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Abstract 

There are a wide range of receptors and proteins on platelets playing essential roles in thrombus formation. 

Among them P2Y12 receptor, a member of the G protein-coupled receptor family, has attracted lots of attention. 

Stimulation of P2Y12 receptor by ADP results in activation of various signaling pathways involved in 

amplification of platelet activation and aggregation. There have been extensive attempts to design an ideal 

antithrombotic agent to block P2Y12, which has a selective expression, as an intervention for cardiovascular 

disease. Current inhibitors of P2Y12 receptor include indirect inhibitors or thienopyridines family (ticlopidine, 

clopidogrel and prasugrel), and direct P2Y12 inhibitors (ticagrelor, cangrelor and elinogrel). Among them 

clopidogrel is the most common prescribed P2Y12 blocker however this product has not met the ideal therapeutic 

standards. The main limitations of clopidogrel administration include slow onset, prevention of recovery of 

platelet functions, and interindividual variability. Hence, advanced studies have been carried out to achieve more 

efficient and safer P2Y12 blockade. In this review we provide a comprehensive, yet brief, report on the overview 

of P2Y12, its role on platelet thrombus formation and targeting this receptor as an intervention for cardiovascular 

disease, for the benefit of basic science and clinical researchers. 
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1 Introduction 

Platelets play an essential role in both the normal hemostasis maintenance and the pathological thrombus 

formation development [1]. For example, within atherosclerotic arteries subject to high shear stress platelets in 

conjunction with other factors are responsible in vascular occlusion, a crucial mechanism in myocardial 

infarction and stroke [1]. Platelet thrombi can lead to clinical consequence of cardiovascular or cerebrovascular 

disease that is associated with 36% of all deaths in Australia [2]. 

After vascular injury, platelets translocate and rapidly adhere to exposed subendothelial matrix 

components including von Willebrand factor (vWF) and collagen through adhesive receptors including GPIb-IX-

V complex and GPVI-FcR γ-chain complex, respectively. Platelet membrane GPIbα recognizes the activated 

conformation of vWF, initiating intracellular signaling events that lead to integrin αIIbβ3 activation. In the 

process of platelet adhesion, signals are also generated that lead to platelet activation. Platelet activation involves 

activation of integrin αIIbβ3 leading to platelet shape change and spreading, formation of stable platelet 

adhesion, release of granule contents, generation of lipid mediators and accumulation of platelet aggregates to 

form a thrombus [3]. Activation of platelets is achieved through a variety of cell surface receptors such as G-

protein coupled receptors, integrins and glycoprotein receptors. A positive feedback loop by physiological 

agonists such as thrombin and collagen is also initiated by secreted products and secondary mediators of platelet 

activation. These secondary mediators include adenosine diphosphate (ADP: released from platelet granules) and 

thromboxane A2 (generated within platelets) which activate other platelets and amplify the recruitment of 

platelets to a growing thrombus. Secreted ADP is important for platelet activation, as patients with defects in 

dense granule storage or specific ADP receptors have bleeding abnormalities [4].  

ADP mechanism of action is through two G-protein coupled receptors, the Gq-coupled P2Y1 receptor 

and the Gi-coupled P2Y12 receptor. The P2Y1 receptor contributes to ADP-induced platelet shape change while 

the P2Y12-coupled Gi signaling is essential for potentiation of dense granule secretion, thromboxane A2 

generation, irreversible aggregation and stabilization of a platelet thrombus [5, 6]. Concomitant signaling 

through both ADP receptors is necessary and sufficient for fibrinogen receptor (integrin αIIbβ3) activation [5, 6]. 

Parallel to these events, collagen-induced platelet activation through GPVI and induces integrin αIIbβ3 

activation, resulting in adhesion and aggregation. 

The main purpose of this review article is to provide a comprehensive and concise review on P2Y12 

receptor on a wide range from its discovery, its role in platelet thrombus formation, deficiency of this receptor 

and pharmacological inhibition of this receptor with different drugs to overcome cardiovascular disease.  

 

2 Overview of P2 receptors  

Nucleotide receptor family known as P2 receptors mediate the actions of extracellular nucleotides to intercellular 

signaling [7]. Membrane-bound P2-receptors consist of two classes of membrane receptors; P2X ligand-gated 

cation channels and G protein–coupled P2Y receptors [1, 8]. Mammalian P2X receptors are classified into 7 

distinct subtypes (P2X1 - P2X7) that are distributed throughout the body and response to endogenous agonist of 

adenosine triphosphate (ATP) [9]. P2X receptors are expressed abundantly in the nervous system, underlie fat 

purinergic synaptic transmission, and play important roles in nervous system and peripheral diseases [9].  

To date, 8 subtypes of P2Y receptor (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12 and P2Y13, P2Y14) have 

been cloned and characterized [1, 10, 11]. The jump in sequence of the P2Y numbering is due to the mistake in 
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identification of certain receptors which are assumed to belong to this family such as P2Y5 and P2Y7 [8] or 

nonmammalian P2Y receptors (chicken p2y3 and Xenopus laevis p2y8 receptors) [8, 12]. P2Y9 and P2Y10 

receptors are not nucleotide receptors, either [8]. P2Y receptors are widespread with a different range of 

physiological roles [7]. They are distributed through cells and tissues such as platelets (P2Y1 and P2Y12) to 

epithelia (P2Y2 and P2Y4), placenta (P2Y4), heart, blood vessels and brain (P2Y6), immunocytes (P2Y11) and 

neural cells (P2Y1 and P2Y12) [7]. Based on their pharmacological aspects, P2Y receptors can be subclassified 

into adenine nucleotide sensitive receptors mainly responding to adenosine diphosphate (ADP) and ATP (P2Y1, 

P2Y11, P2Y12 and P2Y13), the uracil nucleotide sensitive receptors responding to uridine triphosphate (UTP) or 

uridine diphosphate (UDP) (P2Y4 and P2Y6), the mixed sensitive receptor (P2Y2), and UDP-glucose sensitive 

receptor (P2Y14) [10]. Furthermore, according to their functional coupling to specific G proteins and effector 

proteins, P2Y receptors can be subdivided to Gq-coupled subtypes; P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11, and Gi-

coupled subtypes; P2Y12, P2Y13 and P2Y14 [13].  

