Autonomous Vehicle-Target
Assignment: A Game-Theoretical
Formulation

We consider an autonomous vehicle-target assignment problem where a group of vehicles
are expected to optimally assign themselves to a set of targets. We introduce a game-
theoretical formulation of the problem in which the vehicles are viewed as self-interested
decision makers. Thus, we seek the optimization of a global utility function through
autonomous vehicles that are capable of making individually rational decisions to opti-
mize their own utility functions. The first important aspect of the problem is to choose the
utility functions of the vehicles in such a way that the objectives of the vehicles are
localized to each vehicle yet aligned with a global utility function. The second important
aspect of the problem is to equip the vehicles with an appropriate negotiation mechanism
by which each vehicle pursues the optimization of its own utility function. We present
several design procedures and accompanying caveats for vehicle utility design. We
present two new negotiation mechanisms, namely, “generalized regret monitoring with
fading memory and inertia” and “selective spatial adaptive play,” and provide accom-
panying proofs of their convergence. Finally, we present simulations that illustrate how
vehicle negotiations can consistently lead to near-optimal assignments provided that the
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utilities of the vehicles are designed appropriately. [DOI: 10.1115/1.2766722]

1 Introduction

Designing autonomous vehicles with intelligent and coordi-
nated action capabilities to achieve an overall objective is a major
part of the recent theme of “cooperative control,” which has re-
ceived significant attention in recent years. Whereas much of the
work in this area focuses on “kinetic” coordination, e.g., multive-
hicle trajectory generation (e.g., [1], and references therein), the
focus here is on strategic coordination. In particular, we consider
an autonomous vehicle-target assignment problem (illustrated in
Fig. 1), where a group of vehicles are expected to assign them-
selves to a set of targets to optimize a global utility function.
When viewed as a combinatorial optimization problem, the
vehicle-target assignment problem considered in this paper is a
generalization of the well-known weapon-target assignment prob-
lem [2] to the case where the global utility is a general function of
the vehicle-target assignments. In its full generality, the weapon-
target assignment problem is known to be nondeterministic-
polynomial-time-complete [2], and the existing literature on the
weapon-target assignment problem is concentrated on heuristic
methods to quickly obtain near optimal assignments in relatively
large instances of the problem—yvery often with no guarantees on
the degree of suboptimality (cf., [3], and references therein).
Therefore, from an optimization viewpoint, the vehicle-target as-
signment problem considered in this paper is, in general, a hard
problem, even though optimal assignments can be obtained quite
efficiently in very special cases.

Our viewpoint in this paper deviates from that of direct optimi-
zation. Rather, we emphasize the design of vehicles that are indi-
vidually capable of making coordination decisions to optimize
their own utilities, which then indirectly translates to the optimi-
zation of a global utility function. The main potential benefit of
this approach is to enable autonomous vehicles that are individu-
ally capable of operating in uncertain and adversarial environ-
ments, with limited information, communication, and computa-

Contributed by the Dynamic Systems, Measurement, and Control Division of
ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CON-
TROL. Manuscript received March 31, 2006; final manuscript received April 1, 2007.
Review conducted by Tal Shima.

584 / Vol. 129, SEPTEMBER 2007

Copyright © 2007 by ASME

tion, to autonomously optimize a global utility. The optimization
methods available in the literature are not suitable for our pur-
poses because even a distributed implementation of such optimi-
zation algorithms need not induce “individually rational” behav-
ior, which is the key to realize the expected benefits of our
approach. Furthermore, an optimization approach would typically
require constant dissemination of global information throughout
the network of the vehicles as well as increased communication
and computation.

Accordingly, in this paper we formulate our autonomous
vehicle-target assignment problem as a multiplayer game [4,5],
where each vehicle is interested in optimizing its own utility. We
use the notion of pure Nash equilibrium to represent the assign-
ments that are agreeable to the rational vehicles, i.e., the assign-
ments at which there is no incentive for any vehicle to unilaterally
deviate. We use algorithms for multiplayer learning in games as
negotiation mechanisms by which the vehicles seek to optimize
their utilities. The problem of optimizing a global utility function
by the autonomous vehicles then reduces to the proper design of
(i) the vehicle utilities and (ii) the negotiation mechanisms.

Designing vehicle utilities is essential to obtaining desirable
collective behavior through self-interested vehicles (cf., [6]). An
important consideration in designing the vehicle utilities is that
the vehicle utility functions should be “aligned” with the global
utility function in the sense that agreeable assignments (i.e., Nash
equilibria) should lead to high, ideally maximal, global utility.
There are multiple ways that such alignment can be achieved. An
obvious instance is to set the vehicle utilities equal the global
utility. This choice is not desirable in the case of a large number of
interaction vehicles, because another consideration in designing
the vehicle utilities is that the vehicle utilities should be “local-
ized,” i.e., a vehicle’s utility should depend only on the local
information available to the vehicle. For example, in a large
vehicle-target assignment problem, the vehicles may have range
restrictions and a vehicle may not even be aware of the targets
and/or the vehicles outside its range. In such a case, a vehicle
whose utility is set to the global utility would not have sufficient
information to compute its own utility. Therefore, a vehicle’s util-
ity should be localized to its range while maintaining the align-
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Fig. 1 lllustration of vehicle target assignment

ment with the global utility. More generally, we will discuss the
properties of being aligned and localized for several utility design
procedures in Sec. 3.

Obtaining optimal assignments using the approach presented in
this paper also requires that the vehicles use a negotiation mecha-
nism that is convergent in the multiplayer game induced by the
vehicle utilities. We will show that when vehicle utilities are
aligned with the global utility, they always lead to a class of
games known as “ordinal potential games” [7]. The significance
of this connection is that certain multiplayer learning algorithms,
such as fictitious play (FP) [8], are known to converge in potential
games, and hence can be used as vehicle negotiation mechanisms.
However, FP has an intensive informational requirement. Spatial
adaptive play (SAP) [9] is another such algorithm, which leads to
an optimizer of the potential function in potential games with
arbitrarily high probability. Although SAP reduces the information
requirement, there can be a high implementation cost when ve-
hicles have a large number of possible actions.

This paper goes beyond existing work in the area through the
introduction of new negotiating mechanisms that alleviate the in-
formational and implementation requirement, namely, “general-
ized regret monitoring with fading memory and inertia” and “se-
lective spatial adaptive play.” We establish new convergence
results for both algorithms and simulate their performance on an
illustrative weapon-target assignment problem.

The remainder of this paper is organized as follows. Section 2
sets up an autonomous vehicle-target assignment problem as a
multiplayer game. Section 3 discusses the issue of designing the
utility functions of the vehicles that are localized to each vehicle
yet aligned with a given global utility function. Section 4 reviews
selected learning algorithms available in the literature and pre-
sents two new algorithms, along with convergence results, that
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offer some advantages over existing algorithms. Section 5 present
some simulation results to illustrate the possibility of obtaining
near optimal assignments through vehicle negotiations. Finally,
Section 6 contains some concluding remarks.

2 Game-Theoretical Formulation of an Autonomous
Vehicle-Target Assignment Problem

We begin by considering an optimal assignment problem where
n, vehicles are to be assigned to n, targets. Each entity, whether a
vehicle or a target, may have different characteristics. The ve-
hicles are labeled as Vl,...,V,,U, and the targets are labeled as

10,71, ... ,’Z;,’, where a fictitious target 7, represents the “null tar-
get” or “no target” Let V={V,...)},} and T
:={7y,7),...,7,}. A vehicle can be assigned to any target in its

range, denoted by A;C7 for vehicle V; e V. The null target al-
ways satisfies 7p € A;. Let A:=A; X -+~ X A, . The assignment of
vehicle V; is denoted by a; e A;, and the collection of vehicle
assignments (aj, ... ,anv), called the assignment profile, is denoted
by a. Each assignment profile, a € A, corresponds to a global
utility, U,(a), that can be interpreted as the objective of a global
planner.

We view the vehicles as “autonomous” decision makers, and
accordingly, each vehicle, e.g., vehicle V; € V), is assumed to select
its own target assignment, a; € A;, to maximize its own utility
function, le_(a). In general, vehicle utility functions may be dif-
ferent and each of them may depend on the whole assignment
profile a. Hence, the vehicles do not necessarily face an optimi-
zation problem, but rather, they face a (finite) multiplayer game.
In such a setting, the vehicles are to negotiate an assignment pro-
file that is mutually agreeable. The autonomous target assignment
problem is to design the utilities, Uy,(a), as well as appropriate
negotiation procedures so that the vehicles can negotiate a mutu-
ally agreeable target assignment that yields maximal global utility,
Ugla).

