2) at a density of 

approximately one brain per flask. Cultures were maintained in DMEM (4.5g/l glucose) 

supplemented with 10% FBS, 1% penicillin streptomycin mixture, in a 5% CO2 atmosphere 

at 370C.  Half of the medium was changed twice a week. After 10-14 days flasks with cells 
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containing phase bright microglial cells on top of the layer of glial cells were kept on shaker 

at 120 rpm for 45 minutes (370 C). The supernatant was collected and centrifuged at 1500 rpm 

for 5 minutes.  Microglial cells present in pellet were counted using a heamocytometer 

(Invitrogen, Australia) and then cells were resuspended (1 X106 cells/ ml) in PBS with ATP 

(50μM) to activate microglia and incubated for 1 hour before used for injections (Tsuda et al., 

2003).    

  To obtain conditioned medium microglia activated with ATP (50μM) were passed 

through a 0.2 μm filter to remove the cells and the resulting medium containing microglia 

secretions used for injection.  

  The purity of isolated microglia was tested using fluorescent immunolabeling with 

OX-42 antibody and Hoechst dye. In brief, isolated microglial were replated on square glass 

bottom dish for 2 hours in medium before being fixed with cold 4% paraformaldehyde.  After 

fixation, cells were washed 3 times with PBS and incubated with primary antibody (OX-42 

(1: 500);  Chemicon, Temecula, USA) in PBS (pH 7.2) containing 0.3% triton X-100 for one 

hour. Then cells were washed and incubated with biotinylated horse anti-mouse secondary 

antibody (1: 500; Vector laboratories, Burlingame, USA) in PBS containing 0.3% triton X-

100 for one hour. After that, cells were washed with PBS and incubated with R-Phycoerythrin 

labeled Extravidin (1:400, Sigma-Aldrich, St Louis, USA) for one hour.  Cells were again 

washed with PBS and then incubated with Hoechst dye for 5 minutes (1μg/ml) followed by 

two washes with PBS. Then cells were covered with florescent mounting medium (Dako 

Laboratories) and cover-slipped.  

Microinjection into the hypothalamic PVN  
 

                 Stereotaxic injection experiment were carried out in groups of four rats, of which 

two received microglial injections and the other two control injections. Microinjections into 

the PVN were made as described previously (Chen et al 2008a) with some modifications. Rats 
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were anaesthetised using isofurane gas (2-3% in oxygen) using a small animal anesthetic 

machine (Vetquip, Australia). During the entire surgical procedure, reflexes were checked at 

least at every 10 minutes to ensure adequate anesthesia. The animals were placed prone, and 

the head mounted in a Kopf stereotaxic frame such that both bregma and lambda were 

positioned on the same horizontal plane. A midline reference point was marked 2mm rostral 

to bregma.  This was necessary because the bregma landmark was removed during the 

subsequent bone-drilling procedure. To expose the dorsal surface of the brain, a hole, 

approximately 4 mm in diameter, was drilled into the skull centered 3.5 mm caudal from the 

reference point.  

                 Microinjections were made bilaterally using a fine glass micropipette (tip diameter 

50-70 µM) into the PVN (stereotaxic coordinates: 1.5mm caudal to the bregma, 0.5 mm 

lateral to the midline and 7.5 mm ventral to the surface of the brain). Injections (volume 500 

nl, PBS only or PBS containing approximately 500 microglial cells) were made bilaterally in 

the PVN. To mark the injection site, a small amount of rhodamine-tagged fluorescent 

microspheres was included in the microinjected solution (LumaFluor, Durham, NC).  After 

bilateral microinjections the micropipette was removed and the skin closed using sutures.  

Following surgery, all rats were given buprinorphine HC1 (15 µg intramuscularly, Temgesic, 

Reckitt and Colman Pharmaceuticals, NSW, Australia) to alleviate postoperative pain.     

Tissue collection and localization of injection sites   
 

  At the completion of the experiment, rats were euthanized by overdose with 

pentobarbital sodium (180mg/kg, Virbac, NSW, Australia). The brains were then carefully 

removed, fixed in 4% paraformaldehyde solution for 4-5 hours and then placed into PBS 

containing 30% sucrose for 48 hours. The hypothalamus was sectioned on a cryostat at 20-

µM thickness and mounted on gelatine coated slides. For microinjection experiments, the 

sections were then viewed wet under fluorescent microscopy to identify the rhodamine beads 
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at the site of injection. Injection sites were mapped in relation to the surrounding anatomical 

structures.  

Immunohistochemistry  
 

  From brains with PVN microinjections, only the sections showing the injection site 

were used for OX-42 immunohistochemistry.  One in five sections containing the 

hypothalamus was collected from the animals used for minocycline experiments. The sections 

were, dried for 2 hours at room temperature and then standard immunohistochemical 

procedures were performed in which endogenous peroxidise activity was blocked by 0.5% 

H2O2 in PBS. This was followed by 1 hour incubation in 10% normal horse serum (NHS) for 

60 minutes prior to 0.5 % Triton X-100 for 10 minutes facilitate antibody penetration. 

Subsequently, the sections were incubated for 72 hours with a mouse monoclonal primary 

antibody directed against CD11b (clone OX-42 (1: 100), Chemicon, Temecula, USA) in PBS 

containing 2% NHS and 0.2% Triton X-100. This was followed by incubation in biotinylated 

horse anti-mouse secondary antibody (1: 100, rat adsorbed, Vector Laboratories, Burlingame, 

USA), and Extravidin-HRP linked with HRP (1:400, Sigma-Aldrich, St Louis, USA). 3,3′-

Diaminobenzidine  tetrahydrochloride (Sigma-Aldrich, St Louis, USA) was used as the 

chromogen to visualise immunolabeling as discussed in previous chapters (chapter 1 and 

chapter 2). Sections from the sham control rats and from rats with STZ-induced diabetes were 

processed simultaneously to allow comparison of the strength of immunoreactivity.     
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Results  
 

                  When the purity of isolated microglial culture was tested, fluorescently  labeled 

cell nuclei (Hoechst Dye) and the specific microglial marker OX-42 showed almost complete 

overlap indicating the presence of microglia and absence of other cell types (Fig. 5.2 (A), 5.2 

(B) and 5.2 (C)). Quantification from five different fields from each dish showed 100% 

overlap between Hoechst stained nuclei and OX-42 labeled microglia (Data not shown) 

indicating the isolation procedure had produced a pure culture of microglia.   

1) Location of injection sites   

                 The presence of green fluorescent microspheres within the PVN in experimental 

rats (As shown in Fig. 5.3) indicated  accurate localization of microinjections. Out of 7 rats, 5 

had microglial injections within the PVN on both sides while the other 2 had one injection 

inside the PVN and the other one in an adjacent hypothalamic area. The success rates for PBS 

injections and activated microglial conditioned medium injection were similar. Out of 7 PBS 

injected rats, 4 had both injections inside the PVN, 1 had both injection outside the PVN and 

2 rats had one injection inside the PVN and the other one in the adjacent area. In the case of 

activated microglial conditioning medium injected rats, 3 rats had both injections inside the 

PVN, while the other 2 rat had one inside and the other out side the PVN (Table 5.1).  

Table 5.1.  

Injection Type Total 

Animals 

Both injections 

inside PVN 

Both injections 

Outside PVN 

One inside PVN 

one Outside PVN 

Activated Microglia 7 5 - 2 

PBS 7 4 1 2 

Activated Microglial 

Conditioned Medium 

5 3 - 2 
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2) Activated microglia but not PBS or conditioned medium caused a 
significant increase in blood pressure   
 

                  We did not observe any major difference in results between rats that had only one 

injection inside the PVN as compared to those who had both inside. Therefore, recordings 

from rats with one injection within the PVN were analysed along with the ones that had both 

injections inside.  As shown in Fig. 5.4, vehicle injected rats showed no significant increase in 

blood pressure over the period of three days after the surgery. This was also true for the rats 

that received activated microglial conditioning medium injections. Interestingly, rats that 

received activated microglial injections showed a significant increase in systolic blood 

pressure as compared to the blood pressure before surgery.  The systolic blood pressure 

remained high for at least 3 days post surgery (Fig. 5.4) in these rats.  

                 A comparison of the percentage increase in systolic blood pressure at day one post 

surgery in each group of rats is shown in Fig. 5.5. This figure also indicates that rats received 

active microglia injected rats showed a significantly higher blood pressure (Fig. 5.5).  

                  A micrograph showing OX-42 staining of microglia around the injection site has 

been attached in the appendix (Fig 2). The figure shows microglial activation near the 

injection site but it is not possible to distinguish between injected and resident microglia.  

3) Effect of minocycline treatment on STZ-induced diabetic rats  
 

  STZ-induced diabetic rats showed less weight gain as compared to vehicle treated 

control rats. Minocycline treatment had no marked effect on this reduced body weight gain in 

STZ-induced diabetic rats (N=3; Fig. 5.7).  We have previously reported that approximately 

50% of STZ-induced diabetic rats show marked microglial activation in the PVN at 6 weeks 

time point (chapter 3). Our results suggest that minocycline treatment (45mg/kg body weight) 
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every alternate day for 5 weeks starting at one week after STZ injection was not sufficient to 

inhibit this activation of microglia. We observed more than 50% activated microglia in 2 out 

of 3 STZ minocycline treated rats which was higher than the highest value of 14% activation 

and average 9.299 ± 0.9215 % activation in vehicle treated control rats. Microglial activation 

in the minocycline treated control rat (N=1) was similar to other controls allowing us to 

speculate that minocycline itself was not activating microglia. 