Among P2 receptors only P2X1, P2Y1 and P2Y12 are expressed at significant levels in platelets of 

healthy volunteers, with the P2Y12 is expressed at the highest extent followed by P2X1 and P2Y1, respectively 

[14]. Two of P2Y receptors play essential roles in platelet thrombus formation. The P2Y1 receptor initiates 

platelet activation in response to ADP and participates in platelet aggregation mediated by collagen [15]. The 

P2Y1 receptor is coupled to Gαq and initiates calcium mobilization from internal stores inducing platelet shape 

change and weak and transient aggregation mediating by ADP [16-18]. In general, the P2Y1 receptor mediates 

weak responses to ADP and is crucial in the early steps of platelet activation mediated by ADP or collagen [1]. 

Whilst, the P2Y12 receptor completes and amplifies platelet activation and aggregation [1].  

 

3 P2Y12 receptor 

P2Y12 receptor has been shown to expressed in human, bovine, rat and mouse tissues [7]. The identity of the 

platelet P2Y12 receptor was characterized in 2001 by using expression cloning [19] and ligand screening methods 

[20, 21]. P2Y12 is highly expressed in human platelets and to a smaller extent in brain [19]. Some of the essential 

roles of P2Y12 receptor are platelet aggregation in addition to inhibition of neural cells [7]. P2Y12 receptor is 

activated by ADP (a natural agonist stored in platelet dense granules) and very potently by ADP analogue 2-

methylthio-ADP (2-MeSADP) [7]. ATP and its triphosphate analogues (e.g. 2MeSATP and 2ClATP) are P2Y12 

antagonists [22, 23]. Other nucleotide antagonists include N
6
-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-

β,γ-dichloromethylene-ATP (cangrelor; AR-C69931MX), and the nucleoside analogue AZD6140 [7]. In 

addition, active metabolites of the thienopyridine compounds, clopidogrel, ticlopidine and prasugrel block this 

receptor [7]. These P2Y12 antagonists have been administered in pharmacotherapy to inhibit platelet aggregation 

[7]. 

 

3.1 Biochemistry of P2Y12 receptor 

The P2Y12 receptor structure contains the specific features of G-protein-coupled receptors including 7 

hydrophobic transmembrane (TM) regions connected by 3 extracellular loops (EL) and 3 intracellular loops (Fig. 

1) [7]. The human P2Y12 receptor consists of 342 amino acid residues [1]. The human P2Y12 amino acid 

sequence contains 10 cysteine residues. There are four cysteine residues at extracellular domains at position 17, 

97, 175 and 270 which are proposed to form 2 disulfide bridges between N-terminal domain and EL3, and 
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between EL1 and EL2 [7, 24]. Ding et al., however showed that there is no essential disulfide bridge between 

cysteines 17 and 270 [25]. In addition, there are five cysteine residues at position 194, 208, 248, 292, and 302 

located in the TM domains, and one intracellular cysteine residue is present at position 315 [24]. The importance 

of cysteine residues in the function of P2Y12 has been proposed by the ability of thiol reagents, e.g. clopidogrel, 

to inhibit ADP responses in platelets [19]. Although N-linked glycosylation of the P2Y12 receptor plays an 

essential role in signal transduction, it is not crucial for ligand binding or cell surface expression [26]. 

 

3.2 Overview of P2Y12 signaling pathways in platelets 

Guanine nucleotide-binding regulatory proteins, also known as G proteins, mediate the interaction between cell 

surface receptors and intracellular enzyme generation second messenger molecules during platelet activation 

[27]. The G proteins are multimers, e.g. Gi, Gs, Go, Gt, Gp, Gz, Gq [27-29], consist of three distinct subunits 

including α, β and γ existing in more than one form [27]. For example, two G proteins distributed in virtually all 

cells include, Gsα; the α subunit of the G protein that stimulate cyclic adenosine monophosphate (cAMP) 

formation by adenyl cyclase, and Giα; the α subunit of the G protein that inhibits adenyl cyclase [30]. 

Human platelets expressed Gq, four members of the Gi family of G proteins including Gi1, Gi2, Gi3 and 

Gz [27-29, 31], Gs, G12, G13 and G16 [28, 32, 33]. It has been shown that Gq pathway plays a vital role in platelet 

aggregation [34]. Two of the most highly expressed Gi proteins on platelets are Gz that couples to the α2A 

adrenergic receptor for epinephrine [35], and Gi2 that is the target of the ADP receptor P2Y12 [36]. 

The P2Y12 receptor couples to αi2 subunit of G protein (Fig. 2) [19, 36, 37]. Stimulation of the 

heterotrimeric G protein, e.g. by ADP, results in dissociation of Gα and Gβγ subunits which activate various 

signaling pathways [6]. The Gαi2 inhibits production of adenyl cyclase which results in reduction in cytosolic 

cAMP concentrations [36, 38, 39]. This decrease in cAMP reduces the activation of cAMP-dependent protein 

kinase (PKA) responsible for phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) [1]. VASP 

phosphorylation plays an essential role in fibrinogen receptor activation in response to ADP and platelet 

aggregation [40]. VASP is an actin regulatory protein that inhibits the integrin αIIbβ3 activation [41, 42]. 

Therefore, the levels of VASP phosphorylation/dephosphorylation can indicate P2Y12 inhibition/activation as 

well as a selective assay for clopidogrel effects on patients, e.g. patient resistance to clopidogrel [43, 44]. 