To be able to deal with the intricacies of our autonomous target
assignment problem, we adopt some concepts and methods from
the theory of games [4,5]. We start with the concept of equilib-
rium to characterize the target assignments that are agreeable to
the vehicles. A well-known equilibrium concept for multiplayer
games is the notion of Nash equilibrium. In the context of an
autonomous target assignment problem, a Nash equilibrium is an
assignment profile a*=(a’:, ... ,a: ) such that no vehicle could im-
prove its utility by unilaterally de\l;iating from a”. Before introduc-
ing the notion of Nash equilibrium in more precise terms, we will
introduce some notation. Let a_; denote the collection of the target
assignments of the vehicles other than vehicle V;, i.e.,

a=(ay, ....a;i 1,041, ..., )

and let

A=A X L. XA,
With this notation, we will sometimes write an assignment profile
a as (a;,a_;). Similarly, we may write Uy, (a) as Uy(a;,a_;). Using

the above notation, an assignment profile " is called a pure Nash
equilibrium if, for all vehicles V; eV,

X Ay X Ay X .

UV[(aT,a:-) = max Uy, (a;a_, (1)
aed; !

In this paper, we will represent the agreeable target assignment
profiles by the set of pure Nash equilibria even though in the
literature some non-Nash solution concepts for multiplayer games
are also available. We will introduce one such concept called ef-
ficiency for future reference. An assignment profile is called effi-
cient if there is no other assignment that yields higher utilities to
all vehicles. For given vehicle utilities, a Nash equilibrium assign-
ment may or may not be efficient. Our justification of a pure Nash
equilibrium as an agreeable assignment is based on the autono-
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mous and self-interested nature of the vehicles. Clearly, an effi-
cient pure Nash equilibrium should be more appealing to the ve-
hicles than an inefficient pure Nash equilibrium.

In general, a pure Nash equilibrium may not exist for an arbi-
trary set of vehicle utilities. However, as will be seen in Sec. 3,
any reasonable set of vehicle utilities tailored to the autonomous
vehicle-target problem would have at least one pure Nash equilib-
rium.

We conclude this section with the definition of potential games
and ordinal potential games [7]. These games form an important
class of games because of their relevance to autonomous vehicle-
target assignment as well as their desirable convergence properties
mentioned earlier.

DEFINITION 2.1 ([ORDINAL] POTENTIAL GAMES). A potential
game consists of vehicle utilities, UV[(a), V; eV, and a potential
Sfunction, ¢(a): A—R, such that, for every vehicle, V; eV, for
every a_je A_;, and for every a] ,a! € A;,

Uy(a].a_) - Up(ala_) = dlala) - dlaa,
An ordinal potential game consists of vehicle utilities Uy(a), V;
eV, and a potential function ¢(a): A—R such that, for every
vehicle V; €V, for every a_;e A_;, and for every a/ ,a} € A;,
Uylaj,a_) = Uylaj,a) >0 ¢la;.a) - $lai,a) >0

1

In a potential game, the difference in utility received by any one
vehicle for its two different target choices, when the assignments
of other vehicles are fixed, can be measured by a potential func-
tion that only depends on the assignment profile and not on the
label of any vehicle.

In an ordinal potential game, an improvement in utility received
by any one vehicle for its two different target choices, when the
assignments of other vehicles are fixed, always results in an im-
provement of a potential function that, again, only depends on the
assignment profile and not on the label of any vehicle. Clearly,
ordinal potential games form a broader class than potential games.

3 Utility Design

In this section, we discuss various important aspects of design-
ing the vehicle utilities to achieve a high global utility. We cite
[7,10] as the key references for this section, since we freely use
some of the terminology and the ideas presented in them. To make
the discussion more concrete and relevant, we assume a certain
structure for the global utility, even though it is possible to present
the ideas at a more abstract level. We assume that all vehicles that
assign themselves to a particular target form a team and engage
their common target in a coordinated manner. An engagement
with target 7; €7 generates some utility denoted by UTi(a);
U%(a)zo for any a.

It is important to distinguish between a target utility, Uz (a),
and a vehicle utility, Uv,.(a)- The realized target utility represjents
the overall value for engaging target 7;, whereas a vehicle utility
partly reflects vehicle V;’s share of that value. Furthermore, it may
be that vehicle V; shares this reward even if it did not engage
target 7;. This will depend on the final specification of vehicle
utilities.

We will assume that the utility generated by an engagement
with target 7; depends only on the characteristics of target 7; and
the vehicles engaging target 7;. This is stated more precisely in the
following assumption.

ASSUMPTION 3.1. Let a and @ be two action profiles in A, and
for any target, T; € 1, define the sets

S;i={VieVlg;=T} and S;={V,eVa=T}
Then,

$;=58;= Ur(a)= U7(@)
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We now define the global utility to be the total sum of the
utilities generated by all engagements, i.e.,

Uga)= 2 Uzla) 2)

7;-67

This summation is only one approach to aggregate the target util-
ity functions. See [11] for a more general discussion from the
perspective of multiobjective optimization.

It will be convenient to model an engagement with a target as a
random event that is assumed to be independent of the other target
engagements. At the end of an engagement, the target and some of
the engaging vehicles are destroyed with certain probability. The
statistics of the outcome of an engagement depend on the charac-
teristics of the target as well as the composition of the engaging
vehicles. As an example, it may be the case that only a particular
team of vehicles may destroy a particular target with reasonable
probability. In this case, the utility generated by an engagement is
taken to be the expected difference between the value of a de-
stroyed target and the total value of the destroyed vehicles. These
issues are discussed further for the well-known weapon-target as-
signment problem in Sec. 5.

An important consideration in specifying the vehicle utilities,
le_(a), i=1,...,n,, is to make them “aligned” with the global
utility, U,(a). Ideally, this means that the vehicles can only agree
on an optimal assignment profile, i.e., an assignment profile that
maximizes the global utility. Because it is not always straightfor-
ward to achieve the alignment of the vehicle utilities with the
global utility in this ideal sense (without first calculating an opti-
mal assignment), we adopt a more relaxed notion of alignment
from [10]. That is, a vehicle can improve its own utility by uni-
lateral action if and only if the same unilateral action also im-
proves the global utility.

DEFINITION 3.1 (ALIGNMENT). We will say that a set of vehicle
utilities Uy(a), Vi€V, is aligned' with the global utility Uy(a)
when the following condition is satisfied. For every vehicle, V;
eV, for every a_;e A_;, and for every a] ,a; € A,,

UV[(G,-',G—;') - UV[(GZ’,H—,') >0 Ug(a[”a—i) - Ug(a;’ﬂ—i) >0

3)

We see that the notion of alignment coincides with the notion of
ordinal potential games in Definition 2.1.

It turns out that alignment does not rule out pure Nash equilib-
ria that may be suboptimal from the global utility perspective.
Moreover, such suboptimal pure Nash equilibria may even yield
the highest utilities to all vehicles and hence may be efficient.
Nevertheless, alignment also guarantees that the optimal assign-
ment profiles are always included in the set of pure Nash equilib-
ria; hence, they are agreeable to the vehicles even though they
may be inefficient.

The above discussion on alignment is summarized by the fol-
lowing proposition, whose proof is straightforward.

PROPOSITION 3.1. Let ay denote an optimal assignment profile,
ie.,

Aoy € arg maxU,(a)
acA
Under the alignment condition (3), the resulting game is an ordi-

nal potential game that has aqy as a (possibly nonunique) pure
Nash equilibrium.

3.1 Identical Interest Utility (IIU). One obvious, but ulti-
mately ineffective, way of making the vehicle utilities aligned
with the global utility is to set all vehicle utilities to the global
utility. In game-theory terminology, setting

Uv,.(a) =U,(a), for all vehicles V; eV (4)

"The notion of alignment we adopt here is called factoredness in [10].
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results in an identical interest game. Obviously, an identical inter-
est game with UVi(a)ng(a), for all vehicles V; eV, is also a
potential game with the potential Ug(a), and hence, the vehicle
utilities (4) are aligned with the global utility. In fact, optimal
assignments in this case yield the highest vehicle utilities and
therefore are efficient. However, suboptimal Nash equilibria may
still exist.