  Control rats (N=5) showed a gradual increase in blood pressure which attain 

significance at 6 weeks time point as compared to their initial blood pressure, suggesting 

blood pressure increases with age.  In contrast to control rats, STZ-induced diabetic rats 

(N=6) showed significantly increased blood pressure (measured by tail cuff) within 2 weeks 

of STZ injection.  The blood pressure was also significantly higher at 6 weeks in the STZ-

induced diabetic rats. Although the numbers of rats tested were too small to perform statistical 

analysis, blood pressure measured from minocycline treated STZ-induced diabetic rats 

showed increases in blood pressure similar to those seen in STZ-induced diabetic rats at each 

time point (Fig. 5.6).    

                 In summary, there was no obvious beneficial effect of the minocycline treatment 

regime on pathological symptoms of diabetes observed. Minocycline treatment was neither 

able to prevent the STZ mediated microglial activation in PVN or reduction in body weight 

gain (Fig. 5.7 and Fig. 5.8). As we did not observe any inhibitory effect of minocycline on 

microglial activation the experiment was discontinued. 
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Figures  
 

Fig. 5.1. 
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Fig. 5.1: Diagrammatic representation of experimental procedure for the microinjection 
experiments.    
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Fig. 5.2 :  
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Fig.5.2 : Fluorescence micrographs of (A) Hoechst dye stained nuclei (B) OX-42 

immunolabeled microglia in cells isolated from mixed glial culture (C) Double labelling 

illustrating that Hoechst dye stained nuclei show OX-42 immunolabeling (Scale bar=100 µm).   
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Fig. 5.3 :  
 
 
 
 
 
 
 
 
 

 
 
 

 
  
 
 
 
 

 

 

 

 

 

 

 

 

 

3V PVN 

100µm 



181 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 : Fluorescein-tagged microspheres in the paraventricular hypothalamic neucleus 

(PVN) denoting an injection site. Dotted line roughly outlines the PVN area. 3V indicates 3rd 

Ventricle. 
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Fig. 5.4 :  
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Fig. 5.4 :  Average blood pressure (mm/Hg) recorded before and on the first three days after 

stereotaxic injections into the paraventricular hypothalamic nucleus (* indicates significantly 

different from PBS injection (* indicates P<0.05 , ** indicates P<0.01 and *** indicates 

P<0.001 ) Two way ANOVA followed by Boneferroni post hoc test comparing recording of 

D1,D2 and D3 to the respected pre-injection values.   
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Fig. 5.5 :   
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Fig. 5.5 : Percentage increase in systolic blood pressure after microinjection of PBS (N=7), 

activated microglia (N=7) and activated microglial conditioned medium (N=5) into the PVN. 

(* indicates significantly different from PBS injection (P<0.05); ++ indicates significantly 

different from conditioning medium injection (P<0.01)).  
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Fig. 5.6 :  
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Fig. 5.6 :  Figure shows blood pressure recordings from control (minocycline untreated and 

minocycline treated, N=5), STZ-induced diabetic (minocycline untreated, N=6), and 

minocycline treated STZ–induced diabetic rats (N=3).  Recordings were taken from all rats 

before STZ / vehicle injection and at 2 weeks and 6 weeks after STZ / vehicle injection. Two 

way ANOVA followed by Boneferroni post hoc test comparing all columns to  respective 

before column was performed. (* indicates significantly different from pre-STZ or pre-saline 

injection recordings (* indicates P<0.05 , ** indicates P<0.01 ) 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



188 

Fig. 5.7 :  
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Fig. 5.7 : Weight gain over the six weeks period following injections on control rats 

(minocycline treated and untreated, N=5), STZ (minocycline untreated, N=6) and STZ 

(minocycline treated, N=3) rats. Note similar reduction in weight gain in minocycline treated 

and untreated STZ rats as compared to vehicle treated control rats. (* indicates significantly 

different from control; *** indicates P<0.001)  
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Fig. 5.8 :  
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Fig 5.8 : Phtomicrograph showing OX-42 immunolabeled microglia in the paraventricular 

hypothalamic nucleus  region.  In control rats normal ramified microglia were observed. Note 

the long processes, many secondary branches and very small somata. Activated microglia 

were present specifically in the paraventricular hypothalamic nucleus in minocycline treated 

STZ rats. Note the dramatic increase in CD11b-positive staining and the morphological 

changes including enlarged somata and shorter, stubbier processes. 
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Discussion  
 

                 We have previously shown activation of microglia in the PVN in rats with 

myocardial infarction (chapter 2) as well as in STZ-induced diabetic rats (chapter 3), but the 

consequences of this activation is still not clear.  The results presented here shows that 

activated microglia can influence PVN control of the cardiovascular system.  The key 

findings of the current study are: (i) activated microglia injected into the PVN caused a 

significant increase in blood pressure, but neither PBS nor activated microglial conditioned 

medium injections were able to do so  (ii) at the given dose and treatment regime used here, 

minocycline was not able to inhibit microglial activation or the reduction in body weight gain 

seen in STZ injected rats. Although the number of animals used was small, there was no 

indication of reduction in blood pressure in STZ-induced diabetic rats.  

                 We have provided evidence that ATP-activated microglia when injected into the 

PVN cause a significant increase in blood pressure (Fig. 5.4 & Fig. 5.5).  PBS injections did 

not cause any significant increase in blood pressure indicating that the surgical procedure and 

vehicle itself were not responsible for this effect.  Injections of activated microglia may also 

contain secretions from microglia due to the 1 hour treatment with ATP (50 μM). However, 

injection of activated microglia conditioned medium into the PVN did not cause a significant 

increase in blood pressure suggesting that the microglial secretions produced during a one 

hour ATP treatment are not sufficient to cause a long term increase in blood pressure (Fig. 5.4 

& Fig. 5.5).  This indicates that the injected activated microglia serve as a long term and 

continuous source of various secretions (eg. cytokines and ROS) in the PVN, leading to the 

significant increase in blood pressure seen here.   

                 The ATP concentration of 50 μM used here has been shown previously to activate 

microglia and microglia activated with this concentration when directly injected into rat spinal 

cord caused hyperalgesia (Tsuda et al 2003).  ATP is known to activate these cells via P2 
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receptors (Haynes et al 2006; Kobayashi et al 2008; Tsuda et al 2003; Tsuda et al 2010). 

Activation of P2 receptors is also associated with microglial chemotaxis, movement and 

morphological changes (De Simone et al 2010; Ohsawa et al 2007; Orr et al 2009).  It has also 

been linked with microglial secretion of inflammatory cytokines, chemokines, reactive 

oxygen species, and superoxides (Hide 2003; Hide et al 2000; Inoue 2006a; b; Kim et al 2007; 

Trang et al 2009).  These secretions from activated microglia can modulate neuronal activity 

(Lu et al 2009a). A recently published study on rats has shown that an acute single injection 

of the proinflammatory cytokine IL-1β (one of the cytokines secreted by activated microglia) 

into the PVN resulted in significant increase in mean arterial pressure (Shi et al 2010b). The 

study reported blood pressure up to one hour after injection and it was higher through out that 

period. Hence, the longer term increase in blood pressure observed here may be due to 

modulation of PVN neurons by secretions from the activated microglia injected.  Neurons in 

PVN can increase blood pressure via activation of renal and cardiac sympathetic nerves 

(Badoer 2010b; Badoer et al 2003).   

  We did not test the effect of injecting non-activated microglia into the PVN 

because the results would be difficult to interpret for several reasons. Firstly, the isolation 

procedure itself might at least partially activate microglia without ATP treatment.  Secondly, 

injected microglia may become activated after injection. Under these conditions, if injection 

of non- activated microglia produced an increase in blood pressure it would not change the 

conclusion of this study. Thus, due to these technical issues, the outcome of such an 

experiment would not provide additional information.  

  Treatment with minocycline under the regime used here was not able to inhibit 

microglial activation and body weight reduction in STZ-induced diabetic rats (Fig. 5.7 and 

Fig. 5.8). This is despite the fact that inhibitory effects of minocycline on microglia activation 

have been reported by many in vitro as well as in vivo studies (Raghavendra et al 2003a; Suk 

2004; Wang et al 2005a; Yrjanheikki et al 1998). Minocycline is a second generation 
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antibiotic commonly used for the treatment of acne in humans (Ozolins et al 2005) and can 

readily cross the blood brain barrier (Aronson 1980). Hence the ability of peripherally 

administered minocycline to act on brain cells is not in doubt. Although, the detail mechanism 

by which minocycline inhibits microglial activation is not known, it have been shown to 

inhibit various markers of microglial activation eg. p38 MAPK activation, PKC (Protein 

Kinase C) activation, increased COX-2 activity, and increased expression of a variety of 

surface receptors (Nikodemova et al 2007; Tikka & Koistinaho 2001). An in vitro study on 

microglia has shown minocycline-mediated inhibition of proinflammatory cytokine 

expression and release from LPS activated retinal microglia (Wang et al 2005b) while many 

in vivo studies have shown inhibition of  proinflammatory cytokine release by minocycline 

treatment (Krady et al 2005; Shi et al 2010b). However, these in vivo studies do not rule out 

the possibility of an anti-inflammatory or anti-apoptotic action of minocycline on neurons and 

inhibition of neuronal activation causing indirect inhibition of microglia activation.  Despite 

all these promising studies suggesting minocycline as a potent inhibitor of microglia, the 

minocycline treatment used in this study could not inhibit microglial activation in PVN in 

STZ-induced diabetic rats (Fig. 5.8). There are several possible reasons for this. Animal 

studies have reported that minocycline pre-treatment but not post treatment prevents 

development of neuropathic pain and activation of spinal microglia following nerve lesions 

(Padi & Kulkarni 2008; Raghavendra et al 2003b). We began injecting minocycline one week 

after induction of diabetes which is before microglial activation becomes detectable based on 

our previous studies (chapter 3). However, it is possible that minocycline could not reverse 

some ongoing process of microglial activation that had already begun. Secondly, studies 

showing inhibition of microglia by minocycline treatment have given minocycline (30-45 

mg/kg body weight) either once or twice a day (Guasti et al 2009; Yrjanheikki et al 1999) 

while we chose to give one injection of (45mg/kg body weight) every second day because of 

the long term nature of our experiment and because this treatment regime has been shown to 
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inhibit breast cancer growth in mice (Niu et al 2008). A study showing pharmacokinetics of 

minocycline in rats have demonstrated that minocycline (in PBS) reaches peak concentration 

around 2.5 hours after intra peritoneal injection then it starts declining suggesting that 

minocycline has plasma clearance time of few hours (Fagan et al 2004). This suggests that the 

dose of minocycline under the regime we used may have been inadequate. The study also 

reported accumulations of yellow-coloured deposits on the surface of the liver and small 

intestine after intraperitoneal injection of minocycline. The authors suggested that the 

minocycline is only incompletely and erratically absorbed. Because of this, the deposits in the 

peritoneal cavity may lead to unintended morbidity after repeated injections. Thus, alternative 

routes of minocycline treatment which allow continuous infusion of minocycline in small 

doses may hold the key to more promising results.           
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 Conclusion 
 

 We report that activated microglia injected into the PVN increase blood pressure in 

rats suggesting that microglial activation following myocardial infarction and in STZ-induced 

diabetic rats may be responsible for the reported elevated sympathetic drive in both cases.  