On the other hand, it has been shown that stimulation of P2Y12 by ADP, through Gβγ subunits, 

stimulates phosphatidyl inositol-3 kinase (PI-3K) activity (Fig. 2), resulting in late accumulation of 

phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) induced by PAR1-activated peptide and rapid and 

transient accumulation of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), with essential roles in 

sustaining platelet aggregation [45-47]. Various isoforms of PI3K are expressed in platelets. Two major isoforms 

of PI3K present in platelets include PI3Kβ, a member of the class Ia isoforms which consists of catalytic subunit 

of p110α and p110β regulated by tyrosine kinases, and PI3Kγ belonging to the class Ib isoform which consists of 

catalytic subunit of p110γ activated by G-protein coupled receptors [48-51]. Continual signaling through PI3Kβ 

and PI3Kγ via P2Y12 receptors stimulated by ADP is indicated to be required for stabilizing thrombus growth 

resulting in maintenance of αIIbβ3 activity and fibrinogen binding [48]. 

It has been also elucidated that P2Y12 activates GTPase Rap1b via PI-3K dependent pathway with 

essential roles in platelet activation (Fig. 2) [31, 47, 52, 53]. Rap1b is the most abundant Ras GTPase in platelets 

[52]. Rap1b is located at membrane of resting platelets and associates with actin-based cytoskeleton after platelet 
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stimulation [52]. Rap1b cycles from inactive form (GDP-bound) to an active form (GTP-bound) regulated by 

guanine nucleotide-exchange factors, guanine nucleotide dissociation inhibitors and GTPase-activating proteins 

[54, 55]. Multiple pathways for Rap1b activation has reported in human platelets including Ca
2+

, cAMP, protein 

kinase C and tyrosine kinases after using different agonists [52, 55]. In response to ADP however it is speculated 

that PI3Kβ plays an essential role in a signaling pathway between βγ dimers released upon stimulation of the Gi-

coupled receptors and activation of Rap1b whereas PI3Kγ isoform was demonstrated to not be involved in this 

process [47, 56]. Rap1b is rapidly activated after stimulation with ADP, in a Gi-dependent pathway through the 

action of the PI3K product PtdIns(3,4,5)P3 which is a rapid and transient product but not the PtIns(3,4)P2 which 

forms mainly as a result of integrin αIIbβ3-mediated platelet aggregation [47]. This supports the role of Rap1b 

activation in the initial process of platelet activation resulting in activation of integrin αIIbβ3 and platelet 

aggregation [47].  

In addition, activation of PI-3K results in dual phosphorylation (threonine
 
308 and serine

 
473) hence 

activation of Akt (Fig. 2) by phosphatidylinositol dependent kinases (PDKs), which is an important signaling 

intermediate in agonist-induced platelet activation [57, 58]. Akt (or protein kinase B: PKB or RAC) is a family 

of intracellular serine/threonine protein kinases, expressed in various cells, activated by different agonists, e.g. 

platelet derived growth factor, insulin and thrombin, and has multifunctional roles, e.g. prevention of apoptosis, 

regulation of glycogenesis and controlling glucose uptake [57, 59]. Human platelets express Akt1 (PKBα) and 

Akt2 (PKBβ) [57, 59]. PI3K products including PtIns(3,4)P2 and PtdIns(3,4,5)P3 initiate phosphorylation of Akt 

[57, 60] by PDK 1 at threonine
 
308 and possibly PKD 2 [57, 60] or autophosphorylation [61] or integrin-linked 

kinase [62] at serine
 
473. Membrane attachment of Akt and dual phosphorylation are essential for activation of 

Akt [57, 59]. Akt activation in a PI3K dependent manner after thromboxane A2 or thrombin stimulation 

promotes ADP release from platelets dense granules that stimulates P2Y12 receptor signaling pathways resulting 

in enhancement of integrin αIIbβ3-mediated platelet aggregates and stabilization [63]. Therefore ADP amplifies 

Akt activity [63]. Also, it has been demonstrated that Akt2 plays a more essential role in this process in mice as 

compared with Akt1 [63].  

Furthermore, the βγ dimers can activate the G-protein-gated inwardly rectifying potassium channels 

(GIRKs) via binding to their cytosolic regions mediating activation of Src tyrosine kinases downstream [64, 65]. 

Both GIRK channels and Src family of tyrosine kinases after stimulation of P2Y12 may play a role in ADP-

induced cytosolic phospholipase A2 (cPLA2) phosphorylation (serine 505) and thromboxane A2 generation hence 

platelet aggregation [64] (Fig. 2). Src family tyrosine kinases belong to cellular signal transduces that can be 

activated by different extracellular signals to modulate various cellular functions, e.g. proliferation, survival, 

adhesion and migration [66]. Platelets contain high amount of proto-oncogene product pp60
c-src

 which is 

suggested to be associated with platelet cytoskeletal proteins and important in platelet aggregation [67, 68]. It 

has been proposed that Src family tyrosine kinases stimulate the extent of αIIbβ3 activation but they are not 

essential in this process [69]. It is also speculated that both P2Y1 and P2Y12 can activate Src [69, 70].  

Also, extracellular-signal-regulated kinase (ERK) is suggested to be downstream of Src family kinases 

[71] (Fig. 2). ERK is a subgroup of mitogen-activated protein kinases (MAPKs) family of serine-threonine 

kinase activated by various extracellular stimuli, such as growth factors and hormones [72]. It has been shown 

that platelets expressed two forms of ERK, ERK1 (p44
mapk

) that remains intact after thrombin-mediated platelet 

activation whereas ERK2 (p42
mapk

) becomes phosphorylated [73]. Similarly, ADP stimulation results in 
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phosphorylation of ERK2, predominantly [74]. It has been proposed that activation of cPLA2 is a downstream 

link between ERK and integrin activation [72, 73] (Fig. 2).  