As will be seen later, the vehicles negotiate by proposing tar-
gets and responding to the previous target assignment proposals
that are exchanged among the vehicles. Each vehicle whose utility
is set to the global utility needs to know (i) the proposals made by
all other vehicles as well as (ii) the characteristics of all the ve-
hicles and the targets to be able to generate a new proposal. The
reason for this is that vehicle V;’s utility would depend on all
engagements with all targets, including those that are not in A;.
Therefore, when the vehicle utilities are set to the global utility,
continuous dissemination of global information is required among
the vehicles.

3.2 Range-Restricted Utility (RRU). A possible way of
making the vehicle utilities more localized than IIU would be to
set the utility of vehicle V; equal to the sum of the utilities gen-
erated by the engagements with the targets that belong to vehicle
V;’s target set A;, i.e.,

TE.A

Uy(a)= for all vehicles V; eV (5)

Note that in this case the global information requirement on the
vehicles is alleviated. Moreover, the vehicle utilities (5) are still
aligned with the global utility. This guarantees that the optimal
assignments are agreeable to the vehicles, but they may be ineffi-
cient; see Example 3.3. In fact, the vehicle utilities lead to a po-
tential game; see [7]. The following proposition is an immediate
consequence of Assumption 3.1.

PROPOSITION 3.2. Vehicle utilities that satisfy (5) form a poten-
tial game with the global utility U,(a) serving as a potential
function.

Note that when all vehicles have the same set of available tar-
gets, i.e., A1=---=A,,U, then (5) leads to an identical interest
game.

A concern regarding vehicle utilities (4) (and possibly (5))
stems from the so-called learnability issue introduced in [10]. That
is, a vehicle may not be able to influence its own utility in a
significant way when a large number of vehicles can assign them-
selves to the same large set of targets. In this case, since the utility
of a vehicle is the total sum of the utilities generated by a large
number of engagements involving a large number of targets and
vehicles, the proposals made by an individual vehicle may not
have any significant effect on its own utility. Hence, a negotiating
vehicle may find itself approximately indifferent to the available
target choices if the negotiation mechanism employed is utility
based, i.e., the vehicle proposes targets in response to the actual
utilities corresponding to its past proposals, as in reinforcement
learning.

3.3 Equally Shared Utility (ESU). One way to limit the in-
fluence of other vehicles on vehicle V;’s utility is to set

if a;=7; (6)

where nT(a) is the total number of vehicles engaging target 7;.
The rationale behind (6) is to distribute the utility generated by an
engagement equally among the engaging vehicles. Note that in
this case vehicle V;’s utility is independent of the engagements to
which vehicle V; does not participate.

Even though the total sum of vehicle utilities (6) equals the
global utility, it turns out that (6) need not be exactly aligned with
the global utility.

Journal of Dynamic Systems, Measurement, and Control

Vo

T T T
T 0,0 0,2 0,10
Vii T 2,0 1,1 2,10
T 10,0 10,2 5,5

Fig. 2 Misaligned vehicle utilities

Example 3.1. Consider two targets 7; and 7, with values 2 and
10, respectively, and two anonymous vehicles V| and V), i.e., V;
and V), have identical characteristics. Assume that each vehicle is
individually capable of destroying any one of the targets with
probability 1, while the targets in no case have any chance of
destroying any of the vehicles. The vehicle utilities in this ex-
ample can be represented in the matrix form, shown in Fig. 2,
where if vehicle V; € {V;,V,} chooses target a; € {7,,7;,7,} then
the first number (respectively the second number) in the entry
(a;,a,) represents the utility to the first vehicle (respectively to
the second vehicle). The global planner would of course prefer
each vehicle to engage a different target, since this would yield a
maximal global utility 12. However, such an optimal assignment
profile might leave the vehicle engaging the low-value target un-
satisfied with a utility 2, and this unsatisfied vehicle might be able
to improve its utility to 5 by unilaterally switching to the high-
value target at the expense of lowering the global utility to 10.
Because of the misalignment of (6) with the global utility in this
example, an optimal assignment profile may not be agreeable by
all vehicles, whereas the vehicles may find the suboptimal Nash
equilibrium assignment (a;,a,)=(7,,7,) agreeable.

However, in the case of anonymous vehicles, (6) does lead to a
potential game.

DEFINITION 3.2 (ANONYMITY). Vehicles are anonymous if for
any permutation

o{l,2,....n,} —{1,2,...,n,}
and for any two assignments, a and a, related by
ai=ayp, Vie{l,2,....n}
the equality
UTI_(a) = UT,.(&)

holds for any target T;.

As the terminology implies, the utility generated by an engage-
ment with a target does not depend on the identities of the ve-
hicles engaging the target, but only the number of vehicles engag-
ing the target.

PROPOSITION 3.3. Anonymous vehicles with utilities that satisfy
(6) form a potential game with potential function

Ur(6)
¢

nT(a)

b= S

TeT[l

where nT(a) is the total number of vehicles assigned to target T;
and UT(€ is the utility generated by an engagement of € anony-
mous vehicles with target T;.

Hence, in the case of anonymous vehicles, (6) is aligned with
the above potential function, which is the same potential function
introduced in [12] in the context of so-called congestion games,
but different from the global utility function U,(a). The signifi-
cance of this observation is that the existence of a potential func-
tion associated with the vehicle utilities guarantees the existence
of agreeable (possibly suboptimal) assignment profiles in the form
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T T T
T 0,0 0,-2 0,-2
Vii T 10,0 4,4 10, -2
T 10,0 10, -2 4,4

Fig. 3 Misaligned vehicle utilities with no pure Nash
equilibrium

of pure Nash equilibria. Furthermore, there exist learning algo-
rithms that are known to converge in potential games and these
convergent learning algorithms can be used by the vehicles as
negotiation mechanisms always leading to a settlement on an as-
signment profile. If the vehicles are not anonymous, then the mis-
alignment of the vehicle utilities (6) with the global utility can be
even more severe.

Example 3.2. Consider two targets 7; and 7, with values 10
each, and two distinguishable vehicles, V| and V,, with values 2
each. Assume that vehicle V) is individually capable of destroying
any one of the targets with probability one, and not one of the
targets is ever capable of destroying V;. Assume further that ve-
hicle V), is never capable of destroying any of the targets, and any
one of the targets can destroy vehicle ), with probability one.
This setup leads to the vehicle utilities shown in Fig. 3. In this
example, the two vehicles may not be able to agree on any assign-
ment profile, optimal or suboptimal, because while vehicle V;
would be better off by engaging a target alone, vehicle V, would
be better off by engaging a target together with vehicle V. Yet,
the global planner would prefer vehicle V| engaging one of the
targets and vehicle V, not engaging any target. If these two ve-
hicles were to use a negotiation mechanism that allows settlement
only on a pure Nash equilibrium, then they would not be able to
agree on any assignment because a pure Nash equilibrium does
not exist in this example. A mixed, but not pure, Nash equilibrium
is still guaranteed to exist, but would not lead to an agreement on
a particular assignment. Therefore, in the distinguishable vehicles
case, the vehicle utilities (6) might lead to a situation where the
vehicles are not only in conflict with the global planner but also in
conflict among themselves.

3.4 Wonderful Life Utility (WLU). A solution to the prob-
lem of designing individual utility functions that are more learn-
able than (4) or (5) and still aligned with the global utility is
offered in [10] in the form of a family of utility structures called
the wonderful life utility. In our context, a particular WLU struc-
ture would be obtained by setting the utility of a vehicle to the
marginal contribution made by the vehicle to the global utility,
ie.,

Uylapa_) =U,lana_) = UyTy,a_), forall vehicles VeV

(7
From the definition of the global utility (2), the WLU (7) can be
written as

UV’_(al‘,a_,') = U']}(ai,a_i) - U']}(IZ—O,a_i N if a; = 7;

for all vehicles V; € V, which means that the utility of a vehicle is
its marginal contribution to the utility generated by the engage-
ment that the vehicle participates. WLU is expected to make each
vehicle’s utility more learnable by removing the unnecessary de-
pendencies on other vehicles’ assignment decisions, while still
keeping the vehicle utilities aligned with the global utility. It turns
out that WLU (7) also leads to a potential game with the global
utility being the potential function.