However, further study is required to demonstrate the effect of activated microglial injections 

on sympathetic nerve activity and to determine whether microglial inhibition can decrease 

diabetic cardiovascular complications.  
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Chapter 6: Immunohistochemical Investigation of the 
Mechanism of Microglial Activation in the Hypothalamus of 
STZ-Induced Diabetic Rats  
 
 

Introduction  
 

                Microglia are the major cellular elements with immune functions inside the CNS 

and play important roles in protecting the brain against infection and injury (chapter 1). There 

is growing evidence suggesting that, in addition to this protective role (Badoer 2010a; 

Graeber 2010; Nakajima & Kohsaka 1993), microglia can also contribute to the development 

of many brain pathologies (Badoer 2010a; Graeber 2010; Tsuda et al. 2004; Tsuda et al. 

2003), depending on the prevailing conditions. Our results suggest that diabetes and heart 

failure should be added to this list (chapter 2 and chapter 3). Although the mechanism by 

which  microglia change into their pathological form is not fully understood, up-regulation of 

various surface receptors and activation of intracellular pathways have been linked with the 

undesirable effects of microglia, particularly in the case of neuropathic pain (Tsuda et al. 

2004; Tsuda et al. 2003). Microglia respond to a variety of signals via receptors for cytokines, 

chemokines and glutamate. These receptors allow microglia to monitor activity in their 

surrounding tissue and are involved with microglial activation. Recently, purinergic receptors 

have emerged as important candidates for mediating the microglial activation process. Results 

from many animal studies suggest that targeting purinergic receptors to modulate microglial 

function can provide therapeutic benefits in neurodegenerative diseases and neuropathic pain 

(Bianco et al. 2005; Ji 2010; Takenouchi et al. 2010; Ulmann et al. 2008).  

                 Microglia express ligand gated (P2X) and metabotropic (P2Y) purinergic receptors. 

Both can be activated by nucleotides and affect intracellular Ca2+ in microglia. The former are 

responsible for nucleotide-induced depolarisation and Ca2+ influx, and the latter for IP3-

dependent Ca2+ release from intracellular stores through a mechanism involving G protein 
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activation (Moller et al. 2000; Norenberg et al. 1994; Visentin et al. 1999). P2X4 and P2X7 

receptors on microglia may also be associated with plasma membrane pore formation (Bernier 

L. 2010; Chessell et al. 1997; Takenouchi et al. 2005). Although there is controversy in the 

literature over the sub-type of P2 purinergic receptor involved in microglial activation, a 

recent study has demonstrated increased expression of P2X4 receptors on dorsal horn 

microglia in the spinal cords of rats after activation by nerve injury (Tsuda et al. 2003). To 

demonstrate the increase in P2X4 receptors in microglial cells only and not in other cell types, 

this study used immunohistochemistry as a tool instead of homogenizing tissue. The study 

also demonstrated that pharmacological inhibition of microglial P2X4 receptors reduces nerve 

injury-induced pain behaviours. Another study has demonstrated that P2X4-deficient mice 

lack mechanical hyperalgesia induced by peripheral nerve injury, suggesting the absence of a 

microglial neuromodulatory action in those mice (Ulmann et al. 2008). These results suggest 

that P2X4  receptors are necessary for microglial activation and/or action. 

                 Activation of microglial purinergic receptors causes a large increase in [Ca2+]i, 

which then activates various intracellular pathways, including phosphorylation of p38 MAPK 

(Ji 2010; Ji & Suter 2007; Trang et al. 2009). p38 MAPK is a member of the  mitogen-

activated protein kinase (MAPKs) family that plays a critical role in cell signalling and gene 

expression. The MAPK family includes three major members: extracellular signal-regulated 

kinase, p38, and c-Jun N-terminal kinase (JNK). Activation of these MAPKs by 

phosphorylation transduces a broad range of extracellular stimuli into diverse intracellular 

responses, including both transcriptional and non-transcriptional regulation. Studies of 

microglia in vitro have demonstrated inhibition of their release function upon 

pharmacological inhibition of p38 MAPK (Trang et al. 2009). A study of rats has also 

demonstrated the beneficial effect of inhibition of p38 MAPK as regards neuropathic pain (Ji 

& Suter 2007).    
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                Interestingly, we have reported activation of microglia in CNS cardiovascular 

centres, including the PVN, SON and NTS in STZ-induced rats (chapter 3), but the cause of 

this microglial activation is not yet known. Based on literature demonstrating the involvement 

of microglial P2X4 receptors in neuropathic pain models, we investigated whether expression 

of microglial P2X4 receptors was up-regulated in these regions in STZ-induced diabetic rats. 

We also investigated if there was activation of microglial p38 MAPK by performing double 

labelling with OX-42 antibody, which labels microglial CD11b receptors, and an antibody for 

p38 MAPK, which labels the phosphorylated form of the enzyme. 

Methods  

Animals and induction of diabetes  
 

                 As described previously (chapter 3), male Sprague Dawley rats obtained from ARC 

(Animal Resource Centre, Perth, Australia) were given streptozotocin (STZ) in citrate buffer 

(pH 4.5, 0.1M) 48 mg/kg body weight via the tail vein to induce diabetes. Rats were tested for 

elevated blood glucose one week after the injection using a one touch glucometer (Accu-

Check Performa) and used for experiments at 2-4 weeks (n=2), 6 weeks (n=2) and 8-10 weeks 

(n=2) after the STZ injection. Control rats (n=6) received only vehicle injections and 

underwent all other procedures in the same way as STZ injected rats.  

Tissue collection  
 

                  At the end of the experimental period, all the rats were euthanized by overdose 

with pentobarbital sodium (180 mg/kg body weight) and perfused with freshly prepared 4% 

paraformaldehyde in PBS (0.1M, pH 7.2). After perfusion, the brains were removed and 

immediately immersed in the same fixative solution for 2-3 hours at 40 C. The brains were 

then transferred to a solution containing 30% sucrose in PBS and left for approximately 48 

hours at 40 C before they were used for immunohistochemistry.  
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Immunohistochemistry  
 

                 OX-42 and P2X4 immunohistochemistry was performed on all the STZ-induced 

diabetic and control rats while OX-42 and p38 MAPK immunohistochemistry was performed 

only on tissue from 6 weeks post STZ injection (n=2), 10 weeks post STZ injection (n=1) rats 

and from 3 control  rats at each of these time points. As described previously (chapter 3) serial 

coronal sections (20µM thick) were cut using a cryostat (Leica, CM 1900). One in five 

sections encompassing the PVN and NTS  was collected, placed onto gelatine coated slides, 

dried for 2 hours at room temperature and then processed immunohistochemically. Sections 

were first incubated with 10% normal horse serum (NHS) for 60 minutes then washed and 

incubated with 0.5 % triton X-100 for 10 min to facilitate antibody penetration. After 

incubation sections were again washed with PBS and then incubated for 72 hours at 40C with 

a mouse monoclonal primary antibody directed against CD11b (clone OX-42) (1:100, 

Chemicon, Temecula, USA) and rabbit anti- P2X4 antibody (1:250, Alomone Lab) or anti-

phospho p38 MAPK (1:250, Cell Signalling) in 2% NHS and 0.2% Triton X-100 in PBS. 

After 72 hours of incubation, all sections were washed with PBS 3 times for 5 minutes each. 

This was followed by incubation with biotinylated anti-mouse secondary antibody raised in 

horse (1: 100, rat adsorbed, Vector Laboratories, Burlingame, USA) and Alexa-488 

conjugated donkey anti-rabbit secondary antibody (1:400, Invitrogen).  After 2 hours of 

incubation with these secondary antibodies, sections were washed and incubated with R-

phycoerythrin conjugated extravidin (1:400, Sigma-Aldrich, St Louis, USA) for 2 hours. After 

incubation sections were washed and mounted with fluorescent mounting medium followed 

by cover slipping. Images were taken using a confocal microscope (Nikon A1 laser scanning 

confocal attached to Nikon Eclipse Ti inverted microscope and equipped with 488nm and 561 

nm lasers). The same laser power, gain and pinhole settings were used when imaging sections 

from control and STZ-induced diabetic rats.  
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Results  
 

1) OX-42 and P2X4 immunoreactivity in PVN and SON microglia  
 

                 Immunohistochemistry for CD11b receptors using OX-42 clone showed small cells 

with long, thin processes consistent with specific microglial labeling in the PVN in control 

rats at all different time points (Fig. 6.1 (A)) as described previously (chapter 3). OX-42 

immunohistochemistry on tissue from 2-4 weeks old STZ-induced diabetic rats showed cells 

with similar morphology to those in as control (Data not shown) which is also consistent with 

our previous observation (chapter 3). Labeled cells in the PVN of all the STZ-induced 

diabetic rats at later time points (6 weeks and 8-10 weeks) showed shorter, thicker and 

stubbier processes. There was also an apparent increase in the intensity of OX-42 

immunolabeling (Compare Fig. 6.1 (A) and Fig. 6.1 (B)) as reported previously (chapter 3).                      