Signaling through both the P2Y12 and P2Y1 receptor has been shown to be important for ADP-induced 

ERK2 phosphorylation in platelets therefore generation of thromboxane A2 [71, 74] (Fig. 2). cPLA2 is a Ca
2+

-

dependent lipase and cleave arachidonic acid containing phospholipids at their sn-2 position releasing 

arachidonic acid that is a precursor to lipoxins, thromboxanes, leukotrines, prostaglandin eicosanoid and platelet 

activating factor [75]. Various agonists regulate cPLA2, including hormones, neurotransmitters and antigens, and 

MAPK and protein kinase C may activate cPLA2 [75]. Phosphorylation of cPLA2 at serine 505 has been 

proposed to be downstream of ERK-2 stimulation and essential for hormonally mediated release of arachidonic 

acid from membrane-bound phospholipids hence generation of thromboxane A2 [74, 76].  

We have attempted to summarize signaling pathways responsible for P2Y12 activation in platelets in 

this review. However there are various paradoxical reports on the P2Y12 signaling pathways due to complexity of 

this network. Hence the precise signaling pathway has yet remained to be elucidated.  

 

4 The P2Y12 receptor deficiency 

Congenital P2Y12 deficiency is an autosomal recessive disorder [77, 78]. P2Y12 deficiency is associated with 

deletions of the nucleotide in the open-reading frame, and frameshift mutation leading to protein premature 

truncation (e.g., P2Y12 haploinsufficiency and a 378delC mutation in patients remaining allele [79]), or with 

substitution of a nucleotide in the transduction initiation codon (e.g. ATG to ACG [80]) [77]. Congenital 

dysfunctions of P2Y12 are associated with molecular malfunctions of the sixth trans-membrane domain (a G– to 

–A transition in one allele hence altering the codon for Arg-256 in the sixth trans-membrane domain to Gln) or 

the nearby third extracellular loop of the receptor (a C– to –T transition in the other allele hence altering the 

codon for Arg-265 in the third extracellular loop to Trp) [4]. The integrity of this region of the protein is crucial 

for normal receptor function [4]. A heterogeneous mutation, predicting a lysine to glutamate (Lys174Glu) 

substitution was reported to be associated with the impaired ligand binding to the P2Y12 receptor in patient with 

mild type 1 von Willebrand disease [77, 81]. Hence this mutation is suggested to play an essential role in 

disruption of the ADP-binding site of the P2Y12 receptor [77, 81]. 

Platelets with a moderate P2Y12 deficiency show similar characteristics to the primary secretion defect 

(PSD). The PSD which is characterized by abnormal secretion but normal granule stores, thromboxane A2 

production and ADP-initiating aggregation, is the most common platelet congenital defect [78]. The P2Y12 

deficiency results in dysfunctional platelets and bleeding diathesis, characterized by mucocutaneous bleeding 

and excessive post-surgical and posttraumatic blood loss [78, 82, 83]. The first patient with selective defect of 

platelet response to ADP was described in 1992 by Cattaneo et al. [84]. This patient (white origin, aged 49) had 

lifelong history of excessive bleeding (especially mucosal: nose bleeds), easy bruising, prolonged bleeding time, 

and abnormality in platelet aggregation the same as PSD, including reversible platelet aggregation in response to 

weak agonists and decreased aggregation induced by low concentrations of collagen or thrombin with the most 

defect at aggregation responses to ADP [78, 84]. This platelet aggregation is similar to platelet profiles after 

administration of thienopyridines (e.g. clopidogrel) to humans [78, 85]. More cases with a similar profile have 

been reported [77, 82, 83]. These cases also emphasize the pivotal role of platelet ADP receptors for normal 

platelet secretion and function [83]. 
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P2Y12 deficiency can be diagnosed by lack of ADP (even at high concentration: ≥ 10 µM) mediated 

irreversible platelet aggregation while inducing normal shape change [77]. The diagnosis can be confirmed by 

assessment the degree of adenyl cyclase inhibition by ADP via measuring cAMP levels in platelets or the 

phosphorylation of VASP after exposure of platelets to PGE1 [77, 86]. 

The intravenous administration of the vasopressin analogue desmopressin has produced shortening of 

the prolonged bleeding times and may prevent excessive bleeding complication after surgical procedures 

observed in these patients [78]. 

 

5 P2Y12 inhibitors 

P2Y12 receptor has a very limited and selective distribution on tissues [8, 19]. In addition, this receptor 

plays a crucial role in the thrombus formation and stabilization [1]. Therefore, P2Y12 receptor is a very good 

candidate for antiplatelet drugs [19]. Ideal antithrombotic agent is characterized by its predictable 

pharmacodynamics profile (avoid monitoring), rapid onset, rapid offset (and/or available antidote), compatible 

with adjunctive medicine, potent efficacy, low risk, low cost and easy administration [87].  

Current inhibitors of P2Y12 receptor are categorized into indirect acting irreversible inhibitors 

(thienopyridines: ticlopidine, clopidogrel and prasugrel), and direct acting reversible P2Y12 inhibitors (ticagrelor, 

cangrelor and elinogrel) [87].  

 

5.1 Thienopyridines family 

Thienopyridines are the first family of P2Y12 inhibitor [87]. Thienopyridines are prodrug required to be 

metabolized by hepatic cytochrome P-450 (CYP) to form active metabolite [87]. The active metabolite then 

covalently (via formation a disulfide bond with cysteine residues) and irreversibly binds to the P2Y12 receptor 

hence inhibiting the P2Y12 receptor [87]. 