588 / Vol. 129, SEPTEMBER 2007

PROPOSITION 3.4. Vehicle utilities that satisfy (7) form a poten-
tial game with the global utility U,(a) serving as a potential
function.

Another interpretation of the WLU is that a vehicle is rewarded
with a side payment equal to the externality it may create by not
assigning itself to any target, which is the idea behind “internal-
izing the externalities™ in economics [13].

3.5 Comparisons. Each of the vehicle utilities ITU (4), RRU
(5), and WLU (7) lead to a potential game with the globally utility
function being the potential function, and hence, they are aligned
with the global utility. This guarantees that the optimal assign-
ments are in each case included in the set of pure Nash equilibria.
However, in each case, there may also be suboptimal Nash equi-
libria that may be pure and/or mixed. There is ample evidence in
the literature that a mixed equilibrium cannot emerge as a stable
outcome of vehicle negotiations, particularly in potential games
(e.g., [14]). However, a suboptimal pure Nash equilibrium can
emerge as a stable outcome, depending on the negotiation mecha-
nism used by the vehicles.

Example 3.3. Consider N>2 vehicles, V;,...,Vy, and N+1
targets, 77, ..., 7y,;, where A;={7;, Ty, }. Assume that any ve-
hicle V; engaging target 7; generates 1 unit of utility. Assume also
that an engagement with target 7y, ; generates O utility unless all
vehicles engage 7y, in which case they generate 2 units of utility.
Clearly, the optimal assignment is given by a"=(7;,T5, ..., 7).
The optimal assignment profile a"is a pure Nash equilibrium when
the vehicle utilities are given by any of (4) and (5), or (7). How-
ever, there is another pure Nash equilibrium &
=(Tyne1>Tnets - -+ » Tns) for any of vehicle utilities (4) and (5), or
(7) which is suboptimal with respect to the global utility. The
global utility and the vehicle utilities corresponding to a” and a™”
are summarized as follows:

Ufa’)=NUya™)=2
va(a*) =N UV,("**) =2 if vehicles utilities are given by (4)
le(a*) =1 Uvi(a**) =2 if vehicles utilities are given by (5) or (7)

Note that the optimality gap N—2 between ¢ and a™ can be
arbitrarily large for large N. Note also that if the vehicle utilities
are given by RRU (5) or WLU (7) the suboptimal Nash equilib-
rium @™ yields higher utilities to all vehicles than the optimal
Nash equilibrium a”.

In the case of RRU or WLU, if the negotiation mechanism
employed by the vehicles were to eliminate the inefficient assign-
ment profiles, the vehicles would never be able to agree on the
optimal assignment a”. This example illustrates the fact that the
vehicle utilities cannot be designed independently of the negotia-
tion mechanism employed by the vehicles.

4 Negotiation Mechanisms

The issue of which Nash equilibrium will emerge as a stable
outcome of vehicle negotiations is studied under the topic of equi-
librium selection in game theory. In this section, we will discuss
equilibrium selection and other important properties of some ne-
gotiation mechanisms. In particular, we will present a negotiation
mechanism from the literature that leads to an optimal Nash equi-
librium in potential games with arbitrarily high probability.

We will adopt various learning algorithms available in the lit-
erature for multiplayer games as vehicle negotiation mechanisms
to make use of the theoretical and computational tools provided
by game theory. The negotiation mechanisms that will be pre-
sented in this section will provide the vehicles with strategic
decision-making capabilities. In particular, each vehicle will ne-
gotiate with other vehicles without any knowledge about the utili-
ties of the other vehicles. One of the reasons for such a require-
ment is that the vehicles may not have the same information
regarding their environment. For example, a vehicle may not
know all the targets and/or the potential collaborating vehicles
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available to another vehicle and, moreover, it may not be possible
to pass on such information due to limited communication band-
width. Another reason for the private utilities requirement is to
make the vehicles truly autonomous in the sense that each vehicle
is individually capable of making robust strategic decisions in
uncertain and adversarial environments. In this case, any indi-
vidual vehicle is cooperative with the other vehicles only to the
extent that cooperation helps the vehicle to maximize its own
utility, which is, of course, carefully designed by the global plan-
ner.

Accordingly, we will consider some negotiation mechanisms
that require each vehicle to know, at most, its own utility function,
the proposals made by the vehicle itself, and the proposals made
by those other vehicles that can influence the utility of the vehicle.
We will review these negotiation mechanisms in terms of conver-
gence, equilibrium selection, and computational efficiency. We
will present our review primarily in the context of potential
games, since many of the vehicle utility structures considered in
Sec. 3 fall into this category. In some cases, we will point to
existing results in the literature, while in some other cases we will
point to open problems.

4.1 Review: Selected Recursive Averaging Algorithms

4.1.1 Action-Based Fictitious Play. Action-based fictitious
play, or simply FP, was originally introduced as a computational
method to calculate the Nash equilibria in zero-sum games [15],
but later proposed as a learning mechanism in multi-player games
(cf., [8]).

One can also think of FP as a negotiation mechanism employed
by the vehicles to select their targets. At each negotiation step, k
=1,2,..., vehicles simultaneously propose targets

a(k) = [al(k)7 [RR 7anv(k)]

where a;(k) € A; is the label of the target proposed by vehicle V;.
The objective is to construct a negotiation mechanism so that the
proposed assignments, a(k), ultimately converge for large k. FP is
one such mechanism that is guaranteed to converge for potential
games.

In FP, the target assignment proposals at stage k are functions of
past proposed assignments over the interval [1,k—1] as follows.
First, enumerate the targets available to vehicle V; as A;
={Al-l, ,A‘I.Ail}. For any target index j e [1,]A4;]], let n(k;V,) de-
note the total number of times vehicle V; proposed target A{ up to
stage k. Now define the empirical frequency vector, g;(k) e R,
of vehicle V; as follows:

n(k=1;V)  ny(k—=1:;V) k= 1:V)
Qi(k)= X
-1 k-1 k-1

In words, g;(k) reflects the histogram of proposed target assign-
ments by vehicle V; over the interval [1,k—1]. Note that the ele-
ments of the empirical frequency vector are all positive and sum
to unity. Therefore, ¢;(k) can be identified with a probability vec-
tor on the probability simplex of dimension |.4,].

We are now set to define the FP process. At stage k, vehicle V;
selects its proposed assignment a;(k) € A; in accordance with
maximizing its expected utility as though all other vehicles make
a simultaneous and independent random selection of their actions,
a_;, based on the product distribution defined by empirical fre-
quencies, q1(k), ....q;-1(k),qis1(K), ....q, (), ie.,

N s ney

a(k) € argmaxE, [Uy(a,a_;)]
acd; !

In case the maximizer is not unique, then any maximizer will do.

One appealing property of FP is that the empirical frequencies
generated by FP converge to the set of Nash equilibria in potential
games [7,16]. Although the empirical frequencies may converge
to a mixed Nash equilibrium while the proposals are cycling (see
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the related churning issue in [17]), it is generally believed that
convergence of empirical frequencies to a mixed (but not pure)
Nash equilibrium happens rarely when vehicle utilities are not
equivalent to a zero sum game [18,19]. Thus, if the vehicles ne-
gotiate using FP and their utilities constitute a potential game,
then in most cases we can expect them to asymptotically reach an
agreement on an assignment profile. We should also mention nu-
merous stochastic versions of FP with similar convergence prop-
erties [20].

The main disadvantage of FP for the purposes of this paper is
its computational burden on each vehicle. The most computation-
ally intensive operation is the optimization of the utilities during
the negotiations, which effectively requires an enumeration of all
possible combined assignments by other vehicles [21,22]. This
makes FP computationally prohibitive when there are large num-
bers of vehicles with large target sets. To make FP truly scalable,
it is clear that the vehicles need to evaluate their utilities more
directly without using the empirical frequencies.

4.1.2 Utility-Based FP. The distinction between action-based
and utility-based FP, see [23,24], is that the vehicles predict their
utilities during the negotiations based on the actual utilities corre-
sponding to the previous proposals. Utility Based FP is in essence
a multi-agent Reinforcement Learning algorithm [25,26]. The dif-
ference is that in reinforcement learning, the utility evaluation is
based on experience, whereas in utility based FP, it is based on a
call to a simulated utility function evaluator.