                 Immunohistochemistry performed with the antibody for P2X4 receptors clearly 

labeled two different population of cells within the PVN region of control rats (Fig. 6.2 (A)). 

Some cells had large round cell bodies with relatively large unstained nucleus while others 

had small cell bodies with clearly stained processes. High power images showing the 

morphology of these large cells suggested they were neurons (Fig. 6.2 (C)).  Previous studies 

have reported the presence of P2X4 receptors on the PVN neurons in rats (Cham et al 2006; 

Guo et al 2009). The smaller cells labeled with the antibody for P2X4 receptors shared 

structural similarity with glial cells and also showed labeling with OX-42 clone suggesting 

they were microglia. Labeling for both large and small cells was present in tissue from the 

control as well as in STZ-induced diabetic rats at all the different time points tested. We 

observed cells double labeled with OX-42 clone and anti- P2X4 receptors antibody in the 

PVN of all the control and STZ-induced diabetic rats tested at the different time points.  As 

compared to control, STZ-induced diabetic rats did not show any obvious increase in either 
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the intensity of labeling in microglia or the number of double labeled cells (Fig. 6.1 (A) and 

Fig. 6.1(B)).  It appears however, that the neuronal labeling was stronger in STZ-induced 

diabetic rats than in controls (Fig. 6.2 (A) and Fig. 6.2 (B)), although this was not quantified.   

                 Immunohistochemistry in tissue obtained from control rats using the antibody for 

P2X4 receptors did not show any marked labeling in the arcuate nucleus and median 

eminence, both located adjacent to PVN in hypothalamus (Fig. 6.3 (B)). However, when  

from STZ-induced diabetic rats observed, labeling of thread like cell structures radiating out 

from third ventricle was observed. The morphological characteristics and location of these 

thread like cells suggests that they are tanycytes (also known as tanocytes) (Miskowiak 1976; 

Zetterstrom et al 1994). We also observed marked labeling of ependymal lining of the third 

ventricular wall in this region in STZ-induced diabetic rats but not in controls (Fig. 6.3 (C)). 

The increased labeling for P2X4 receptors around the ventricle was presents in all the STZ-

induced diabetic rats at all the time points but it was markedly higher in some rats than others. 

We did not however, observe any consistent relationship between the increase staining and 

time after STZ injection.  

2) OX-42 and P2X4 immunoreactivity in NTS           

  

                 In the NTS region of control rats the intensity of OX-42 immunolabeling was 

greater than in surrounding areas in the brain stem and this differential OX-42 

immunolabeling was also observed in STZ-induced diabetic rats as seen in Fig. 6.4 (B). This 

is consistent with our previous observations (chapter 3). We also observed that the 

morphology of microglia at 10 weeks post STZ injections showed relatively shorter, thicker 

and stubbier processes as compared to their respective time point controls as seen previously 

(chapter 3).  This was not seen at earlier time points tested.  
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                Immunohistochemistry using the antibody for P2X4 receptors in control rats 

showed some cells with small nuclei and long processes in the NTS as well as other brain 

stem regions at all the different time points tested. Cells with similar small nuclei and long 

processes showing P2X4-IR were also present in the NTS region of STZ-induced diabetic rats 

at all the time points tested. High magnification images of nuclear tractus solitari (NTS) 

region of control as well as STZ-induced diabetic rats showed double labeling indicating 

P2X4 receptor IR in microglia (Fig. 6.4 (A) & Fig.6.4 (B). However, in controls as well as in 

STZ-induced diabetic rats, not all the microglia were labeled and some showed markedly 

higher labeling than others.  P2X4-IR was seen in cells lining the central canal in STZ-

induced diabetic rats (Fig. 6.3 (A)) but not in control rats (data not shown). On the other hand 

microglia outside the NTS region showed weak labeling for P2X4 receptors as compared to 

those in NTS in both controls and STZ-induced diabetic rats (compare Fig. 6.4 (A) and Fig. 

6.4 (B) with Fig. 6.4 (C)) suggesting that NTS microglia expresses P2X4 receptors at a 

relatively higher level.  

3) OX-42 and p38 MAPK immunoreactivity in PVN, SON and NTS 
 

                 Immunohistochemistry for phosphorylated p38 MAPK showed some labeled cells 

in the PVN region of control rats (Fig. 6.5 (A)).  In STZ-induced diabetic rats there was a 

clear increase in labeling in PVN (Fig. 6.5 (B)) but there was no obvious overlap between 

cells stained for phospho p38 MAPK  and OX-42 clone in PVN, SON or NTS regions of the 

brain (data not shown). Cells showing phospho-p38 MAPK-IR were relatively smaller in size 

as compared to P2X4 stained neurons suggest that they were neuronal nuclei or glial cell type 

other than microglia. 
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Figures  
 
Fig. 6.1 :  
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Fig.6.1 :  OX-42 (red) and P2X4 receptor (green) fluorescent immunolabelling in the  

paraventricular hypothalamic nucleus in (A) control rat and (B) STZ –induced diabetic rat (10 

weeks after injection). Panel C shows mediolateral distribution of microglia and P2X4 

receptor labelling in the paraventricular hypothalamic nucleus at higher magnification in a 

diabetic rat 6 weeks after STZ injection.   
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Fig. 6.2 : 
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Fig.6.2 : Fluorescence micrographs showing P2X4 immunolabelling in the paraventricular 

hypothalamic nucleus. Low magnification image show P2X4 receptor labelling in (A) a 

control rat and (B) a STZ-induced diabetic rat (8-10weeks time point ; Scale Bar= 100µm). 

Panel C shows a high magnification image of P2X4 receptor labelling in neurons in the 

paraventricular hypothalamic nucleus of an STZ rat (Scale Bar= 5µm). 
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Fig. 6.3 :    
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Fig. 6.3: (A) Fluorescence photomicrographs showing OX-42 (red) and P2X4 receptors 

(green) immunolabelling in the NTS region in STZ-induced diabetic rat (6 weeks after STZ 

injection), (B) P2X4 receptor (red) labelling in the arcuate region of control rat and (C) P2X4 

receptor (red) labelling in STZ- induced diabetic rat (6 weeks after STZ injection) showed  

tanycyte like cells.   
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Fig. 6.4 :  
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Fig.6.4 :  High power images demonstrating P2X4 receptor immunolabeling on OX-42 

immunolabeled microglia at 10 weeks after vehicle/STZ injection in (A) control nuclear 

tractus solitarius, (B) STZ-induced diabetic rat nuclear tractus solitarius and (C) area adjacent 

to the nuclear tractus solitarius in STZ-induced diabetic rat. 
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Fig. 6.5 :   
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Fig. 6.5 : Fluorescence photomicrographs showing phosphorylated p38 MAPK 

immunolabelling  in  the paraventricular hypothalamic nucleus of (A) control and (B) STZ-

induced diabetic (at 6 weeks after STZ injection) rat.  
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Discussion  
 

                 The present study has investigated the levels of two important candidates in the 

microglial activation process, namely P2X4 receptors and phospho-p38 MAPK, in microglia 

in the cardiovascular centres of STZ-induced diabetic rats. The key findings are as follows. (i) 

Microglial P2X4 receptor expression is not markedly up-regulated in any of the brain regions 

previously demonstrated to have activated microglia in STZ-induced diabetic rats (chapter 3). 

(ii) OX-42 labelling in the PVN, SON and NTS did not show marked overlap with P2X4-IR. 

(iii) P2X4-IR appeared to be up-regulated in neurons in the PVN and SON, but not in the 

NTS. (iv) We observed increased phosphorylated p38 MAPK labelling in the PVN, but no 

marked increase in microglial cells. 

                 Activated microglia in cardiovascular centres of STZ-induced diabetic rats did not 

show a marked increase in expression of P2X4 receptors (Fig. 6.1, 6.3(A) and 6.4). This is not 

consistent with previous reports showing increased P2X4 receptor-IR in activated microglia in 

spinal dorsal horn after nerve injury (Tsuda et al. 2003; Ulmann et al. 2008). These studies 

also reported a reduction in nerve injury-induced pain upon pharmacological inhibition of 

P2X4 receptors or in P2X4-deficient mice, suggesting their role in microglial activation. It is 

important to note here that neuropathic pain models show microglial activation within 

hours/days of nerve injury. We have reported marked activation of PVN microglia between 

6−10 weeks after the induction of diabetes (chapter 3). Thus, STZ-induced diabetes appears to 

be a relatively weak stimulator of microglial activation. Hence, it is possible that the 

mechanism of microglial activation is different in the two cases. Since they are present in 

control, up-regulating of these receptors may not be required for them to have a functional 

role in activating microglia or in activated microglial cells. We did not observe up-regulation 

of microglial P2X4 receptors in any brain region tested in STZ-induced diabetic rats at any 

time points used in this study. Despite this, it is possible that microglia in STZ-induced 
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diabetic rats transiently express P2X4 receptors at high levels at a time not included in this 

study. It is also possible that individual microglia express these receptors asynchronously.  

The latter possibility may have limited our ability to see a marginal increase in the number of 

microglial cells showing higher P2X4 immunolabelling. 

                 Another possibility is that other purinergic receptors are important for microglial 

activation in the cardiovascular centres of STZ-induced diabetic rats, e.g., P2Y12 and P2X7 

receptors (Chessell et al. 2005; Kobayashi et al. 2008). A recently published study has 

demonstrated increased P2Y12 mRNA and protein expression exclusively in spinal dorsal 

horn microglia after nerve injury (Kobayashi et al. 2008). This study also reported elevation 

of pain behaviour via intrathecal administration of the P2Y12 agonist 2-(methythio) adenosine 

5´-diphosphate and suppression of pain behaviour using an antagonist, suggesting that 

microglial P2Y12 receptors are involved in nerve injury-induced pain. Surprisingly, P2X7 

deletion or antagonism also produces significant inhibition of neuropathic pain behaviours 

(Chessell et al. 2005; McGaraughty et al. 2007). Thus, it is possible that either P2X7 and/or 

P2Y12 receptors are responsible for microglial activation in STZ-induced diabetic rats.    