 

5.1.1 Ticlopidine 

Ticlopidine is the first generation of thienopyridines [87]. This prodrug is administered orally twice a day [88] 

and reaches the maximum platelet inhibitory effect after 3 days of treatment [89]. Various clinical trials reveal 

that combination of ticlopidine with aspirin enhances platelet inhibitory effect and reduces cardiovascular events 

especially in patients undergoing placement of coronary artery stents [89-92]. This synergic effect is contributed 

to platelet inhibitory effect through blocking two different pathways including P2Y12 and cyclooxygenase 

(COX)-1 [93]. Ticlopidine administration however causes serious side effects including neutropenia, aplastic 

anaemia, thrombotic thrombocytopenic purpura, and gastrointestinal effect which are a drawback of using this 

medicine [94]. 

 

5.1.2 Clopidogrel 

Clopidogrel (Plavix/Iscover [94]), the most commonly prescribed drugs worldwide [95], belongs to the second 

generation of thienopyridines, with fewer side effects and replaced ticlopidine [87, 96]. Anti-aggregating 

property of clopidogrel is also several times greater than ticlopidine [97]. Furthermore, various clinical trials, 

such as percutaneous coronary intervention - Clopidogrel in Unstable angina to prevent Recurrent Events (PCI-

CURE), Clopidogrel for Reduction of Events During Observation (CREDO) and PCI- Clopidogrel as Adjunctive 
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Therapy (CLARITY) trials or Clopidogrel versus Aspirin in Patients at Risk of Ischemic Events (CAPRIE) trial, 

have revealed cost-effective of pre-treatment and long-term treatment in percutaneous coronary intervention or 

prevention atherothrombotic events with clopidogrel [98-100].  

Clopidogrel is also an inactive prodrug which becomes active after intravenous or oral administration 

with no trace of circulating activity in the plasma of treated animals or humans [97]. An intravenous formulation 

of clopidogrel (PM103) has been developed as an alternative dosage form to oral clopidogrel for administration 

in the acute care setting [101]. Absorbed clopidogrel undergoes two metabolic pathways: about 85 – 90% of the 

absorbed drug is hydrolyzed by esterases that generate inactive metabolite whereas only 10 – 15% is 

metabolized by CYP isoforms in the liver to form an active metabolite [102, 103]. The short lived active 

metabolite then binds irreversibly to the cysteine 17 and cysteine 270 in the extracellular domains of P2Y12 

receptor on platelets hence clopidogrel effects last for the whole platelet lifespan (7 – 10 days) [25, 102]. The 

antiplatelet effects of clopidogrel are time and dose dependent with the approximately 50 – 60 % inhibition of 

platelet aggregation [104]. The approved doses of clopidogrel are a 300 mg loading dose and a 75 mg of 

maintenance dose [94, 105, 106]. In addition, combination of clopidogrel with aspirin resulting in concurrent 

inhibition of ADP and thromboxane A2 pathways of platelets hence causes additive/synergic antithrombotic 

effects in patients undergoing coronary stenting [94]. A loading dose of 600 mg of clopidogrel also reveals more 

potency and efficacy in clinical practice, e.g. percutaneous coronary intervention [107-109]. 

Although clopidogrel is the most popular antiplatelet drug with high efficacy, it does not have the main 

criteria of the ideal antithrombotic agent [87]. The antiplatelet effect of clopidogrel is delayed since this prodrug 

needs to undergo hepatic metabolism to generate an active metabolite. Maintenance daily dose of clopidogrel (75 

mg) with no preload reaches the steady state levels of platelet aggregation within 4 – 7 days. This delayed onset 

of action of clopidogrel was overcome by administration of loading doses (300 – 600 mg) that reach the steady 

state level by 4 – 24 h [104, 110, 111].  

Another disadvantage of administration of clopidogrel is the substantial variability between individual 

in platelet inhibition, e.g. a reduced efficacy of clopidogrel in some patients [110]. The high interindividual 

variability of the response and incidence of drug resistance can affect clinical outcomes extensively since poor 

responders may receive inadequate protection from major adverse cardiac effects, e.g. patients undergoing 

percutaneous coronary intervention [111, 112]. Several studies showed approximately 8 – 44% of prevalence of 

clopidogrel non-responsiveness/resistance [111-116]. This variable response may be due to differences between 

individual in the conversion of prodrug to active metabolite because of variable CYP3A4 metabolic activity 

[113]. Several studies also showed that common loss of function polymorphisms of CYP2C19 and CYP2C9 are 

concomitant with reduced exposure to the active metabolite of clopidogrel [117, 118]. Different extent of 

absorption of prodrug or clearance of the active metabolite may also play a role in clopidogrel resistance [110]. 

Clopidogrel efflux via P-glycoprotein ATP-dependent pump encoded by the ABCB1 gene (also known as 

MDR1) [95]. Patients with genetic variants in ABCB1 (ABCB1 3435 TT homozygotes) are more likely to 

experience adverse cardiovascular outcomes after clopidogrel treatment [95]. Furthermore, P2Y12 receptor 

variability, such as elevated level of receptors, enhanced level of ADP or upregulation of other platelet activation 

pathways may cause interindividual variation is response to clopidogrel [110].  

Further limitation of clopidogrel is its irreversible inhibition of P2Y12 receptor resulting in a slow 

recovery of platelet function after drug withdrawal [119]. This may initiate bleeding risk within 5 – 7 days after 
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termination of drug administration especially in patients who need urgent surgical revascularization [119] hence 

increased transfusion requirements and extended intensive care unit and hospitalization [87, 119]. Therefore, 

new P2Y12 antagonists with predictable and efficient inhibition of platelet function in all patients and minor 

adverse effects were required to be designed. 