The main advantage of utility-based FP is its very low compu-
tational burden on each vehicle. In particular, the vehicles do not
need to compute the empirical frequencies of the past proposals
made by any vehicle and do not need to compute their expected
utilities based on the empirical frequencies. It only requires an
individual vehicle to process a (state) vector whose dimension is
its number of targets and to select a (randomized) maximizer. This
significantly alleviates the computational bottleneck of FP. How-
ever, the convergence of utility-based FP for potential games is
still an open issue.

There are also other utility-based learning algorithms that are
proven to converge in partnership games [27-29]. These algo-
rithms are similar to multiagent reinforcement learning algorithms
and have comparable computational burden to that of utility based
FP. However, convergence requires fine tuning of various param-
eters, such as the learning rates of each agent. Moreover, utility-
based learning algorithms are prone to the issue learnability and
may exhibit a slower convergence than action-based FP.

4.1.3 Regret Matching. The discussion on FP in Sec. 4.1.2
motivates a learning algorithm that is computationally feasible as
well as convergent in potential games, both theoretically and prac-
tically. Accordingly, we introduce regret matching, from [30],
whose main distinction is that the vehicles propose targets based
on their regret for not proposing particular targets in the past
negotiation steps.

As before, let us enumerate the targets available to vehicle V; as
A,:{Al!,...,Al.A"‘}. Vehicle V; selects its proposed target, a;(k),
according to a probability distribution, p;(k) € A(|.4;]), that will
be specified shortly. The €th component, pf(k), of p;(k) is the
probability that vehicle V; selects the €th target in A; at the nego-
tiation step k, i.e., pf(k):Prob{a,-(k):Af}. Vehicle V; does not
know the utility le_[a(k)] before proposing its own target a;(k).
Accordingly, before selecting a;(k), k> 1, vehicle V; computes its
average regret

k-1
, 1
R () 5= - 2 {Uy(Afa_(m)) = Uy (a(m))}

m=1

for not proposing Af in all past negotiation steps, assuming that
the proposed targets of all other vehicles remain unaltered.
Clearly, vehicle V; can compute Rf;_(k) using the recursion
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k-1 1
Ry(k+1)= TR{;I_(k) + E{UVI_(Af,a_,-(k)) - Uy (a(k)},

We note that, at any step k> 1, vehicle V; updates all entries in
its average regret vector Ry, (k)= [RV (k), . R‘A |(k)]T whose di-
mension is |A;]. In partlcular the vehicles do not need to compute
the empirical frequencies of the past proposals made by any ve-
hicle and do not need to compute their expected utilities based on
the empirical frequencies. We also note that it is sufficient for
vehicle V;, at step k>1, to have access to a;(k—1) and
Uy (Af,a_i(k=1)) for all €e{l,...,|A;]}. In other words, it is
sufficient for vehicle V;’s to have access to its proposal at step k
—1 and its actual utility Uy, (a(k- 1)) received at step k—1 as well
as its hypothetical utilities Uy, (A ,a_i(k—1)), which would have
been received if it had proposed target Ae [instead of a;(k—1)] and
all other vehicle proposals a_;(k—1) had remained unchanged at
step k—1.

Once vehicle V; computes its average regret vector, RVi(k), it
proposes a target a;(k), k> 1, according to the probability distri-
bution

Ry
1Ry (T

provided that the denominator above is positive; otherwise, p;(k)
is the uniform distribution over A; [p,(1) € A(|4;]) is always ar-
bitrary]. Roughly speaking, a vehicle using regret matching pro-
poses a particular target at any step with probability proportional
to the average regret for not playing that particular target in the
past negotiation steps. It turns out that the average regret of a
vehicle using regret matching would asymptotically vanish (simi-
lar results hold for different regret based adaptive dynamics); see
[30-32]. Although this result characterizes the long-term behavior
of regret matching in general games, it need not imply that the
negotiations of vehicles using regret matching will converge to a
pure equilibrium assignment profile when vehicle utilities consti-
tute a potential game, an objective which we will pursue in Sec.
4.2.

pilk

4.2 Generalized Regret Monitoring With Fading Memory
and Inertia. To enable convergence to a pure equilibrium in po-
tential games, we will modify regret matching in two ways. First,
we will assume that each vehicle has a fading memory; that is,
each vehicle exponentially discounts the influence of its past re-
gret in the computation of its average regret vector. More pre-
cisely, each vehicle computes a discounted average regret vector
according to the recursion

(1= PR}, (k) + p{Uy,(Af a_(k))
- Uypla(k))}, ¢ ef{l,...,

where p € (0,1] is a parameter with 1—p being the discount fac-

tor, and RZ (1) 0.

Second, ‘we will assume that each vehicle proposes a target
based on its discounted average regret using some inertia. There-
fore, each vehicle V; proposes a target a;(k), at step k> 1, accord-
ing to the probability distribution

ﬁf,i(k +1)=
for all

“i(k)RMi(Ev,.(k)) +[1 = ay(k)Jveit=V)

where «;(k) is a parameter representing vehicle V;’s willingness to
optimize at time k, v%*~1) is the vertex of A(|.4;]) corresponding
to the target a;(k—1) proposed by vehicle V; at step k—1, and
RM;: R — A(|.4;]) is any continuous function satisfying

X>0oRM(x) >0 and 17[x]*=0=RM,(x) = |A|
(8)
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where x! and RMf(x) are the €th components of x and RM;(x),
respectively.

We will call the above dynamics generalized regret monitoring
(RM) with fading memory and inertia. The reason behind the term
“monitoring” is that the algorithm leaves as unspecified how an
agent reacts to regrets through the function RM;(-). One particular
choice for the function RM,; is

[x]*
lTl:x]Jr

which leads to regret matching with fading memory and inertia.
Another particular choice is

RM;(x) = (when 17[x]*>0)

le

RMf(x) = x>0} (when 17x]*>0) (9)

l I"
67’

X">0

where 7>0 is a parameter. Note that, for small values of 7, ve-
hicle V; would choose, with high probability, the target corre-
sponding to the maximum regret. This choice leads to a stochastic
variant of an algorithm called joint strategy fictitious play (with
fading memory and inertia); see [22]. Also, note that, for large
values of 7, V; would choose any target having positive regret with
equal probability.

According to these rules, vehicle V; will stay with its previous
proposal a;(k—1) with probability 1 —«;(k) regardless of its regret.
We make the following standing assumption on the vehicles’ will-
ingness to optimize.

ASSUMPTION 4.1. There exist constants € and & such that

0<e<alkh)<e<l

for all time k>1 and for all i e{1,...,n,}.

This assumption implies that Vehlcles are always willing to op-
timize with some nonzero inertia.” The following theorem estab-
lishes the convergence of generalized regret monitoring with fad-
ing memory and inertia to a pure equilibrium.

THEOREM 4.1. Assume that vehicle utilities constitute an ordinal
potential game” and no vehicle is indifferent between distinct
strategies, i.e.,
al # az, Ya

1 2 o2
Uy(a;,a) # Uylaj.a), Va;, ai €A, a; #aq >

S A—i’ ,i’lv}

Then, the target proposals a(t) generated by generalized regret
monitoring with fading memory and inertia satisfying Assumption
4.1 converge to a pure Nash equilibrium almost surely.

Proof. We will state and prove a series of claims. The first claim
states that if a vehicle proposes a target with positive (discounted
average) regret, then all subsequent target proposals will also have
positive regret.

CLAM 4.1. Fix any ky>1. Then, R
for all k> k.
Proof. Suppose E?}‘(k(’)(ko) >0. If a;(ky+1)=a,(ky), then

Viedl,...

,(ko)(k )>0:>R“ (k)(k) >0

R‘\l}(koﬂ)(k + 1) (1 p)Ra (ko)(ko) >0
If a;(ko+1) # a,(ky), then
Ry“o (kg +1)>0

The argument can be repeated to show that Iﬁé‘ﬁfk)(k)>0, for all

k> k. O
Define

*This assumption can be relaxed to holding for sufficiently large k, as opposed to
all k.
3This theorem also holds in the more general weakly acyclic games, see [33].
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M, = max{UVi(a)Ia e AV, eV}
m, = min{UVi(a):a e AV, e V}

8= min{|UVi(a') - UV[(aZ)|:al,a2 e Aa',=d*,

le_(al)
- Uvi(az)\ >0,V; e V}

N := min{n e{l,2,...}:(1-(=p"é-(1-p)"(M,—m,)

5
>_
2}

f= min{RM;”(x):|xe| =M,-m,, ¥V € x"

)
= 5, foronem, VV;e V}

Note that 8,/>0, and \ﬁ‘,ﬂll(kﬂ =M,-m,, for all V;eV, a;e A,
k>1.