                 We did not find increased phosphorylation of p38 MAPK in microglia in any area 

examined at any time point studied. This is in contrast to previous studies which have 

reported a link between increased phosphorylation of p38 MAPK in microglia of the spinal 

dorsal horn and pain behaviour after nerve injury (Ji & Suter 2007; Tsuda et al. 2004). These 

studies have demonstrated very high levels of labelling for the phosphorylated form of p38 

MAPK in microglia that are easily visualised via immunohistochemistry. Although we did not 

observe such marked phosphorylation of p38 MAPK in microglia, our results do not rule out 

the possibility of a low level increase. Moreover, as noted above in relation to P2X4 

receptors, p38 MAPK phosphorylation in microglia may be present transiently and/or 

asynchronously. Therefore, it is possible that only a small proportion of cells exhibit high 

levels of the phosphorylated form at a particular time. Under these circumstances, a marked, 
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easily distinguishable change is less likely to be seen, and this may affect the interpretation of 

our results. In addition to p38 activation in spinal microglia, extracellular signal-regulated 

kinase (ERK), another MAPK family member, is also reportedly activated in spinal microglia 

in the early stages (first several days) of neuropathic pain development, and suggested to be 

required for neuropathic pain sensitisation (Zhuang et al. 2005). A study of STZ-induced 

diabetic rats showed increased phospho-ERK-IR in microglia of dorsal horn and reduced pain 

behaviour in these rats upon pharmacological inhibition of ERK (Tsuda et al. 2008). This 

result suggests that a pathway involving ERK may be responsible for the microglial activation 

in cardiovascular centres in STZ-induced diabetic rats.      

                 We did observe increased labelling with the antibody for P2X4 receptors (compare 

Fig. 6.2 (A) and Fig. 6.2 (B)) in the PVN of STZ-induced diabetic rats, which appeared to be 

present in neurons. We have previously reported increased Fos labelling in PVN neurons in 

STZ-induced diabetic rats (chapter 3). This up-regulation of neuronal P2X4 receptors may be 

the cause or a consequence of reported neuronal activation in the PVN. Hence, further 

investigation is required to understand functional significance. We also observed increased 

phosphorylation of p38 MAPK (Fig. 6.5) in non-microglial cells in the PVN of STZ-induced 

diabetic rats. One possibility is that these non-microglial cells are neurons. A recently 

published study has reported increased phosphorylation of neuronal p38 MAPK in the PVN in 

rats with heart failure (Wei et al. 2008). These rats have increased PVN neuronal activity and 

elevated sympathetic drive, as do STZ-induced diabetic rats (chapter 2 and chapter 3). 

Another possibility is increased phosphorylation of p38 MAPK in astrocytes. Apart from 

microglia, astrocytes are other glial cells that are reported to be activated after nerve injury 

(Zhang & De Koninck 2006). It has been suggested that microglial activation is required only 

for the induction and initial stages of pain following nerve injury, while astrocytes are 

important for the long-term maintenance of the pain (Ji & Suter 2007).  
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 Conclusion                
                 Our results provide no evidence for increased expression of P2X4 receptors in 

activated microglia in the cardiovascular centres of STZ-induced diabetic rats. Further study 

is required to investigate the involvement of P2Y12 and P2X7 receptors in these cells. We did 

not find any evidence for the involvement of phopho-p38 MAPK in microglial activation in 

STZ-induced diabetic rats in the examined areas of brain. Based on other recent studies, 

further study is required to investigate the involvement of phospho-ERK in the microglial 

activation process.   
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Chapter 7: Investigation of the Role of Calcium Signalling 
in Microglial Activation    
 

Introduction                                   
 Inflammation in the central nervous system (CNS) is believed to play a pivotal role 

in various neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, 

prion disease and multiple sclerosis. The inflammatory response in the CNS is mainly 

mediated by activated microglia, which normally respond to neuronal damage and remove 

damaged cells by phagocytosis. Activated microglia exhibit shorter and thicker processes with 

swollen cell bodies when compared to resting microglia, while microglia performing 

phagocytosis display morphology very similar to that of monocytes and macrophages. Thus, 

microglia have multiple morphological states depending on their function (chapter 1). We 

have reported the presence of activated but not phagocytic microglia in the cardiovascular 

centres of rats with heart failure and STZ-induced diabetes (chapter 2 and 3). Hence, it is 

important to understand how this activation comes about.      

 In vitro studies of cultured microglia provide a useful tool for understanding the 

mechanisms of microglial activation. Such studies have measured changes in microglial 

morphology, secretions, in the activity of various intracellular pathways and enzymes and in 

phagocytic ability and motility (Hide et al. 2000; Honda et al. 2001; Koizumi et al. 2007; Lu 

et al. 2009a). These studies have used lipopolysaccharide (LPS), ATP and UDP as activators 

of microglia. LPS mimics the condition of infection, while nucleotides (ATP and UDP) are 

thought to mimic the conditions present when there is neuronal damage in the CNS. Each of 

these microglial activators have been shown to cause a transient increase in intracellular 

calcium in microglia (Hoffmann et al. 2003; Koizumi et al. 2007; Tsuda et al. 2003).                

                Receptors that mediate responses to ATP and UDP are P2 purinergic receptors.  

Microglia express both ionotropic (P2X) and metabotropic (P2Y) purinergic receptors.  Both 



219 

can be activated by nucleotides released from damaged neurons and both affect intracellular 

Ca2+ in microglia. Seven ionotropic (P2X1–7) and eight metabotropic P2 receptors (P2Y1, 2, 

4, 6, 11–14) have been discovered to date. Of these receptors, microglia express P2Y1, 2, 6, 

12–14 (Fischer & Krugel 2007; Kim et al. 2011; Koizumi et al. 2007; Ogata et al. 2003; 

Ohsawa et al. 2010) and P2X3, 4, 7 (Light et al. 2006). Different nucleotides have different 

affinities for these receptors. For instance, ATP has a relatively high affinity for P2Y1, 2, 4, 

12, and 13 but not P2Y6, while UDP has high affinity for only the P2Y6 receptor type 

(Fischer & Krugel 2007; Koizumi et al. 2007).  Previous studies of microglia have suggested 

that ATP at 50μM mainly acts on microglial P2X4 receptors (Trang et al. 2009; Tsuda et al. 

2003), while UDP does not bind to this receptor (North & Surprenant 2000). Thus, it appears 

that ATP can activate ionotropic receptors as well as metabotropic receptors on microglia 

while UDP activates only the metabotropic receptor P2Y6.  

  Ionotropic receptors are responsible for nucleotide-induced depolarisation and 

Ca2+ influx, while activation of metabotropic receptors leads to IP3-dependent Ca2+ release 

from intracellular stores through a mechanism involving G protein activation and PLC 

stimulation (Moller et al. 2000; Norenberg et al. 1994; Visentin et al. 1999). Receptors on 

microglia allow them to scan and respond to damage in surrounding tissue. Thus, nucleotides 

released from damaged neurons in the brain are thought to activate purinergic receptors on 

microglial membranes which may lead to elevated intracellular calcium. It is not known 

whether changes in intracellular Ca2+ levels in microglia can influence/modulate their 

responsiveness to ATP and UDP. However, previous in vitro and in vivo studies have reported 

increased expression of purinergic receptors upon microglial activation (Bianco et al. 2005; 

Tsuda et al. 2003) .                           

  It is clear that elevated intracellular Ca2+ plays a vital role in modulating microglial 

functions (Hoffmann et al. 2003). Ca2+ may serve as an  integrator of various cytosolic 

pathways that control microglial behaviour under resting and activated conditions. A sustained  
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increase in microglial intracellular Ca2+ has been suggested as a  prerequisite for the release of 

nitric oxide and cytokines (Farber & Kettenmann 2006). An in vitro study has demonstrated a 

correlation between ATP-mediated dose-dependent TNF-α release and the magnitude of the 

transient increase in intracellular Ca2+ due to ATP (Hide et al. 2000). LPS, a stronger activator 

of microglia, causes a sustained increase in basal Ca2+ level in microglia (Hoffmann et al. 

2003). This study also demonstrated that the Ca2+ chelator BAPTA (1,2-bis(o-aminophenoxy) 

ethane-N,N,N',N'-tetraacetic acid) strongly attenuates the LPS-induced release of nitric oxide 

(NO), and cytokines and chemokines from microglia. A transient increase in [Ca2+]i and 

increased phagocytic activity in microglia treated with UDP has also been reported (Koizumi 

et al. 2007). It appears from this evidence that microglial intracellular Ca2+  levels define their 

activation and functional state. All these studies have demonstrated an initial transient 

increase in intracellular [Ca2+]i upon short application (30 s) of ATP or UDP, but the effects 

of longer-term exposure on basal [Ca2+]i and its involvement in the function of microglia have 

never been investigated.  

  Another molecule which has been shown to modulate microglial [Ca2+]i is BDNF. 

ATP activates microglial P2X4 receptors and induces BDNF releases from microglia (Trang 

et al. 2009). The BDNF released from microglia has been shown to modulate neuronal 

activity in spinal cord slices (Biggs et al. 2010; Lu et al. 2009a). Another in vitro study of 

microglia has shown a gradual increase in the basal [Ca2+]i upon BDNF exposure (Mizoguchi 

et al. 2009). This result suggests that BDNF released from microglia may have an autocrine 

effect and a role in regulating microglial activation, but the effect of BDNF exposure on 

microglial responsiveness to ATP has never been addressed.                          