 

5.1.3 Prasugrel 

Prasugrel is a third-generation member of oral thienopyridine [93]. Prasugrel should also undergo metabolism to 

generate an active form that blocks P2Y12 selectively and irreversibly [120]. Prasugrel is completely and rapidly 

absorbed and extensively metabolized in humans [121]. The active metabolite is detectable in plasma after 15 

min and reaches maximum concentration at 30 min [121]. The cytochrome isoenzymes that are responsible for 

the generation of the active metabolite are mainly CYP3A and CYP2B6, and to a lesser extent CYP2C9, 

CYP2C19 and CYP2D6 [122]. Hence the common loss-of-function mutations in CYP2C9 and CYP2C19 which 

affect clopidogrel, hardly interfere with the formation of the prasugrel active metabolite [117]. Furthermore, 

intestinal CYP3A contributes more in the generation of an active metabolite as compared with hepatic CYP3A 

which can explain the rapid appearance of active metabolite in plasma [103]. In addition, prasugrel has been 

demonstrated to be more rapid, potent and consistent in inhibition of platelet function than clopidogrel [120]. It 

is transformed into its active metabolite more efficiently as compared with clopidogrel [120]. The maximal 

effect of prasugrel (60 mg loading dose) began to plateau approximately 1 h after administration compared to 

about 4 h for clopidogrel (300 mg loading dose) [120]. A single oral administration of prasugrel results in a 

dose-related inhibition of binding 2-MeSADP to platelets in rats about 10 - fold more potent than that of 

clopidogrel [123].  

In stable aspirin-treated patients with coronary artery disease, prasugrel administration also resulted in 

greater inhibition of platelet aggregation and a lower rate of drug-resistance compared with clopidogrel [124]. 

Furthermore, it has been reported that active metabolite of prasugrel enhances the inhibitory effect on platelet 

aggregation of agents that acts via raising cAMP (e.g. prostaglandin I2, adenosine and forskolin) [125]. The 

antiaggregation effects of prasugrel are observed at 30 min, and lasts until 72 h after administration which 

demonstrates fast onset and long duration of action of this product [93].  

Prasugrel (60 mg loading dose and 10 mg/day maintenance dose) was more potent in inhibition of 

platelet than clopidogrel (a 600 mg loading dose and 150 mg/day maintenance therapy) [126]. The Trial to 

Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel–Thrombolysis 

in Myocardial Infarction (TRITON–TIMI) 38, a phase 3 trial involving patients with acute coronary syndromes 

with scheduled percutaneous coronary intervention, showed that prasugrel administration reduced the rates of 

ischemic events (e.g. stent thrombosis) compared to clopidogrel however increased the risk of major bleeding 

with fatal consequences [127]. Prasugrel also inhibits P2Y12 irreversibly hence the limitation of slow offset of 

action remains as for clopidogrel [87]. Therefore, prasugrel administration may not efficiently replace 

clopidogrel.  

 

5.2 Direct P2Y12 inhibitors 

In order to cover these gaps for inhibiting aggregation of platelets by fast-acting and reversible antagonists with 

short half-lives, direct P2Y12 antagonists have been recently developed. 
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5.2.1 Ticagrelor  

Ticagrelor (AZD6140) is the first oral reversible ADP P2Y12 receptor antagonist and a member of 

cyclopentyltriazolopyrimidine class [128, 129]. It has been reported that the P2Y12 receptor is targeted by 

ticagrelor through a mechanism that is not competitive with ADP suggesting the presence of an independent 

receptor binding site [130]. Iyú et al. have also revealed that ticagrelor mainly affect P2Y12 receptors [131] with 

the ability to enhance the inhibitory effect of natural (e.g. vascular prostaglandins I2, D2 and adenosine) and other 

(e.g. forskolin) modulators of platelet functions which are raising intracellular cAMP through interaction with 

Gs-coupled receptor [125]. This may be a great advantage for humans [125]. 

Further metabolic conversion is not required for ticagrelor as it directly and dose-dependently inhibits 

P2Y12 receptor with about 95% inhibition of platelet aggregation within 2 – 4 h [128]. Ticagrelor has an early 

onset of action within 2 h with no loading dose [132, 133]. Due to a short half-life of about 12 h [128, 134], this 

product requires to administer twice-daily [132, 133]. Another advantage of ticagrelor compared to 

thienopyridines family is shorter time for drug offset after ticagrelor withdrawal [128, 132, 133]. 

Ticagrelor dose of 90 mg twice daily has demonstrated higher and less fluctuated levels of platelet 

inhibition compared with standard-dose regimens of clopidogrel [133]. Also, single oral dose of ticagrelor up to 

400 mg daily was safe and well-tolerated in healthy subjects [128]. While ticagrelor shows similar safety and 

tolerability to clopidogrel in patients with non-ST-segment elevation acute coronary syndrome, its reversible 

inhibition of P2Y12 receptor is beneficial in rapid initiation of coronary bypass and surgical procedures after drug 

discontinuation [134]. Furthermore, PLATelet inhibition and clinical Outcomes (PLATO) trial; phase 3, 

randomized, double blinded, parallel-group multinationals clinical study, revealed that treatment with ticagrelor 

as compared to clopidogrel in patients who had an acute coronary syndrome, with or without ST-segment 

elevation, significantly reduced the mortality rate from vascular causes (e.g. myocardial infarction or stroke) 

[135]. While the rate of overall bleeding remained the same for both treatments, there was an enhancement in the 

rate of non-procedure related bleeding in ticagrelor-treated group [135]. However, three subgroups in PLATO 

trial, including patients enrolled in North America, males < 82 kg or females < 71 kg and patients not on lipid-

lowering medications, did not benefit from ticagrelor treatment [135]. The controversial reports in patients 

enrolled in North America may be due to geographical differences between populations of patients [135] or 

pattern of medications practice as aspirin maintenance dose was identified as a potential explanation for the 

regional differences in North American patients [136]. However this aspect requires more investigation. 