The second claim states that if the current proposal is a strict
Nash equilibrium and if the proposal is repeated a sufficient num-
ber of times, then all subsequent proposals will also be that Nash
equilibrium.

CLAIM 4.2. Fix ky>1. Assume

1. a(ky) is a strict Nash equilibrium, and

2. R%0(k) >0 for all V; eV, and

3. a(k0)=a(k0+ ])= te =a(k0+N— 1)

Then, a(k)=a(ky), for all k= k.
Proof. For any V; € V and any «; € A;, we have
R$i(ko+N) = (1 = p) "R (ko) + [1 = (1 = p)"HUy (@, a_i(ko))
-U V[(ai(ko)’a—i(ko))}

Since a(kg) is a strict Nash equilibrium, for any V; e V and any
a; e A;, a; # a;(k), we have

Uvi(ai,a_i(ko)) - Uvi(ai(ko),a_i(ko)) = - 6

Therefore,
~ 1)
R({/“(ko'FN) = (1 _p)N(Mu _mu) - [1 - (1 _P)N:|5< - 5 <0
We also know that, for all V; €V,

R0 (kg +N) = (1 - )Ry (ky) > 0

This proves the claim. O
The third claim states that if the current proposal is not a Nash
equilibrium and if the proposal is repeated a sufficient number of
times, then the subsequent assignment proposal will have a higher
global utility with at least a fixed probability.
CLAIM 4.3. Fix ky> 1. Assume

1. a(ky) is not a Nash equilibrium, and
2. a(k0)=a(k0+ l)= ce =a(k0+N— 1)
Let a*=(a?,a_i(k0)) be such that
Uy, (a;.a_(ko)) > Uy (ai(ko),a_i(ko))

for some V; € V and some a e A;. Then, le (kog+N)>8/2, and a*
will be proposed at step k0+N with at least probability y:=(1

_ E)ilv 1 _f
Proof. We have
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R (kg +N) = (1= 1", =) + (1= (1= p)lo>
Therefore, the probability of vehicle V; proposing a: at step kg
+N is at least ef. Because of players’ inertia, the probability that
all vehicles will propose action a” at step ky+N is at least (1
_ E)”v_l §f O

The fourth claim specifies an event and associated probability
that guarantees that all vehicles will only propose targets with
positive regret.

CLAIM 4.4. Fix ky>1. We have R ’(k)(k)>0 for all k=k,
+2Nn, and for all V; eV with probabzllty at least

ny

I

'}’(1 2Nn
i |A|

Proof. Let a%:=
0

a(ky). Suppose R (ko) =0. Furthermore, sup-
pose that a” is repeated N consecutive times, i.e., a(kg)=-"
=a(ky+N—-1)=a’, which occurs with at least probability at least
(1 _ E)"U(N—l).

If there exists an a*—(a ) such that Uy, (a")>Uy(a®), then,
by Claim 4.3, va (kg+N)> 6/2 and a” will be proposed at step
ko+N with at least probability y. Conditioned on this, we know
from Claim 4.1 that E“’(k)(k) >0 for all k=ky+N.

If there does not exist such an actlon a”, then RVl(kO +N) <0 for
all a; € A;. A proposal profile (a}’, ) with Uy, (a ,a. )< Uy(a®)
will be proposed at step ko+N w1th at least probablllty 1/ \A b
X(1-8)"~1 If a(kg+N)=(a}’ ,a°,), and if, furthermore, (a)’,a’,) is
repeated N consecutive times, i.e., a(k+N)=---=a(k+2N-1),
which happens with probability at least (1-&™®-1, then, by
Claim 4.3, I?‘é?(k0+2N) > §/2 and the joint target a° will be pro-
posed at step (tk0+2N) with at least probability . Conditioned on
this, we know from Claim 4.1 that R4¥(k)>0 for all k=k,
+2N. 1

In summary, ﬁ‘gi(k)(k) >0 for all k=ky+2N with at least prob-
ability
2Nn,

Ty(l-€
| A

We can repeat this argument for each vehicle to show that
REM(k)>0 for all times k=ko+2Nn, and for all V;e ) with
probability, at least

ny

11

i=1 |Az|

v (1 _ E)ZN"U

|

Final Step: Establishing Convergence to a Pure Nash Equilib-

rium. Fix ko> 1. Let k, :=ko+2Nn,. Suppose R '(")(k)>0 for all

k=k, and for all V; € V, which, by Claim 4.4, occurs with prob-
ability, at least

n,

Hly(l

i1 Al

)2Nnv

Suppose further that a(k;)=---=a(k;+N—-1) which occurs with at
least probability (1—&)™ ™=V If a(k) is a Nash equilibrium, then
by Claim 4.1, we are done. Otherwise, according to Claim 4.3, a
proposal profile a’=(a/,a_(k,)) with Uyla')>Uy(a(k)) for
some V; e V will be played at step k;+N with at least probability
7. Note that this would imply U,(a(k,+N))> U,(a(k,)). Suppose
now a(k;+N)=---=a(k;+2N-1), which occurs with at least
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probability (1-&)"™-1_ If a’is a Nash equilibrium, then, by
Claim 4.2, we are done. Otherwise, according to Claim 4.3, a
proposal profile a"=(a},a’,) with Uy(a")>Uy(a(k;+N)) for
some V; € V will be played at step k; +2N with at least probability
y. Note that this would imply Ug(a(k;+2N))>Uj(a(k;+N)).
Note that this procedure can only be repeated a finite number of
times because the global utility is strictly increasing each time.
We can repeat the above arguments until we reach a pure Nash
equilibrium «" and stay at a” for N consecutive steps. This means

that there exists constants €>0 and 7> 0, both of which are in-
dependent of kg, such that the following event happens with at

least probability &:a(k)=a" for all k=k,+ T. This proves Theorem
4.1. |
Note that an agreed assignment that emerges from generalized
RM with fading memory and inertia can be suboptimal. Charac-
terizing the equilibrium selection properties in potential games
still remains as an open problem. As in FP, regret-based dynamics
introduced above would require communication of proposed tar-
get assignments as part of a negotiation process. FP is guaranteed
to converge for potential games but requires an individual vehicle
to process the empirical frequencies of all other vehicles that af-
fect its utility and to use these empirical frequencies to compute
the maximizer of its expected utility. Generalized RM with fading
memory and inertia is guaranteed to converge to a pure equilib-
rium in almost all (ordinal) potential games; however, its compu-
tational requirements are significantly lower. It only requires an
individual vehicle to process an average regret vector whose di-
mension is its number of targets and to select a (randomized)
target based on the positive part of its average regret vector.

4.3 Review: One-Step Memory Spatial Adaptive Play. The
previous negotiation mechanisms were called recursive averaging
algorithms since they maintained a running average (or fading
memory average) of certain variables, e.g., averaged actions of
other players (FP) or averaged regret measures (RM). These algo-
rithms have “infinite memory” in that the long-term effect of a
measured variable may diminish but is never completely
eliminated.

In this section, we will consider an opposite extreme, namely, a
specific one-step memory algorithm called spatial adaptive play.
(SAP) spatial adaptive play was introduced in [9] (Chap. 6)
(which also reviews other multistep memory algorithms) as a
learning process for games played on graphs. SAP can be a very
effective negotiation mechanism in our autonomous vehicle-target
assignment problem because it would have low computational
burden on each vehicle and it would lead to an optimal solution in
potential games with arbitrarily high probability.