 Our preliminary observations showed that the initial basal [Ca2+]i varied between 

microglia. Therefore, we investigated whether transient changes in intracellular calcium in 

response to ATP and UDP in microglia varied with different basal Ca2+ levels. We also 

studied the effect of long-term exposure to ATP and UDP on basal [Ca2+]i levels and on 
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microglial motility as a measure of microglial function. To investigate whether changes in 

basal [Ca2+]i with BDNF can influence microglial responsiveness to ATP, we incubated 

microglia with BDNF and measured changes in their [Ca2+]i as well as their responsiveness to 

ATP.  

Methods  
 

Microglial isolation and culture  
 

  Microglia were isolated as described in chapter 5. In brief, 3 day old rats were 

sacrificed and their brain minced by passage through a stainless steel mesh (40 mesh) and 

incubated with 0.25% trypsin and 0.01 % DNase in phosphate buffered saline (PBS) for 10 

min at 370 C.  Horse serum was then added to terminate the digestion and the cells were 

passed through a second stainless steel mesh (100 mesh) and then washed twice with medium. 

The final cell suspension was plated in poly-D-lysine-coated flasks (75 cm2) at a density of 

approximately one brain per bottle. Cultures were maintained in Dulbecco’s modified eagle’s 

medium (DMEM, 4.5g/l glucose) supplemented with 10% FBS, 1% penicillin and 

streptomycin mixture and in a 5% CO2 atmosphere at 370C. Half of the medium was changed 

twice a week.  After 10-14 days, flasks were placed on shaker at 120 rpm for 45 minutes (370 

C). The supernatant was collected and centrifuged at 1500 rpm for 5 minutes. The pellet was 

resuspended and incubated overnight in DMEM-high glucose (4.5g/l) containing 1% 

penicillin and streptomycin and 10% FBS at 37°C with 5% CO2 on sterile, poly-D-lysine 

coated glass bottom chambers (World Precision Instruments Inc. Sarasota, Fl.).  

Ca2+  imaging 

  On the day of experiments, cultured microglia were washed with Krebs-HEPES 

Buffer (NaCl 14.8 mM, KCl 2.8 mM, MgCl2 2 mM, HEPES 10mM, Glucose 10 mM, CaCl2 

2 mM, pH 7.4) and incubated in 2.5 ml Krebs-HEPES buffer containing Fura- 2-AM (2μM, 

Invitrogen) and bovine serum albumin (5mg/ml) for 30 minutes at 37 ºC with 5% CO2, to 
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allow the intracellular removal of the ester group from the dye. The fura-2-AM solution was 

removed and replaced with 2 ml Krebs-HEPES and cells left in the dark for 30 min at room 

temperature. Calcium Imaging was performed using an Olympus IX70 inverted microscope, a 

polychrome IV tunable light source (TILL Photonics) and images captured using a cooled 

CCD camera (Sensicam, PCO Computer Optics) and Axon Imaging Workbench™ software. 

The fura-2 was excited at alternating wavelengths of 340 and 380nm for periods of 100ms. 

The fluorescence was measured at 510 nm and the ratio of fluorescence intensity at the two 

excitation wavelengths (340 nm/380nm) considered as an indicator of intracellular Ca2+ 

concentration. Microglia were continuously superfused with Kreb’s-HEPES buffer, and drug 

solutions applied via the inflow lines. Freshly prepared ATP or UDP solutions in Krebs-

HEPES buffer were applied for 30 s and/or one hour through inflow lines and the changes in 

intracellular Ca2+ recorded. For the BDNF treatment experiment, cells were continuously 

superfused with BDNF in Krebs-HEPES buffer via the inflow lines.  

Microglial motility 

Microglial cells were isolated and plated in glass bottom culture dishes overnight 

before being incubated with Cell trackerTM dye (1 µg/ml, Invitrogen) or DAF-FM dye 

(0.5ug/ml, Invitrogen) and nuclear stain (1ug/ml,Hoechst Dye, Invitrogen) in Kreb’s-HEPES 

buffer for 45 min at 370 C. Then cells were washed with Kreb’s-HEPES buffer and visualised 

using a confocal microscope (Nikon A1) either in the presence of ATP (50μM) or UDP (100 

μM) or buffer alone. Images was taken at the start of experiment and then one hour later and 

the movement of nucleus measured using NIS-Element Software (Nikon, version 3.0) by 

drawing a straight line between the centre of nucleus at t=0 and t=60.  
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Results  

1) Effect of brief ATP/UDP application on microglial Ca2+ 
 

   We observed that the initial fura-2 fluorescence ratio varied greatly between 

microglia present in culture, suggesting that their initial basal Ca2+ levels were different and 

microglia in our cultures were present in different activation states.  Irrespective of the initial 

fluorescence ratio, microglia showed a transient increase in intracellular Ca2+ upon 30 s 

application of either ATP (50μM, Fig. 7.1 (A)) or UDP (100μM, Fig. 7.1 (B)). Interestingly, 

we also observed that the initial ratio had a marked impact on amplitude of microglial 

responses. Cells with a lower initial ratio showed a greater transient change as compared to 

the cells that had higher initial ratio irrespective of whether ATP or UDP was used as a 

stimulus (Fig. 7.1 (A) and Fig. 7.1 (B)). To quantify this effect, we plotted the amplitude of 

the response (defined as the peak  fluorescence ratio minus the baseline immediately prior) 

against initial baseline ratio, and saw a significant inverse correlation for both ATP responses 

(Fig. 7.2 (A) ; P <0.00001) and UDP responses (Fig. 7.2 (B); P<0.05). To test whether this 

was due to responses reaching a ceiling, we plotted the absolute value of the fluorescence 

ratio at the peak of the response against the initial baseline ratio. We observe that in the case 

of ATP, in cells with higher initial basal ratios, the absolute peak response was higher 

indicating that a ceiling was not reached in those cells (Fig. 7.3 (A)). However, this was not 

the case for UDP responses as there was no correlation, indicating that the absolute peak 

value reached during the response was not changing as the initial baseline increased (Fig. 7.3 

(A)). 

2) Effect of 1 hour ATP/UDP treatment application on microglial Ca2+ 
 

  ATP at 50 µM for 1 hour activates microglia (Trang et al 2009; Tsuda et al 2003) 

and UDP at 100µM stimulates phagocytosis in microglia (Koizumi et al 2007). We therefore 

investigated the effect of 1 hour treatment with ATP 50 µM and with UDP 100 µM on 
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microglial [Ca2+]i. Microglia perfused with buffer for one hour showed a small change in 

fluorescence ratio as shown in Fig. 7.4 (A). Quantification showed that the average rise in 

florescence ratio from its initial level after superfused for 1 hour with buffer and in absence of 

any stimulus was 0.0550 ± 0.01133 (N=14; Fig. 7.5 (B)).  Compared to control, a one hour 

treatment with UDP (100 µM) (N=16; Fig. 7.4 (B)) or with ATP (N=7; 50 µM) (Fig. 7.5 (A)) 

caused a markedly greater increase in fluorescence ratio, suggesting a greater increase in 

intracellular Ca2+. When we generated a concentration effect curve, we observed that ATP did 

not cause a significant change in fluorescence ratio at concentrations of 5 μM and below 

(N=9).  We observed the highest increase in intracellular calcium at 50 μM (N=7; P<0.05) and 

a further increase in ATP concentration did not cause a higher increase in intracellular Ca2+ 

after 1 hour treatment (Fig. 7.5 (A)).  

In the presence of UDP (100μM) for 1 hour, the basal fluorescence ratio also 

increased significantly by about 0.1569 ± 0.02798 (N=16, P<0.001, Fig. 7.5 (B)) as compared 

to control.  

3) Effect of ATP and UDP on microglial motility   
 

Microglia are motile in both vitro and vivo conditions and migrate upon activation. 

The displacement of microglial cells present in control conditions in one hour was minimal 

(Images not shown). Fig. 7.6 (A) and Fig.7.6 (B) shows images of microglial cells at time t=0 

and t=60 indicative of cell displacement in one hour in presence of ATP (50µM). 

Quantification showed that in these experiments, ATP (50µM) treatment caused a significant 

increase in microglial displacement (N=42) in one hour as compared to untreated control 

(N=72) cells  (P<0.001; Fig. 7.7). Interestingly, at the end of a one hour treatment period, 

UDP (100µM) did not show a significantly greater displacement (N=21) as compared to cells 

in controls (N= 42; t=0.3957).  
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4) Response to ATP in BDNF pre-treated cells   
 

  Unlike ATP and UDP, BDNF 2ng, 5ng and 10ng/ml treatment by itself did not 

cause an initial transient change in fur-2 florescence ratio  in microglia which is consistent 

with the previous observations of Mizoguchi et al., (2009). However, in contrast to their study 

we did not observe any significant change in [Ca2+]i over the 15 min period after BDNF 

treatment (Fig. 7.8 (A)). Moreover, pre-treatment of cells with BDNF 10ng/ml for 15 minutes 

did not modulate the microglial response to ATP (Fig. 7.8 (B)).  
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Figures  
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Fig. 7.1 : Changes in fluorescence ratio over time in response to (A) ATP 50μM application 

for 30 seconds  in cells with (i) initial base line ratio 0.78 and (ii) initial baseline ratio 0.86 

and (B) UDP 100μM application for 30 seconds in cells with (i) initial baseline ratio 0.74 and 

(ii) initial baseline ratio 0.89. Thin horizontal bars indicate the period of the applications.  
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Fig. 7.2 :  
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Fig.7.2 :  Change in fluorescence ratio vs initial baseline ratio following 30s ATP (50µM) 

treatment. Each dot represents a single cell response.  There was a significant correlation 

between microglial responsiveness to (A) ATP (50µM) and the initial baseline (Pearson 