Ticagrelor administration (180 mg load and 75 mg per day maintenance dose) also results in more rapid 

and superior platelet inhibition than high loading dose of clopidogrel (600 mg load and 90 mg twice a day 

maintenance dose) in patients with stable coronary artery disease [137]. This inhibition was sustained during the 

maintenance phase and was faster in offset after discontinuation of treatment [137]. In addition, in patients with 

acute coronary syndrome managed a non-invasive treatment strategy, more intense P2Y12 receptor inhibition 

with ticagrelor achieved a clinically relevant reduction in ischemic events and mortality but with no major 

increase in bleeding compared with clopidogrel [138].  

It has been also demonstrated that the greater antiplatelet effect of ticagrelor compared to clopidogrel is 

irrespective of CYP2C19 and ABCB1 polymorphism [139, 140]. Although CYP2C19 genotype affected the 

antiplatelet effect of clopidogrel, no effect was observed during ticagrelor therapy [139]. Hence administration of 
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ticagrelor instead of clopidogrel eliminates the need for genetic testing before dual antiplatelet treatment with 

aspirin [140]. Ticagrelor treatment also overcomes nonresponsiveness to clopidogrel since its antiplatelet effect 

is similar in responders and nonresponders [141].  

There were however higher rates of dyspnoea, hypotension, and nausea in patients treated with 

ticagrelor [134]. The respiratory side effects occurring after oral ticagrelor or intravenous cangrelor may be due 

to the development of mild asymptomatic thrombotic thrombocytopenic purpura advancing to more acute 

scenario including fluid retention and dyspnoea because of the reversible nature of these drugs [142]. Dyspnoea 

is often arising during the first week of treatment with ticagrelor at mild or moderate level of severity however 

usually transient in spite of continuing therapy [143]. The more frequent incidence of dyspnoea may be due to 

modulation of adenosine metabolism [134]. However further studies are required to investigate ticagrelor side 

effects. 

 

5.2.2 Cangrelor  

Cangrelor (AR-C69931MX) is a potent, selective and competitive P2Y12 receptor antagonist that is administered 

intravenously [129, 144]. Cangrelor is an analog of ATP, natural P2Y12 receptor antagonist, with inhibitory 

effect in a dose-dependent manner [129, 145]. It has been also reported that cangrelor enhances platelet cAMP 

level through unidentified platelet Gs protein-coupled receptor mediating inhibition of platelet function [146]. 

Whereas, similar pattern of action to ticagrelor in promoting the inhibitory effect of natural modulators of 

platelet functions or other agents that act via increasing cAMP with the main effect of cangrelor on P2Y12 

receptors was reported by another group [125, 131]. 

Cangrelor acts directly on the P2Y12 receptor with a rapid onset of action (approximately 15 [144] to 30 

min), rapidly achieves steady-state inhibition of platelet aggregation with a half-life of approximately 2 – 5 min 

[145] and clearance at steady state of 12.7 ml/min per kg [147]. In addition, cangrelor does not require to be 

metabolized to form active product and directly inhibits the P2Y12 receptor. Therefore cangrelor has a rapid 

reversal effect, as 70% of patients recovered more than 60% of baseline aggregation response after 1 h of 

termination of administration [145]. This is a great advantage in patients with hemorrhagic complications or 

required surgical intervention [145]. In patients undergoing percutaneous coronary intervention, intravenous 

cangrelor (4 µg/kg per minute) also compares favourably with abciximab (a glycoprotein IIb/IIIa receptor 

antagonist) with acceptable bleeding risk and adverse cardiac events while reaching rapid, reversible inhibition 

of platelet aggregation with less side effect of prolonged bleeding time [144]. In addition, acceptable safety, 

tolerability and efficacy of adjunctive cangrelor administration with fibrinolysis suggested the potential of this 

combination in the treatment of acute myocardial infarction [148].  

Following acute in-hospital, patients receive clopidogrel treatment to prevent further cardiovascular 

complications [149]. To achieve sustained platelet P2Y12 inhibition in patients treated with cangrelor, 

clopidogrel should be administered when the cangrelor treatment is terminated since simultaneous administration 

of both drugs prevent the effect of a 600 mg loading dose of clopidogrel 4 – 6 h later [149]. An in vitro study 

showed that cangrelor modulates the platelet function inhibitory effect of the active metabolites of clopidogrel or 

prasugrel hence careful consideration should be given for co-administration of these drugs [150].  

Periprocedural cangrelor during percutaneous coronary intervention followed by 600 mg of clopidogrel 

was not superior to placebo followed by 600 mg of clopidogrel in reducing primary end point of death from any 
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cause including myocardial infarction, or ischemia-driven revascularization at 48 h, whereas the prespecified 

secondary end points of stent thrombosis and death were lower in the cangrelor group, with no significant 

increase in the rate of transfusion [151]. Administration of cangrelor 30 min before percutaneous coronary 

intervention for 2 h after percutaneous coronary intervention however was not superior to an oral loading dose of 

600 mg of clopidogrel, administered 30 min prior to the procedure, in decreasing the composite end point of 

death from any cause, myocardial infarction, or ischemia-driven revascularization at 48 hours [152]. Hence 

implication of cangelor in routine practice may be questionable.  

On the other hand, study of bridging antiplatelet therapy with cangrelor in patients undergoing cardiac 

surgery revealed that among patients who discontinue thienopyridine therapy prior to cardiac surgery, the use of 

cangrelor for at least 48 h compared with placebo resulted in a higher rate of maintenance of platelet inhibition 

with low risk of thrombotic events and no significant excess bleeding complications [153]. Therefore, 

intravenous cangrelor may be a feasible management strategy in patients waiting for cardiac surgery who require 

prolonged platelet P2Y12 inhibition after thienopyridine discontinuation [153]. However more investigation is 

required to study cangrelor ADP blockade effects as an antiplatelet therapy. 