Unlike the other negotiation mechanisms we considered thus
far, at any step of SAP negotiations, one vehicle is randomly
chosen, where each vehicle is equally likely to be chosen, and
only this chosen vehicle is given the chance to update its proposed
talrget.4 Let a(k—1) denote the profile of proposed targets at step
k—1. At step k, the vehicle that is given the chance to update its
proposed target, say vehicle V;, proposes a target according to a
probability distribution p;(k) € A(JA;|) that maximizes

“We will not deal with the issue of how the autonomous vehicles can randomly
choose exactly one vehicle (or multiple vehicles with no common targets) to update
its proposal without centralized coordination. In actuality, such asynchronous updat-
ing may be easier to implement than implementing the aforementioned negotiation
mechanisms that require synchronous updating. One possible implementation of
asynchronous updating would be similar to the implementation of well known Aloha
protocol in multiaccess communication, where multiple transmitting nodes attempt to
access a single communication channel without colliding with each other [34].
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Uvi(A},a_j(k - 1))

pi (k) + 7H[p,(k)]

Uy (A a k- 1)

where H(-) is the entropy function that rewards randomization
(see Nomenclature) and 7>0 is a parameter that controls the level
of randomization. For any 7> 0, the maximizing probability p,(k)
is uniquely given by

UVi[Ag’a—i(k - 1)]

1
Pi(k) =0l — :
4 A}
UVi[Ai ! ,a_,-(k - 1)]

where o(-) is the logit or soft-max function (see Nomenclature).
For any 7>0, p,(k) assigns positive probability to all targets in
A;. We are interested in small values of 7>0 because then p;(k)
approximately maximizes vehicle V;’s (unperturbed) utility based
on other vehicles’ proposals at the previous step. For other inter-
pretations of the entropy term, see [35,36]; and for different ways
of randomization, see [20].

The computational burden of SAP on each updating vehicle is
comparable to that of RM on each vehicle. Each vehicle needs to
observe and maintain the proposal profile a(k) (actually, only the
relevant part of a(k)). If given the chance to update its proposal,
vehicle V; needs to call its utility function evaluator only |A4;
times. Because only one vehicle updates its proposal at a given
negotiation step, the convergence of negotiations may be slow
when there are large number of vehicles.” However, if the vehicles
have a relatively small number of common targets in their target
sets, then multiple vehicles can be allowed to update their propos-
als at a given step as long as they do not have common targets.
Allowing such multiple updates may potentially speed up the ne-
gotiations substantially. In our simulations summarized in Sec. 5,
typically SAP provided convergence to a near-optimal assignment
faster than the most other negotiations mechanisms.

4.4 Selective Spatial Adaptive Play. We will now introduce
“selective spatial adaptive play” (sSAP) for the cases where a
vehicle has a large number of targets in its target set or calling its
utility function evaluator is computationally expensive. We will
parameterize sSAP with n=(n1,...,n,,v) where 1=n;<|A4;|-1
represents the number of times that vehicle V; calls its utility
function evaluator when it is given the chance to update its pro-
posal. Let us say that vehicle V;, using sSAP, is given the chance
to update its proposal at step k. First, vehicle V; sequentially se-
lects n; targets from A;\{a;(k—1)} without replacement where
each target is selected independently and with uniform probability
over the remaining targets. Call these selected targets
Af‘(k), . ,Af”f(k), and let Afo(k) :=a,;(k—1) be appended to these
set of selected targets. Then, at step k,vehicle V; proposes a target
according to the probability distribution

Uy [AD®K) (k- 1)]

pi=ol © =
T ¢
Uy LA Rk~ 1)

for some 7>0. In other words, at step k, vehicle V; proposes a
target to approximately maximize its own utility based on the
selected targets .Afo(k),...,Af”'(k) and other vehicles’ proposals
at the previous step. Thus, to compute p;(k), vehicle V;, needs to
call its utility function evaluator only n; times where n;=1 could
be much smaller than | 4. It turns out that we can characterize the

SIf SAP is used as a centralized optimization tool, then the computational burden
at each step will be very small because only one entry in a(k) will be updated at each
step.
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long-term behavior of sSSAP quite precisely following along simi-
lar lines of proof of Theorem 6.1 in [9].

THEOREM 4.2. Assume that the vehicle utilities constitute a po-
tential game where the global utility U, is a potential function.
Then, the target proposals a(k) generated by sSAP satisfy

lim lim Prob{a(k)

7|0 k—o
=1
Proof. sSAP induces an irreducible Markov process where the
state space is A and the state at step k is the profile a(k) of
proposed targets. The empirical frequencies of the visited states
converge to the unique stationary distribution of this induced Mar-

kov process. As in Theorem 6.1 in [9], we show that, this station-
ary distribution, denoted by w7, is given as

e(l/T) Ug(a)

-, V

EaeA INU(@

by verifying the detailed balance equations
w(a)Prob{a — b} = u(b)Prob{hb — a}, Ya,b e A

The only nontrivial case that requires the verification of the above
equations is when @ and b differ in exactly one position. Fix a and
b such that a; # b; and a_;=b_;. Then, we have

Prob{a — b}
1

is an optimal target assignment profile}

ua)= ae A

LUy (B)

>

Mo (0 amyestab)

(e

(1/7) UV(uf)

<|A|—n>z

where
S(a,b) ={(d, ... ,a") e A" (a!;=a_;, Vj) (@=a) (d
=b, foronej), (a/#da", Vjm)}
It is now straightforward to see that
Probla — b} _ ity er-vp@1 _ jumier-ugan - #0)
Prob{b — a} wa)

Therefore, 17 is indeed as given above, and it can be written, in
the alternative vector form, as

1
M= 0<;Ug)

where, by an abuse of notation, U, is also used to represent a
vector whose “ath entry” equals Ug(a). Finally, the fact that the
Markov process induced by sSAP with 7>0 being irreducible and
aperiodic readily leads to the desired result. O

Thus, in the setup above, u7 assigns arbitrarily high probability
to those assignment profiles that maximize a potential function for
the game as 7] 0. Clearly, this result indicates that in the case of
vehicle utilities ITU (4), RRU (5), or WLU (7), sSAP negotiations
would lead to an optimal target assignment with arbitrarily high
probability provided that 7>0 is chosen sufficiently small. Of
course, one can gradually decrease 7 to allow initial exploration.
We believe that one can obtain convergence, in probability, of
proposals a(k) to an optimal assignment if 7 is decreased suffi-
ciently slowly as in simulated annealing [37,38]. In our simula-
tions, choosing 7 inversely proportional to k> during the negotia-
tions typically resulted in fast convergence of the proposals to a
near optimal assignment.

5 Simulation Results

In this section, we present some numerical results to illustrate
that when the individual utility functions and the negotiation
mechanisms are properly selected the autonomous vehicles can
agree on a target assignment profile that yield near-optimal global

Journal of Dynamic Systems, Measurement, and Control

utility. We consider two scenarios. In the first scenario, we illus-
trate the near optimality of our approach by simulating a special
case of the well-known weapon target assignment model where an
optimal assignment can be obtained for large number of weapons
and targets in a short period of time [2]. In the second scenario,
we simulate a general instance of the problem and compare vari-
ous negotiation algorithms in terms of their performance and
speed of convergence.

Scenario 1. Here, the vehicles are identical and have zero val-
ues, whereas the targets are different and have posmve values.
Each vehicle can be assigned to any of the targets. ® Let V; be the
value of target 7; and p; be the probability that target T gets
eliminated when only a single vehicle engages target 7. When
multiple vehicles are assigned to target 7}, each of the VCthle§ 18
assumed to engage target 7}, independently. Hence, if the number
of vehicles engaging target 7; is x;, then 7; will be eliminated with
probability 1-(1-p;)¥. Therefore, as a function of the assignment
profile a, the utility generated by the engagement with target 7; is
given by

Ur(a) = V|1 - (1 - p)=ae=Tj]

which leads to the following global utility function:

ny
Ugla) =2 V][1 = (1 - p)=le=T]
Jj=1

Given the parameters n,, n,, Visooo sV, and pq,..., Py AN opti-
mal vehicle-target assignment that maximizes the global utility
function given above can be quickly obtained using an iterative
procedure called minimum marginal return algorithm [2].

To test the effectiveness of our approach, we simulated the
vehicle negotiations using the above model with 200 vehicles and
200 targets in MATLAB on a single personal computer with
1.4 GHz Pentium(R) M processor and 1.1 GB of RAM. Each of
the target values, Vi, ..., V5o, and each of the elimination prob-
abilities, pq,...,Pa0, are once independently chosen according to
uniform probability distribution on [0,1] and thereafter kept con-
stant throughout the simulations. We first conducted 100 runs of
generalized RM negotiations (RM; function is as in (9), p=0.1,
a=0.5) with WLU utilities (7), where each negotiation consisted
of 100 steps. We then repeated this with 100 runs of SAP nego-
tiations with WLU utilities (7) where each run consisted of 1000
steps. We also conducted 100 runs of utility based FP negotiations
with WLU utilities (7), where each negotiation consisted of 1000
steps. In all cases, the randomization level 7is decreased as 10/ K2,
where £ is the negotiation step. Evolution of global utility during
typical runs of generalized RM, SAP, and utility-based FP nego-
tiations is shown in Fig. 4. Also, the global utility corresponding
to the assignment profile at the end of each run of negotiations and
the CPU time required for each run were recorded. A summary of
these numerical results is provided in Table 1.