Correlation test P value<0.00001,  R squared=0.4750). There was a significant correlation 

between microglial responsiveness to (B) UDP (100µM) and the initial baseline (Pearson 

Correlation test P value<0.05,  R squared=0.5389).  
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Fig. 7.3 : 
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Fig. 7.3 : Absolute peak 340/380nm ratio achieved in response to ATP and UDP in cells with 

different baseline. Individual dots represents a single cell response. Panel A shows the 

absolute peak 340/380nm ratio response to ATP (50µM) treatment. There was a significant 

correlation; P<0.0001, N=38.  Panel B shows the absolute 340/380nm ratio in response to 

UDP (100µM) treatment. There was no significant correlation; P=0.2228, N=26. 
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Fig. 7.4 :  
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Fig. 7.4 : Change in 340/380 flueroscence ratio over time during (A) buffer application for 1 

hour and (B) UDP (100μM) application for 1 hour. Note the large change in baseline baseline 

between the start and end of experiment when UDP applied.  
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Fig. 7.5 : Increase in baseline flueroscence ratio in cells treated with buffer, ATP and UDP 

(100µM) for 1 hour. In Panel A the ATP dose-response curve shows the sustained calcium 

increase induced by various concentrations of ATP. ATP at 50µM (0.272 0.045, n=7) and 100 µM 

(0.263 ± 0.055, n=5) but not at 0.5µM ( 0.04 ± 0.009, n=5) and 5µM (0.037 ± 0.016, n=4), 

induced sustained increases in calcium after one hour incubation. One-way ANOVA with Dunn’s 

multiple comparison post hoc test indicates significant difference (* indicates  P<0.05, one way 

ANOVA with Dunns multiple comparison post-hoc test) as compared to control cells. Panel B 

shows increased baseline fluorescence ratio (basal calcium level) at 1 hour after cells were treated 

with buffer or UDP (100 µM) (** indicates P<0.001, t-test) 
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Fig. 7.6 :  
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Fig. 7.6 : Measurement of microglial motility upon ATP-50µM treatment. Panel A shows  

Hoechst dye stained microglial nuclei and entire cell marked with DAF dye at (i) time 0 min 

and (ii) time 60 min. Panel B shows a merged image of Hoechst dye stained microglial nuclei 

at time 60 min and the whole cell marked with DAF dye at time 0 min. Note the displacement 

of the cell over one hour. Scale bar = 50µm.  
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 Fig. 7.7  :  
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Fig. 7.7 : Effect of ATP (50µM) and UDP (100µM) treatment on microglial displacement in 1 

hour in vitro. One way ANOVA and Bonferroni post hoc tests comparing all the columns was 

performed; *** indicates P<0.001 compared to control and # indicates P< 0.05 compared to 

UDP. 
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Fig. 7.8 :  
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Fig. 7.8 :  Effect of BDNF on microglial responsiveness to ATP 50 µM (30 s application). 

Panel A   shows the change in basal intracellular Ca2+ after a 15 min treatement with BDNF 

(10ng/ml, N=17) or buffer only (N=12) (unpaired t test showed no significant difference, 

P=0.7389). Panel B shows the transient change in baseline in response to ATP 50 µM (N=12, 

30 min) and  ATP 50 µM in BDNF (10ng/ml,N=12, 30 min) pre-treated cells (t-test showed 

no significant difference P=0.0758). The data are derived from 3 independent experiments 

performed for each treatment group.  
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Discussion  
 

Changes in Ca2+ concentration are the most immediate response to activation of both 

metabotropic and ionotropic receptors in microglia. A major finding of this study is that, 

while increased intracellular Ca2+ may precipitate in some  but not in all the effects of purines 

on microglial function. The specific findings of this study are as follows. (i) Microglia 

respond to brief exposure to ATP and UDP by showing a transient increase in [Ca2+]i. The 

amplitude of this transient calcium response depends on the initial basal intracellular Ca2+ 

level. (ii) Longer-term (one hour) treatment with ATP and UDP causes a significant increase 

in basal [Ca2+]i. (iii) ATP causes a significant increase in microglial motility in culture as 

compared to buffer-treated control cells, but UDP does not. (iv) BDNF did not cause either an 

increase in [Ca2+]i or modulate microglial responsiveness to ATP in our experiments.   

Our results suggests microglia with different initial baseline [Ca2+]i respond 

differently to ATP (50μM) and UDP (100μM) applications. They clearly show that cells with 

lower baseline produce larger responses to both ATP and UDP, while cells with relatively 

higher initial baselines respond less. The correlation between the absolute peak [Ca2+]i 

response and the initial [Ca2+]i in ATP-treated cells but not in the UDP-treated cells is 

probably explained by these nucleotides acting on different purinergic receptors. As discussed 

above, ATP 50 µM activates mainly ionotropic receptors P2X4 and metabotropic receptors 

P2Y12 on microglia, while UDP activates only the metabotropic P2Y6 receptor. Thus, ATP 

can induce Ca2+ entry from the extracellular medium as well as release of Ca2+ from 

intracellular stores. UDP can induce only release of calcium from intracellular stores, 

although store-operated entry may also occur (Targos et al. 2005). This may be a factor 

limiting the ability of UDP to raise intracellular [Ca2+]i above a certain level within a short 

time.     
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 We found that the one-hour treatment with both ATP and UDP caused a 

significantly higher increase in intracellular calcium (Fig. 7.4 (A), 7.4 (B), 7.5 (A) & 7.5 (B)) 

as compared to buffer alone. These results indicate that activation of ionotropic receptors may 

not be necessary to cause long-term increases in basal intracellular [Ca2+]i levels in microglia. 

They also suggest that Ca2+ release from intracellular stores may be sufficient to activate 

microglia. Interestingly, various studies have reported up-regulation of purinergic receptors 

upon microglial activation (Bianco et al. 2005; Kobayashi et al. 2008; Tsuda et al. 2003).  

Surprisingly, our results showing less rise in intracellular [Ca2+]i in microglia with higher 

initial basal [Ca2+]i suggest that either there is no correlation between up-regulation of 

receptors and microglial responsiveness, or we could not observe any effect due to already 

high initial basal calcium levels. Clearly, the role of these up-regulated receptors in the 

functioning of activated microglia is still not clear and requires further investigation.     

Although both ATP and UDP had similar effects on intracellular [Ca2+]i, ATP 

(50μM) but not UDP (100μM) induced motility in isolated microglia as compared to control 

cells treated with buffer only (Fig. 7.6 (A), 7.6 (B) & 7.7). This suggests that intracellular 

[Ca2+]i may be required but not sufficient to induce motility of microglia. Our results are in 

agreement with previous in vitro and in vivo studies (Davalos et al. 2005; Honda et al. 2001; 

Miller & Stella 2009; Nimmerjahn et al. 2005; Wu et al. 2007) reporting ATP-induced 

motility of microglia and suggesting that ATP is a potent chemoattractant in the CNS. A study 

of microglia has reported involvement of P2X4 and P2Y12 receptors in ATP-induced 

chemotaxis (Ohsawa et al. 2007) while UDP does not activate P2X4 and P2Y12 receptor 

types. These studies measured microglial movement towards the source of ATP, while we are 

reporting increased random movement in culture, but our conclusions are similar. Our results 

are consistent with the previous report of Koizumi et al. (2007), which suggested that UDP 

acts as a phagocytosis signal and does not induce chemotaxic movement in microglia. This 

study also suggested that dying neurons release ATP as a “find me” signal and that UDP acts 
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as a signal to induce phagocytosis in microglia. Since both ATP and UDP increased [Ca2+]i, 

a sustained global Ca2+ increase is clearly not sufficient to activate the microglial 

phagocytosis function.   

BDNF is a member of the neurotrophin family and increases survival and growth of 

neurons under normal conditions. In our experiments, BDNF did not increase intracellular 

Ca2+ in microglia (Fig. 7.8 (A)). This is contradictory to the previous report of Mizoguchi et 

al. (2009), wherein the authors demonstrated an increased Ca2+ level in BDNF-treated 

microglia that was dose-dependent. However, this study did not show the effect of the vehicle 

itself on microglial Ca2+ levels (Mizoguchi et al. 2009). The reason for these disparate results 

is not known, but the cells used in our study had relatively higher initial baselines which may 

have made them less responsive to BDNF. Our study also shows that BDNF pretreatment 

does not have any modulatory effect on microglial responsiveness to ATP (Fig. 7.8.1 (B)). 

This suggests that the intracellular pathways activated by the BDNF may be different from 

those activated by ATP. 

In summary, our observations suggest that microglia exist in different activation 

states in culture as defined by their different basal calcium levels. We also found a clear 

correlation between microglial responsiveness and initial intracellular [Ca2+]i, suggesting the 

activation state of microglia affects their responsiveness to nucleotides. Surprisingly, we are 

first to report that long-term treatment with ATP and UDP causes an increase in basal Ca2+ 

levels in microglia. Our results suggest that activation of ionotropic receptors is not necessary 

to cause long-term increase in microglial intracellular basal [Ca2+]i levels. Our results also 

suggest that microglial [Ca2+]i  is increased by many stimuli, but is not the sole determinant of 

the functional state of microglia. 
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Chapter 8: Thesis Conclusion and Future Directions            

 

                 In this thesis, I have investigated the activation of microglia in several metabolic 

and cardiovascular diseases. After determining the brain regions showing microglial 

activation, I also attempted to investigate the role that microglial activation may play in these 

disease conditions. The novel findings of this thesis are as follows. (i) Microglia were 

activated in the PVN of rats with myocardial infarction. The activation was specific to the 

PVN and no activation was observed in other hypothalamic cardiovascular centres in these 

rats. (ii) Microglia were also activated in the PVN of STZ-induced diabetic rats. Within the 

PVN, microglia were activated in the parvocellular as well as in the magnocellular 

subdivisions. (iii) In STZ-induced diabetic rats, microglia were also activated in the SON and 

NTS regions. (iv) Activated microglia injected into the PVN caused a marked increase in 

systolic blood pressure in normal rats. (v) In high fat fed rats, microglia were activated in the 

VHM/Arculate region, but not in the PVN, SON or NTS. (vi) In Zucker Obese and LCR rats, 

microglia were not activated in the PVN, NTS, SON or VHM/Arculate hypothalamus. (vii) 

Both ATP and UDP caused sustained increase in microglial intracellular basal Ca2+. ATP but 

not UDP induced motility in microglia. 