 

5.2.3 Elinogrel 

Elinogrel (PRT060128) is an investigational, potent, competitive, direct acting reversible P2Y12 receptor 

inhibitor with the fast onset and offset of action that can be administered both orally and intravenously [154, 

155]. Elinogrel belongs to the family of quinazolinedione [155]. Administration of elinogrel intravenously 

showed well-tolerability and safety, and achieves immediate and high level of platelet inhibition [154]. The 

average terminal half-life at the 40 mg elinogrel administered intravenously was about 11 h and maximum 

platelet inhibition achieved at 20 min [154]. The inhibitory effect of platelet was completely reversible within 8 

– 24 h of elinogrel administration [155, 156]. This is an advantage in reducing bleeding side effect in the setting 

of urgent surgery and avoiding unnecessary delay before nonurgent surgery [157]. Preliminary data on safety 

and tolerability of single dose intravenous loading doses (10 – 60 mg) of elinogrel have recommended this 

treatment as an adjunctive therapy for primary percutaneous coronary intervention for ST-elevation myocardial 

infarction [156].  

Pharmacologically, the intravenous and oral forms of elinogrel are identical [157]. Therefore the 

potential for the vulnerability associated with the transition from one intravenous to a different oral P2Y12 

receptor inhibitor may be avoided [157]. It has been suggested that one single 60 mg oral dose of elinogrel 

overcomes, reversibly, the high platelet reactivity due to CYP2C19*2 genotype on standard dual-antiplatelet 

therapy with aspirin and clopidogrel [158]. 

Currently, a phase II randomized, double-blind, clopidogrel-controlled trial is undergoing to assess the 

safety, tolerability and preliminary efficacy of elinogrel (intravenous and oral) administration compared with 

clopidogrel in patients undergoing nonurgent percutaneous coronary intervention [157].  

Elinogrel has been indicated to possess greater therapeutic index (less bleeding) compared with that in 

P2Y12
-/-

 mice which may be because of the reversible and competitive nature of this antiplatelet drug [159]. 

However, thienopyridines have decreased therapeutic index (increased bleeding) possibly due to P2Y12-

independent off-targeting effects at the vessel wall [159]. Furthermore, animal studies have revealed that 

equivalent, maximal levels of platelet aggregation inhibition in response to ADP was achieved by elinogrel (60 
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mg/kg) whereas clopidogrel (50 mg/kg) failed to reproduce the phenotype associated with P2Y12 deficiency 

[160]. In addition, clopidogrel is not able to block the inducible pool of P2Y12 exists on platelets, which can be 

exposed upon platelet activation in response to strong agonist and contributes to thrombosis, whereas elinogrel 

can block this pool [160]. Hence pharmacological properties of elinogrel make this drug an attractive antiplatelet 

agent. However more extensive clinical investigations are required to determine the efficacy and safety of this 

product. 

 

6 Concluding remarks 

In summary, purinergic P2Y12 receptor, a member of G protein-coupled receptors, is essential in normal 

hemostatic process and pathophysiological conditions. Understanding of the structure and the signaling 

pathways of the P2Y12 receptor is pivotal to identify ideal targets for antithrombotic drugs. The 342 amino acid 

residues P2Y12 receptor structure contains 7 hydrophobic transmembrane regions in conjunction with 3 

extracellular loops and 3 intracellular loops with 10 cysteine residues. Stimulation of P2Y12 by ADP results in 

coupling this receptor with αi2 subunit of G protein hence activation of various signaling pathways responsible 

for amplification of platelet activation and stabilization of platelet aggregates. Deficiency of this receptor results 

in platelet dysfunction and bleeding diathesis indicating the possibility of targeting this receptor as an 

antithrombotic drug. Selective tissue distribution of P2Y12 receptor compared with other purinergic receptors, 

e.g. P2Y1, also makes this receptor a great advantage as a target for anti-thrombotic therapy. Current inhibitors of 

P2Y12 receptor are classified into indirect inhibitors or thienopyridines family (ticlopidine, clopidogrel and 

prasugrel), and direct P2Y12 inhibitors (ticagrelor, cangrelor and elinogrel). Clopidogrel is the most commonly 

prescribed inhibitor of P2Y12 receptor. However due to therapeutic limitations of this prodrug, such as slow 

onset and offset and interindividual variability, direct inhibitors of P2Y12 receptor are currently under 

investigation.  
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Fig 1 Biochemistry of human P2Y12 receptor. The human P2Y12 receptor structure contains 7 hydrophobic 

transmembrane (TM) regions connected by 3 extracellular loops (EL) and 3 intracellular loops. The human 

P2Y12 receptor contains 342 amino acid residues with 10 cysteine residues. Four extracellular cysteines are at 

position 17, 97, 175, and 270 which are likely to form 2 disulfide bridges between N-terminal domain and EL3, 

and between EL1 and EL2. There are five cysteine residues at position 194, 208, 248, 292, and 302 within the 

transmembrane domains, and one intracellular cysteine residue at position 315. 

 

Fig 2 Overview of purinergic P2Y12 receptor signaling in platelets. While the P2Y1 receptor initiates platelet 

activation in response to ADP, P2Y12 receptor completes and amplifies platelet activation and aggregation. The 

P2Y12 receptor couples to Gαi2 G protein subunit pathway. Agonists, e.g. ADP, stimulate the heterotrimeric G 

protein resulting in dissociation of Gα and Gβγ subunits. The Gαi2 inhibits production of adenyl cyclase hence 

reduces cytosolic cyclic adenosine monophosphate (cAMP) concentrations, cAMP-dependent protein kinase 

(PKA) and phosphorylated vasodilator-stimulated phosphoprotein (VASP). On the other hand, Gβγ subunit 

stimulates phosphatidyl inositol-3 kinase (PI-3K), Rap1b and Akt activities. In addition, the βγ dimers can 

activate the G-protein-gated inwardly rectifying potassium channels (GIRKs) that in conjunction with P2Y1 

signaling pathways mediating activation of Src, ERK, cytosolic phospholipase A2 (cPLA2) and thromboxane A2 

generation.  
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