All negotiations consistently yielded near-optimal assignments.
Global utility generated by SAP negotiations were almost always
monotonically increasing, whereas global utility generated by
generalized RM and utility-based FP negotiations exhibited fluc-
tuations as seen in Fig. 4.

In any SAP negotiation step, only one vehicle calls its utility
function evaluator 200 times; whereas in any generalized RM ne-
gotiation step, all vehicles call their utility function evaluators
(200 times for each vehicle). As a result, although a typical gen-
eralized RM negotiation converged in 100 steps as opposed to
1000 steps in the case of SAP, a typical 100 step generalized RM
negotiation took 593 s CPU time, on average, whereas a typical
1000-step SAP negotiation took 49 s CPU time, on average. How-
ever, it is important to note that these numbers reflect sequential

Note that there is no reason to consider a null target 7, here.
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Fig. 4 Evolution of global utility during typical runs of
negotiations

CPU time. In an actual implementation, individual vehicles will
call their utility function evaluators in parallel. The “parallel”
CPU time in Table 1 is the overall CPU time divided by the
number of vehicles. It is a rough reflection of what would be the
actual implementation time in a parallel implementation. We see
that generalized RM is actually faster than SAP. The parallel time
in SAP is the same as the sequential CPU time because only one
vehicle updates its strategy per iteration.

In the case of utility-based FP, all vehicles call their utility
function evaluators at each negotiation step but only once for each
vehicle. This can be contrasted with generalized RM, which re-
quires a utility function evaluation for every possible target.
Utility-based FP took 1000 negotiation steps to approach the op-
timal global utility, but using 67 s CPU time, on average (or
0.33 s in parallel), which is also faster than the average CPU time
used by RM, despite utility-based FP requiring more iterations.

For this scenario, action-based FP would impose enormous
computational burden on each vehicle since a vehicle using action
FP would have to keep track of the empirical frequencies of the
choices of 199 other vehicles and compute its expected utility
over a decision space of dimension 200°% at every negotiation
step. However, the numerical results presented above verify that
autonomous vehicles can quickly negotiate and agree on an as-

signment profile that yields near optimal global utility when ve-
hicle utilities and negotiation mechanisms are chosen properly.

Scenario 2. In this scenario, we consider a more general in-
stance of the weapon target assignment problem, where we have
virtually no way of computing the optimal global utility. The setup
in this scenario is similar to the one in Scenario 1, except that the
vehicles are not identical and are also range restricted. More spe-
cifically, each vehicle still has zero value, but the probability p;;
that target 7; gets eliminated when only vehicle V; engages target
7; differs from vehicle to vehicle. Each of the elimination prob-
abilities, p;;, 0=i,j=200, is once independently chosen accord-
ing to uniform probability distribution on [0,1] and thereafter
kept constant throughout the simulations. Each vehicle V; has 20
targets in its range .4; and the targets in .4; are chosen from the set
of all targets with equal probability and independently of the other
vehicles. Therefore, a pair of two vehicles may have some com-
mon as well as distinct targets in their ranges. As in Scenario 1,
the target values Vi, ..., V5o, are chosen independently and ac-
cording to uniform probability distribution on [0, 1]. Therefore, as
a function of the assignment profile a, the utility generated by the
engagement with target 7; is given by

UTj(a) = Vj|:1 - H (1 —Pij)]
i:TieA;
which leads to the following global utility function

H ( —Pij)]

iiTeA;

ny
ww=2wp—
j=1

Using the same computational resources and the same setup as
in Scenario 1, we simulated the vehicle negotiations on the above
model. Evolution of global utility during typical runs of general-
ized RM, SAP, and utility-based FP negotiations is shown in Fig.
5. The global utility corresponding to the assignment profile at the
end of each run of negotiations and the CPU time required for
each run were recorded. A summary of these numerical results is
provided in Table 2.

All negotiations eventually settled at some assignment profiles,
leading to comparable global utility as shown in Fig. 5 and Table
2. The convergence in this scenario was slower for all negotiation
mechanisms. The reason for this is that the vehicles in this sce-
nario are not identical and range restricted, and as a result, com-
puting each vehicle’s utility is computationally more demanding.
The relative timings in both CPU time and convergence rates are
similar to those in Scenario 1.

Action-based FP was computationally infeasible for this sce-
nario as well for the same reasons stated earlier, i.e., its enormous
computational burden on each vehicle.

The numerical results presented above show that autonomous
vehicles can quickly negotiate and agree on an (possibly near-
optimal) assignment profile when vehicle utilities and negotiation
mechanisms are chosen properly. In all cases, vehicles only com-
municate with their “neighbors,” i.e., those vehicles that share a
common target. The difference between algorithms is in the num-
ber of vehicles that communicate per iteration. In SAP, only the
vehicle revising its assignment must communicate with its neigh-
bors. In generalized RM and utility-based FP, all vehicles must
communicate with their neighbors in every iteration. In Scenario
1, all vehicles share the same targets and thus, all vehicles are

Table 1 Summary of simulation runs

Generalized RM SAP Utility-based FP
Average global utility / Optimal global utility 0.99 0.99 0.98
Minimum global utility /Optimal global utility 0.99 0.99 0.96
Average CPU time (s) 593 (=3.0 parallel) 49 67 (=0.33 parallel)
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neighbors. In Scenario 2, the communication pattern is much
more sparse because of the limited vehicle ranges and distribution
of targets. The most communications savings per iteration is for
SAP. However, SAP showed more iterations required for conver-
gence.

6 Conclusions

We introduced an autonomous vehicle-target assignment prob-
lem as a multiplayer game where the vehicles are self-interested
players with their own individual utility functions. We emphasized
rational decision making on the part of the vehicles to develop
autonomous operation capability in uncertain and adversarial en-
vironments. To achieve optimality with respect to a global utility
function, we discussed various aspects of the design of the vehicle
utilities, in particular, alignment with a global utility function and
localization. We reviewed selected multiplayer learning algo-
rithms available in the literature. We introduced two new algo-
rithms that address the informational and computation require-
ment of existing algorithms, namely, generalized RM with fading
memory and inertia and selective spatial adaptive play, and pro-
vided accompanying convergence proofs. Finally, we discussed
these learning algorithms in terms of convergence, equilibrium

Table 2 Summary of simulation runs

Generalized Utility-based
RM SAP FP
Global utility 87.62 85.24 85.49
Average CPU time (s) 2707 382 529

(=13.5 parallel) (=2.64 parallel)

Journal of Dynamic Systems, Measurement, and Control

selection, and computational efficiency, and illustrated the
achievement of a global utility in a near-optimal fashion through
autonomous vehicle negotiations.

We end by pointing to a significant extension of this work, the
case where the vehicle-target assignments need to be made se-
quentially over a time horizon [2]. In this case, the assignment
decisions made by the vehicles at a given time step (probabilisti-
cally) determines the future games to be played by the vehicles.
Therefore, the vehicles need to take the future utilities into ac-
count in their negotiations. A natural framework to study such
problems of sequential decision making in a competitive multi-
player setting is the framework of Markov games [39,40]. Extend-
ing the approach taken in this paper to a Markov game setup
requires significant future work.
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Nomenclature

|A] = number of elements in A, for a finite set A

K-} = indicator function
R"™ = n dimensional Euclidian space, for a positive
integer n
1
1 = vector e R”
1
()T = transpose operation
A(n) = simplex in R”, i.e.,
{s € R"|s=0 componentwise, and 17s=1}
Int(A(n)) = set of interior points of a simplex, i.e., s>0

componentwise
‘H:Int(A(n))

—R = entropy function H(x)=—xT log(x)
o:R"—A(n) = “logit” or “soft-max” function (o(x));=e"/(e*!
+oetetn)
[x]* € R" = vector whose ith entry equals max(x;,0), for x
e R”
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