                 Elevated sympathetic nerve activity contributes to the pathology of heart failure 

following myocardial infarction. Many studies of rats with myocardial infarction have 

reported increased activity of PVN neurons. My results show activation of microglia 

predominantly in the PVN, which is involved in regulation of sympathetic nerve activity 

(chapter 2). These results suggest that activated microglia in the PVN contribute to the 

increased activity of PVN parvocellular neurons. Microglia may modulate activity of these 

PVN neurons via secretion of a variety of pro-inflammatory cytokines, reactive oxygen 

species, neurotrophin and superoxide, which then leads to increased sympathetic drive. A 
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recently published study has demonstrated increased mean arterial pressure in rats with IL-1β 

injected into the PVN (Shi et al. 2010a). Many other studies have also suggested that cytokine 

action on the PVN itself is sufficient to elevate sympathetic nerve activity. Recent animal 

studies have shown increased levels of proinflammatory cytokines and ROS in the PVN after 

myocardial infarction (Guggilam et al. 2007; Infanger et al. 2010; Lindley et al. 2004). These 

studies have suggested the damaged heart or neurons as a source of cytokines and ROS. My 

report is the first to demonstrate microglial activation in the PVN in rats with heart failure. 

Hence, I hypothesise that cytokines and ROS produced locally by activated microglia in the 

PVN are responsible for elevated sympathetic drive and contribute to the pathology of heart 

failure following myocardial infarction. A recent study has provided supporting evidence for 

this hypothesis by demonstrating that increased redox signalling in the PVN of rats with 

myocardial infarction actually causes cardiac damage (Infanger et al. 2010) rather than vice 

versa.  

                 It is now well known that elevated sympathetic drive occurs in diabetes and may 

contribute to the development of diabetic cardiovascular complications. My results, showing 

microglial activation in the PVN of STZ-induced diabetic rats (chapter 3), suggest activated 

microglia contribute to the reported elevated sympathetic drive in this rat model (Patel et al. 

2011). I observed significant microglial activation in the parvocellular as well as in the 

magnocellular subdivision in STZ-induced diabetic rats. Interestingly, I also observed a 

significant increase in neuronal activity in the PVN. The neuronal activation was also present 

in both the parvocellular and magnocellular subdivisions in STZ-induced diabetic rats. 

Activation in the magnocellular subdivision could be due to the increased plasma osmolarity 

in STZ-induced diabetic rats, which is also suggested by the neuronal activation observed in 

the SON region that contains a similar neuronal population. Neuronal activation appeared to 

precede microglial activation, suggesting that excitotoxic neuronal death is the cause of 

microglial activation in magnocellular subdivision of the PVN. Microglial activation in the 
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parvocellular subdivision of the PVN may be a common cause of the elevated sympathetic 

drive reported in both STZ-induced diabetic rats and rats with myocardial infarction. 

Therefore, I speculate that microglial activation in the PVN could be a reason for the 

increased risk of developing cardiovascular complications in diabetic humans. 

                 It is not clear from these studies (chapters 2 and 3) whether microglial activation is 

involved in the pathology of the cardiovascular complications in STZ-induced diabetic rats or 

in rats with myocardial infarction, or whether it is a consequence of these pathologies. My 

study showing increased systolic blood pressure in naïve rats with activated microglia injected 

in the PVN (chapter 5) suggests a pathological role for microglial activation. The PVN 

controls the level of sympathetic nerve activity, and activation of the PVN can increase 

sympathetic tone. Enhanced sympathetic tone can cause an increase in blood pressure. My 

results showing increased blood pressure in normal rats upon activated microglial injection 

into the PVN suggest that microglial activation in the PVN can enhance sympathetic tone. 

However, further study is required to demonstrate inhibition of elevated sympathetic drive in 

STZ-induced diabetic rats and in rats with myocardial infarction upon inhibition of activated 

microglia in the PVN. 

                 The cause of microglial activation in rats with myocardial infarction is not clear 

and requires further investigation, but my results regarding STZ-induced diabetic rats suggest 

that intense and prolonged neuronal activation or excitotoxicity may cause microglial 

activation in the PVN. Previous studies of MI rats have also reported neuronal activation in 

the PVN. Hence, even in the case of MI rats, excitotoxicity may be the cause of microglial 

activation. I did not observe microglial activation in the PVN in models of type 2 diabetes 

showing mild hyperglycaemia (chapter 4). Hence, overt diabetes may be necessary for the 

reported neuronal and microglial activation in the PVN.                                
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                 Interestingly, I have reported activation of microglia in the arcuate and 

ventromedial hypothalamus regions of rats fed a high fat diet (chapter 4). Fat feeding is 

known to increase plasma leptin levels in humans as well as in rodents. I did not observe 

microglial activation in those brain regions in leptin receptor-deficient Zucker Obese rats, 

suggesting a role for leptin in microglial activation. Microglia express receptors for leptin, and 

the activation of leptin receptors on cultured microglia stimulates IL-1β release. Thus, 

microglial activation may result from a direct action of leptin on microglia. Alternatively, 

over-excitation of arcuate and ventromedial hypothalamic neurons may lead to activation of 

microglia. Further studies are needed to differentiate between these two mechanisms. The 

arcuate and ventromedial hypothalamus are major sites for leptin action in the brain and many 

studies of high fat fed animals have reported reduced neuronal sensitivity for leptin. My 

results showing microglial activation in the arcuate and ventromedial hypothalamus suggest 

that microglial activation could be the cause of reduced neuronal leptin sensitivity. However, 

further studies are required to investigate the role of activated microglia in the arcuate and 

ventromedial hypothalamus nucleus of fat fed rats.  

                 The fact that the pattern of microglial activation is different in each disease 

condition examined suggests that the initiating cause of microglial activation must be 

different. My results argue against the idea that increased circulating cytokine levels are 

responsible for the activation, since elevated plasma cytokines are seen in rats with heart 

failure and in STZ-induced diabetic rats. This does not preclude a general strategy to inhibit 

microglia being useful in these conditions.  

                 Excitotoxic neuronal death is expected to release various nucleotides. Microglia 

express a variety of purinergic receptors. To understand the molecular mechanism of 

microglial activation, I looked at the regulation of the microglial purinergic P2X4 receptors  

and the intracellular activation marker, phosphorylated p38 MAPK in microglia in STZ-



249 

induced diabetic rats. Studies of neuropathic pain models have reported marked up-regulation 

of P2X4 receptors and phosphorylated p38 MAPK in microglia and inhibition of either of 

these has been shown to reduce pain behaviour. In STZ-induced diabetic rats, I did not 

observe any marked change in the expression of P2X4 receptors or the levels of 

phosphorylated p38 MAPK in activated microglia, which were present in brain nuclei 

important for the regulation of the cardiovascular system. Hence, it appears that the 

mechanism of microglial activation in STZ-induced diabetic rats may differ from that 

occurring in the spinal cord after peripheral nerve injury. Involvement of P2X7 and/or P2Y12 

receptors has also been reported in nerve injury models and investigation is required to 

determine whether these receptors are involved in microglial activation in STZ-induced 

diabetic rats.   

                  In vitro studies provide a useful tool for investigating the cellular mechanism of 

microglial activation. Various studies of microglia have demonstrated an important role for 

intracellular calcium signalling in microglial activation (chapter 1), but the involvement of 

intracellular calcium in microglial migration has not been investigated. My present results 

show that two different nucleotides, ATP and UDP, were capable of causing transient as well 

as sustained increases in microglial intracellular Ca2+. Interestingly, only ATP was able to 

induce motility in microglia, suggesting that intracellular calcium is an indicator of microglial 

activation but does not fully define the functional state. ATP is known to act via ionotropic 

and metabotropic receptors, while UDP has been shown to activate P2Y6, a metabotropic 

receptor type. This study suggests that activation of receptors other than P2Y6 may be 

necessary for certain functions of microglia, e.g., motility. Other studies of microglial 

activation have suggested a role for the P2Y6 receptor in microglial phagocytosis. Therefore, 

targeting one particular receptor type may have beneficial effects, but may not completely 

block all the functions of activated microglia. The present study also suggests that 
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intracellular calcium is required, but is not sufficient to trigger all the functions of activated 

microglia.  

                 In conclusion, the results presented in this thesis show microglial activation occurs 

in STZ-induced diabetic rats, high fat fed rats and in rats with myocardial infarction. This 

microglial activation may be responsible for the cardiovascular and/or metabolic disturbances 

seen in these diseases. My results suggest that targeting activated microglia may be beneficial 

to human patients suffering from either diabetes or myocardial infarction. However, further 

studies are needed to investigate molecular targets for inhibiting microglial activation in these 

diseases. Therapeutic strategies for inhibiting microglial activation may also be beneficial in 

treating humans suffering from neurodegenerative diseases and/or from neuropathic pain 

where microglial activation and its involvement in pathology is already established.  
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Fig 1:  Figure shows OX-42 stained microglia in the PVN of a control rat. It is evident from 

this figure that microglia are evenly distributed throughout the PVN. The microglia also 

appeared to have a branched structure with long processes. The distribution and morphology 

of these microglia clearly suggests that they are not in blood vessels hence they are 

parenchymal. The image is a projection of a confocal Z-stack. 
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Fig 2 
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Fig 2: Figure shows OX-42 stained microglia in a brain section from a rat in which ATP-

activated microglia were injected into the hypothalamus. Note the change in microglial 

morphology in the PVN region. 
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